

 Application Type
 Renewal

 Facility Type
 Industrial

 Major / Minor
 Minor

NPDES PERMIT FACT SHEET INDIVIDUAL INDUSTRIAL WASTE (IW) AND IW STORMWATER

Application No.PA0218464APS ID991499Authorization ID1270121

Applicant and Facility Information

Applicant Name	Gans	Energy, LLC	Facility Name	Gans Generating Facility
Applicant Address	581 G	Bans Road	Facility Address	SR 3002 Gans Road
	Lake	Lynn, PA 15451		Gans, PA 15439
Applicant Contact	Kathy	French	Facility Contact	Anthony Miles
Applicant Phone	(724)	727-3628	Facility Phone	(724) 725-6005
Client ID	33606	60	Site ID	531375
SIC Code	4911		Municipality	Springhill Township
SIC Description	Electr	ic Services	County	Fayette
Date Application Rece	eived	April 3, 2019	EPA Waived?	Yes
Date Application Acce	pted	April 22, 2019	If No, Reason	
Purpose of Application	ו	•	t for the discharge of non-contact the electric generating facility.	ct cooling water, industrial wastewater, and

Summary of Review

The Department received an NPDES permit renewal application from Gans Energy, LLC on April 3, 2019 for coverage of the discharge from its Gans Generating Facility in Springhill Township of Fayette County. The facility is an 88-megawatt capacity natural gas simple-cycle combustion turbine electric generating facility with an SIC Code 4911 (Electric Services). The current NPDES permit was renewed on October 1, 2014 and expired on September 30, 2019. The permit was transferred from Allegheny Energy Supply Company, LLC to Gans Energy, LLC on April 12, 2019. Water Quality Management (WQM) Permit 2600201 was approved on September 27, 2000.

Allegheny Energy Supply Company, LLC (AES) submitted a Phase I Toxics Reduction Evaluation (TRE) to the Department on March 28, 2016. The TRE details AES's efforts to identify the source(s) of arsenic, zinc, bromoform, and chlorodibromomethane in its discharges as well as an evaluation of best management practices (BMPs) and structural modifications designed to ensure AES's discharges comply with the permit's Final Water Based Effluent Limitations. The TRE was approved on January 27, 2017 and the Department determined that the BMPs and capital improvements were already implemented.

Gans Generating Facility (Gans) produces electricity during periods of peak demand. Operation of the facility is based upon energy demand and economic dispatch. While the station can be operated remotely and has the potential to be called on line at any time, its air permit limits operation to a total of 4875 unit-operating hours during any rolling 12-month period. Operation of the combustion turbines is most typically for several hours per day during peak heating and cooling seasons (December through February and June through August). There have been no changes to the operations at this facility since the last permit review.

Approve	Deny	Signatures	Date
х		Lauren Nolfi, E.I.T. / Environmental Engineering Specialist	April 10, 2020
х		Michael E. Fifth, P.E. / Environmental Engineer Manager	April 22, 2020

Summary of Review

The facility contains two identical parallel trains, each equipped with a generator building, condensing structures, emissions control equipment, a 75-foot stack, and a cooling tower. Other site features include a water treatment building/ office, a gas regulator building, a maintenance/ storage building, step-up and step-down electrical transformers, a switchyard, and a gravel/ paved lot.

The facility has one outfall, Outfall 001, which discharges to an Unnamed Tributary (UNT) to Grassy Run, designated in 25 PA Code Chapter 93 as a Warm Water Fishery (WWF). Outfall 001 discharges wastewater from internal monitoring points (IMP) 101 and 201. IMP 101 discharges non-contact cooling tower blowdown at a design flow of 0.057 MGD and maximum flow of 0.045 MGD. IMP 201 discharges stormwater and low-volume wastewater after treatment through an oil/ water separator at a design flow of 0.1067 MGD and maximum flow of 0.011 MGD.

A stream assessment to determine the point of first use (POFU) of the UNT to Grassy Run was conducted on January 14, 2020 by the Department. Results from the study suggest that the stream has an aquatic life use at the point where it exhibits define bed and bank ((Latitude:39.74678, Longitude: -79.84247), and this use should be protected. However, the Department also flagged the stream as not attaining its protective use under Section 303d of the Clean Water Act. The causes of the impairment are iron, sulfate, strontium, total dissolved solids, and specific conductivity and the source of the impairment is acid mine drainage. Because of the receiving stream's impairment, the water quality for Outfall 001 is modeled 1.5 miles downstream of the outfall, where the UNT to Grassy Run confluences with Grassy Run.

The facility's laboratory did not meet the Department's Target quantification limits (QLs) for all parameters in its sample analyses. The maximum reported value for Total Cadmium at IMP 201 was reported as "non-detect" using a QL that failed to achieve the Department's minimum Target QL. Gans will be collecting an additional sample for the parameter Total Cadmium and having it analyzed using the Target QL. If the additional sample indicates that Total Cadmium is not a pollutant of concern, those effluent limits may be removed from the final permit.

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Discharge, Receiv	ing Waters and Water Supply Inform	nation	
Outfall No. 00	1	Design Flow (MGD)	0.1092
Latitude 39	^o 44' 51"	Longitude	-79º 50' 33"
Quad Name	Lake Lynn	Quad Code	2107
Wastewater Des	•	blowdown from IMP 101 and oi	I/ water separation for
Receiving Water	s Grassy Run (WWF)	Stream Code	41891
NHD Com ID	64191454	RMI	1.6527
Drainage Area	4.49 mi ²	Yield (cfs/mi ²)	0.001116
Q ₇₋₁₀ Flow (cfs)	0.0501	Q7-10 Basis	USGS StreamStats
Elevation (ft)	894	Slope (ft/ft)	0.0174
Watershed No.	_19-G	Chapter 93 Class.	WWF
Existing Use		Existing Use Qualifier	
Exceptions to Us	se	Exceptions to Criteria	
Assessment Sta	tus Impaired		
Cause(s) of Impa	airment <u>Metals, pH</u>		
Source(s) of Imp	airment Acid Mine Drainage		
TMDL Status		Name	
Nearest Downsti	eam Public Water Supply Intake	Point Marion Borough	
PWS Waters	Cheat River	Flow at Intake (cfs)	0.78
PWS RMI	1.07	Distance from Outfall (mi)	5.37

Other Comments:

No changes have been made to Outfall 001 since last permit issuance.

The USGS Stream Stats Data for the drainage area is displayed in Attachment A. The water quality for Outfall 001 is modeled 1.5 miles downstream of the outfall, where the Unnamed Tributary (UNT) to Grassy Run (Stream Code 41892) confluences with Grassy Run (Stream Code 41891). The Unnamed Tributary to Grassy Run has no aquatic use to support due to severe impairment caused by abandoned main drainage.

Compliance History

DMR Data for Outfall 101 (from October 1, 2018 to September 30, 2019)

Parameter	SEP-19	AUG-19	JUL-19	JUN-19	MAY-19	APR-19	MAR-19	FEB-19	JAN-19	DEC-18	NOV-18	OCT-18
Flow (MGD)												
Average Monthly	0.007	0.004	0.003	0.002	0.0023	0.0003	0.0003			0.0040	0.0185	0.0014
Flow (MGD)												
Daily Maximum	0.012	0.012	0.01	0.008	0.0109	0.00349	0.0035			0.0042	0.0453	0.0038
pH (S.U.)												
Daily Minimum	8.75	7.78	8.83	8.84	7.04	8.24						
pH (S.U.)												
Minimum							7.69			6.68	6.4	6.35
pH (S.U.)												
Daily Maximum	8.87	8.91	8.88	8.84	8.58	8.41						
pH (S.U.)												
Maximum							8.30			7.53	7.34	6.47
TRC (mg/L)												
Average Monthly	< 0.01	0.01	0.06	0.02	0.09	< 0.01	0.05			0.205	0.2	0.11
TRC (mg/L)												
Instantaneous												
Maximum	< 0.01	0.01	0.10	0.03	0.17	< 0.01	0.07			0.39	0.39	0.12
Free Available												
Chlorine (mg/L)	0.00	0.04	0.055	0.00	0.00	0.045	0.005			0.405	0.045	0.00
Average Monthly	0.02	< 0.01	0.055	0.06	0.08	0.015	0.035			0.135	0.015	0.06
Free Available												
Chlorine (mg/L) Instantaneous												
Maximum	0.04	< 0.01	0.06	0.06	0.09	0.03	0.04			0.25	0.02	0.06
Temperature (°F)	0.04	< 0.01	0.00	0.00	0.09	0.03	0.04			0.25	0.02	0.00
Instantaneous												
Maximum	80.7	79.08	74.81	79.73	70.22	57.2	53.78			51.44	55.76	70.88
Total Arsenic (mg/L)	00.7	10.00	7 1.01	10.10	10.22	07.2	00.10			01.11	00.70	10.00
Average Monthly	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005			< 0.0050	0.005	0.006
Total Arsenic (mg/L)											0.000	0.000
Daily Maximum	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005			< 0.0050	0.005	0.007
Total Chromium												
(mg/L)												
Average Monthly	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02			< 0.02	0.02	0.02
Total Chromium												
(mg/L)												
Daily Maximum	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02			< 0.02	0.02	0.02

Total Zinc (mg/L) Average Monthly	0.11	0.03	0.04	0.03	0.03	0.12	0.05		0.03	0.04	0.02
Total Zinc (mg/L) Daily Maximum	0.16	0.03	0.06	0.03	0.03	0.19	0.06		0.03	0.06	0.02

DMR Data for Outfall 201 (from October 1, 2018 to September 30, 2019)

0.00087	0.00069	0.0004			0.00044						
	0.00069	0.0004			0.00011						
0.00093			0.00034	0.0005	5	0.0001	0.0014	0.0006	0.0009	0.0008	0.0011
0.00093											
	0.00094	0.002	0.00086	0.0009	0.00118	0.0012	0.0014	0.0006	0.0012	0.0011	0.0022
7.15	6.50	7.29	6.58	8.60	6.96						
						8.27	7.11	7.15	7.01	6.88	7.68
8.51	7.42	7.33	7.97	8.65	7.02						
						8.44	7.11	7.15	8.29	7.89	8.80
								_	_		_
6	9.5	4	< 3	4	3.5	4	< 3	7	< 3	3.5	3
•	10	_	•	_			•	_	•		
8	16	5	< 3	5	4	6	< 3	/	< 3	4	3
- 0	5.0	-		_				_			_
< 5.0	< 5.0	< 5	< 5.0	< 5	< 5.0	< 5.0	5.5	5	< 5.0	5.0	5
- 0	5.0	-		_				_			_
< 5.0	< 5.0	< 5	< 5.0	< 5	< 5.0	< 5.0	5.5	5	< 5.0	5.0	5
0.0005	0 0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005
< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	0.0005	0.0005
- 0.000F	< 0.000F	1 0 000F	1 0 000F	1 0 000F	- 0 000E	- 0 000F	1 0 000F	1 0 000F	1 0 000E	0.0005	0.0005
< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	0.0005	0.0005
< 0.0005	< 0.0005	~ 0.0005	~ 0.0005	~ 0.0005	~ 0.0005	0.0006	~ 0.0005	~ 0.0005	~ 0.0005	0.0005	0.0005
< 0.0003	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	0.0000	< 0.0005	< 0.0005	< 0.0005	0.0003	0.0003
< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	0.0008	< 0.0005	< 0.0005	< 0.0005	0.0005	0.0005
	7.15 8.51 6 8 < 5.0 < 5.0 < 0.0005 0.0005 0.0005 0.0005	7.15 6.50 8.51 7.42 6 9.5 8 16 < 5.0	7.15 6.50 7.29 8.51 7.42 7.33 6 9.5 4 8 16 5 < 5.0 < 5.0 < 5 < 5.0 < 5.0 < 5 < 5.0 < 5.0 < 5 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005	7.15 6.50 7.29 6.58 8.51 7.42 7.33 7.97 6 9.5 4 < 3 6 9.5 4 < 3 8 16 5 < 3 < 5.0 < 5.0 < 5 < 5.0 < 5.0 < 5.0 < 5 < 5.0 < 5.0 < 5.0 < 5 < 5.0 < 5.0 < 5.0 < 5 < 5.0 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005	7.15 6.50 7.29 6.58 8.60 8.51 7.42 7.33 7.97 8.65 6 9.5 4 < 3 4 8 16 5 < 3 5 < 5.0 < 5.0 < 5 < 5.0 < 5 < 5.0 < 5.0 < 5 < 5.0 < 5 < 5.0 < 5.0 < 5 < 5.0 < 5 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005	7.15 6.50 7.29 6.58 8.60 6.96 8.51 7.42 7.33 7.97 8.65 7.02 6 9.5 4 <3 4 3.5 8 16 5 <3 5 4 < 5.0 <5.0 <5 <5.0 <5 <5.0 < 5.0 <5.0 <5 <5.0 <5 <5.0 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005	7.15 6.50 7.29 6.58 8.60 6.96 8.51 7.42 7.33 7.97 8.65 7.02 8.51 7.42 7.33 7.97 8.65 7.02 8.51 7.42 7.33 7.97 8.65 7.02 8.51 7.42 7.33 7.97 8.65 7.02 8.51 7.42 7.33 7.97 8.65 7.02 8.51 7.42 7.33 7.97 8.65 7.02 8.51 7.42 7.33 7.97 8.65 7.02 8.44 6 9.5 4 <3 4 3.5 4 6 9.5 4 <3 5 4 6 < 5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 < 5.0 <5.0 <5.0 <5.0 <5.0 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td> <td>7.15$6.50$$7.29$$6.58$$8.60$$6.96$$8.51$$7.42$$7.33$$7.97$$8.65$$7.02$$8.51$$7.42$$7.33$$7.97$$8.65$$7.02$$6$$9.5$$4$$<3$$4$$3.5$$4$$<3$$7$$8$$16$$5$$<3$$5$$4$$6$$<3$$7$$8$$16$$5$$<3$$5$$4$$6$$<3$$7$$8$$16$$5$$<3$$5$$4$$6$$<3$$7$$8$$16$$5$$<3$$5$$4$$6$$<3$$7$$< 5.0$$<5.0$$<5.0$$<5.0$$<5.0$$<5.0$$5.5$$5$$<5.0$$<5.0$$<5.0$$<5.0$$<5.0$$<5.0$$<5.0$$<5.0$$<5.0$$<0.0005$$<0.0005$$<0.0005$$<0.0005$$<0.0005$$<0.0005$$<0.0005$$<0.0005$$<0.0005$$<0.0005$$<0.0005$$<0.0005$$<0.0005$$<0.0005$$<0.0005$$<0.0005$$<0.0005$$<0.0005$$<0.0005$$<0.0005$$<0.0005$$<0.0005$$<0.0005$$<0.0005$$<0.0005$$<0.0005$$<0.0005$$<0.0005$$<0.0005$$<0.0005$$<0.0005$$<0.0005$$<0.0005$$<0.0005$$<0.0005$$<0.0005$$<0.0005$$<0.0005$$<0.0005$$<0.0005$$<0.0005$$<0.0005$$<0.0005$$<0.0005$<td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td><td>$7.15$$6.50$$7.29$$6.58$$8.60$$6.96$$\ldots$</td></td>	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7.15 6.50 7.29 6.58 8.60 6.96 8.51 7.42 7.33 7.97 8.65 7.02 8.51 7.42 7.33 7.97 8.65 7.02 6 9.5 4 <3 4 3.5 4 <3 7 8 16 5 <3 5 4 6 <3 7 8 16 5 <3 5 4 6 <3 7 8 16 5 <3 5 4 6 <3 7 8 16 5 <3 5 4 6 <3 7 < 5.0 <5.0 <5.0 <5.0 <5.0 <5.0 5.5 5 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td> <td>$7.15$$6.50$$7.29$$6.58$$8.60$$6.96$$\ldots$</td>	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7.15 6.50 7.29 6.58 8.60 6.96 \ldots

NPDES Permit No. PA0218464

Summary of Inspections: The last inspection conducted by the Department was on November 29, 2011 by Zachary Flannigan as a compliance evaluation. No violations were noted. A stream assessment of the UNT to Grassy Run was conducted on January 14, 2020 by the permit engineer and aquatic biologist. The UNT to Grassy Run was determined to be impaired resulting from acid mine drainage.

Other Comments:

.

Monitoring data from the past three years shows one effluent violation for the parameter chlorodibromomethane at IMP 201. Gans reported a maximum chlorodibromomethane concentration of 0.0072 ^{mg}/_L and an average concentration of 0.0039 ^{mg}/_L during September 2018.

Gans also exceeded the permit effluent limits for zinc at IMP 101 during the months April 2019, September 2019, December 2019 and January 2020. Because of an eDMR error, the effluent limits listed in eDMR for arsenic, bromoform, chlorodibromomethane and zinc erroneously reverted back to those effluent limits in the permit's first effective period in April of 2019. The zinc concentration exceedances at IMP 101 were therefore not shown as effluent violations since the concentrations were compared to the wrong limits.

The client has no open violations

Development of Effluent Limitations									
Outfall No.	001	Design Flow (MGD)	0.1092						
Latitude	39º 44' 51"	Longitude	-79º 50' 33"						
Wastewater D	Description:	Non-contact cooling tower blowdown from IMP 101 and oil/ water 102.	separation for stormwater from IMP						

Outfall 001 discharges wastewater from internal monitoring points (IMP) 101 and 201. There are no monitoring requirements at this outfall since the wastewater sources are monitoring at IMPs 101 and 201.

Development of Effluent Limitations

Outfall No.	101		Design Flow (MGD)	0.057
Latitude	39º 44' 50.00	"	Longitude	-79º 50' 20.77"
Wastewater De	escription:	Non-contact cooling tower blowdown		

IMP 101 discharges non-contact cooling tower blowdown from cooling towers 1 & 2 when the plant is in operation.

Technology-Based Limitations

Gans Generating Facility is a simple-cycle combustion turbine generation plant and not a steam electric generating facility. While fees do not reflect Federal Effluent Guidelines (ELGs), anti-backsliding and BPJ support the continued use of technology-based effluent limitation established in 40 CFR § 423 – Steam Electric Power Generating Point Source Category (NSPS).

Regulatory Effluent Standards and Monitoring Requirements

Flow monitoring is required pursuant to 25 Pa. Code § 92a.61(d)(1) as indicated in Table 1.

Effluent standards for pH pursuant to 25 Pa. Code §§ 95.2(1), as indicated in Table 1, are also imposed on all industrial wastes.

Pennsylvania regulations at 25 Pa. Code § 92a.48(b) require the imposition of technology-based TRC limits for facilities that use chlorination and that are not already subject to TRC limits based on applicable federal ELGs or a facility-specific BPJ evaluation as indicated in Table 1.

	Table 1: Regulatory Effluent Standards									
Parameter Monthly Average Daily Maximum IMAX										
Flow (MGD)	Monitor	Monitor								
pH (S.U.)	Not less than 6.0 nor gr	Not less than 6.0 nor greater than 9.0 at all times								
TRC (^{mg} / _L)	0.5	1.0	1.6							

Best Practicable Control Technology Currently Achievable (BPT)

BPT for discharges from non-contact cooling tower blowdown are subject to effluent limits in accordance with the regulations in 40 CFR § 423 – Steam Electric Power Generating Point Source Category (NSPS). The technology-based effluent limits from 40 CFR § 423.15 (a)(10) proposed at IMP 101 are listed in Table 2.

Table 2: Technology Effluent Limitations for Cooling Tower Blowdown								
Parameters Average Monthly (^{mg} / _L) Maximum Daily (^{mg} / _L)								
Chromium, total*	0.2	0.2						
Zinc, total*	1.0	1.0						
Free Available Chlorine*	0.2	0.5						
pH (S.U.) * Between 6.0 – 9.0								

*From 40 CFR § 423.15 (a)(10)

Water Quality-Based Effluent Limitations (WQBELs)

Toxics Screening Analysis – Procedures for Evaluating Reasonable Potential and Developing WQBELs

DEP's procedures for evaluating reasonable potential are as follows:

1. For IW discharges, the design flow to use in modeling is the average flow during production or operation and may be taken from the permit application.

- 2. Perform a Toxics Screening Analysis to identify toxic pollutants of concern. All toxic pollutants whose maximum concentrations, as reported in the permit application or on past DMRs, that are greater than the most stringent applicable water quality criterion are evaluated as pollutants of concern. [This includes pollutants reported as "Not Detectable" or as "<MDL" where the method detection limit for the analytical method used by the applicant is greater than the most stringent water quality criterion]. List all toxic pollutants of concern in a Toxics Screening Analysis section of the Fact Sheet (see Attachment B).</p>
- 3. For any outfall with an applicable design flow, perform PENTOXSD modeling for all pollutants of concern. Use the maximum reported value from the application form or from DMRs as the input concentration for the PENTOXSD model run.
- 4. Compare the actual WQBEL from PENTOXSD with the maximum concentration reported on DMRs or the permit application. Use WQN data or another source to establish the existing or background concentration for naturally occurring pollutants, but generally assume zero background concentration for non-naturally occurring pollutants.
 - Establish limits in the draft permit where the maximum reported concentration equals or exceeds 50% of the WQBEL. Use the average monthly and maximum daily limits for the permit as recommended by PENTOXSD. Establish an IMAX limit at 2.5 times the average monthly limit.
 - For non-conservative pollutants, establish monitoring requirements where the maximum reported concentration is between 25% 50% of the WQBEL.
 - For conservative pollutants, establish monitoring requirements where the maximum reported concentration is between 10% 50% of the WQBEL.

The information described above including the maximum reported discharge concentrations, the most stringent water quality criteria, the pollutant-of-concern (reasonable potential) determinations, the calculated WQBELs, and the WQBEL/monitoring recommendations are collected on a spreadsheet titled "Toxics Screening Analysis" (Attachment B).

PENTOXSD Water Quality Modeling Program

PENTOXSD Version 2.0 for Windows is a single discharge, mass-balance water quality modeling program that includes consideration for mixing, first-order decay and other factors to determine recommended WQBELs for toxic substances and several non-toxic substances. Required input data including stream code, river mile index, elevation, drainage area, discharge name, NPDES permit number and discharge flow rate are entered into PENTOXSD to establish site-specific discharge conditions. Other data such as low flow yield, reach dimensions and partial mix factors may also be entered to further characterize the conditions of the discharge and receiving water. Pollutants are then selected for analysis based on those present or likely to be present in a discharge at levels that may cause, have the reasonable potential to cause, or contribute to excursions above state water quality standards (i.e., a reasonable potential analysis). Discharge concentrations for the selected pollutants are chosen to represent the "worst case" quality of the discharge (i.e., maximum reported discharge concentrations). PENTOXSD then evaluates each pollutant by computing a Waste Load Allocation for each applicable criterion, determining a recommended maximum WQBEL and comparing that recommended WQBEL with the input discharge concentration to determine which is more stringent. Based on this evaluation, PENTOXSD recommends average monthly and maximum daily WQBELs.

Reasonable Potential Analysis and WQBEL Development for IMP 101

Table 3: PENTOXSD Inputs						
Parameter	Value					
River Mile Index	1.65					
Discharge Flow (MGD)	0.045					
Basin/Stream Characteristics						
Parameter	Value					
Area in Square Miles	4.49					
Q ₇₋₁₀ (cfs)	0.0501					
Low-flow yield (^{cfs} /mi ²)	0.00112					
Elevation (ft)	894					
Slope	0.011					

Discharges from IMP 101 are evaluated based on concentrations reported on the application and on DMRs; data from those sources are used for toxics screening as described above. The PENTOXSD model is run with the discharge and receiving stream characteristics shown in Table 3. Since the nearest downstream public water supply intake is 5.37 miles downstream of Outfall 001, the intake flow was not included in the PENTOXSD model run. Effluent limits are therefore not necessary for PWS parameters.

The pollutants selected for analysis include those identified as candidates for modeling by the Toxics Screening Analysis spreadsheet (in accordance with Step 2 of the Toxics Screening Analysis procedure discussed above). Pollutants for which water quality standards have not been promulgated (e.g., TSS, oil and grease) are excluded from the analysis.

Based on the recommendations of the Toxics Screening Analysis, Total Dissolved Solids, Fluoride, Total Arsenic and Total Zinc were candidates for PENTOXSD modeling. Total Dissolved Solids and Fluoride are discussed further below. The

WQBELs calculated using PENTOXSD are compared to the maximum reported effluent concentrations as described in the Toxics Screening Analysis section above to evaluate the need to impose WQBELs or monitoring requirements in the permit. Output from the PENTOXSD model runs is included in Attachment C.

Based on PENTOXSD modeling and the Toxics Screening Analysis, WQBELs are to be imposed for the parameters Arsenic and Zinc. PENTOXSD modeling and Toxics Screening Analysis for the parameters Arsenic and Zinc were evaluated based on maximum concentrations reported on DMRs. The recommended effluent limits from PENTOXSD are shown below in Table 4.

Table 4: Water Quality Based Effluent Limits									
Parameter	Maximum DMR Disc	harge Concentration	Monthly Average (µg/L)	Daily Maximum (µg/L)					
Farameter	Monthly Average (µg/L)	Daily Maximum (µg/L)	Montiny Average (µg/L)	Daily Maximum (µg/L)					
Arsenic, total	9.42	12.00	17.20	26.83					
Zinc, total	159.5	203	282.55	440.83					

Total Dissolved Solids (TDS)

The Total Dissolved Solids (TDS) concentration at Outfall 101 is 530 ^{mg}/_L. Per *Policy and Procedure for NPDES Permitting of Discharges of Total Dissolved Solids (TDS) – 25 Pa. Code §95.10 (DEP-ID: 385-2100-002)*, a monitoring requirement for TDS for any discharge that exceeds 1,000 ^{mg}/_L TDS should be applied at minimum. Since the TDS discharge concentration is below 1,000 ^{mg}/_L, no monitoring/limit requirements will be applied for TDS or its constituent parameters.

<u>Fluoride</u>

The Fluoride concentration in Outfall 101 at 1080 μ g/L. The Toxics Screening Analysis spreadsheet recommended Fluoride as a candidate for PENTOXSD modeling. Since however the discharge is below Water Quality criteria and the nearest downstream Public Water Supply Intake is more than 5 miles downstream, impacts are not expected. No monitoring/ limit requirement will be applied for Fluoride.

Total Residual Chlorine (TRC)

To determine if WQBELs are required for discharges containing Total Residual Chlorine, a discharge evaluation is performed using a DEP program called TRC_CALC created with Microsoft Excel for Windows. TRC_CALC calculates TRC Waste Load Allocations (WLAs) through the application of a mass balance model which considers TRC losses due to stream and discharge chlorine demands and first-order chlorine decay. Input values for the program include flow rates and chlorine demands for the receiving stream and the discharge, the number of samples taken per month, coefficients of TRC variability, partial mix factors, and an optional factor of safety. The mass balance model calculates WLAs for acute and chronic criteria that are then converted to long term averages using calculated multipliers. The multipliers are functions of the number of samples taken per month and the TRC variability coefficients (normally kept at default values unless site specific information is available). The most stringent limitation between the acute and chronic long-term averages is converted to an average monthly limit for comparison to the BAT average monthly limit of 0.5 mag/L from 25 Pa. Code § 92a.48(b)(2). The more stringent of these average monthly TRC limitations is imposed in the permit. The results of the modeling, included in Attachment E, indicate that WQBELs will be imposed for TRC. The recommended effluent limits for TRC are shown below in Table 5.

Table 5: TRC WQBELs							
Parameter	Parameter Monthly Average (^{mg} / _L) IMAX (^{mg} / _L)						
Total Residual Chlorine	0.159	0.373					

Anti-Backsliding

The effluent limitations and monitoring requirements in Table 6 below are from the current permit, issued on September 26, 2014. The proposed effluent limits are less stringent than those imposed in current permit for the parameters Arsenic

and Zinc, since the water quality for Outfall 101 is modeled 1.5 miles downstream of the outfall because of abandoned mine drainage impairment. PENTOXSD modeling and Toxics Screening Analysis for the parameters Arsenic and Zinc were evaluated based on maximum concentrations reported on DMRs.

	Table 6: Current Permit Effluent Limits – IMP 101						
	Mass Lim	nits (^{Ibs.} / _{day})	Con	centration Lir	nits (^{mg} /∟)	Monitoring	
Parameter	Average Monthly	Maximum Daily	Average Monthly	Maximum Daily	Instantaneous Maximum	Frequency	
Flow (MGD)	Monitor	& Report	-	-	-	2/month	
Free Available Chlorine	-	-	0.2	-	0.5	2/month	
Temperature (°F)	-	-	-	-	110	2/month	
Arsenic, total	-	-	0.014	0.02	-	2/month	
Chromium, total	-	-	0.2	0.2	-	2/month	
Zinc, total	-	-	0.1	0.16	-	2/month	
Total Residual Chlorine	-	-	0.5	-	1.0	2/month	
pH (S.U.)	-	-	Between 6.0 and 9.0 -		2/month		

Temperature Evaluation

IMP 101 discharges heated non-contact cooling wastewaters. The cooling water intake is a treated public water supply. The current permit contains a temperature limitation of 110 °F at IMP 101 for the protection of human health in accordance with the Department's temperature guidance.

The Department used the Thermal Discharge Limit Calculation Spreadsheet to evaluate the thermal impact of this discharge to Grassy Run. The spreadsheet is designed to calculate the appropriate thermal discharge limits for a facility discharging effluent above ambient temperature, assuming complete-mix between the discharge flow and the receiving stream flow. The design stream flow for temperature analysis is based on the Q₇₋₁₀ flow of the receiving stream, adjusted for each monthly or semimonthly time period. The total projected discharge volume from IMP 101 (as provided in the NPDES permit application) is 0.011 MGD.

Bimonthly temperature monitoring was imposed in the current permit. The DEP Technical Guidance for the Development and Specification of Effluent Limitations (October 1997) recommends 1/month monitoring of flow, pH and temperature for non-contact discharges with flows under 20,000 GPD. Since some of the proposed temperature limits vary within the same month, the outfall will be subject to the 2/month monitoring requirements shown below in Table 7. The results of the thermal analysis are included in Attachment D of this report.

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below in Table 7 are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. The current permit's effluent limits are more stringent than the recommended WQBELs from PENTOXSD for the parameters Arsenic and Zinc. Since the water quality for Outfall 101 is modeled 1.5 miles downstream of the outfall because of abandoned mine drainage impairment, the recommended WQBELs from PENTOXSD are proposed for Arsenic and Zinc. Monitoring frequencies will remain twice per month for all parameters.

Outfall 101, Effective Period: Permit Effective Date through Permit Expiration Date.

	Table 7: Proposed Temperature Limits – IMP 101							
			Effluent L	imitations			Monitoring Re	quirements
Parameter	Mass Units	(lbs/day) ⁽¹⁾		Concentrat	tions (mg/L)		Minimum ⁽²⁾	Required
Falanetei	Average Monthly	Daily Maximum	Daily Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report	XXX	XXX	xxx	ххх	2/month	Measured
pH (S.U.)	XXX	XXX	6.0	XXX	XXX	9.0	2/month	Grab
Total Residual Chlorine (TRC)*	XXX	XXX	XXX	0.159	XXX	0.373	2/month	Grab
Free Available Chlorine	XXX	XXX	xxx	0.2	xxx	0.5	2/month	Grab
Temperature (ºF) Jan 1 - 31	XXX	xxx	XXX	XXX	xxx	87.1	2/month	I-S
Temperature (°F) Feb 1 - 29	XXX	xxx	xxx	xxx	xxx	91.5	2/month	I-S
Temperature (°F) Mar 1 - Sep 30	XXX	xxx	XXX	XXX	xxx	110	2/month	I-S
Temperature (°F) Oct 1 - 15	XXX	xxx	XXX	XXX	xxx	110	1/month	I-S
Temperature (°F) Oct 16 - 31	XXX	xxx	XXX	XXX	xxx	108.4	1/month	I-S
Temperature (°F) Nov 1 - 15	XXX	xxx	XXX	XXX	xxx	105.1	1/month	I-S
Temperature (°F) Nov 16 - 30	XXX	xxx	XXX	XXX	xxx	87.7	1/month	I-S
Temperature (°F) Dec 1 - 31	XXX	XXX	XXX	XXX	XXX	77.3	2/month	I-S
Total Arsenic	xxx	xxx	XXX	0.017	0.027	XXX	2/month	Grab

	Table 7: Proposed Temperature Limits – IMP 101							
Effluent Limitations M						Monitoring Re	quirements	
Parameter	Mass Units	(lbs/day) ⁽¹⁾		Concentrat	ions (mg/L)		Minimum ⁽²⁾ Requi	
Parameter	Average	Daily	Daily	Average	Daily	Instant.	Measurement	Sample
	Monthly	Maximum	Minimum	Monthly	Maximum	Maximum	Frequency	Туре
Total Chromium	XXX	XXX	XXX	0.2	0.2	XXX	2/month	Grab
Total Zinc	XXX	XXX	XXX	0.283	0.441	XXX	2/month	Grab

*Compliance schedule may be developed for final permit based on Pre-Draft Permit Survey responses.

Compliance Sampling Location: Outfall 101

Development of Effluent Limitations

Outfall No.	201		Design Flow (MGD)	0.1034
Latitude	39º 44' 50.00	"	Longitude	-79º 50' 20.77"
Wastewater D	escription:	Stormwater associated v oil/ water separator.	vith industrial activity and low volume wa	stewater after treatment through an

IMP 201 discharges stormwater runoff from diked areas around the equipment skids and oil storage tank and low volume process wastewater after treatment through an oil/ water separator.

Technology-Based Limitations

Gans Generating Facility is a simple-cycle combustion turbine generation plant and not a steam electric generating facility. While fees do not reflect Federal Effluent Guidelines (ELGs), anti-backsliding and BPJ support the continued use of technology-based effluent limitation established in 40 CFR § 423 – Steam Electric Power Generating Point Source Category (NSPS).

Regulatory Effluent Standards and Monitoring Requirements

Flow monitoring is required pursuant to 25 Pa. Code § 92a.61(d)(1) as indicated in Table 8.

Effluent standards for pH pursuant to 25 Pa. Code §§ 95.2(1), as indicated in Table 8, are also imposed on all industrial wastes.

Table 8: Regulatory Effluent Standards						
Parameter Monthly Average Daily Maximum IMAX						
Flow (MGD)	Monitor	Monitor				
pH (S.U.)	Not less than 6.0 nor greater than 9.0 at all times					

Best Practicable Control Technology Currently Achievable (BPT)

BPT for discharges from low volume process wastewater are subject to effluent limits in accordance with the regulations in 40 CFR § 423 – Steam Electric Power Generating Point Source Category (NSPS). The technology-based effluent limits from 40 CFR § 423.15 (a)(3) proposed at IMP 201 are listed in Table 9.

Table 9: Technology Effluent Limitations for Low Volume Waste Sources						
Parameters	Average Monthly (^{mg} / _L) Maximum Daily (^{mg} / _L)					
Total Suspended Solids*	30.0 100.0					
Oil and Grease	15.0 20.0					
pH (S.U.)*	Between 6.0 – 9.0					

*From 40 CFR § 423.15 (a)(3)

Water Quality-Based Effluent Limitations (WQBELs)

Toxics Screening Analysis - Procedures for Evaluating Reasonable Potential and Developing WQBELs

DEP's procedures for evaluating reasonable potential are as follows:

- 1. For IW discharges, the design flow to use in modeling is the average flow during production or operation, and may be taken from the permit application.
- 2. Perform a Toxics Screening Analysis to identify toxic pollutants of concern. All toxic pollutants whose maximum concentrations, as reported in the permit application or on past DMRs, that are greater than the most stringent applicable water quality criterion are evaluated as pollutants of concern. [This includes pollutants reported as "Not Detectable" or as "<MDL" where the method detection limit for the analytical method used by the applicant is greater</p>

than the most stringent water quality criterion]. List all toxic pollutants of concern in a Toxics Screening Analysis section of the Fact Sheet (see Attachment F).

- For any outfall with an applicable design flow, perform PENTOXSD modeling for all pollutants of concern. Use the maximum reported value from the application form or from DMRs as the input concentration for the PENTOXSD model run.
- 4. Compare the actual WQBEL from PENTOXSD with the maximum concentration reported on DMRs or the permit application. Use WQN data or another source to establish the existing or background concentration for naturally occurring pollutants, but generally assume zero background concentration for non-naturally occurring pollutants.
 - Establish limits in the draft permit where the maximum reported concentration equals or exceeds 50% of the WQBEL. Use the average monthly and maximum daily limits for the permit as recommended by PENTOXSD. Establish an IMAX limit at 2.5 times the average monthly limit.
 - For non-conservative pollutants, establish monitoring requirements where the maximum reported concentration is between 25% 50% of the WQBEL.
 - For conservative pollutants, establish monitoring requirements where the maximum reported concentration is between 10% 50% of the WQBEL.

The information described above including the maximum reported discharge concentrations, the most stringent water quality criteria, the pollutant-of-concern (reasonable potential) determinations, the calculated WQBELs, and the WQBEL/monitoring recommendations are collected on a spreadsheet titled "Toxics Screening Analysis." (Attachment F).

PENTOXSD Water Quality Modeling Program

PENTOXSD Version 2.0 for Windows is a single discharge, mass-balance water quality modeling program that includes consideration for mixing, first-order decay and other factors to determine recommended WQBELs for toxic substances and several non-toxic substances. Required input data including stream code, river mile index, elevation, drainage area, discharge name, NPDES permit number and discharge flow rate are entered into PENTOXSD to establish site-specific discharge conditions. Other data such as low flow yield, reach dimensions and partial mix factors may also be entered to further characterize the conditions of the discharge and receiving water. Pollutants are then selected for analysis based on those present or likely to be present in a discharge at levels that may cause, have the reasonable potential to cause, or contribute to excursions above state water quality standards (i.e., a reasonable potential analysis). Discharge concentrations for the selected pollutants are chosen to represent the "worst case" quality of the discharge (i.e., maximum reported discharge concentrations). PENTOXSD then evaluates each pollutant by computing a Waste Load Allocation for each applicable criterion, determining a recommended maximum WQBEL and comparing that recommended WQBEL with the input discharge concentration to determine which is more stringent. Based on this evaluation, PENTOXSD recommends average monthly and maximum daily WQBELs.

Reasonable Potential Analysis and WQBEL Development for IMP 201

Table 10: PENTOXSD Inputs					
Parameter	Value				
River Mile Index	1.65				
Discharge Flow (MGD)	0.011				
Basin/Stream Characteristics					
Parameter	Value				
Area in Square Miles	4.49				
Q ₇₋₁₀ (cfs)	0.0501				
Low-flow yield (^{cfs} / _{mi} ²)	0.00112				
Elevation (ft)	894				
Slope	0.011				

Discharges from IMP 201 are evaluated based on concentrations reported on the application and on DMRs; data from those sources are used for toxics screening as described above. The PENTOXSD model is run with the discharge and receiving stream characteristics shown in Table 10. Since the nearest downstream public water supply intake is 5.37 miles downstream of Outfall 001, the intake flow was not included in the PENTOXSD model run. Effluent limits are therefore not necessary for PWS parameters.

The pollutants selected for analysis include those identified as candidates for modeling by the Toxics Screening Analysis spreadsheet (in accordance with Step 2 of the Toxics Screening Analysis procedure discussed above). Pollutants for which water quality standards have not been promulgated (e.g., TSS, oil and grease) are excluded from the analysis.

Based on the recommendations of the Toxics Screening Analysis, Total Cadmium and Chlorodibromomethane were candidates for PENTOXSD modeling. The maximum reported value for Total Cadmium was reported as "non-detect" using a quantitation limit (QL) that exceeds the Department's Target QL.

The WQBELs calculated using PENTOXSD are compared to the maximum reported effluent concentrations as described in the Toxics Screening Analysis section above to evaluate the need to impose WQBELs or monitoring requirements in the permit. Output from the PENTOXSD model runs is included in Attachment G.

Based on PENTOXSD modeling and the Toxics Screening Analysis, WQBELs are to be imposed for the parameters and Cadmium and Chlorodibromomethane. The recommended effluent limits from PENTOXSD are shown below in Table 11. Gans will be collecting additional samples for the parameter Total Cadmium using the Target QL. If the additional sample indicates that Total Cadmium is not a pollutant of concern, those effluent limits may be removed from the final permit.

Table 11: Water Quality Based Effluent Limits							
Deremeter	Maximum DMR Disc	MR Discharge Concentration Monthly Average Daily Ma					
Parameter	Monthly Average (µg/L)	Daily Maximum (µg/L)	(µg/L)	(μg/L)			
Cadmium, total	-	-	0.915	1.43			
Chlorodibromomethane	3.9	7.2	13.16	20.53			

Total Dissolved Solids (TDS)

The total dissolved solids (TDS) concentration at Outfall 201 is 85 ^{mg}/_L. Per *Policy and Procedure for NPDES Permitting of Discharges of Total Dissolved Solids (TDS) – 25 Pa. Code §95.10 (DEP-ID: 385-2100-002)*, a monitoring requirement for TDS for any discharge that exceeds 1,000 ^{mg}/_L TDS should be applied at minimum. Since the TDS discharge concentration is below 1,000 ^{mg}/_L, no monitoring/limit requirements will be applied for TDS or its constituent parameters.

Anti-Backsliding

The effluent limitations and monitoring requirements in Table 12 below are from the current permit, issued on September 26, 2014. The DMRs and NPDES permit application sample analysis results were reviewed and it was determined that Bromoform and Chlorodibromomethane are no longer pollutants of concern. While Chlorodibromomethane exceeded the daily maximum and average monthly effluent limits during September 2018, the reported concentrations are well within the recommended WQBELS from PENTOXSD using the new downstream water quality modeling location. Effluent limits for Bromoform and Chlorodibromomethane will be removed from the permit.

Table 12: Current Permit Effluent Limits – IMP 201							
	Mass Lim	its (^{lbs.} / _{day})	Cor	Concentration Limits (^{mg} /L)			
Parameter	Average Monthly	Maximum Daily	Average Monthly	Maximum Daily	Instantaneous Maximum	Monitoring Frequency	
Flow (MGD)	Monitor & Report		-	-	-	2/month	
Total Suspended Solids	-	-	30	100	-	2/month	
Oil and Grease	-	-	15	20	-	2/month	
Bromoform	-	-	0.016	0.025	-	2/month	
Chlorodibromomethane	-	-	0.0015	0.0023	-	2/month	
pH (S.U.)	-	-	Between 6.0 and 9.0 -		2/month		

Proposed Effluent Limitations and Monitoring Requirements

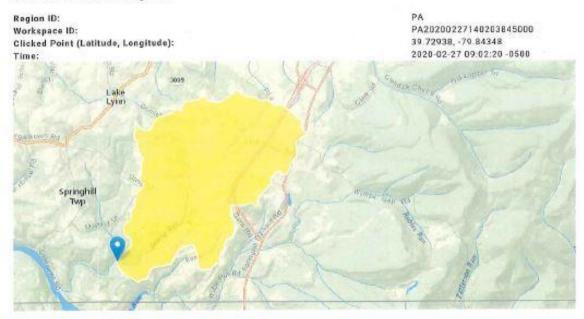
The limitations and monitoring requirements specified below in Table 13 are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Monitoring frequencies will remain twice per month for all parameters.

Outfall 201, Effective Period: Permit Effective Date through Permit Expiration Date.

	Table 13: Proposed Permit Effluent Limits – IMP 201							
			Effluent L	imitations			Monitoring Re	quirements
Paramotor	Mass Units	(lbs/day) ⁽¹⁾		Concentrat	tions (mg/L)		Minimum ⁽²⁾	Required
Parameter	Average Monthly	Daily Maximum	Daily Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report	XXX	xxx	xxx	ххх	2/month	Measured
pH (S.U.)	xxx	xxx	6.0	xxx	xxx	9.0	2/month	Grab
TSS	xxx	XXX	XXX	30	100	ххх	2/month	Grab
Oil and Grease	XXX	xxx	xxx	15	20	ххх	2/month	Grab
Total Cadmium*	xxx	XXX	XXX	0.271	0.353	XXX	2/month	Grab

*New samples are being collected using Target QLs. Parameters will potentially be removed from the final permit.

Compliance Sampling Location: Outfall 201


	Tools and References Used to Develop Permit
	WQM for Windows Model (see Attachment
	PENTOXSD for Windows Model (see Attachment C , G)
	TRC Model Spreadsheet (see Attachment E)
	Temperature Model Spreadsheet (see Attachment D)
	Toxics Screening Analysis Spreadsheet (see Attachment B , F)
	Water Quality Toxics Management Strategy, 361-0100-003, 4/06.
	Technical Guidance for the Development and Specification of Effluent Limitations, 362-0400-001, 10/97.
	Policy for Permitting Surface Water Diversions, 362-2000-003, 3/98.
	Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 362-2000-008, 11/96.
	Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97.
	Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 362-2183-004, 12/97.
	Pennsylvania CSO Policy, 385-2000-011, 9/08.
	Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.
	Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 391-2000-002, 4/97.
	Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97.
	Implementation Guidance Design Conditions, 391-2000-006, 9/97.
	Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004.
	Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 391-2000-008, 10/1997.
	Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 391-2000-010, 3/99.
	Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 391-2000-011, 5/2004.
	Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97.
	Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 391-2000-014, 4/2008.
	Implementation Guidance Total Residual Chlorine (TRC) Regulation, 391-2000-015, 11/1994.
\square	Implementation Guidance for Temperature Criteria, 391-2000-017, 4/09.
	Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/97.
	Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97.
	Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 391-2000-021, 3/99.
	Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/1999.
	Design Stream Flows, 391-2000-023, 9/98.
	Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 391-2000-024, 10/98.
	Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97.
	Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.
	SOP:
	Other:

Attachments

- Attachment A: StreamStats Report
- Attachment B: Toxics Screening Analysis Results for IMP 101
- Attachment C: PENTOXSD Modeling Results for IMP 101
- Attachment D: Thermal Discharge Limit Calculation for IMP 101
- Attachment E: TRC Modeling Results for IMP 101
- Attachment F: Toxics Screening Analysis Results for IMP 201
- Attachment G: PENTOXSD Modeling Results for IMP 201

ATTACHMENT A: StreamStats Report

StreamStats Report

Basin Characteristics

Parameter Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	4.49	square miles
ELEV	Mean Basin Elevation	1110.6	feet

Low Flow Statistics Parameters(Low Flow Region-0

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	4.49	square miles	2.26	1400
ELEV	Mean Basin Elevation	1110.6	feet	1050	2580

Low-Flow Statistics Flow Report tow Report

PII: Prediction Interval-Lower, Plu: Prediction Interval-Upper, SEp: Standard Error of Prediction, SE: Standard Error (other -- see report)

Statistic	Value	Unit	SE	SEp
7 Day 2 Year Low Flow	0.146	ft*3/s	43	43
30 Day 2 Year Low Flow	0.261	ft*3/s	38	38
7 Day 10 Year Low Flow	0.0501	ft*3/s	66	66
30 Day 10 Year Low Flow	0.0952	ft*3/s	54	54
90 Day 10 Year Low Flow	0.178	ft*3/s	41	41

Love-Flow Statistics Citations

Stuckey, M.H., 2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p. (http://pubs.usgs.gov/sir/2006/5130/)

ATTACHMENT B:

Toxics Screening Analysis Results for IMP 101

TOXICS SCREENING ANALYSIS WATER QUALITY POLLUTANTS OF CONCERN VERSION 2.7

CLEAR FORM

Facility: Gans Generating Facility	NPDES Permit No.:	PA0218464	Outfall: 101
Analysis Hardness (mg/L): 350	Discharge Flow (MGD):	0.045	Analysis pH (SU): 8.6
Stream Flow, Q ₇₋₁₀ (cfs): 0.0501			

	Parameter	Maximum Concentration in Application or DMRs (µg/L)	Most Stringent Criterion (µg/L)	Candidate for PENTOXSD Modeling?	Most Stringent WQBEL (µg/L)	Screening Recommendation
	Total Dissolved Solids	530000	500000	Yes		
Group 1	Chloride	86200	250000	No	1	
no	Bromide	4540	N/A	No		
5	Sulfate	74100	250000	No		
	Fluoride	1080	2000	Yes	2000	Establish Limits
	Total Aluminum		750	10.0000		
	Total Antimony		5.6			
	Total Arsenic	12	10	Yes	17.197	Establish Limits
	Total Barium		2400			
	Total Beryllium		N/A			
	Total Boron		1600			
	Total Cadmium	17 12 -	0.271		1	
	Total Chromium	20	N/A	No		
	Hexavalent Chromium		10.4			
	Total Cobalt		19			
2	Total Copper		9.3			
Group	Total Cyanide		N/A	6		
SICO	Total Iron		1500	4	1	
0	Dissolved Iron		300			
	Total Lead		3.2			
	Total Manganese		1000			
	Total Mercury		0.05			
	Total Molybdenum		N/A			
	Total Nickel		52.2			
	Total Phenols (Phenolics)		5	ê		
	Total Selenium		5.0			
	Total Silver		3.8			
	Total Thallium		0.24			
-	Total Zinc	203	119.8	Yes	282.552	Establish Limits

ATTACHMENT C: PENTOXSD Modeling Results for IMP 101

PENTOXSD

Strean Code		Elevatio (ft)	1	inage Area q mi)	Slope	PWS (mg				opły =C				
4189	1 1.65	894	and the second s	4.49	0.00000		0.00		6					
							Stream Da	nta						
	LFY	Trib Flow	Stream Flow	WD Ratio	Rch Width	Rch Depth	Rch Velocity	Rch Trav Time	<u>Tributar</u> Hard	⊻ pH	<u>Stream</u> Hard	<u>ı</u> pH	<u>Analysis</u> Hard p	н
	(cfsm)	(cfs)	(cfs)		(ft)	(ft)	(fps)		(mg/L)		(mg/L)	į	(mg/L)	
Q7-10	0.00112	0	0.0501		0 0	0	0	0	100	7	0	0	0	C
Qh		0	0		0 0	0	0	o	100	7	0	0	0	0
						D	ischarge D)ata						
	Name	Perm Numb	er D	sting F lisc low	Permitted Disc Flow	Design Disc Flow	Reserve Factor	AFC PMF	CFC	thh PMF	CRL PMF	Disc Hard	Disc pH	
			(n	ngd)	(mgd)	(mgd)			83			(mg/L)		
Gan	is Gen 101	PA0218	464 0.	045	0	0	0	1	1	0	0	350	8.6	
						Р	arameter D							
	Parameter N	lame		Disc Conc	Conc	Dis Daily C\	Hourh	y Conc	CV	Fate Coef	FOS	Crit Mod	Conc	
ARSEN	0			(µg/L) 120		0.	5 0.5	(µg/L 0	.) 0	0	0	1	(µg/L) 0	
ARGEIN				120		υ.	0.0		0	v	0	- 1 C	v	
ZINC	n RMI	Elevatio	on Dra	2030		0. PWS		0	0	. 0	0	1	0	
Strean Code		(ft)	/ (s	inage Area q mi)	Slope	<u>.</u>	With (d)	0	Ap F	ply ℃	0	1	0	
Stream			/ (s	inage Area	Slope	PWS	With	0	Ap F	ply	0	1	0	
Strean Code		(ft)	/ (s	inage Area q mi)	Slope	PWS	With (d)		Ap F	ply ℃		17	0	
Strean Code		(ft)	/ (s	inage Area q mi)	Slope 9 0.00000 Rch o Width	PWS (mg (mg Rch Depth	With ;d) 0.00	tta Rch Trav Time	Ap F <u>Tributar</u> Hard	ply C 2 y pH	<u>Stream</u> Hard	1 pH	<u>Analysis</u> Hard p	
Strean Code	1.15	(ft) 865 Trib	(s .00 Stream	linage Area g mi) 6.19 WD	Slope 9 0.00000 Rch	PWS (mg (mg Rch	With d) 0.00 Stream Da Rch Velocity	tta Rch Trav Time	Ap F Tributar	ply C 2 y pH	Stream	1 pH	Analysis	
Strean Code 4189	1 1.15 LFY	(ft) 865 Trib Flow	(s .00 Stream Flow	linage Area g mi) 6.19 WD Ratio	Slope 9 0.00000 Rch o Width	PWS (mg (mg Rch Depth	With d) 0.00 Stream Da Rch Velocity	tta Rch Trav Time	Ap F <u>Tributar</u> Hard	ply C 2 y pH	<u>Stream</u> Hard	1 pH	Analysis Hard p (mg/L) 0	он 0
Strean Code 4189 Q7-10	1 1.15 LFY (cfsm)	(ft) 865 Trib Flow (cfs)	(s .00 Stream Flow (cfs)	linage Area g mi) 6.19 WD Ratio	Slope 9 0.00000 Roh width (ft)	PWS (mg (mg Rch Depth (ft)	With d) 0.00 Stream Da Rch Velocity (fps)	ta Rch Trav Time (days)	Ap F <u>Tributar</u> Hard (mg/L)	ply C 2 y pH	<u>Stream</u> Hard (mg/L)	1 pH	<u>Analysis</u> Hard p (mg/L)	ЪН
Strean Code 4189 27-10 2h	1 1.15 LFY (cfsm) 0.01204	(ft) 865 Trib Flow (cfs) 0	(s .00 Stream Flow (cfs) 0.0745	inage Area g mi) 6.19 WD Ratio	Slope 0.00000 Rch Width (ft) 0 0 0 0	PWS (mg (mg Rch Depth (ft) 0 0	With 0.00 Stream Da Rch Velocity (fps) 0	tta Rch Trav Time (days) 0 0	Ap F Inibutar Hard (mg/L) 100 100	ply C 2 y pH 7 7 7	<u>Stream</u> Hard (mg/L) 0	¹ pH	Analysis Hard p (mg/L) 0 0	он 0
Strean Code 4189 Q7-10 Qh	1 1.15 LFY (cfsm)	(ft) 865 Trib Flow (cfs) 0	(s .00 Stream Flow (cfs) 0.0745 0 0.0745 0 0.0745	inage Area g mi) 6.19 WD Ratio	Slope 0.00000 Rch Width (ft) 0 0 0 0	PWS (mg (mg Rch Depth (ft) 0 0	With td) Stream Da Rch Velocity (fps) 0 0	nta Rch Trav Time (days) 0 0 0	Ap F <u>Tributar</u> Hard (mg/L) 100	ply C 2 pH 7	<u>Stream</u> Hard (mg/L) 0	¹ pH	Analysis Hard p (mg/L) 0	он 0
Strean Code 4189 27-10 2h	1 1.15 LFY (cfsm) 0.01204	(ft) 865 Flow (cfs) 0 0 Perm	(s .00 Stream Flow (cfs) 0.0745 0 0.0745 0 tt Exil er D	sting fisc low ngd)	Slope Rch Width (ft) 0 0 0 0 Permitted Disc Flow (mgd)	PWS (mg (mg Rch Depth (ft) 0 0 Design Disc Flow (mgd)	With td) 0.00 Stream Da Rch Velocity (fps) 0 0 ischarge D Reserve Factor	tta Rch Trav Time (days) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Ap F Inibutar Hard (mg/L) 100 100 CFC PMF	ply C 2 y pH 7 7 7 THH PMF	Stream Hard (mg/L) 0 0 CRL PMF	pH 0 0 Disc Hard (mg/L)	Analysis Hard p (mg/L) 0 0 Disc pH	он 0
Strean Code 4189 27-10 2h	1 1.15 LFY (cfsm) 0.01204	(ft) 865 Flow (cfs) 0 0 Perm	(s .00 Stream Flow (cfs) 0.0745 0 0.0745 0 tt Exil er D	sting fisc low	Slope 0.00000 Rch Width (ft) 0 0 0 0 Permitted Disc Flow	PWS (mg (mg Rch Depth (ft) 0 0 Design Disc Flow	With (d) Stream Da Rch Velocity (fps) 0 0 ischarge D Reserve	nta Rch Trav Time (days) 0 0 0 0 0 0 0 0 0	Ap F Inibutar Hard (mg/L) 100 100 CFC PMF	рly C 2 рн 7 7 7	Stream Hard (mg/L) 0 0 CRL	pH 0 0 Disc Hard	Analysis Hard p (mg/L) 0 0 Disc	он 0
Strean Code 4189 27-10 2h	1 1.15 LFY (cfsm) 0.01204 Name	(ft) 865 Flow (cfs) 0 0 Perm Numb	(s .00 Stream Flow (cfs) 0.0745 0 0.0745 0 tt Exil er D	sting f sting f sting f bisc low ngd) 0	Slope 0.00000 Rch Width (ft) 0 0 0 Permitted Disc Flow (mgd) 0	PWS (mg (mg Rch Depth (ft) 0 0 Design Disc Flow (mgd) 0 P	With (d) Stream Da Rch Velocity (fps) 0 0 ischarge D Reserve Factor 0 arameter D	nta Rch Trav Time (days) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Ap F Tributar Hard (mg/L) 100 100 CFC PMF	ply C PH 7 7 THH PMF	Stream Hard (mg/L) 0 0 CRL PMF	pH 0 0 Disc Hard (mg/L) 100	Analvsis Hard p (mg/L) 0 Disc pH	он 0
Strean Code 4189 27-10 2h	1 1.15 LFY (cfsm) 0.01204	(ft) 865 Flow (cfs) 0 0 Perm Numb	(s .00 Stream Flow (cfs) 0.0745 0 0.0745 0 tt Exil er D	sting fisc low ngd) 0 Disc Conc	Slope 0.00000 Rch Width (ft) 0 0 0 Permitted Disc Flow (mgd) 0 Trib Conc	PWS (mg (mg Rch Depth (ft) 0 0 Design Disc Flow (mgd) 0 Pais Daily CV	With (d) 0.00 Stream Da Rch Velocity (fps) 0 0 ischarge D Reserve Factor 0 arameter D c Disc r Hourly	tta Rch Trav Time (days) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Ap F Tributar Hard (mg/L) 100 100 CFC PMF 0 CV	ply C 2 y pH 7 7 7 THH PMF	Stream Hard (mg/L) 0 0 CRL PMF 0 FOS	pH 0 0 Disc Hard (mg/L)	Analysis Hard p (mg/L) 0 0 Disc pH 7 7 Max Disc Conc	он 0
Code 4189 Q7-10 Qh	LFY (cfsm) 0.01204 Name	(ft) 865 Flow (cfs) 0 0 Perm Numb	(s .00 Stream Flow (cfs) 0.0745 0 0.0745 0 tt Exil er D	sting f sting f bisc low ngd) 0 Disc	Slope 0.00000 Rch Width (ft) 0 0 0 Permitted Disc Flow (mgd) 0 Trib Conc	PWS (mg (mg Rch Depth (ft) 0 0 Design Disc Flow (mgd) 0 Pais Daily CV	With d) 0.00 Stream Da Rch Velocity (fps) 0 0 ischarge D Reserve Factor 0 arameter D c Disc Hourly CV	ata Rch Trav Time (days) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Ap F Tributar Hard (mg/L) 100 100 CFC PMF 0 CV	ply C PH 7 7 7 THH PMF 0 Fate	Stream Hard (mg/L) 0 0 CRL PMF 0 FOS	pH 0 0 Disc Hard (mg/L) 100 Crit	Analysis Hard p (mg/L) 0 0 Disc pH 7 7 Max Disc	он 0

Hydrodynamics

S	WP Basi	1	Stream	n Code:			Stream	m Name	1		
	19G		41	891			GRAS	SY RUN	1		
RMI	Stream Flow (cfs)	PWS With (cfs)	Net Stream Flow (cfs)	Disc Analysis Flow (cfs)	Reach Slope	Depth (ft)	Width (ft)	WD Ratio	Velocity (fps)	Reach Trav Time (days)	CMT (min)
					Q7-	-10 Hyd	irodyna	amics			
1.653	0.0501	(0.0501	0.06961	0.011	0.3668	6.6483	18.127	0.0491	0.6223	.455
1.153	0.0745	(0.0745	NA	0	0	0	0	0	0	NA
					Q	h Hydr	odynan	nics			
1.653	0.5428	(0.5428	0.06961	0.011	0.7521	6.6483	8.8391	0.1225	0.2495	.696
1.153	0.7678	(0.7678	NA	0	0	0	0	0	0	NA

PENTOXSD Analysis Results

Wasteload Allocations

RMI	Name F	ermit Nu	nber								
1.65	Gans Gen 101	PA02184	64								
				A	FC						
Q7-1	0: CCT (min)	0.455	PMF	1	Analysis	pН	7.363	Analysis	Hardness 2	245.376	
	Parameter		Stream Conc (µg/L)	Stream CV	-Trib Conc (µg/L)	Fate Coe		WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	
	ARSENIC		0	0	0	0	8	340	340	584.0	389
	ANOLINO	D	- 22	WQC. Ch			r of 1				
	ZINC	1032 181	0	0	0	0		250.704	256.343	440.8	326
		D	issolved	WQC. Ch	emical tra	nslate	r of 0.	978 applied			
				С	FC						
Q7-10:	CCT (min)	0.455	PMF	1	Analysis	pH 7	7.363	Analysi	s Hardness	245.376	
	Parameter		Stream Conc.	Stream CV	Trib Conc.	Fat Co		WQC	WQ Obj	WL4	
			(µg/L)		(µg/L)			(µg/L)	(µg/L)	(µg/l	÷
	ARSENIC		0	0	0	0		150	150	257.9	951
	ZINC		0	WQC, Ch 0 WQC, Ch	0	0		applied. 252.754 986 applied	256.343	440.8	326
		2	15501460		HH	nalate		ooo appiloo			
Q7-10:	CCT (min)	0.455	PMF	1	Analysis	s oH	NA	Analysi	s Hardness	NA	
	Parameter	\$	Stream Conc (µg/L)	Stream CV	Trib Conc (µg/L)	Fate Coe	9	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	
	ARSENIC		0	0	0	0		10	10	17.1	97
	ZINC		0	0	0	0		NA	NA	NZ	ł
12				c	RL	2					
Qh:	CCT (min)	0.696		C 1	RL						
	Parameter		PMF Stream Conc		Trib Conc	Fa		WQC	WQ Obj	WL/	
Qh:	Parameter		РМН Stream Conc (µg/L)	1 Stream CV	Trib Conc (µg/L)	Co	ef	(µg/L)	WQ Obj (µg/L)	(µg/l	.)
	Parameter		PMF Stream Conc	1 Stream	Trib Conc		ef		WQ Obj		.)

Recommended Effluent Limitations

<u>SWP Basir</u> 19G	<u>1 Stream Code:</u> 41891			Stream GRASS	100000		
RMI	Name	20120	rmit nber	Disc Flow (mgd)			
1.65	Gans Gen 101	PA02	18464	0.0450		12	
1520 - 55		Effluent Limit			Max. Daily	Most S	tringent
	Parameter		Gover	· · · · · · · · · · · · · · · · · · ·	Limit	WQBEL	WQBEL
		(µg/L)	Crite	rion	(µg/L)	(µg/L)	Criterion
ARSENIC		17.197	TH	н	26.83	17.197	тнн
ZINC		282.552	AF	C	440.826	282.552	AFC

ATTACHMENT D: Thermal Discharge Limit Calculation for IMP 101

Facility:	Gans Generati	ng Facility				
Permit Number:	PA0218464					
Stream Name:	UNT to Grassy F	Run				
Analyst/Engineer:	and the second s					
Stream Q7-10 (cfs):	and the second second second					
otream ar i to (croj.	0.0001					
		Facili	ty Flows ¹		Stream	Flows
	Stream	External	Consumptive	Discharge	Adj. Q7-10	Downstream ²
	(Intake)	(Intake)	(Loss)		Stream Flow	Stream Flow
	(MGD)	(MGD)	(MGD)	(MGD)	(cfs)	(cfs)
Jan 1-31	0	0.011	0	0.011	0.2	0.2
Feb 1-29	0	0.011	0	0.011	0.2	0.2
Mar 1-31	0	0.011	0	0.011	0.4	0.4
Apr 1-15	0	0.011	0	0.011	0.5	0.5
Apr 16-30	0	0.011	0	0.011	0.5	0.5
May 1-15	0	0.011	0	0.011	0.3	0.3
May 16-30	0	0.011	0	0.011	0.3	0.3
Jun 1-15	0	0.011	0	0.011	0.2	0.2
Jun 16-30	0	0.011	0	0.011	0.2	0.2
Jul 1-31	0	0.011	0	0.011	0.1	0.1
Aug 1-15	0	0.011	0	0.011	0.1	0.1
Aug 16-31	0	0.011	0	0.011	0.1	0.1
Sep 1-15	0	0.011	0	0.011	0.1	0.1
Sep 16-30	0	0.011	0	0.011	0.1	0.1
Oct 1-15	0	0.011	0	0.011	0.1	0.1
Oct 16-31	0	0.011	0	0.011	0.1	0.1
Nov 1-15	0	0.011	0	0.011	0.1	0.1
Nov 16-30	0	0.011	0	0.011	0.1	0.1
Dec 1-31	0	0.011	0	0.011	0.1	0.1
¹ Facility flows are not requir consumptive losses are					e 1),	
² Downstream Stream Flow		the second s	ed as winnon Dros/day			
Please forward all commen						
Version 1.0 08/01/2004 NOTE: The user can only ec			ance for Temperature C	riteria, DEP-ID: 391-2000-	017	
NOTE: MGD x 1.547 = cfs.	r	1	T.			

11516 1191692 OF	Gans Generating	Facility				
Permit Number:	PA0218464					
Stream:	UNT to Grassy Run	1				
	WWF			WWF	WWF	
	Ambient Stream	Ambient Stream	Target Maximum	Daily	Daily	
	Temperature (°F)	Temperature (°F)	Stream Temp. ¹	WLA ²	WLA ³	at Discharge
	(Default)	(Site-specific data)	(°F)	(Million BTUs/day)	(°F)	Flow (MGD)
Jan 1-31	35	0	40	N/A Case 2	87.1	0.011
Feb 1-29	35	0	40	N/A Case 2	91.5	0.011
Mar 1-31	40	0	46	N/A Case 2	110.0	0.011
Apr 1-15	47	0	52	N/A Case 2	110.0	0.011
Apr 16-30	53	0	58	N/A Case 2	110.0	0.011
May 1-15	58	0	64	N/A Case 2	110.0	0.011
May 16-30	62	0	72	N/A Case 2	110.0	0.011
Jun 1-15	67	0	80	N/A Case 2	110.0	0.011
Jun 16-30	71	0	84	N/A Case 2	110.0	0.011
Jul 1-31	75	0	87	N/A Case 2	110.0	0.011
Aug 1-15	74	0	87	N/A Case 2	110.0	0.011
Aug 16-31	74	0	87	N/A Case 2	110.0	0.011
Sep 1-15	71	0	84	N/A Case 2	110.0	0.011
Sep 16-30	65	0	78	N/A Case 2	110.0	0.011
Oct 1-15	60	0	72	N/A Case 2	110.0	0.011
Oct 16-31	54	0	66	N/A Case 2	108.4	0.011
Nov 1-15	48	0	58	N/A Case 2	105.1	0.011
Nov 16-30	42	0	50	N/A Case 2	87.7	0.011
Dec 1-31	37	0	42	N/A Case 2	77.3	0.011
This is the maximum	of the WWF WO criterio	n or the ambient temper	ature. The ambient ter	nnerature may be		
				d on site-specific data entered by	the user.	
	ove ambient stream ter					
		lid for Case 1 scenarios				
	n °F is valid only if the lir 110°F are displayed as		harge flow limit (may be	e used for Case 1 or Case 2).		

ATTACHMENT E: TRC Modeling Results for IMP 101

TRC EVALUATION

0	1= Q stream (cfs)45= Q discharge (N4= no. samples.3= Chlorine Dema0= Chlorine Dema.5= BAT/BPJ Value0= % Factor of Sa	IGD) nd of Stream nd of Discharge fety (FOS)	0.5 1 1 0 0	= CFC_Criteria =Decay Coeffic	lix Factor Compliance Time (min) Compliance Time (min)
Source	Reference	AFC Calculations		Reference	CFC Calculations
TRC	1.3.2.iii	WLA afc =	10 10 10 10 10 10 10 10 10 10 10 10 10 1	1.3.2.iii	WLA cfc = 0.235
PENTOXSD TRG	5.1a	LTAMULT afc =		5.1c	LTAMULT cfc = 0.581
PENTOXSD TRG	5.1b	LTA_afc=	0.093	5.1d	LTA_cfc = 0.137
Source		Effluen	t Limit Calcu	lations	
PENTOXSD TRG	5.1f		AML MULT =	1.720	
PENTOXSD TRG	5.1g		.IMIT (mg/l) = .IMIT (mg/l) =		AFC
	+ Xd + (AFC_Yc	c)) + [(AFC_Yc*Qs*.019/Qd *Qs*Xs/Qd)]*(1-FOS/100) *2+1))-2.326*LN(cvh*2+1)* T_afc	eneret	c))	
LTAMULT afc	+ Xd + (AFC_Yo EXP((0.5*LN(cvh/ wla_afc*LTAMUL (.011/e(-k*CFC_to	*Qs*Xs/Qd)]*(1-FOS/100) ^2+1))-2.326*LN(cvh^2+1)^	0.5)		
LTAMULT afc LTA_afc	+ Xd + (AFC_Yo EXP((0.5*LN(cvh/ wla_afc*LTAMUL (.011/e(-k*CFC_to + Xd + (CFC_Yo	*Qs*Xs/Qd)]*(1-FOS/100) ^2+1))-2.326*LN(cvh^2+1)^ T_afc c) + [(CFC_Yc*Qs*.011/Qd*	0.5) *e(-k*CFC_tc))	5)
LTAMULT afc LTA_afc WLA_cfc	+ Xd + (AFC_Yo EXP((0.5*LN(cvh/ wla_afc*LTAMUL (.011/e(-k*CFC_to + Xd + (CFC_Yo	*Qs*Xs/Qd)]*(1-FOS/100) ¹ 2+1))-2.326*LN(cvh^2+1)^ T_afc c) + [(CFC_Yc*Qs*.011/Qd* *Qs*Xs/Qd)]*(1-FOS/100) ¹ 2/no_samples+1))-2.326*	0.5) *e(-k*CFC_tc))	5)
LTAMULT afc LTA_afc WLA_cfc LTAMULT_cfc LTA_cfc AML MULT	+ Xd + (AFC_Yo EXP((0.5*LN(cvh/ wla_afc*LTAMUL (.011/e(-k*CFC_to + Xd + (CFC_Yo EXP((0.5*LN(cvd/ wla_cfc*LTAMUL EXP(2.326*LN((co	*Qs*Xs/Qd)]*(1-FOS/100) ^2+1))-2.326*LN(cvh^2+1)^ T_afc c) + [(CFC_Yc*Qs*.011/Qd* *Qs*Xs/Qd)]*(1-FOS/100) ^2/no_samples+1))-2.326* T_cfc vd^2/no_samples+1)^0.5)-	0.5) * e(-k*CFC_tc LN(cvd*2/no) 0.5*LN(cvd*2)) _samples+1)^0.{	
LTAMULT afc LTA_afc WLA_cfc LTAMULT_cfc LTA_cfc	+ Xd + (AFC_Yo EXP((0.5*LN(cvh/ wla_afc*LTAMUL (.011/e(-k*CFC_to + Xd + (CFC_Yo EXP((0.5*LN(cvd/ wla_cfc*LTAMUL EXP(2.326*LN((c MIN(BAT_BPJ,MI	*Qs*Xs/Qd)]*(1-FOS/100) ^2+1))-2.326*LN(cvh^2+1)^ T_afc c) + [(CFC_Yc*Qs*.011/Qd* *Qs*Xs/Qd)]*(1-FOS/100) ^2/no_samples+1))-2.326* T_cfc	0.5) *e(-k*CFC_tc LN(cvd^2/no 0.5*LN(cvd^2 /ULT))) _samples+1)^0.{	

ATTACHMENT F:

Toxics Screening Analysis Results for IMP 201

TOXICS SCREENING ANALYSIS WATER QUALITY POLLUTANTS OF CONCERN VERSION 2.7

CLEAR FORM

Facility: Gans Generating Facility		NPDES Permit No.:	PA0218464	Outfall:	201
Analysis Hardness (mg/L):	26	Discharge Flow (MGD):	0.011	Analysis pH (SU):	7.6
Stream Flow, Q7-10 (cfs):	0.0501				e occaria e

	Parameter		num Concentration in cation or DMRs (µg/L)	Most Stringent Criterion (µg/L)	Candidate for PENTOXSD Modeling?	Most Stringent WQBEL (µg/L)	Screening Recommendation
	Total Dissolved Solids	85000		500000	No		
-	Chloride		14900	250000	No		
inc	Bromide	<	500	N/A	No		
Group	Sulfate		13800	250000	No		
	Fluoride		180	2000	No		
-	Total Aluminum	<	30	750	No		
	Total Antimony		1.8	5.6	No		
	Total Arsenic		0.28	10	No		
	Total Barium		21	2400	No	~ ~	
	Total Beryllium	<	1	N/A	No		
	Total Boron		45	1600	No		
	Total Cadmium	<	45	0.271	Yes	0.915	Establish Limits
	Total Chromium	<	2	0.271 N/A	No	0.915	Establish Linnis
	Hexavalent Chromium	<	0.01	10.4	No (Value < QL)	2	
	Total Cobalt		0.29	10.4	No (Value < QL)		
2	Total Copper		1.8	9.3	No		
	Total Cyanide	<	0.01	9.5 N/A	No		
Group	Total Iron	~	550	1500	No		
5			000	300	INO		
	Dissolved Iron Total Lead	<	1	3.2	No (Value < QL)		
		~	39	3.2	No (Value < QL)		
	Total Manganese		7.70		12 - 360°°° (3		
	Total Mercury	<	0.2	0.05	No (Value < QL)		
	Total Molybdenum	<	5	N/A	No		
	Total Nickel		1.8	52.2	No		
	Total Phenols (Phenolics)	<	0.01	5	No (Value < QL)		
	Total Selenium	<	5	5.0	No (Value < QL)		
	Total Silver	<	1	3.8	No		
	Total Thallium	<	1	0.24	No (Value < QL)		
_	Total Zinc		31	119.8	No		
	Acrolein	<		3			
	Acrylamide	<		0.07	is		
	Acrylonitrile	<		0.051	10		
	Benzene	<		1.2			
	Bromoform		1.9	4.3	No		
	Carbon Tetrachloride	<		0.23			
	Chlorobenzene	<		130			
	Chlorodibromomethane		7.2	0.4	Yes	13.159	Establish Limits

ATTACHMENT G: PENTOXSD Modeling Results for Outfall 201

PENTOXSD

			-			INIOG	leiing in	out Data						
Stream Code		Elevatio (ft)	A	nage rea mi)	Slope	PWS V (mg				ply FC				
4189	91 1.65	894			0.00000	1	0.00		· [
							Stream Da	nta						
8	LFY	Trib Flow	Stream Flow	WD Ratio	Rch Width	Rch Depth	Rch Velocity	Rch Trav Time	<u>Tributar</u> Hard	⊻ pH	<u>Strean</u> Hard	ן pH	<u>Analysis</u> Hard p	ιH
• 2011 2012 Charter Charter	(cfsm)	(cfs)	(cfs)		(ft)	(ft)	(fps)		mg/L)	-	(mg/L)		(mg/L)	
Q7-10	0.00112	0	0.0501	0	0	0	0	0	100	7	0	0	0	0
Qh		. 0	0	0	0	0	0	0	100	7	0	0	0	0
<u> </u>	2					D	ischarge D	ata		0				
	Name	Permi Numb	er Di	sc	ermitted Disc Flow	Design Disc Flow	Reserve Factor	AFC PMF	CFC PMF	THH • PMF	CRL PMF	Disc Hard	Disc pH	
					(mgd)	(mgd)						(mg/L)		
Gar	ns Gen 201	PA0218	464 0.0	011	0	0	0	1	1	0	0	26	7.6	
							arameter D			-		0.11	0000	
	Parameter	Name		Disc Conc (µg/L)	Trib Conc (µg/L)	Disc Daily CV	Hourly		CV	Fate Coel		Crit Mod	Max Disc Conc (µg/L)	
					(µg/u) : 0	, 0.:	5 0.5		/0	0	0	1	0	
CADMI	IM													
CADMII CHLOR	ODIBROMO	5	745 W	72	0	0.: PWS V		0	0	0	0	1	0	
CHLOR	ODIBROMO	METHANE Elevatio (ft)	n Drai A	72 nage rea mi)	0 Slope	0.: PWS V (mg	Vith	0	A	oply FC	0	1	0	
CHLOR		Elevatio	n Drai A (sq	72 nage rea mi)	0	PWS	Vith	0	A	oply	-	1	0	
CHLOR Stream Code	ODIBROMO	Elevatio (ft)	n Drai A (sq	72 nage rea mi)	0 Slope	PWS \ (mg	Vith d)		A	oply FC	0	1	0	
CHLOR Stream Code	ODIBROMO	Elevatio (ft) 865.	n Drai A (sq	72 nage rea mi)	0 Slope 0.00000 Rch Width	PWS V (mg Rch Depth	Víth d) 0.00		A	Pply FC	0 <u>Strear</u> Hard		Analysis	i pH
CHLOR Stream Code	ODIBROMO n RMI 11 1.15	Elevatio (ft) 865. Trib	n Drai Ar (sq 00 Stream	72 nage rea mi) 6.19 WD	0 Slope 0.00000 Rch	PWS V (mg	Víth d) 0.00 Stream Da Rch Velocity	nta Rch Trav Time	A <u>Tributa</u>	pply FC ✔ pH	Stream	n	Analysis	
CHLOR Stream Code	DDIBROMO	Elevatio (ft) 865. Trib Flow	n Drai Ai (sq 00 Stream Flow	72 nage rea mi) 6.19 WD	0 Slope 0.00000 Rch Width	PWS V (mg Rch Depth	Vith d) 0.00 Stream Da Rch Velocity	nta Rch Trav Time	A <u>Tributa</u> Hard	pply FC ✔ pH	<u>Strear</u> Hard	n	<u>Analysis</u> Hard	
CHLOR Stream Code 4189	CODIBROMO RMI 1 1.15 LFY (cfsm)	Elevatio (ft) 865. Trib Flow (cfs)	n Drai Aı (sq 00 Stream Flow (cfs)	72 nage rea mi) 6.19 WD Ratio	0 Slope 0.00000 Rch Width (ft)	PWS V (mg Rch Depth (ft)	Vith d) 0.00 Stream Da Rch Velocity (fps)	ata Rch Trav Time (days)	A <u>Tributa</u> Hard (mg/L)	pply FC V pH	<u>Strear</u> Hard (mg/L)	n pH	Analysis Hard (mg/L)	oH
CHLOR Stream Code 4189 Q7-10	CODIBROMO RMI 1 1.15 LFY (cfsm)	Elevatio (ft) 865. Trib Flow (cfs) 0	n Drai Ar (sq 00 Stream Flow (cfs) 0.0745	72 mage rea mi) 6.19 WD Ratio	0 Slope 0.000000 Rch Width (ft) 0	PWS V (mg Rch Depth (ft) 0 0	Vith d) 0.00 Stream Da Rch Velocity (fps) 0	ata Rch Trav Time (days) 0 0	A <u>Tributa</u> Hard (mg/L) 100	pply FC ☑ pH 7	<u>Strean</u> Hard (mg/L) 0	п рН 0	Analysis Hard (mg/L) 0	0 O
CHLOR Stream Code 4189 Q7-10 Qh	CODIBROMO RMI 1 1.15 LFY (cfsm)	Elevatio (ft) 865. Trib Flow (cfs) 0	n Drai Ar (sq 00 Stream Flow (cfs) 0.0745 0 Exis er Dis	72 rea mi) 6.19 WD Ratio 0 0 ting Pe	0 Slope 0.000000 Rch Width (ft) 0 0 0	PWS V (mg Rch Depth (ft) 0 0	Vith d) 0.00 Stream Da Rch Velocity (fps) 0 0	ata Rch Trav Time (days) 0 0 0	A <u>Tributa</u> Hard (mg/L) 100	pply FC ☑ pH 7	<u>Strean</u> Hard (mg/L) 0	п рН 0	Analysis Hard (mg/L) 0	0 O
CHLOR Stream Code 4189 Q7-10 Qh	ODIBROMO RMI 1 1.15 LFY (cfsm) 0.01204	Elevatio (ft) 865. Trib Flow (cfs) 0 0 Permi	n Drai Ar (sq 00 Stream Flow (cfs) 0.0745 0 Exis er Dis Flu Flu (mg	72 mage rea mi) 6.19 WD Ratio 0 0 0 ting Pe sc cow gd) (0 Slope 0.000000 Rch Width (ft) 0 0 0 srmitted Disc Flow mgd)	PWS V (mg Depth (ft) 0 0 Design Disc Flow (mgd)	Víth (d) Stream Da Rch Velocity (fps) 0 0 ischarge D Reserve	ata Rch Trav Time (days) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	A Tributa Hard (mg/L) 100 100 CFC PMF	pply FC ♥ pH 7 7 THH PMF	Strean Hard (mg/L) 0 0 CRL PMF	n pH 0 Disc Hard (mg/L)	Analysis Hard (mg/L) 0 0 Disc pH	0 O
CHLOR Stream Code 4189 Q7-10 Qh	ODIBROMO RMI 1 1.15 LFY (cfsm) 0.01204	Elevatio (ft) 865. Trib Flow (cfs) 0 0 Permi	n Drai Ar (sq 00 Stream Flow (cfs) 0.0745 0 Exis er Dis Flu Flu (mg	72 mage rea mi) 6.19 WD Ratio 0 0 0	0 Slope 0.000000 Rch Width (ft) 0 0 0 semitted Disc Flow	PWS V (mg Depth (ft) 0 0 Design Disc Flow	Víth (d) Stream Da Rch Velocity (fps) 0 0 ischarge D Reserve	nta Rch Trav Time (days) 0 0 0 0 0 0 0 0 0	A <u>Tributa</u> Hard (mg/L) 100 100 CFC	pply FC ✓ pH 7 7 7	<u>Strear</u> Hard (mg/L) 0 0 CRL	n pH 0 0 Disc Hard	Analysis Hard (mg/L) 0 0 Disc pH	0 O
CHLOR Stream Code 4189 Q7-10 Qh	CODIBROMO R RMI LFY (cfsm) 0.01204 Name	Elevatio (ft) 865. Trib Flow (cfs) 0 0 Permi Numbe	n Drai Ar (sq 00 Stream Flow (cfs) 0.0745 0 Exis er Dis Flu Flu (mg	72 rea mi) 6.19 WD Ratio 0 0 ting Pe sc c w gd) (0 Slope 0.000000 Rch Width (ft) 0 o armitted Disc Flow mgd) 0	PWS V (mg Rch Depth (ft) 0 0 Design Disc Flow (mgd) 0 Pa	Vith (d) Stream Da Rch Velocity (fps) 0 0 ischarge D Reserve Factor 0 arameter D	ata Rch Trav Time (days) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	A Tributa Hard (mg/L) 100 100 CFC PMF	pply FC PH 7 7 7 THH PMF	Strean Hard (mg/L) 0 CRL PMF	n pH 0 Disc Hard (mg/L) 100	Analysis Hard (mg/L) 0 Disc pH	0 DH
CHLOR Stream Code 4189 Q7-10 Qh	ODIBROMO RMI 1 1.15 LFY (cfsm) 0.01204	Elevatio (ft) 865. Trib Flow (cfs) 0 0 Permi Numbe	n Drai Ar (sq 00 Stream Flow (cfs) 0.0745 0 Exis Flow (m (m) (m)	72 mage rea mi) 6.19 WD Ratio 0 0 0 0 0 0 0 0 0 0 0 0 0	0 Slope 0.000000 Rch Width (ft) 0 0 ermitted Disc Flow mgd) 0 Trib Conc	PWS V (mg Depth (ft) 0 0 Design Disc Flow (mgd) 0 Pa Disc Disc C Daily CV	Vith d) 0.00 Stream Da Rch Velocity (fps) 0 0 0 sischarge D Reserve Factor 0 arameter D c Disc Hourly	ata Rch Trav Time (days) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	A Tributa Hard (mg/L) 100 100 CFC PMF 0 Stream CV	pply FC ♥ pH 7 7 THH PMF	Strear Hard (mg/L) 0 0 CRL PMF 0 FOS	n pH 0 Disc Hard (mg/L)	Analysis Hard (mg/L) 0 0 Disc pH 7 7 Max Disc Conc	0 O
CHLOR Stream Code 4189 Q7-10 Qh	ODIBROMO RMI 1 1.15 LFY (cfsm) 0.01204 Name Parameter N	Elevatio (ft) 865. Trib Flow (cfs) 0 0 Permi Numbe	n Drai Ar (sq 00 Stream Flow (cfs) 0.0745 0 Exis Flow (m (m) (m)	72 rea mi) 6.19 WD Ratio 0 0 0 ting Pe sc bw gd) (Disc	0 Slope 0.00000 Rch Width (ft) 0 o srmitted Disc Flow mgd) 0 Trib	PWS V (mg Depth (ft) 0 0 Design Disc Flow (mgd) 0 Pa Disc Disc C Daily CV	Vith d) 0.00 Stream Da Rch Velocity (fps) 0 0 0 sischarge D Reserve Factor 0 arameter D s Disc Hourly CV	ata Rch Trav Time (days) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	A Tributa Hard (mg/L) 100 100 CFC PMF 0 Stream CV	pply FC ✓ pH 7 7 7 7 THH PMF 0 Fate	Strear Hard (mg/L) 0 0 CRL PMF 0 FOS	n pH 0 Disc Hard (mg/L) 100 Crit	Analysis Hard (mg/L) 0 0 Disc pH 7 7 Max 5 Disc	0 O

37

Hydrodynamics

4	WP Basii	1	Stream	n Code:			Stream	m Name	1		
	19G		41	891			GRAS	SY RUN	I		
RMI	Stream Flow (cfs)	PWS With (cfs)	Net Stream Flow (cfs)	Disc Analysis Flow (cfs)	Reach Slope	Depth (ft)	Width (ft)	WD Ratio	Velocity (fps)	Reach Trav Time (days)	CMT (min)
					Q7-	-10 Hyc	Irodyna	amics			
1.653	0.0501	Ċ	0.0501	0.01701	0.011	0.3361	5.6245	16.736	0.0355	0.8605	1.183
1.153	8 0.0745	C	0.0745	NA	0	0	0	0	0	0	NA
					Q	h Hydr	odynan	nics			
1.653	0.5428	C	0.5428	0.01701	0.011	0.8546	5.6245	6.5813	0.1165	0.2624	.492
1.153	0.7678	C	0.7678	NA	• 0	0	0	0	0	0	NA

Wasteload Allocations

RMI	Name	Permit Nu	mber						
1.65	Gans Gen 201	PA02184	464						
				1	FC				
Q7-	10: CCT (min) 1.183	PMF	1	Analysis	pH 7.091	Analysis	Hardness	81.237
	Parameter		Stream Conc (µg/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)
	CADMIUM		0	0	0	0	1.645	1.727	6,811
	C/Dimon.	D		-	-	63	.953 applied	0	
CHLC	RODIBROMOMETH	ANE	0	0	0	0	NA	NA	NA
				c	FC				
27-10:	CCT (min)	1,183	PMF	1	Analysis	pH 7.091	Analysi	s Hardness	81.237
13	Parameter		Stream Conc. (µg/L)	Stream CV	Trib Conc. (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)
2	CADMIUM		0	0	0	0	0.213	0.232	0.915
	Ci (Dimoni				25		.918 applied		0.010
CHLO	RODIBROMOMETH		0	0	0	0	NA	NA	NA
				т	нн				
Q7-10:	CCT (min)	1.183	PMF	NA		pH NA	Analysi	s Hardness	NA
	Parameter		Stream Conc (µg/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)
5	CADMIUM		0	0	0	0	NA	NA	NA
CHLO	RODIBROMOMETH	ANE	0	0	0	0	NA	NA	NA
				c	RL				
Qh:	CCT (min)	0.492	PMF	1					
	Parameter		Stream Conc (µg/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)
	CADMIUM		0	0	0	0	NA	NA	NA

	R	ecommen	ded E	ffluent L	mitations	5	Ξ.
SWP Basin	Stream Code:			Stream	Name:		
19G	41891			GRASS	Y RUN	23 (A-14)	
RMI	Name		rmit nber	Disc Flow (mgd)		16	
1.65	Gans Gen 201	PA02	18464	0.0110	5		
		Effluent Limit	100	0.000	Max. Daily		tringent
Pa	arameter	(µg/L)	Gove Crite		Limit (µg/L)	WQBEL (µg/L)	WQBEL Criterion
CADMIUM		0.915	CF	с	1.428	0.915	CFC
CHLORODIBR	OMOMETHANE	13.159	CF	81.	20.53	13.159	CRL