

Northwest Regional Office CLEAN WATER PROGRAM

Application Type
Facility Type
Major / Minor

Renewal

Non-Municipal

Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

Application No. PA0219045

APS ID 1063118

Authorization ID 1395835

Applicant Name	Apollo	Ridge School District	Facility Name	Apollo Ridge School District STP
Applicant Address	1825 S	State Route 56	Facility Address	State Route 56
	Spring	Church, PA 15686-9735		Spring Church, PA 15686
Applicant Contact		arsoum umg@apolloridge.com)	Facility Contact	Greg Barsoum (Barsoumg@apolloridge.com)
Applicant Phone	(724) 4	78-6050	Facility Phone	(724) 478-6050
Client ID	51860		Site ID	550928
Ch 94 Load Status	Not Ov	rerloaded	Municipality	Kiskiminetas Township
Connection Status	No Lim	itations	County	Armstrong
Date Application Rece	eived	May 10, 2022	EPA Waived?	Yes
Date Application Acce	pted	May 11, 2022	If No, Reason	-

Summary of Review

Act 14 - Proof of Notification was submitted and received.

A Part II Water Quality Management permit is not required at this time.

The applicant should be able to meet the limits of this permit, which will protect the uses of the receiving stream.

I. OTHER REQUIREMENTS:

- A. Stormwater into Sewers
- B. Right of Way
- C. Solids Handling
- D. Public Sewerage Availability
- E. Effluent Chlorine Optimization and Minimization
- F. Little Assimilative Capacity

SPECIAL CONDITIONS:

II. Solids Management

There are no open violations in efacts associated with the subject Client ID (51860) as of 3/29/2023. 4/18/2023 CWY

Approve	Deny	Signatures	Date
V		Stephen A. McCauley	2/20/2022
^		Stephen A. McCauley, E.I.T. / Environmental Engineering Specialist	3/29/2023
V		Chad W. Yurisic	4/40/2022
^		Chad W. Yurisic, P.E. / Environmental Engineer Manager	4/18/2023

Discharge, Receiving Waters and Water Supply Infor	rmation
Outfall No. 001 Latitude 40° 36' 7.00" Quad Name - Wastewater Description: Sewage Effluent	Design Flow (MGD) 0.0267 Longitude -79° 28' 37.00" Quad Code -
wastewater Description. Sewage Emuent	
Receiving Waters NHD Com ID Drainage Area Unnamed Tributary to the Roaring Run (CWF) 125291151 0.62	RMI N/A
Q ₇₋₁₀ Flow (cfs) 0.062	Q ₇₋₁₀ Basis <u>calculated</u>
Elevation (ft) 1385	Slope (ft/ft) 0.04753
Watershed No. 18-B	Chapter 93 Class. CWF
Existing Use	Existing Use Qualifier
Exceptions to Use	Exceptions to Criteria
Assessment Status Attaining Use(s)	
Cause(s) of Impairment	
Source(s) of Impairment	
TMDL Status Final*	Kiskiminetas-Conemaugh River Name Watersheds TMDL
Background/Ambient Data	Data Source
pH (SU)	
Temperature (°F)	-
Hardness (mg/L) -	-
Other: -	
Nearest Downstream Public Water Supply Intake PWS Waters Allegheny River	Buffalo Township Municipal Water Authority - Freeport Flow at Intake (cfs) 2,576
PWS RMI 30.0	Distance from Outfall (mi) 23.0

Sludge use and disposal description and location(s): <u>All sludge is hauled by CWM Environmental to the AVJSA WWTP,</u> where it is disposed of at an approved landfill.

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the Pennsylvania Bulletin in accordance with 25 Pa. Code § 92a.82. Upon publication in the Pennsylvania Bulletin, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be

^{* -} This discharge consists of treated non-municipal sewage only and does not contribute to the impairment of the receiving stream. However, since the stream is impaired for AMD metals, per the SOP, monitoring for Total Aluminum, Total Iron, and Total Manganese will be retained with this renewal.

NPDES Permit Fact Sheet Apollo Ridge School District STP

published in the Pennsylvania Bulletin at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Narrative: This Fact Sheet details the determination of draft NPDES permit limits for an existing discharge of 0.0267 MGD of treated sewage from two existing schools in Kiskiminetas Township, Armstrong County.

Treatment permitted under WQM Permit No. 0301404 consists of the following: A muffin monster with bypass bar screen, a two-chamber flow equalization tank, six aeration tanks in series, one clarifier, a two-chamber aerobic digester, tablet chlorine disinfection with a contact tank, sodium bisulfite dechlorination, a polishing tank, and a post-aeration chamber. The treated effluent flows into a storm sewer pipe and then into an unnamed tributary to the Roaring Run.

1. Streamflow:

Crooked Creek at Idaho, Pa. 03038000 (1970-2008)

Drainage Area: 191 sq. mi. (USGS StreamStats)

Q₇₋₁₀: 19.9 cfs (USGS StreamStats)

Yieldrate: 0.1 cfsm calculated

Unnamed Tributary to the Roaring Run at Outfall 001:

Yieldrate: <u>0.1</u> cfsm calculated above

Drainage Area: <u>0.62</u> sq. mi. (USGS StreamStats)

% of stream allocated: 100% Basis: No nearby discharges

 Q_{7-10} : 0.062 cfs calculated

2. Wasteflow:

Maximum discharge: 0.0267 MGD = 0.04 cfs

Runoff flow period: 24 hours Basis: Runoff with flow equalization

The calculated stream flow (Q7-10) is less than 3 times the permitted discharge flow. However, since this is an existing discharge, the more stringent treatment requirements cannot be achieved, and the receiving stream is not impaired by the discharge, the standards in DEP guidance (391-2000-014) will not be applied.

Flow will be required to be monitored as authorized under Chapter 92a.61, and as recommended in the SOP.

3. Parameters:

The following parameters were evaluated: pH, Total Suspended Solids, Fecal Coliform, E. Coli, Total Phosphorus, Total Nitrogen, NH₃-N, CBOD₅, Dissolved Oxygen, and Total Residual Chlorine.

a. <u>pH</u>

Between 6.0 and 9.0 at all times

Basis: Application of Chapter 93.7 technology-based limits.

The measurement frequency will remain as 5/week per the SOP.

b. Total Suspended Solids

Limits are 30.0 mg/l as a monthly average and 60.0 as an instantaneous maximum based on Chapter 92a47.

Basis: Application of Chapter 92a47 technology-based limits.

NPDES Permit Fact Sheet Apollo Ridge School District STP

c. Fecal Coliform

05/01 - 09/30: <u>200/100ml</u> (monthly average geometric mean)

<u>1,000/100ml</u> (instantaneous maximum)

10/01 - 04/30: <u>2,000/100ml</u> (monthly average geometric mean)

10,000/100ml (instantaneous maximum)

Basis: Application of Chapter 92a47 technology-based limits

d. E. Coli

f.

Monitoring was added for E. Coli at a frequency of 1/year.

Basis: Application of Chapter 92a.61 as recommended by the SOP for flows between 0.002 MGD and

0.05 MGD.

e. <u>Total Phosphorus</u>

Total Nitrogen

Chapter 96.5 does not apply. The previous monitoring for Total Phosphorus will be retained in accordance with the SOP, based on Chapter 92a.61. However, the monitoring frequency will be reduced from 1/quarter to 1/year since the receiving stream is not impaired, per the SOP.

ŏ

The previous monitoring for Total Nitrogen will be retained in accordance with the SOP, based on Chapter 92a.61. However, the monitoring frequency will be reduced from 1/quarter to 1/year since the receiving stream is not impaired, per the SOP.

g. Ammonia-Nitrogen (NH₃-N)

Median discharge pH to be used: 7.5 Standard Units (S.U.)

Basis: eDMR data from previous 12 months

Discharge temperature: 25°C (default value used in the absence of data)

Median stream pH to be used: 7.0 Standard Units (S.U.)

Basis: default value used in the absence of data

Stream Temperature: 20°C (default value used for CWF modeling)

Background NH₃-N concentration: <u>0.1</u> mg/l

Basis: Default value

Calculated NH₃-N Summer limits: <u>5.3</u> mg/l (monthly average)

10.6 mg/l (instantaneous maximum)

Calculated NH₃-N Winter limits: 15.9 mg/l (monthly average)

31.8 mg/l (instantaneous maximum)

Result: WQ modeling resulted in the summer limits above (see Attachment 1). The winter limits are

calculated as three times the summer limits. The calculated limits are less restrictive than in the

previous permit. Since the previous limits are attainable, they will be retained.

h. CBOD₅

Median discharge pH to be used: 7.5 Standard Units (S.U.)

Basis: eDMR data from previous 12 months

Discharge temperature: 25°C (default value used in the absence of data)

Median stream pH to be used: 7.0 Standard Units (S.U.)

Basis: default value used in the absence of data

Stream Temperature: 20°C (default value used for CWF modeling)

Background CBOD₅ concentration: <u>2.0</u> mg/l

Basis: Default value

Calculated CBOD₅ limits: 25.0 mg/l (monthly average)

50.0 mg/l (instantaneous maximum)

Result: WQ modeling resulted in the calculated limits above (see Attachment 1). The limits are the same as in

the previous permit and will be retained.

i. Dissolved Oxygen (DO)

The technology-based minimum of 3.0 mg/l is recommended by the WQ Model (see Attachment 1) and the SOP based on Chapter 93.7, under the authority of Chapter 92a.61. However, the previous technology-based limit of 6.0 mg/l from DEP guidance number 391-2000-014 will be retained.

The measurement frequency will remain as 5/week per the SOP.

j. <u>Disinfection</u>

☐ Ultraviolet (UV) light

□ TRC limits: 0.22 mg/l (monthly average)

0.74 mg/l (instantaneous maximum)

Basis: The TRC limits above were calculated using the Department's TRC Calculation Spreadsheet

(see Attachment 2). The calculated limits are less restrictive than in the previous permit.

Since the previous limits are attainable, they will be retained.

The measurement frequency will remain as 5/week per the SOP.

4. Reasonable Potential Analysis for Receiving Stream:

A Reasonable Potential Analysis was not performed in accordance with State practices using the Department's Toxics Management Spreadsheet since no sampling other than sewage-related parameters was performed for this facility with the renewal application.

5. Reasonable Potential for Downstream Public Water Supply (PWS):

The Department's Toxics Management Spreadsheet does not calculate limits for parameters that are based on PWS criteria (TDS, Chloride, Bromide, and Sulfate). However, since no sample data was provided, mass-balance calculations were not performed.

Nearest Downstream potable water supply (PWS): <u>Buffalo Township Municipal Water Authority - Freeport</u>
Distance downstream from the point of discharge: 23.0 miles

Result: No limits or monitoring is necessary as there is significant dilution available.

6. Anti-Backsliding:

Since all the permit limits in this renewal are the same or more restrictive than the previous NPDES Permit, anti-backsliding is not applicable.

7. Attachment List:

Attachment 1 - WQ Modeling Printouts
Attachment 2 - TRC Calc Spreadsheet

(The Attachments above can be found at the end of this document)

Compliance History

DMR Data for Outfall 001 (from February 1, 2022 to January 31, 2023)

Parameter	JAN-23	DEC-22	NOV-22	OCT-22	SEP-22	AUG-22	JUL-22	JUN-22	MAY-22	APR-22	MAR-22	FEB-22
Flow (MGD)												
Average Monthly	0.00327	0.00319	0.00257	0.00504	0.00614	0.00136	0.00029	0.00444	0.00548	0.00398	0.00454	0.00934
pH (S.U.)												
Minimum	7.41	7.55	7.51	7.17	7.34	7.48	7.5	7.12	7.01	6.94	6.86	6.72
pH (S.U.)												
Maximum	8.62	8.28	8.78	8.16	8.38	8.26	8.65	8.72	7.97	7.87	8.26	8.52
DO (mg/L)												
Minimum	9.59	11.24	9.72	8.98	7.14	6.58	7.21	6.41	7.59	9.31	10.42	11.4
TRC (mg/L)												
Average Monthly	< 0.10	< 0.04	< 0.10	0.05	0.1	0.1	0.04	< 0.10	0.05	0.04	< 0.1	< 0.1
TRC (mg/L)												
Instantaneous Maximum	0.21	0.13	0.22	0.1	0.21	0.19	0.10	0.21	0.13	0.15	0.28	0.21
CBOD5 (mg/L)												
Average Monthly	< 9.0	< 3.0	< 3.0	< 3.0	3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
CBOD5 (mg/L)												
Instantaneous Maximum	14.3	< 3.0	< 3.0	3.3	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
TSS (mg/L)												
Average Monthly	5.0	6.0	< 3.0	6.0	9.0	< 4.0	< 4.0	< 3.0	8.0	< 3.0	< 4.0	< 3.0
TSS (mg/L)												
Instantaneous Maximum	5.0	8.0	< 3.0	7	10.0	4.0	4.0	3.0	8.0	3.0	4.0	< 3.0
Fecal Coliform (No./100 ml)												
Geometric Mean	< 1.0	< 1.0	< 16.0	135.0	118	19.0	18.0	30.0	95	17	< 14.0	74
Fecal Coliform (No./100 ml)												
Instantaneous Maximum	< 1.0	< 1.0	31	436	1554	33.0	18.0	58.0	167	29.0	26.0	143
Total Nitrogen (mg/L)												
Daily Maximum		< 1.0										
Ammonia (mg/L)												
Average Monthly	< 0.20	0.10	< 0.10	0.1	< 0.20	< 0.10	0.1	0.20	0.10	< 0.101	0.10	0.20
Ammonia (mg/L)												
Instantaneous Maximum	0.22	0.13	< 0.10	0.14	0.39	< 0.10	0.16	0.24	0.13	0.14	0.15	0.34
Total Phosphorus (mg/L)												
Daily Maximum		9.19										
Total Aluminum (mg/L)												
Daily Maximum		< 0.10										
Total Iron (mg/L)												
Daily Maximum		0.07										
Total Manganese (mg/L)												
Daily Maximum		< 0.02										

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

			Effluent L	imitations			Monitoring Red	quirements
Parameter	Mass Units	(lbs/day) (1)		Concentrat	ions (mg/L)		Minimum (2)	Required
Parameter	Average Monthly	Average Weekly	Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	XXX	XXX	XXX	XXX	XXX	2/month	Measured
pH (S.U.)	XXX	XXX	6.0	XXX	9.0	XXX	5/week	Grab
DO	XXX	XXX	6.0	XXX	XXX	XXX	5/week	Grab
TRC	XXX	XXX	XXX	0.1	XXX	0.3	5/week	Grab
CBOD5	XXX	XXX	XXX	25.0	XXX	50.0	2/month	Grab
TSS	XXX	XXX	XXX	30.0	XXX	60.0	2/month	Grab
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2000 Geo Mean	XXX	10000	2/month	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	XXX	XXX	200 Geo Mean	XXX	1000	2/month	Grab
E. Coli (No./100 ml)	XXX	XXX	XXX	XXX	XXX	Report	1/year	Grab
Total Nitrogen	XXX	XXX	XXX	Report Annl Avg	XXX	XXX	1/year	Grab
Ammonia Nov 1 - Apr 30	XXX	XXX	XXX	5.5	XXX	11.0	2/month	Grab
Ammonia May 1 - Oct 31	XXX	XXX	XXX	2.0	XXX	4.0	2/month	Grab
Total Phosphorus	XXX	XXX	XXX	Report Annl Avg	XXX	XXX	1/year	Grab
Total Aluminum	XXX	XXX	XXX	Report Annl Avg	XXX	XXX	1/year	Grab

Outfall 001, Continued (from Permit Effective Date through Permit Expiration Date)

			Effluent L	imitations			Monitoring Red	quirements
Parameter	Mass Units	(lbs/day) ⁽¹⁾		Concentrat	Minimum ⁽²⁾	Required		
Farameter	Average Monthly	Average Weekly	Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
				Report				
Total Iron	XXX	XXX	XXX	Annl Avg	XXX	XXX	1/year	Grab
				Report				
Total Manganese	XXX	XXX	XXX	Anni Avg	XXX	XXX	1/year	Grab

Compliance Sampling Location: at Outfall 001, after disinfection.

Flow is monitor only based on Chapter 92a.61. The limits for pH and Dissolved Oxygen are technology-based on Chapter 93.7. The Total Residual Chlorine (TRC) limits are water quality-based on Chapter 93.7. The limits for CBOD₅, Total Suspended Solids (TSS), and Fecal Coliforms are technology-based on Chapter 92a.47. The limits for Ammonia-Nitrogen are water quality-based on Chapter 93.7. Monitoring for E. Coli, Total Nitrogen, Total Phosphorus, Total Aluminum, Total Iron, and Total Manganese is based on Chapter 92a.61.

Attachment 1

WQM 7.0 Effluent Limits (Perennial Reach)

	n	<u>am Code</u> 13050		Stream Name ROARING RU			
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
1.430	Apollo Ridge	PA0219045a	0.027	CBOD5	19.23		
				NH3-N	4.93	9.86	
				Dissolved Oxygen			3

CBOD5 is the same as the Dry Reach input, so the Dry Reach limit is protective.

The DO limit is more restrictive than the Dry Reach inputs, so it governs.

For NH3-N, the limit can be back-calculated using the equation: Ct = (Co)e-(kt), where

Ct = 4.93 mg/l k = 0.7 days-1 = constant for NH3-N t = 0.127 days = Dry Reach Model travel time

Therefore, 4.93 mg/l = (Ct)e-(0.7 days-1)(0.127 days)

Ct = 5.38

 $NH3-N = 5.3 \, mg/l$

WQM 7.0 D.O.Simulation

SWP Basin St 18B	<u>ream Code</u> 43050			Stream Name ROARING RUN	
<u>RMI</u>	Total Discharge	Flow (mgd	<u> Ana</u>	lysis Temperature (°C	Analysis pH
1.430	0.02	7		21.999	7.139
Reach Width (ft)	Reach De	oth (ft)		Reach WDRatio	Reach Velocity (fps)
3.524	0.37	1		9.485	0.079
Reach CBOD5 (mg/L)	Reach Kc (<u>1/days)</u>	<u>R</u>	each NH3-N (mg/L)	Reach Kn (1/days)
8.89	1.14			1.97	0.816
Reach DO (mg/L)	Reach Kr (Kr Equation	Reach DO Goal (mg/L)
6.147	25.92	:7		Owens	6
Reach Travel Time (days)		Subreach	Results		
0.774	TravTime	CBOD5	NH3-N	D.O.	
	(days)	(mg/L)	(mg/L)	(mg/L)	
	0.077	8.06	1.85	7.71	
	0.155	7.31	1.74	7.95	
	0.232	6.63	1.63	7.95	
	0.310	6.02	1.53	7.95	
	0.387	5.46	1.44	7.95	
	0.465	4.95	1.35	7.95	
	0.542	4.49	1.27	7.95	
	0.619	4.07	1.19	7.95	
	0.697	3.70	1.11	7.95	
	0.774	3.35	1.05	7.95	

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	✓
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	✓
D.O. Saturation	90.00%	Use Balanced Technology	✓
D.O. Goal	6		

Input Data WQM 7.0

	SWF Basir	N-10012747		Stre	eam Name		RMI	El	evation (ft)	Drainage Area (sq mi)	Slo (ft/	With	WS ndrawal ngd)	Apply FC
	18B	430	050 ROAR	ING RUN	Ĩ		1.4	30	1385.00	0.6	32 0.00	0000	0.00	✓
					St	ream Dat	a							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	n Tem	Tributary	Н	<u>Strea</u> Temp	am pH	
Conu.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C	()		(°C)		
Q7-10 Q1-10 Q30-10	0.100	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000	0.0	0.00	0.	00 2	0.00	7.00	0.00	0.00	
					Di	scharge [Data							
			Name	Per	rmit Numbe	Existing Disc r Flow (mgd)	Permitt Disc Flow (mgd	: Di	sc Res	erve T ctor	Disc emp (°C)	Disc pH		
		Apoll	o Ridge	PA	0219045a	0.0267	7 0.00	00 0.	0000	0.000	25.00	7.50	_	
					Pa	arameter I	Data							
				Paramete	r Name	Di Co		Trib Conc	Stream Conc	Fate Coef				
						(m	g/L) (mg/L)	(mg/L)	(1/days)				
			CBOD5			i i	19.23	2.00	0.00	1.50	8			
			Dissolved	Oxygen			2.00	8.24	0.00	0.00				
			NH3-N			1	21.45	0.00	0.00	0.70				

(input from Dry Reach)

Input Data WQM 7.0

Basin Code Stream Name (ft) Area (ft/ft) Withdrawal FC															
Cond. Cofsm Cofs					Stre	eam Name		RMI	El		Area		With	drawal	Appl FC
LFY		18B	430	50 ROAR	ING RUN	ĺ		0.43	30	1134.00	1.3	7 0.000	000	0.00	~
Plow Flow Trav Velocity Ratio Width Depth Temp pH Temp Temp pH Temp pH Temp Temp Temp pH Temp Tem						St	ream Dat	a							
(cfsm) (cfs) (cfs) (days) (fps) (ft) (ft) (°C) (°C) 7-10 0.100 0.00 0.00 0.000 0.000 0.00	Design	LFY			Trav							1 1			
1-10	Cond.	(cfsm)	(cfs)	(cfs)		(fps)		(ft)	(ft)	(°C)		(°C)		
Name Permit Number Existing Permitted Design Disc D	Q7-10 Q1-10 Q30-10	0.100	0.00	0.00	0.000	0.000	0.0	0.00	0.	00 2	0.00 7	.00	0.00	0.00	
Name Permit Number Disc Disc Disc Reserve Temp pH						Di	scharge [Data						Ī	
Parameter Data				Name	Per	rmit Number	Disc Flow	Disc Flow	Di:	sc Res ow Fa	erve Te	mp			
Disc Trib Stream Fate Conc Conc Conc Coef			ii .				0.0000	0.000	0 0.	0000	0.000	25.00	7.00		
Conc Conc Coef (mg/L) (mg/L) (1/days) CBOD5 25.00 2.00 0.00 1.50 Dissolved Oxygen 3.00 8.24 0.00 0.00						Pa	arameter I	Data							
CBOD5 25.00 2.00 0.00 1.50 Dissolved Oxygen 3.00 8.24 0.00 0.00					Paramete	r Name									
Dissolved Oxygen 3.00 8.24 0.00 0.00		_					(m	g/L) (n	ng/L)	(mg/L)	(1/days)				
				CBOD5			:	25.00	2.00	0.00	1.50				
NH3-N 25.00 0.00 0.00 0.70				Dissolved	Oxygen			3.00	8.24	0.00	0.00				
				NH3-N			1	25.00	0.00	0.00	0.70				

WQM 7.0 Wasteload Allocations

SWP Basin	Stream Code	Stream Name
18B	43050	ROARING RUN

RMI	Discharge Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
1.430	Apollo Ridge	11.28	22.11	11.28	22.11	0	0
IH3-N C	Chronic Allocati	ons					
IH3-N C	Chronic Allocati	ONS Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction

Dissolved Oxygen Allocations

		CBC	<u>DD5</u>	NH:	<u>3-N</u>	Dissolved	d Oxygen	Critical	Percent
RMI	Discharge Name	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Reach	Reduction
1.43	Apollo Ridge	19.23	19.23	4.93	4.93	3	3	0	0

WQM 7.0 Hydrodynamic Outputs

		<u>P Basin</u> 18B		<u>m Code</u> 3050				Stream ROARIN				
RMI	Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow	Reach Slope	Depth	Width	W/D Ratio	Velocity	Reach Trav Time	Analysis Temp	Analysis pH
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)	
Q7-1	0 Flow											
1.430	0.06	0.00	0.06	.0413	0.04754	.371	3.52	9.49	0.08	0.774	22.00	7.14
Q1-1	0 Flow											
1.430	0.04	0.00	0.04	.0413	0.04754	NA	NA	NA	0.07	0.887	22.55	7.19
Q30-	10 Flow	,										
1.430	0.08	0.00	0.08	.0413	0.04754	NA	NA	NA	0.09	0.694	21.64	7.11

WQM 7.0 D.O.Simulation (Dry Reach)

SWP Basin St	ream Code			Stream Name	
18B	43050			ROARING RUN	
<u>RMI</u>	Total Discharge	AND .	<u>) Ana</u>	lysis Temperature (º୯	
0.220	0.02			24.882	7.478
Reach Width (ft)	Reach De			Reach WDRatio	Reach Velocity (fps)
0.931	0.42	0.429 2.171			0.106
Reach CBOD5 (mg/L)	Reach Kc (, , , , , , , , , , , , , , , , , , , ,			Reach Kn (1/days)
24.41	1.50			24.41	1.019
Reach DO (mg/L)	Reach Kr (araer al		Kr Equation	Reach DO Goal (mg/L)
3.953	25.91	0		Owens	NA
Reach Travel Time (days)		Subreach	Results		
0.127	TravTime	CBOD5	NH3-N	D.O.	
	(days)	(mg/L)	(mg/L)	(mg/L)	
	0.013	23.83	24.10	2.00	
	0.025	23.27	23.79	2.00	
	0.038	22.73	23.48	2.00	
	0.051	22.19	23.18	2.00	
	0.063	21.67	22.88	2.00	
	0.076	21.16	22.59	2.00	
	0.089	20.66	22.30	2.00	
	0.102	20.17	22.01	2.00	
	0.114	19.70	21.73	2.00	
	0.127	19.23	21.45	2.00	

(input into Perennial Reach)

WQM 7.0 Modeling Specifications

Parameters	D.O.	Use Inputted Q1-10 and Q30-10 Flows	✓
WLA Method	Simulation	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	✓
D.O. Saturation	90.00%	Use Balanced Technology	✓
D.O. Goal	2		

Input Data WQM 7.0

					шр	ut Dati	u vvai	7.0						
	SWP Basin			Str	eam Name		RMI		vation (ft)	Drainage Area (sq mi)		With	WS drawal ngd)	Appl FC
	18B	430	50 ROAR	ING RUN	Ĭ		0.2	20	1399.00	0.	01 0.00	0000	0.00	
					St	ream Dat	a							
Design	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Ten	<u>Tributary</u> np p	Н	<u>Strea</u> Temp	<u>m</u> pH	
Cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C	;)		(°C)		
Q7-10 Q1-10 Q30-10	0.100	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000	0.0	0.00	0.0	0 2	0.00	7.00	0.00	0.00	
					Di	scharge	Data						Ĩ	
			Name	Pe	rmit Numbe	Disc	Permitt Disc Flow (mgd)	Dis Flo	c Res w Fa	serve T actor	Disc 「emp (°C)	Disc pH		
		Dry R	Reach	PA	0219045	0.026	7 0.000	0.0	000	0.000	25.00	7.50	-	
					Pa	arameter	Data							
				Paramete	r Name			Trib Conc	Stream Conc	Fate Coef				
	_				ago antique de la companya de la com	(m	ng/L) (r	ng/L)	(mg/L)	(1/days)				
			CBOD5				25.00	0.00	0.00	1.50)			
			Dissolved	Oxygen			4.00	2.00	0.00	0.00)			
			NH3-N				25.00	0.00	0.00	0.70)			

Input Data WQM 7.0

					iiip.	ut Dati	u vvqi	VI 7.0						
	SWP Basin			Stre	eam Name		RMI		vation (ft)	Drainage Area (sq mi)	: Slo (ft/	Witho	VS drawal gd)	Appl FC
	18B	430	50 ROAR	ING RUN	ĺ		0.0	00	1385.00	0.0	0.00	0000	0.00	
					St	ream Dat	ta							
Design	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Ten	<u>Tributary</u> np p	Н	<u>Strear</u> Temp	<u>m</u> pH	
Cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C	;)		(°C)		
Q7-10 Q1-10 Q30-10	0.100	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000	0.0	0.00	0.0	00 2	0.00	7.00	0.00	0.00	
					Di	scharge	Data						1	
			Name	Per	rmit Number	Disc	Permitt Disc Flow (mgd	Dis Flo	c Res	erve T ctor	Disc emp (°C)	Disc pH		
						0.000	0.000	0.0	0000	0.000	25.00	7.00		
					Pa	arameter	Data							
				Paramete	r Name			Trib Conc	Stream Conc	Fate Coef				
					a: heye./fire/185000000000000000000000000000000000000	(m	ng/L) (r	mg/L)	(mg/L)	(1/days)				
			CBOD5				25.00	2.00	0.00	1.50				
			Dissolved	Oxygen			3.00	8.24	0.00	0.00				
			NH3-N				25.00	0.00	0.00	0.70				

WQM 7.0 Hydrodynamic Outputs

	<u>sw</u>	P Basin	Strea	m Code				<u>Stream</u>	<u>Name</u>			
		18B	4	3050			ŀ	ROARIN	G RUN			
RMI	Stream Flow (cfs)	PWS With (cfs)	Net Stream Flow (cfs)	Disc Analysis Flow (cfs)	Reach Slope (ft/ft)	Depth (ft)	Width (ft)	W/D Ratio	Velocity	Reach Trav Time (days)	Analysis Temp (°C)	Analysis pH
0000000 - 000	NAME OF STREET		Sonotoni	X.000.00.70	30333337	. ,	. ,		(1)	, ,		
Q7-1	0 Flow											
0.220	0.00	0.00	0.00	NA	0.01205	.429	.93	2.17	0.11	0.127	24.88	7.48
Q1-1	0 Flow											
0.220	0.00	0.00	0.00	NA	0.01205	NA	NA	NA	0.00	0.000	0.00	0.00
Q30-	10 Flow	,										
0.220	0.00	0.00	0.00	NA	0.01205	NA	NA	NA	0.00	0.000	0.00	0.00

Attachment 2

Input appropria	te values in	A3:A9 and D3:D9								
	= Q stream (d		0.5	= CV Daily						
D-09(00)(AC-19)(A-1	= Q discharg		10000000	= CV Hourly						
	no. sample	1 12 2		AFC_Partial Mix Factor CFC Partial Mix Factor						
		emand of Stream								
		emand of Discharge	15 = AFC_Criteria Compliance Time (min)							
0.5	Compliance Time (min)									
0 = % Factor of Safety (FOS) 0 = Decay Coefficient (K)										
Source	Reference	AFC Calculations		Reference	CFC Calculations					
TRC	1.3.2.iii	WLA afc =	0.498	1.3.2.iii	WLA cfc = 0.478					
PENTOXSD TRG	5.1a	LTAMULT afc =	0.373	5.1c	LTAMULT cfc = 0.581					
PENTOXSD TRG	RG 5.1b LTA_afc=		0.186	5.1d	LTA_cfc = 0.278					
Source		Effluer	nt Limit Calcu	lations						
PENTOXSD TRG	5.1f		AML MULT =	1.231						
PENTOXSD TRG	5.1g		_I M IT (mg/l) =		AFC					
		INST MAX I	_IMIT (mg/l) =	0.747						
WLA afc LTAMULT afc	+ Xd + (AFC	FC_tc)) + [(AFC_Yc*Qs*.019/ C_Yc*Qs*Xs/Qd)]*(1-FOS/10/ (cvh^2+1))-2.326*LN(cvh^2	0)	_tc))						
LTA_afc	wla_afc*LTA		, ,							
WLA_cfc	951	FC_tc) + [(CFC_Yc*Qs*.011/ C_Yc*Qs*Xs/Qd)]*(1-FOS/10	15 <u>-</u> 0	tc))						
	EXP((0.5*LN)	(cvd^2/no_samples+1))-2.32	26*LN(cvd^2/i	no_samples+1)^	0.5)					
CONTROL OF THE PROPERTY OF THE	wla_cfc*LTA	MULI_cfc								
LTAMULT_cfc LTA_cfc AML MULT AVG MON LIMIT INST MAX LIMIT	EXP(2.326*L MIN(BAT_BP	MUL1_cfc N((cvd^2/no_samples+1)^0. J,MIN(LTA_afc,LTA_cfc)*Al n_limit/AML_MULT)/LTAMUL	NĹ_MULT)	d^2/no_samples	+1))					