

Southwest Regional Office CLEAN WATER PROGRAM

Application Type

Facility Type

Major / Minor

Major

NPDES PERMIT FACT SHEET INDIVIDUAL INDUSTRIAL WASTE (IW) AND IW STORMWATER

Application No.	PA0219134
APS ID	1033991
Authorization ID	1346079

Applicant Name	Spring	dale Energy LLC	Facility Name	Springdale Generating Facility
Applicant Address	PO Box	x 166	Facility Address	198 Butler Street
	Springo	dale, PA 15144-0166	<u> </u>	Springdale, PA 15144-1702
Applicant Contact	Anthon	y Miles	Facility Contact	Eric Kuper
Applicant Phone	(803) 2	06-1863	Facility Phone	(724) 274-3628
Client ID	335922	2	Site ID	550126
SIC Code	4911		Municipality	Springdale Township
SIC Description	Trans.	& Utilities - Electric Services	County	Allegheny
Date Application Recei	ved	March 8, 2021	EPA Waived?	No
Date Application Accep	Date Application Accepted April 2, 2021		If No, Reason	Major Facility

Summary of Review

The Department received a renewal NPDES permit application from EA Engineering, Science, and Technology, Inc., PBC (EA) on behalf of Springdale Energy LLC for the renewal of its NPDES permit for the Springdale Generating Facility on March 8, 2021. The site has an SIC code 4911, Electric Services. The facility is an electric generating facility consisting of two 44 MW simple cycle combustion turbines (units 1 &2), two 175 MW natural gas-fired combustion turbines with heat recovery steam generators (units 3 & 4) and one 186 MW axial flow steam turbine (unit 55). The facility also has associated buildings, tanks, and cooling towers. The facility consist of five natural gas-fired electric generation units (units 1,2,3,4, and 5). The facility is comprised of two independent halves. Units 1 and 2 are standalone simple cycle Peaker units, which run less frequently than the rest of the facility. Units 3, 4, and 5 are combined cycle units, and operate nearly continuously.

The facility currently discharges industrial wastewater through four internal monitoring points (IMPS 101, 201, 301, and 401) which combine into one outfall, Outfall 001. The facility also discharges uncontaminated stormwater via Outfall 002. Both outfalls discharge to the Allegheny River, designated in 25 PA Chode 93 as a Warm Water Fishery. IMP 101 discharges cooling tower blowdown from Units 3, 4, and 5. IMP 201 discharges low volume wastes from Units 3, 4, and 5. IMP 301 discharges cooling tower blowdown and boiler blowdown from Units 1 and 2. IMP 401 discharges low volume wastes from Units 1 and 2 and some stormwater. The stormwater contributions to Outfall 001 via IMP 401 flow through an oil/water separator (OWS) and are combined with flow from other sources in the wastewater sump. The OWS only discharges to the sump, and the wastewater sump only discharges to IMP 401 when float switches indicate the tanks are full. Therefore, stormwater may not reach IMP 401/Outfall 001 until several hours or days after precipitation events. The stormwater sample results submitted with the application for IMP 401 and Outfall 002 are below the no exposure values; therefore, these outfalls can be considered uncontained stormwater outfalls and will not receive monitoring requirements in part A of the permit. However, the outfalls are still subject to the stormwater part C conditions.

Approve	Deny	Signatures	Date
Х		Adam Olesnanik / Environmental Engineering Specialist	August 12, 2021
Х		Michael E. Fifth, P.E. / Environmental Engineer Manager	August 19, 2021

Summary of Review

All processes at the facility have remained largely unchanged for over five years. Based on discharge data from the site Springdale Energy is requesting the elimination of the compliance monitoring for zinc, chromium, and copper in the renewal permit. The Department's response to the elimination of these parameters will be discussed in the Development of Effluent Limitations section of this Fact Sheet for each sampling point. Springdale Energy is also requesting the sample frequency be reduced. When permittees request the reduction of sample frequencies, the Department utilizes EPA's guidance document, "Interim Guidance for Performance-Based Reductions of NPDES Permit Monitoring Frequencies" (April 1996), along with Departmental discretion, to evaluate if the monitoring frequency can be reduced. The Department looks at four different factors, Facility Enforcement History, Parameter-by-Parameter compliance, Parameter-by-Parameter Performance History, and Residency Criteria for Continued Participation. Facility Enforcement History considers the enforcement action history at the facility, if there has been any enforcement actions, sample frequency reductions cannot be granted. Parameter-by-Parameter compliance considers the effluent limitation compliance history for the permit; if there has been any exceedances of the limitation for a parameter, the sample frequency cannot be reduced for that parameter. Parameter-by-Parameter Performance History considers how the discharge samples relate to the effluent limitation and determines if and how much the sample frequency can be reduced. For this case, if the long-term average is less than 49% of the limitation, the once per week sample frequency can be reduced to twice per month. Residency Criteria for Continued Participation take into consideration whether the sample frequency has been reduced in the past and if the permittee can still maintain compliance. If there have been exceedances of the limitations or if permittee is out of compliance with the permit, the Department may increase the sample frequency. These concerns will be addressed in the Development of Effluent Limitations section of this Fact Sheet for each sampling point. Springdale Energy is also requesting that the IMPs be eliminated, and all monitoring be conducted at Outfall 001. Due to Federal regulatory requirements, this request cannot be granted, and the IMPs will remain in the permit. The purpose of the IMPs is to monitor all of the waste streams separately. The Federal ELGs require that the waste streams meet the technology based effluent limitations prior to comingling with other waste where dilution of the waste streams can occur.

<u>Clean Water Act § 316(b) – Cooling Water Intake Structures</u>

On August 15, 2014, EPA promulgated Clean Water Act Section 316(b) regulations applicable to cooling water intake structures. The regulations established best technology available ("BTA") standards to reduce impingement mortality and entrainment of all life stages of fish and shellfish at existing power generating and manufacturing facilities. The Final Rule took effect on October 14, 2014. Regulations implementing the 2014 Final Rule (and the previously promulgated Phase I Rule) are provided in 40 CFR Part 125, Subparts I and J for new facilities and existing facilities, respectively. Associated NPDES permit application requirements for facilities with cooling water intake structures are provided in 40 CFR Part 122, Subpart B – Permit Application and Special NPDES Program Requirements (§ 122.21(r)).

The Springdale Generating Facility is an "existing facility" as defined in 40 CFR § 125.92(k). As an existing facility, the site is subject to 40 CFR Part 125, Subpart J – Requirements Applicable to Cooling Water Intake Structures for Existing Facilities Under Section 316(b) of the Clean Water Act (§§ 125.90 – 125.99) if the facility meets the rule's applicability criteria. Pursuant to the applicability criteria given by § 125.91(a), the ATI Vandergrift Facility is subject to the requirements of §§ 125.94 – 125.99 if

- (1) The facility is a point source;
- (2) The facility uses or proposes to use one or more cooling water intake structures with a cumulative design intake flow (DIF) of greater than 2 million gallons per day (mgd) to withdraw water from waters of the United States; and
- (3) Twenty-five percent or more of the water the facility withdraws on an actual intake flow basis is used exclusively for cooling purposes.

The Springdale Generating Facility is a point source as defined in 40 CFR § 122.2. The site uses a cooling water intake structure with a Design Intake Flow greater than 2 MGD (7.3 MGD). And the site uses more than 25% of the water it withdraws for cooling purposes. Therefore, the site is subject to the requirements of §§ 125.94 – 125.99.

The facility has a cooling water intake structure which supplies water from the Allegheny River to the cooling towers for the combined cycle Units 3, 4, and 5. The CWIS is located on the right descending bank of the lower Allegheny River, just upstream of Lock and Dam #3. There is a sheet piling skimmer wall traversing the entrance to the intake that extends several feet below the water's surface. The top of this wall extends approximately 4 inches above the water's surface at low river level. The CWIS is flush with the shoreline. There are two pumps which are protected by a bar grate that traps large debris.

Summary of Review

There is a set of seven vertically mounted fixed screens behind the bar grate, five of which are open, with the two bottommost screens permanently blocked by stop logs. The pumps withdraw water from behind the screen system through a set of two vertical pipes that are equipped with a strainer system and located approximately 8 feet below low river water level.

The CWIS provides make-up water from the Allegheny River to a bank of six mechanical draft closed-cycle recirculating cooling towers. The CWIS does not have traveling screens but does have a set of fixed ½ inch square mesh screens that protect the two intake pumps. The water withdrawn through the CWIS system goes through a clarifier then into a raw water tank. The tank supplies make-up water to the cooling towers. All water is then used as a non-contact cooling source for plant equipment. The water is re-circulated until conductivity reaches above 2100 Mmhos, about four cycles of concentration, before being blown down to maintain proper tower operating limits. Make-up water is withdrawn only to replenish evaporative and blowdown losses. The system operation remains constant throughout the year. About 99% of the intake flow is used for non-contact cooling.

The CWIS design intake flow is 7.3 MGD, but typically operates at less than 50% capacity. The averaged intake from 2017-2019 was 2.35 MGD. There is no consistent seasonal variability, although reduced operation has occurred during some winter/spring months, The CWIS is in operation 24/7 when there are one or more units in operation.

The facility is equipped with recirculating mechanical draft cooling towers that recycle make-up water withdrawn from the Allegheny River for up to 4-5 cycles of concentration before blowdown occurs. Therefore, the cooling water intake flow is minimized to only that which is needed to offset evaporative losses, drift, and blowdown. Using the recirculating wet cooling towers at the facility reduces the amount of cooling water required by the facility by approximately 97 percent over that of a similarly sized open-cycle cooling plant. While the maximum design flow for the cooling tower make-up (7.3 MGD) is over the 2 MGD threshold in the rule, actual intake flows have been significantly lower, with an average monthly flow of 2.28 MGD. The CWIS consists of bar racks to prevent large debris from entering, while a set of fixed ½ inch square mesh screens protect against the entry of smaller material. While these screens are not in strict conformance to the geometry defined by the Rule, the facility's low intake velocity is protective of impingeable organisms. Calculated intake velocity at the CWIS using the greatest withdrawal rate from 2017-2019 is 0.14 feet per second assuming 100 percent screen cleanliness. Even if sediment and or debris build-up reduced open area by 50 percent, the actual intake velocity would still be below the threshold protective impingeable velocity, 0.5 fps. The volume of water withdrawn through the CWIS is unlikely to cause adverse environmental impacts because the intake is estimated to be from 0.01 to 0.09 percent of the river flow.

The facility has chosen to comply with the impingement mortally standards by employing a closed-cycle recirculating system and having the through-screen design and actual velocities being below 0.5 feet per second.

The Department forwarded the cooling water intake structure and 316(b) sections of the application to the U.S. Fish and Wildlife service, the NOAA Fisheries, Greater Atlantic Region and the Pennsylvania Fish and Boat Commission (PFBC) for a chance to review and submit comments. The Department received three comments from PFBC on the cooling water intake structure data that was submitted with the application, the comments are summarized below and also included in Attachment E of this Fact Sheet.

PFBC's first comment:

The PFBC appreciates the compliance summary provided by the applicant and the measures taken to adhere to state and federal recommendation to minimized impingement and entrainment at the cooling water intake structure. The adherence to flow velocities below the suggested 0.5 feet per second is one of the critical components to assuring maximum protection of aquatic organisms.

PFBC's second comment:

The second component to minimizing impacts to aquatic organisms is adherence to the screen size recommendations. PFBC is concerned regarding the mesh screen size used at the Springdale CWIS which is almost double (0.5 inches) compared to those recommended by state and federal guidance (3/16" or 0.19"). As the applicant notes, small organisms are still capable of becoming entrained in the CWIS which is likely to result in stress or mortality to those individuals. Despite the low volume pumped into the CWIS relative to the size of the river itself, these organisms are likely to be eggs, larvae, and young-of-year and could thus have a disproportionate effect on population dynamics of the species that become entrained. Many of these effects would not be realized until year later, particularly given the lack of regular and adequate ecological monitoring at this site.

Summary of Review

PFBC's third comment:

Previous PFBC surveys indicate that there are numerous sport fish species present include but not limited to Smallmouth Bass, Spotted Vass, Rock Bass, Walleye, Sauger, and Channel Catfish. In addition to supporting recreation angling opportunities, these and other fish species serve as hosts for developing freshwater mussels that use fish for dispersal into historically occupied habitats. Given the substantial aquatic resources present in this basin, PFBC recommend adhering to both the velocity and screen size specifications to be protective as possible.

The Department's Response to PFBC's Comments:

The Department understands PFBC's concern with the mesh screen size; however, mesh size is not a BAT requirement for cooling water intake structures. Springdale is meeting the BAT requirements of §§ 125.94. Additionally, if Springdale has 0.5-inch openings (12.7 mm) and would have to go down to 0.19-inch (4.83 mm) openings, that would require an increase of 2.6 times the area of screen facing the water source (12.7 mm / 4.83 mm) to maintain the same flow rate Springdale has now. Springdale may not be easily upgraded to have that much more screen area, which would be the same reason EPA did not identify fine mesh as BTA for the industry (even if fine mesh might be reasonable for some facilities).

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Discharge, Receiving Waters and Water Supply Information						
	• • •					
Outfall No. 001 (IMP 101, 201, 301, and 401)	Design Flow (MGD)	0.856			
Latitude 40° 3	2' 47"	Longitude	-79° 45' 58"			
Quad Name Ne	w Kensington West	Quad Code	1407			
Cooling Tower Blowdown, Heat Recovery Steam Generator Condensate Blowdown, Wastewater Description: Low Volume Wastes, and Stormwater						
Receiving Waters	Allegheny River (WWF)	Stream Code	42122			
NHD Com ID	123972854	RMI	17.5			
Drainage Area	11,500 mi ²	Yield (cfs/mi²)	0.208			
Q ₇₋₁₀ Flow (cfs)	2,390	Q ₇₋₁₀ Basis	US Army Corp of Engineers			
Elevation (ft)	745	Slope (ft/ft)	0.001			
Watershed No.	18-A	Chapter 93 Class.	WWF			
Existing Use		Existing Use Qualifier				
Exceptions to Use		Exceptions to Criteria				
Assessment Status	Attaining Use(s)					
Nearest Downstrea	m Public Water Supply Intake	Oakmont Water Authority				
PWS Waters	Allegheny River	Flow at Intake (cfs)	2,390			
PWS RMI	13.5	Distance from Outfall (mi)	4.0			

Outfall No. 002		Design Flow (MGD)	0
Latitude 40° 3	2' 43"	Longitude	-79° 45' 58"
Quad Name Ne	w Kensington West	Quad Code	1407
Wastewater Descrip	otion: Stormwater		
Receiving Waters	Allegheny River (WWF)	Stream Code	42122
NHD Com ID	123972854	RMI	17.4
Watershed No.	18-A	Chapter 93 Class.	WWF

Development of Effluent Limitations					
Outfall No.	001		Design Flow (MGD)	0.856	
Latitude	40° 32' 47"		Longitude	-79° 45' 58"	
Wastewater D	Description:				

Technology-Based Limitations

Federal Effluent Limitations Guidelines (ELGs)

The process wastewater related to 40 CFR 423 Steam Electric Generating Category that discharge via Outfall 001 is monitored at internal monitoring points. The ELGs applicable to this process discharge will be imposed at the IMPs.

Regulatory Effluent Standards and Monitoring Requirements

25 PA Code Chapter 92 requires pH requirements to be a minimum of 6.0 and a maximum of 9.0 S.U. for all industrial waste process and non-process discharges.

Flow Reporting requirements are in accordance with the 25 PA Code Chapter 92 regulations.

Temperature limits will be imposed per the Department's "*Implementation Guidance for Temperature Criteria*." As a policy, DEP normally imposes a maximum temperature limit of 110°F on discharges that contain residual heat. The limit is intended as a safety measure to protect sampling personnel or anyone who may come into contact with the heated discharge where it enters the receiving water.

Pennsylvania regulations at 25 Pa. Code § 92a.48(b) require the imposition of technology-based TRC limits for facilities that use chlorination and that are not already subject to TRC limits based on applicable federal ELGs or a facility-specific BPJ evaluation which is displayed in Table 1 below.

25 PA Code Chapter 95.10 requires Total Dissolved Solids (TDS) monitoring at a minimum if the TDS concentration in the discharge exceeds 1,000 mg/L. Per the application, the maximum discharge concentration of TDS was reported as 2,480 mg/L, therefore TDS monitoring will be imposed.

Table 1: Regulatory Effluent Standards and Monitoring Requirements

Parameter	Monthly Average	Daily Maximum	Instantaneous Maximum	Units
Flow	Monitor	and Report	-	MGD
Temperature	-	-	110	°F
TRC	0.5		1.6	mg/L
TDS	Monitor	and Report		mg/L
Hq		Between 6.0 and 9.0		S.U.

Water Quality-Based Limitations

Toxics Management Spread Sheet

The Department of Environmental Protection (DEP) has developed the DEP Toxics Management Spreadsheet ("TMS") to facilitate calculations necessary for completing a reasonable potential (RP) analysis and determining water quality-based effluent limitations for discharges of toxic pollutants. The Toxics Management Spreadsheet is a macro-enabled Excel binary file that combines the functions of the PENTOXSD model and the Toxics Screening Analysis spreadsheet to evaluate the reasonable potential for discharges to cause excursions above water quality standards and to determine WQBELs. The Toxics Management Spread Sheet is a single discharge, mass-balance water quality calculation spread sheet that includes consideration for mixing, first-order decay and other factors to determine recommended WQBELs for toxic substances and several non-toxic substances. Required input data including stream code, river mile index, elevation, drainage area, discharge name, NPDES permit number, discharge flow rate and the discharge concentrations for parameters in the permit application or in DMRs, which are entered into the spread sheet to establish site-specific discharge conditions. Other data such as low flow yield, reach dimensions and partial mix factors may also be entered to further characterize the conditions of the discharge and receiving water. Discharge concentrations for the parameters are chosen to represent the "worst case" quality of the discharge (i.e., maximum reported discharge concentrations). The

NPDES Permit Fact Sheet Springdale Generating Facility

spread sheet then evaluates each parameter by computing a Waste Load Allocation for each applicable criterion, determining a recommended maximum WQBEL and comparing that recommended WQBEL with the input discharge concentration to determine which is more stringent. Based on this evaluation, the Toxics Management Spread sheet recommends average monthly and maximum daily WQBELs.

Reasonable Potential Analysis and WQBEL Development for Outfall 001

Discharges from Outfall 001 are evaluated based on concentrations reported on the application and on DMRs; data from those sources are entered into the Toxics Management Spread Sheet. The maximum reported value of the parameters from the application form or from previous DMRs is used as the input concentration in the Toxics Management Spread Sheet. All toxic pollutants whose maximum concentrations, as reported in the permit application or on DMRs, are greater than the most stringent applicable water quality criterion are considered to be pollutants of concern. [This includes pollutants reported as "Not Detectable" or as "<MDL" where the method detection limit for the analytical method used by the applicant is greater than the most stringent water quality criterion]. The Toxics Management Spread Sheet is run with the discharge and receiving stream characteristics shown in Table 2. For IW discharges, the design flow used in modeling is the average flow during production or operation taken from the permit application. Pollutants for which water quality standards have not been promulgated (e.g., TSS, oil and grease) are excluded from the analysis. All the parameters are evaluated using the model to determine the water qualitybased effluent limits applicable to the discharge and the receiving stream. The spreadsheet then compares the reported discharge concentrations to the calculated water quality-based effluent limitations to determine if a reasonable potential exists to exceed the calculated WQBELs. Effluent limitations are established in the draft permit where a pollutant's maximum reported discharge concentration equals or exceeds 50% of the WQBEL. For non-conservative pollutants, monitoring requirements are established where the maximum reported concentration is between 25% - 50% of the WQBEL. For conservative pollutants, monitoring requirements are established where the maximum reported concentration is between 10% - 50% of the WQBEL. The information described above including the maximum reported discharge concentrations, the most stringent water quality criteria, the pollutant-ofconcern (reasonable potential) determinations, the calculated WQBELs, and the WQBEL/monitoring recommendations are displayed in the Toxics Management Spread Sheet in Attachment B of this Fact Sheet. Based on the results from Toxics Management Spread Sheet no water quality-based effluent limitations or monitoring requirements are prescribed for the discharges from Outfall 001.

Table 2: TMS Inputs for Outfall 001

Parameter	Value
River Mile Index	17.5
Discharge Flow (MGD)	0.536
Basin/Stream Characterist	ics
Parameter	Value
Area in Square Miles	11,500
Q ₇₋₁₀ (cfs)	2,390
Low-flow yield (cfs/mi ²)	0.208
Elevation (ft)	745
Slope	0.001

Total Residual Chlorine

To determine if WQBELs are required for discharges containing total residual chlorine (TRC), a discharge evaluation is performed using a DEP program called TRC_CALC created with Microsoft Excel for Windows. TRC_CALC calculates TRC Waste Load Allocations (WLAs) through the application of a mass balance model which considers TRC losses due to stream and discharge chlorine demands and first-order chlorine decay. Input values for the program include flow rates and chlorine demands for the receiving stream and the discharge, the number of samples taken per month, coefficients of TRC variability, partial mix factors, and an optional factor of safety. The mass balance model calculates WLAs for acute and chronic criteria that are then converted to long term averages using calculated multipliers. The multipliers are functions of the number of samples taken per month and the TRC variability coefficients (normally kept at default values unless site specific information is available). The most stringent limitation between the acute and chronic long-term averages is converted to an average monthly limit for comparison to the BAT average monthly limit of 0.5 mg/l from 25 Pa. Code § 92a.48(b)(2). The more stringent of these average monthly TRC limitations is imposed in the permit. The results of the modeling, included in Attachment C, indicate that WQBELs are not required for TRC at Outfall 001.

NPDES Permit Fact Sheet Springdale Generating Facility

Thermal WQBELs for Heated Discharges

Thermal WQBELs are evaluated using a DEP program called "Thermal Discharge Limit Calculation Spreadsheet" created with Microsoft Excel for Windows. The program calculates temperature WLAs through the application of a heat transfer equation, which takes two forms in the program depending on the source of the facility's cooling water. In Case 1, intake water to a facility is from the receiving stream. In Case 2, intake water is from a source other than the receiving stream (e.g., municipal water supply). The determination of which case applies to a given discharge is determined by the input data which include the receiving stream flow rate (Q₇₋₁₀ or the minimum regulated flow for large rivers), the stream intake flow rate, external source intake flow rates, consumptive flow rates and site-specific ambient stream temperatures. Case 1 limits are generally expressed as heat rejection rates while Case 2 limits are usually expressed as temperatures.

Since the temperature criteria from 25 Pa. Code Chapter 93.7(a) are expressed on monthly and semi-monthly bases for three different aquatic life-uses—cold water fishes, warm water fishes and trout stocking—the program generates monthly and semi-monthly limits for each use. DEP selects the output that corresponds to the aquatic life-use of the receiving stream and consequently which limits apply to the discharge. Temperature WLAs are bounded by an upper limit of 110°F for the safety of sampling personnel and anyone who may come into contact with the heated discharge where it enters the receiving water. If no WLAs below 110°F are calculated, an instantaneous maximum limit of 110°F is recommended by the program.

Discharges from Outfall 001 are classified under Case 1 because water is obtained via an intake structure owned by the permittee on the Allegheny River. The results of the thermal analysis, included in Attachment D, indicate that WQBELs for temperature are not required at Outfall 001. Therefore, because no WLAs below 110°F were calculated, an instantaneous maximum limit of 110°F will be imposed.

Anti-backsliding:

Previous effluent limits and monitoring requirements can be used pursuant to EPA's anti-backsliding regulation, 40 CFR 122.44(I) and are displayed below in Table 3.

Table 3: Existing Effluent Limitation for Outfall 001

	Mass (lb/day)			Concentration (mg/L)				g Requirements
Parameters	Average Monthly	Daily Maximum	Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Frequency	Sample Type
Flow (MGD)	Report	Report	XXX	XXX	XXX	XXX	Continuous	Measure
Temperature (°F)	XXX	XXX	XXX	XXX	XXX	110	1/Week	I-S
Total Residual Chlorine	XXX	XXX	XXX	0.5	XXX	1.6	1/Week	Grab
Total Dissolved Solids	Monitor	Monitor	XXX	Monitor	Monitor	XXX	1/Week	24-hr Composite
Total Copper	XXX	XXX	XXX	Monitor	Monitor	XXX	1/Week	24-hr Composite
Sulfate	Monitor	Monitor	XXX	Monitor	Monitor	XXX	1/Week	24-hr Composite
Chloride	Monitor	Monitor	XXX	Monitor	Monitor	XXX	1/Week	24-hr Composite
Bromide	Monitor	Monitor	XXX	Monitor	Monitor	XXX	1/Week	24-hr Composite
pH (S.U.)	XXX	XXX	6.0	XXX	9.0	XXX	1/Week	24-hr Composite

Proposed Effluent Limitations

The proposed effluent limitations and monitoring requirements for Outfall 001 are shown below in Table 4. The limits are the most stringent values from the above limitation analysis. Request the removal of copper or reduced sample frequency. Total Copper was previous monitor due to Water Quality Based concerns and was a pollutant of concern. Based on new information, Total Copper is no longer a pollutant of concern and will be removed from the draft permit. TDS and will still be imposed in the draft permit because TDS is still a pollutant of concern with sample results being greater than 1,000 mg/L. Springdale Energy has requested a reduction in the sample frequency at all of its sampling points. As discussed above, using the Department's discretion and the EPA's guidance, the Department has determined that some of the parameter sampling frequencies can be reduced. Using the long-term average TRC concentration calculated from the DMRs, the TRC monitoring frequency can be reduced to twice per month. Additionally, because TDS, Sulfate, Chloride, and Bromide only have monitoring requirements, the Department will reduce their sample frequency to 2/month. Additionally, based on the Department's discretion, and low variability of the discharge, the temperature and pH monitoring frequencies will also be reduced to Twice per month.

Table 4: Existing Effluent Limitation for Outfall 001

	Mass	(lb/day)		Concentra	ation (mg/L)		Monitorin	g Requirements
Parameters	Average Monthly	Daily Maximum	Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Frequency	Sample Type
Flow (MGD)	Report	Report	XXX	XXX	XXX	XXX	Continuous	Measure
Temperature (°F)	XXX	XXX	XXX	XXX	XXX	110	2/Month	I-S
Total Residual Chlorine	XXX	XXX	XXX	0.5	XXX	1.6	2/Month	Grab
Total Dissolved Solids	Monitor	Monitor	XXX	Monitor	Monitor	XXX	2/Month	24-hr Composite
Sulfate	Monitor	Monitor	XXX	Monitor	Monitor	XXX	2/Month	24-hr Composite
Chloride	Monitor	Monitor	XXX	Monitor	Monitor	XXX	2/Month	24-hr Composite
Bromide	Monitor	Monitor	XXX	Monitor	Monitor	XXX	2/Month	24-hr Composite
pH (S.U.)	XXX	XXX	6.0	XXX	9.0	XXX	2/Month	24-hr Composite

Development of Effluent Limitations					
IMP No.	101	Design Flow (MGD)	0.754		
Latitude	40° 32′ 46″	Longitude	-79º 46' 03"		
Wastewater	Description:	Units 3, 4, and 5 Cooling Tower Blowdown and Heat Reco Condensate Blowdown	very Steam Generator		

Technology-Based Limitations

Regulatory Effluent Standards and Monitoring Requirements

25 PA Code Chapter 92 requires pH requirements to be a minimum of 6.0 and a maximum of 9.0 S.U. for all industrial waste process and non-process discharges.

Flow Reporting requirements is in accordance with the 25 PA Code Chapter 92 regulations.

Federal Effluent Limitation Guidelines (ELGs)

Discharges from IMP 101 are subject to the steam electric ELG 40 CFR 423. Because this is an existing source it is subject to the ELG's Best Practicable Technology ("BPT") effluent limitations in 40 CFR 423.12(b)(1,7 and 8), Best Available Technology ("BAT") effluent limitations in 40 CFR 423.13 (d)(1-3) and Best Conventional Pollutant Control Technology ("BCT") effluent limitations in 40 CFR 423.14 for cooling tower blowdown. Applicable effluent limitations are shown in Table 5.

Table 5: Federal Effluent Limitation Guidelines

	Concentration (mg/L)							
Parameters	Minimum	Average Monthly	Daily Maximum	Instant. Maximum				
Free Available Chlorine	XXX	0.2	XXX	0.5				
Total Chromium	XXX	0.2	0.2	XXX				
Total Zinc	XXX	1.0	1.0	XXX				
pH (S.U.)	6.0	XXX	9.0	XXX				

In addition to the ELG's numerical limits, other conditions specified are included in Part C. Specifically they require that, "There shall be no discharge of polychlorinated biphenyl compounds" (40 CFR 423.12(b)(2)), "Neither free available nor total residual chlorine may be discharged from any unit for more than two hours in any one day" (40 CFR 423.12 (b)(8)), and "The 126 priority pollutants (Appendix A) contained in chemicals added for cooling tower maintenance, except chromium and zinc (40 CFR 423.13(d)(1))."

Springdale Energy is requesting the removal of the zinc and chromium effluent limitations. After evaluation of EPA's Final Rulemaking on the matter, the Department finds merit in Springdale's request. Volume 47, No. 224 of the Federal Register's Rules and Regulations as published on November 19, 1982 includes the Federal Effluent Limitation Guidelines for chromium and zinc. EPA's proposed rulemaking prohibited "any discharge of cooling tower maintenance chemicals containing the 129 priority pollutants" (defined earlier in the notice); including chromium and zinc. Many commenters indicated that there were (at that time) no acceptable substitutes for the use of chromium-based or zinc-based cooling tower maintenance chemicals. The EPA agreed with this position due in part to site specific conditions, including cooling water intake quality and the use of construction materials (i.e. for cooling water piping) that are susceptible to fouling corrosion. In addition, it was agreed that potential substitutes could be more toxic than the substances they were intended to replace. Therefore, the Federal Register states; "the final BAT, NSPS and pretreatment standards allow for the discharge of chromium and zinc in cooling tower blowdown. The limitations are the same as those adopted in 1974 for BAT and are based upon pH adjustment, chemical precipitation, and sedimentation or filtration to remove precipitated metals".

EPA's original intent was to restrict the discharge of all 129 Priority Toxic Pollutants (including chromium and zinc), a goal that Springdale has achieved. The company does not utilize chromium or zinc additives in its cooling water. Accordingly, total chromium and total zinc effluent limitations have been removed from the Final Permit. The Department will however maintain a "Monitor and Report" requirement for these pollutants for at least one permit cycle to confirm their absence. In addition, a Part C Condition has been added to the Draft Permit restricting the use of chromium and zinc chemical additives without first obtaining written approval from the Department.

Water Quality-Based Limitations

Due to the nature of the discharge, water quality limitations are evaluated at Outfall 001.

Anti-backsliding:

Previous effluent limits and monitoring requirements can be used pursuant to EPA's anti-backsliding regulation, 40 CFR 122.44(I) and are displayed below in Table 6.

Table 6: Existing Effluent Limitation for IMP 101

	Mass (lb/day)			Concentra	tion (mg/L)	Monitoring Requirements		
Parameters	Average Monthly	Daily Maximum	Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Frequency	Sample Type
Flow (MGD)	Report	Report	XXX	XXX	XXX	XXX	1/week	Measure
Free Available Chlorine	XXX	XXX	XXX	0.2	XXX	0.5	1/Week	Grab
Total Chromium	XXX	XXX	XXX	0.2	0.2	XXX	1/Week	Grab
Total Zinc	XXX	XXX	XXX	1.0	1.0	XXX	1/Week	Grab
pH (S.U.)	XXX	XXX	6.0	XXX	9.0	XXX	1/Week	Grab

Proposed Effluent Limitations

The proposed effluent limitations and monitoring requirements for IMP 101 are shown below in Table 7. The limits are the most stringent values from the above limitation analysis. The permittee has request removal of zinc and chromium or at least to reduce sample frequency. The limitations for zinc and chromium been replace with monitor and report requirements. Additionally, a part C condition has been added that prevents the use of chemical additives that contain chromium and/or zinc. Springdale Energy has requested a reduction in the sample frequency at all of its sampling points. As discussed above, using the Departments discretion and the EPA's guidance, the Department has determined that some of the parameters sample frequency can be reduced. Using the long-term average concentrations calculated from the DMRs, the sample frequency for all of the parameters can be reduced to twice per month.

Table 7: Proposed Effluent Limitation for IMP 101

	Mass (lb/day)			Concentra	tion (mg/L)		Monitoring Requirements		
Parameters	Average Monthly	Daily Maximum	Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Frequency	Sample Type	
Flow (MGD)	Report	Report	XXX	XXX	XXX	XXX	2/Month	Measure	
Free Available Chlorine	XXX	XXX	XXX	0.2	XXX	0.5	2/Month	Grab	
Total Chromium	XXX	XXX	XXX	Report	Report	XXX	2/Month	Grab	
Total Zinc	XXX	XXX	XXX	Report	Report	XXX	2/Month	Grab	
pH (S.U.)	XXX	XXX	6.0	XXX	XXX	9.0	2/Month	Grab	

Development of Effluent Limitations									
IMP No.	201	Design Flow (MGD)	0.179						
Latitude	40° 32' 44"	Longitude	-79º 46' 01"						
Wastewater D	escription:	Units 3, 4, and 5 low volume wastewater including equipment chiller blowdown, and river water treatment reject water	ent skid wash water/floor drains,						

Technology-Based Limitations

Regulatory Effluent Standards and Monitoring Requirements

25 PA Code Chapter 92 requires pH requirements to be a minimum of 6.0 and a maximum of 9.0 S.U. for all industrial waste process and non-process discharges.

Flow Reporting requirements is in accordance with the 25 PA Code Chapter 92 regulations.

Federal Effluent Limitation Guidelines (ELGs)

Steam Electric Generation 40 CFR 423

Discharges from IMP 201 are subject to the steam electric ELG 40 CFR 423. Because this is an existing source it is subject the ELG's Best Practicable Technology ("BPT") effluent limitations in 40 CFR 423.12(b)(1-3) for low volume wastes. Applicable effluent limitations are shown in Table 8, below.

Table 8: Federal Effluent Limitation Guidelines

	Concentration (mg/L)							
Parameters	Minimum	Average Monthly	Daily Maximum	Instant. Maximum				
Total Suspended Solids	XXX	30	100	XXX				
Oil and Grease	XXX	15	20	XXX				
pH (S.U.)	6.0	XXX	9.0	XXX				

In addition to the ELG's numerical limits, Part C will also require that, "There shall be no discharge of polychlorinated biphenyl compounds" (40 CFR 423.12(b)(2)).

Water Quality-Based Limitations

Due to the nature of the discharge, water quality limitations are evaluated at Outfall 001.

Anti-backsliding:

Previous effluent limits and monitoring requirements can be used pursuant to EPA's anti-backsliding regulation, 40 CFR 122.44(I) and are displayed below in Table 9.

Table 9: Existing Effluent Limitation for IMP 201

	Mass (lb/day)			Concentra	tion (mg/L)		Monitoring Requirements		
Parameters	Average Monthly	Daily Maximum	Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Frequency	Sample Type	
Flow (MGD)	Report	Report	XXX	XXX	XXX	XXX	1/week	Measure	
Total Suspended Solids	XXX	XXX	XXX	30.0	100.0	XXX	1/Week	Grab	
Oil and Grease	XXX	XXX	XXX	15.0	20.0	XXX	1/Week	Grab	
pH (S.U.)	XXX	XXX	6.0	XXX	9.0	XXX	1/Week	Grab	

Proposed Effluent Limitations

The proposed effluent limitations and monitoring requirements for IMP 201 are shown below in Table 10. The limits are the most stringent values from the above limitation analysis. Springdale Energy has requested a reduction in the sample frequency at all of its sampling points. As discussed above, using the Departments discretion and the EPA's guidance, the Department has determined that some of the parameters sample frequency can be reduced. Using the long-term average concentrations calculated from the DMRs, the sample frequency for all of the parameters can be reduced to twice per month.

Table 10: Proposed Effluent Limitation for IMP 201

	Mass (lb/day)			Concentration (mg/L)				Monitoring Requirements		
Parameters	Average Monthly	Daily Maximum	Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Frequency	Sample Type		
Flow (MGD)	Report	Report	XXX	XXX	XXX	XXX	2/Month	Measure		
Total Suspended Solids	XXX	XXX	XXX	30.0	100.0	XXX	2/Month	Grab		
Oil and Grease	XXX	XXX	XXX	15.0	20.0	XXX	2/Month	Grab		
pH (S.U.)	XXX	XXX	6.0	XXX	XXX	9.0	2/Month	Grab		

Development of Effluent Limitations								
IMP No.	301	Design Flow (MGD)	0.048					
Latitude	40° 32' 48"	Longitude	-79° 46′ 06"					
Wastewater Description: Unit 1 and 2, and Natural Gas Compressor cooling tower blowdown								

Technology-Based Limitations

Regulatory Effluent Standards and Monitoring Requirements

25 PA Code Chapter 92 requires pH requirements to be a minimum of 6.0 and a maximum of 9.0 S.U. for all industrial waste process and non-process discharges.

Flow Reporting requirements is in accordance with the 25 PA Code Chapter 92 regulations.

Water Quality-Based Limitations

Due to the nature of the discharge, water quality limitations are evaluated at Outfall 001.

Anti-backsliding:

Previous effluent limits and monitoring requirements can be used pursuant to EPA's anti-backsliding regulation, 40 CFR 122.44(I) and are displayed below in Table 11. The effluent limits for Free Available Chlorine, Total Chromium, and Total Zinc in the previous permit were imposed based on the requirements of 40 CFR 423 using BPJ. The limits were applied based on BPJ because the facility is meeting the effluent limitations, demonstrating that the technology employed is sufficient to achieve the effluent limitations, and the discharge is very similar even though steam is not used in the power generation process. In addition to the ELG's numerical limits, other conditions specified are included in Part C. Specifically they require that, "There shall be no discharge of polychlorinated biphenyl compounds" (40 CFR 423.12(b)(2)), "Neither free available nor total residual chlorine may be discharged from any unit for more than two hours in any one day" (40 CFR 423.12 (b)(8)), and "The 126 priority pollutants (Appendix A) contained in chemicals added for cooling tower maintenance, except chromium and zinc (40 CFR 423.13(d)(1))."

Table 11: Existing Effluent Limitation for IMP 301

	Mass (lb/day)			Concentra	tion (mg/L)	Monitoring Requirements		
Parameters	Average Monthly	Daily Maximum	Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Frequency	Sample Type
Flow (MGD)	Report	Report	XXX	XXX	XXX	XXX	1/week	Measure
Free Available Chlorine	XXX	XXX	XXX	0.2	XXX	0.5	1/Week	Grab
Total Chromium	XXX	XXX	XXX	0.2	0.2	XXX	1/Week	Grab
Total Zinc	XXX	XXX	XXX	1.0	1.0	XXX	1/Week	Grab
pH (S.U.)	XXX	XXX	6.0	XXX	9.0	XXX	1/Week	Grab

Proposed Effluent Limitations

The proposed effluent limitations and monitoring requirements for IMP 301 are shown below in Table 12. The limits are the most stringent values from the above limitation analysis. As discussed above for IMP 101, the same explanation for the removal of the chromium and zinc limitations applies for IMP 301; therefore, the limitations for zinc and chromium have been replaced with monitor and report requirements. Additionally, a Part C condition has been added that prevents the use of chemical additives that contain chromium and/or zinc. Springdale Energy has requested a reduction in the sample frequency at all of its sampling points. As discussed above, using the Department's discretion and the EPA's guidance, the Department has determined that some of the parameters' sample frequency can be reduced. Based on the long-term average concentrations calculated from the DMRs, the sample frequency for all of the parameters can be reduced to twice per month.

Table 12: Proposed Effluent Limitation for IMP 301

	Mass (lb/day)			Concentra	tion (mg/L)	Monitoring Requirements		
Parameters	Average Monthly	Daily Maximum	Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Frequency	Sample Type
Flow (MGD)	Report	Report	XXX	XXX	XXX	XXX	2/Month	Measure
Free Available Chlorine	XXX	XXX	XXX	0.2	XXX	0.5	2/Month	Grab
Total Chromium	XXX	XXX	XXX	Report	Report	XXX	2/Month	Grab
Total Zinc	XXX	XXX	XXX	Report	Report	XXX	2/Month	Grab
pH (S.U.)	XXX	XXX	6.0	XXX	XXX	9.0	2/Month	Grab

Development of Effluent Limitations								
IMP No.	401	Design Flow (MGD)	0.008					
Latitude	40° 32′ 43″	Longitude	-79° 46' 06"					
Unit 1 and 2 low volume wastewater and stormwater including secondary containment Wastewater Description: drainage, equipment skid wash water, RO Reject Water and stormwater								

Technology-Based Limitations

Regulatory Effluent Standards and Monitoring Requirements

25 PA Code Chapter 92 requires pH requirements to be a minimum of 6.0 and a maximum of 9.0 S.U. for all industrial waste process and non-process discharges.

Flow Reporting requirements is in accordance with the 25 PA Code Chapter 92 regulations.

Water Quality-Based Limitations

Due to the nature of the discharge, water quality limitations are evaluated at Outfall 001.

Anti-backsliding:

Previous effluent limits and monitoring requirements can be used pursuant to EPA's anti-backsliding regulation, 40 CFR 122.44(I) and are displayed below in Table 13. The effluent limits for Total Suspended Solids and Oil and Grease in the previous permit were imposed based on the requirements of 40 CFR 423 using BPJ. The limits were applied based on BPJ because the facility is meeting the effluent limitations, demonstrating that the technology employed is sufficient to achieve the effluent limitations, and the discharge is very similar even though steam is not used in the power generation process. Please note that because this is not a categorical discharge, but the effluent limits are being applied as BPJ it is acceptable for stormwater to comingle with the process wastewater prior to monitoring at IMP 401. In addition to the ELG's numerical limits, Part C will also require that, "There shall be no discharge of polychlorinated biphenyl compounds" (40 CFR 423.12(b)(2)).

Table 13: Existing Effluent Limitation for IMP 401

	Mass (lb/day)			Concentra	tion (mg/L)		Monitoring Requirements	
Parameters	Average Monthly	Daily Maximum	Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Frequency	Sample Type
Flow (MGD)	Report	Report	XXX	XXX	XXX	XXX	1/week	Measure
Total Suspended Solids	XXX	XXX	XXX	30.0	100.0	XXX	1/Week	Grab
Oil and Grease	XXX	XXX	XXX	15.0	20.0	XXX	1/Week	Grab
pH (S.U.)	XXX	XXX	6.0	XXX	9.0	XXX	1/Week	Grab

Proposed Effluent Limitations

The proposed effluent limitations and monitoring requirements for IMP 401 are shown below in Table 14. The limits are the most stringent values from the above limitation analysis. Springdale Energy has requested a reduction in the sample frequency at all of its sampling points. As discussed above, using the Department's discretion and the EPA's guidance, the Department has determined that sample frequency reduction cannot be granted. There have been two exceedances of both the oil and grease and TSS monthly average limit within the past two years, therefore, the monitoring frequency cannot be reduced.

Table 14: Proposed Effluent Limitation for IMP 401

	Mass (lb/day)			Concentra	tion (mg/L)	Monitoring Requirements		
Parameters	Average Monthly	Daily Maximum	Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Frequency	Sample Type
Flow (MGD)	Report	Report	XXX	XXX	XXX	XXX	1/week	Measure
Total Suspended Solids	XXX	XXX	XXX	30.0	100.0	XXX	1/Week	Grab
Oil and Grease	XXX	XXX	XXX	15.0	20.0	XXX	1/Week	Grab
pH (S.U.)	XXX	XXX	6.0	XXX	XXX	9.0	1/Week	Grab

		Development of	Effluent Limitations	
Outfall No.	002		Design Flow (MGD)	0
Latitude	40° 32' 43"		Longitude	-79° 45' 58"
Wastewater	Description:	Uncontaminated Stormwater		

This outfall is considered an uncontaminated stormwater outfall that meets the no exposure requirements; therefore, no limitations or monitoring will be imposed at this outfall. Part C Stormwater conditions still apply to this outfall.

	Tools and References Used to Develop Permit
	WQM for Windows Model (see Attachment)
	Toxics Management Spreadsheet (see Attachment)
	TRC Model Spreadsheet (see Attachment)
	Temperature Model Spreadsheet (see Attachment)
	Water Quality Toxics Management Strategy, 361-0100-003, 4/06.
	Technical Guidance for the Development and Specification of Effluent Limitations, 362-0400-001, 10/97.
	Policy for Permitting Surface Water Diversions, 362-2000-003, 3/98.
	Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 362-2000-008, 11/96.
	Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97.
	Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 362-2183-004, 12/97.
	Pennsylvania CSO Policy, 385-2000-011, 9/08.
	Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.
	Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 391-2000-002, 4/97.
\boxtimes	Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97.
	Implementation Guidance Design Conditions, 391-2000-006, 9/97.
	Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004.
	Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 391-2000-008, 10/1997.
	Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 391-2000-010, 3/99.
	Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 391-2000-011, 5/2004.
	Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97.
	Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 391-2000-014, 4/2008.
	Implementation Guidance Total Residual Chlorine (TRC) Regulation, 391-2000-015, 11/1994.
\boxtimes	Implementation Guidance for Temperature Criteria, 391-2000-017, 4/09.
	Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/97.
	Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97.
	Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 391-2000-021, 3/99.
	Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/1999.
	Design Stream Flows, 391-2000-023, 9/98.
	Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 391-2000-024, 10/98.
	Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97.
	Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.
	SOP:
	Other:

Attachments

Attachment A: StreamStats Report

Attachment B: Outfall 001 Toxics Management Spreadsheet

Attachment C: Outfall 001 TRC Evaluation

Attachment D: Site Thermal Discharge Evaluation

Attachment E: PFBC's comments on Springdale's CWIS and 316(b) coordination

Attachment A:

StreamStats Report

StreamStats Report

Region ID: PA

Workspace ID: PA20210507132337358000

Clicked Point (Latitude, Longitude): 40.54638, -79.76385

Time: 2021-05-07 09:24:01 -0400

Parameter Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	11500	square miles
ELEV	Mean Basin Elevation	1599	feet
PRECIP	Mean Annual Precipitation	44	inches

Attachment B:

Outfall 002 Toxics Management Spreadsheet

Toxics Management Spreadsheet Version 1.3, March 2021

Discharge Information

Instructions Di	ischarge Stream		
Facility: Spri	ngdale Generating Facility	NPDES Permit No.: PA0219134	Outfall No.: 001
Evaluation Type:	Major Sewage / Industrial Waste	Wastewater Description: Cooling Tower	Blowdown, Low Volume Wa

			Discharge	Characterist	tics			
Design Flow	Handanan (mm/l)*	-11 (611)+	P	artial Mix Fa	ctors (PMF	5)	Complete Mix	(Times (min)
(MGD)*	Hardness (mg/l)*	pH (SU)*	AFC	CFC	THH	CRL	Q ₇₋₁₀	Qh
0.536	418	7.22						

					0 If let	t blank	0.5 lf le	eft blank	0	If left blan	k	1 If left	t blank
	Discharge Pollutant	Units	Ma	x Discharge Conc	Trib Conc	Stream Conc	Daily CV	Hourly CV	Strea m CV	Fate Coeff	FOS		Chem Transl
	Total Dissolved Solids (PWS)	mg/L		2480									
1	Chloride (PWS)	mg/L		285									
	Bromide	mg/L		0.1									
5	Sulfate (PWS)	mg/L		847									
\bot	Fluoride (PWS)	mg/L		0.63									
	Total Aluminum	μg/L		3790									
	Total Antimony	μg/L		2.6									
	Total Arsenic	μg/L		4									
	Total Barium	μg/L		218									
	Total Beryllium	μg/L	<	0.05									
	Total Boron	μg/L		190									
	Total Cadmium	μg/L		0.08									
	Total Chromium (III)	μg/L		1									
	Hexavalent Chromium	μg/L	<	5									
	Total Cobalt	μg/L		0.6									
	Total Copper	μg/L		30									
2	Free Cyanide	μg/L											
Group	Total Cyanide	μg/L		5									
5	Dissolved Iron	μg/L		60									
	Total Iron	μg/L		690									
	Total Lead	μg/L		0.5									
	Total Manganese	μg/L		86									
	Total Mercury	μg/L		0.3									
	Total Nickel	μg/L		5									
	Total Phenols (Phenolics) (PWS)	μg/L		0.306									
	Total Selenium	μg/L	<	5									
	Total Silver	μg/L	<	0.05									
	Total Thallium	μg/L	<	2									
	Total Zinc	μg/L		11									
	Total Molybdenum	μg/L		13									
	Acrolein	μg/L	<	2									
	Acrylamide	μg/L	<			1							
	Acrylonitrile	μg/L	٧	5									
	Benzene	μg/L	٧	0.5									
	Bromoform	μg/L		2.8									

1	Carbon Tetrachloride	μg/L	<	0.5	H	\blacksquare	-					
1	Chlorobenzene	μg/L	<	0.5	H	$\overline{}$	7					
1	Chlorodibromomethane	μg/L		4.6	Ħ	⇈	╗					
1	Chloroethane	μg/L	<	0.5	Ħ	Ħ	T					
1	2-Chloroethyl Vinyl Ether	μg/L	<	5								
1	Chloroform		<	2	#	#	=					
1	Dichlorobromomethane	µg/L	_	3.4	₩	++	4	\vdash				
1		μg/L	_		#	\Rightarrow	4					
1	1,1-Dichloroethane	μg/L	<	0.5	#	\Rightarrow	=					
က	1,2-Dichloroethane	μg/L	<	0.5	Û							
Group	1,1-Dichloroethylene	μg/L	<	0.5		Ш						
2	1,2-Dichloropropane	μg/L	<	0.5	H	+	4					
၂ဖ	1,3-Dichloropropylene	μg/L		0.12	H	$\overline{}$	4					
1	1,4-Dioxane	µg/L	<	10	Ħ	\mp	7					
1	Ethylbenzene	μg/L	<	0.5	m	$\dashv \dashv$						
1	Methyl Bromide	μg/L	<	0.5	Ħ		T					
1	Methyl Chloride	μg/L	<	0.5	#	##	=					
1	Methylene Chloride		<	0.5	#	₩	4					
1		μg/L	_		₩	₩	4					
1	1,1,2,2-Tetrachloroethane	μg/L	<	0.5	+	\dashv	4					
1	Tetrachloroethylene	μg/L	<	0.5	井	\Rightarrow	7					
1	Toluene	μg/L	<	0.5	T							
	1,2-trans-Dichloroethylene	μg/L	<	0.5								
1	1,1,1-Trichloroethane	μg/L	<	0.5	H	\Box	4					
	1,1,2-Trichloroethane	μg/L	<	0.5	+							
1	Trichloroethylene	μg/L	<	0.5	Ħ	\forall	₹					
1	Vinyl Chloride	μg/L	<	0.5	#	+	1					
\vdash	2-Chlorophenol	μg/L	<	10	Ti.		=1					
1	2,4-Dichlorophenol		<	10		+	٥					
1		μg/L	<		₩	₩	4					
1	2,4-Dimethylphenol	μg/L	_	10	₩	₩	4					
l_	4,6-Dinitro-o-Cresol	μg/L	<	10	#	\Rightarrow	4					
4	2,4-Dinitrophenol	μg/L	<	10	벆							
18	2-Nitrophenol	μg/L	<	10	m	\Box	Tì					
Group,	4-Nitrophenol	μg/L	<	10	Щ	Ш	4					
	p-Chloro-m-Cresol	μg/L	<	10	H	\Box	4					
1	Pentachlorophenol	µg/L	<	10	H	$\exists \exists$	7					
1	Phenol	μg/L	<	10	Ħ	+	╡					
1	2,4,6-Trichlorophenol	μg/L		0.306	m	***	T					
\vdash	Acenaphthene	µg/L	<	2.5	Ħ		3					
1			<	2.5	-	#	=					
1	Acenaphthylene	μg/L	_		-	+	-					
1	Anthracene	μg/L	<	2.5	₩	₩	4					
1	Benzidine	μg/L	<	50	#	\Rightarrow	=					
1	Benzo(a)Anthracene	μg/L	<	2.5	r							
1	Benzo(a)Pyrene	μg/L	<	2.5								
1	3,4-Benzofluoranthene	μg/L	<	2.5	Щ	Щ	Ų					
1	Benzo(ghi)Perylene	μg/L	<	2.5	H	\blacksquare	4					
1	Benzo(k)Fluoranthene	μg/L	<	2.5	H		7					
1	Bis(2-Chloroethoxy)Methane	μg/L	<	5	Ħ	#	╗					
1	Bis(2-Chloroethyl)Ether	μg/L	<	5	ti							
1	Bis(2-Chloroisopropyl)Ether	µg/L	<	5								
1			<	5	#	₩	4	-				
1	Bis(2-Ethylhexyl)Phthalate	μg/L	-		₩	+	-					
1	4-Bromophenyl Phenyl Ether	μg/L	<	5	#	\Rightarrow	4					
	Butyl Benzyl Phthalate	μg/L	<	5	1							
1	2-Chloronaphthalene	μg/L	<	5	r							
	4-Chlorophenyl Phenyl Ether	μg/L	<	5	I							
	Chrysene	μg/L	<	2.5	H	П						
	Dibenzo(a,h)Anthrancene	μg/L	<	2.5	+							
	1,2-Dichlorobenzene	μg/L	<	0.5	+							
	1,3-Dichlorobenzene	μg/L	<	0.5	-							
	1,4-Dichlorobenzene	µg/L	<	0.5	1							
5			-	0.5	Û							
l g	3,3-Dichlorobenzidine	µg/L	<		#	H						
Group	Diethyl Phthalate	μg/L		0.255	#	щ						
	Dimethyl Phthalate	μg/L		0.163	+							
	Di-n-Butyl Phthalate	μg/L	<	4.82	1							
1	2,4-Dinitrotoluene	μg/L	<	5								

	0.0.0:::		-	-		-	_					
	2,6-Dinitrotoluene	μg/L	<	5	Ħ	÷	÷	1				
	Di-n-Octyl Phthalate	µg/L	<	5		Ţ	Ţ	1				
	1,2-Diphenylhydrazine	μg/L	<	10	₩	¥	┿					
	Fluoranthene	μg/L	<	2.5	H	÷	+					
	Fluorene	μg/L	<	2.5	片	#	#	1				
	Hexachlorobenzene	μg/L	<	5	Û	Ϊ	Ϊ	1				
	Hexachlorobutadiene	μg/L	<	0.5	ļ.	Ļ	Ļ	Į.				
	Hexachlorocyclopentadiene	μg/L	<	5	\mathbb{H}	Ŧ	Ŧ					
	Hexachloroethane	μg/L	<	5	H	Ŧ	Ŧ	i				
	Indeno(1,2,3-cd)Pyrene	μg/L	<	2.5	m	Т	Т	1				
	Isophorone	μg/L		0.228		Ţ	Ţ	1				
	Naphthalene	μg/L	<	0.5	ļ.	ļ	Ţ					
	Nitrobenzene	μg/L	<	5	Ħ	Ŧ	Ŧ	1				
	n-Nitrosodimethylamine	µg/L	<	5	₩	Ť	Ť	1				
	n-Nitrosodi-n-Propylamine	µg/L	<	5	Ħ	Ť	Ť	1				
	n-Nitrosodiphenylamine	µg/L	<	5	#	Ŧ	Ŧ	1				
			-		H	÷	÷		 _			
	Phenanthrene	μg/L	<	2.5	+	+	+	-				
	Pyrene 4.2.4 Triableschapes	μg/L		0.214	+	+	+					
	1,2,4-Trichlorobenzene	μg/L	<	0.5				1				
	Aldrin	μg/L	<			Ţ	Ţ					
	alpha-BHC	μg/L	<			L	L					
	beta-BHC	μg/L	<		1	+	+					
	gamma-BHC	μg/L	<		H	t	\pm	1				
	delta BHC	μg/L	<					1				
	Chlordane	μg/L	<			Ţ	Ţ					
	4,4-DDT	μg/L	<		H	F	F	l l				
	4.4-DDE	μg/L	<		H	Ŧ	Ŧ	1				
	4.4-DDD	μg/L	<		Ħ	t	Ť	1				
	Dieldrin	µg/L	<		Ħ	Ť	Ť	1				
	alpha-Endosulfan	µg/L	<			Ŧ	Ŧ	1				
	beta-Endosulfan	µg/L	<		H	ŧ	÷					
9	Endosulfan Sulfate		<		₩	+	+					
Group	Endrin	μg/L	<		H	÷	÷	1				
2		μg/L				Ξ	Ξ	1				
O	Endrin Aldehyde	μg/L	<		₩	÷	÷		 			
	Heptachlor	μg/L	<		₩	+	+		 			
	Heptachlor Epoxide	μg/L	<		H	÷	+	-	 			
	PCB-1016	μg/L	<		片	#	#					
	PCB-1221	μg/L	<			Ϊ	Τ	1				
	PCB-1232	μg/L	<		Щ	ļ	ļ					
	PCB-1242	μg/L	<		H	Ł	÷	1				
	PCB-1248	μg/L	<		H	t	$^{+}$	1				
	PCB-1254	μg/L	<					1				
	PCB-1260	μg/L	<			T	T	l .				
	PCBs, Total	μg/L	<		H	F	F	1				
	Toxaphene	μg/L	<		+			1				
	2,3,7,8-TCDD	ng/L	<			T	T	1				
	Gross Alpha	pCi/L										
	Total Beta	pCi/L	<									
p.7	Radium 226/228	pCi/L	<		+	+	+	1				
Group	Total Strontium	µg/L	<		-	+	+					
ŏ	Total Uranium	µg/L	<					1				
	rotal Oranium	mOs/kg	`			F	F					
	Osmotio Prossure				1	+	+					
	Osmotic Pressure	IIIOsrky										
	Osmotic Pressure	mosky			H	+	+					
	Osmotic Pressure	IIIOSKg				÷						
	Osmotic Pressure	IIIOS/kg										
	Osmotic Pressure	mosky										
	Osmotic Pressure	mosky										
	Osmotic Pressure	mosky										
	Osmotic Pressure	mosng										
	Osmotic Pressure	mosng										
	Osmotic Pressure	mosng										
	Osmotic Pressure	mosing										
	Osmotic Pressure	mosng										

pennsylvania

DEPARTMENT OF ENVIRONMENTAL

PROTECTION

Toxics Manag

Stream / Surface Water Information

Springdale Generating Facility, NPDES Permit No. PA021913

Hardness*

100

Hardness

Instructions Disch	arge Stream	,							
Receiving Surface W	Vater Name: All	egheny Riv	er			No. Reaches to Mo	del:1	_ =	tewide Criteria eat Lakes Criteria
Location	Stream Code*	RMI*	Elevation (ft)*	DA (mi²)*	Slope (ft/ft)	PWS Withdrawal (MGD)	Apply Fis Criteria		SANCO Criteria
Point of Discharge	042122	17.5	745	11500	0.001		Yes		
End of Reach 1	042122	16.5	735	11501	0.001		Yes		
Q ₇₋₁₀		LFY	Flow (cfs		V/D Width	Depth Velocit	maver i	Tributary	Stream

Location	RMI			1 /		
Location	KIVII	(cfs/mi ²)*	Stream	Tributary	Ratio	(ft)
Point of Discharge	17.5	0.1	2390			1300
End of Reach 1	16.5	0.1	2390			900

or h														
Location	RMI	LFY	Flow	r (cfs)	W/D	Width	Depth	Velocit	Time	Tribut	ary	Strea	m	
Location	IXIVII	(cfs/mi ²)	Stream	Tributary	Ratio	(ft)	(ft)	y (fps)	(days)	Hardness	pН	Hardness	pН	Hard
Point of Discharge	17.5													
End of Reach 1	16.5													

(ft)

15

15

Stream / Surface Water Information

5/10/2021

Toxics Management Spreadshee Version 1.3, March 202

Model Pecult

		S											
nstructions	Results		RETURN	I TO INPUT	s) [SAVE AS PD	F) [PRINT	. ⊚ All) Inputs) Results	Limits	
	lynamics												
7-10												1	
RMI	Stream	PWS With (cfs)		Net Stream		rge Analysis	Slope (ft/ft	t) Depth (ft) Width (ft)	W/D Ratio	Velocity (foc)	Travel Time	Compl
17.5	2,390	(CIS))	2,390		ow (cfs) 0.829	0.001	15.	1300.	86.667	(fps) 0.123	(days) 0.498	1
16.5	2,390			2,390	 '	0.028	0.001	10.	1300.	80.007	0.123	0.490	- 1
) _h	2,000			2,000								1	
RMI	Stream Flow (cfs)	PWS With		Net Stream Flow (cfs)		rge Analysis ow (cfs)	Slope (ft/ft	t) Depth (ft	Width (ft)	W/D Ratio	Velocity (fps)	Travel Time (days)	Compl
17.5	6663.59			6663.59		0.829	0.001	23.55	1300.	55.202	0.218	0.281	(
16.5	6663.595			6663.59								1 1	
_	oad Allocatio		_				•		_				
✓ Wasteld			T (min):	15	PMF:	0.109		is Hardness	(mg/l): 10	01.01	Analysis pH	l: 7.00	
☑ AF	C Pollutants	cc	Stream Conc (µg/L	Stream CV	PMF: Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	VLA (µg/L)	01.01		: 7.00	
☑ AF(Pollutants	CC	Stream Conc (µg/L	Stream) CV	Trib Conc	Fate Coef	WQC (µg/L)	WQ Obj (µg/L) N/A	VLA (µg/L)	01.01		<u> </u>	
✓ AF	Pollutants ssolved Solids	cci s (PWS)	Stream Conc (µg/L 0	Stream) CV 0	Trib Conc	Fate Coef 0	WQC (µg/L) N/A N/A	WQ Obj (µg/L) N/A N/A	VLA (µg/L) N/A N/A	01.01		<u> </u>	
✓ AF(Pollutants ssolved Solids Chloride (PWS Sulfate (PWS	CC' s (PWS) S)	Stream Conc (µg/L 0 0	Stream) CV 0 0	Trib Conc	Fate Coef 0 0	WQC (µg/L) N/A N/A N/A	WQ Obj (µg/L) N/A N/A N/A	VLA (µg/L) N/A N/A N/A	01.01		<u> </u>	
Total Dis	Pollutants ssolved Solid: Chloride (PWS Sulfate (PWS	s (PWS) (PWS)	Stream Conc (µg/L 0 0	Stream O O	Trib Conc	Fate Coef 0 0 0	WQC (µg/L) N/A N/A N/A N/A	WQ Obj (µg/L) N/A N/A N/A N/A	VLA (µg/L) N/A N/A N/A N/A	01.01		<u> </u>	
Total Dis	Pollutants ssolved Solid: Chloride (PWS Sulfate (PWS Tuoride (PWS	s (PWS) (S) (S) (FWS)	Stream Conc (µg/L 0 0 0	Stream CV 0 0 0 0 0 0 0 0 0	Trib Conc	Fate Coef 0 0 0 0	WQC (μg/L) N/A N/A N/A N/A 750	WQ Obj (μg/L) N/A N/A N/A N/A 750	VLA (µg/L) N/A N/A N/A N/A N/A 236,614	01.01		<u> </u>	
Total Dis	Pollutants ssolved Solids chloride (PWS Sulfate (PWS Tuoride (PWS Total Aluminur	s (PWS) (FWS) (FWS) (FWS) (FWS) (FWS) (FWS)	Stream Conc (µg/L 0 0 0 0	Stream	Trib Conc	Fate Coef 0 0 0 0 0	WQC (µg/L) N/A N/A N/A N/A 750 1,100	WQ Obj (µg/L) V N/A N/A N/A N/A N/A 750	VLA (µg/L) N/A N/A N/A N/A N/A 236,614 347,034	01.01	(Comments	nnlied
Total Dis	Pollutants ssolved Solids Chloride (PWS Sulfate (PWS Tuoride (PWS Total Aluminur Total Antimon	s (PWS) (PWS) (S) (PWS) (S) (PWS)	Stream Conc (µg/L 0 0 0 0 0	Stream CV 0 0 0 0 0 0 0 0 0	Trib Conc	Fate Coef 0 0 0 0 0 0	WQC (µg/L) N/A N/A N/A N/A 750 1,100 340	WQ Obj V (µg/L) N/A N/A N/A N/A N/A 750 1,100 340	VLA (µg/L) N/A N/A N/A N/A N/A 236,614 347,034 107,285	01.01	(<u> </u>	pplied
Total Dis	Pollutants ssolved Solids chloride (PWS Sulfate (PWS Tuoride (PWS Total Aluminur	s (PWS) (PWS) (S) (PWS) (S) (PWS)	Stream Conc (µg/L 0 0 0 0	Stream	Trib Conc	Fate Coef 0 0 0 0 0 0 0	WQC (µg/L) N/A N/A N/A N/A 750 1,100	WQ Obj (µg/L) N/A N/A N/A N/A N/A T50 1,100 340 21,000 (VLA (µg/L) N/A N/A N/A N/A N/A 236,614 347,034	01.01	(Comments	pplied
Total Dis	Pollutants ssolved Solids chloride (PWS Sulfate (PWS Tuoride (PWS Total Aluminur Total Antimon Total Arsenic Total Barium	s (PWS) 3))) s) m	Stream Conc (µg/L 0 0 0 0 0 0 0 0 0 0	Stream (CV) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Trib Conc	Fate Coef 0 0 0 0 0 0 0 0 0	WQC (µg/L) N/A N/A N/A N/A 750 1,100 340 21,000	WQ Obj (µg/L) N/A N/A N/A N/A N/A T50 1,100 340 21,000 (VLA (µg/L) N/A N/A N/A N/A N/A 236,614 347,034 107,265 8,625,192	01.01	Chem Tra	Comments	•
Total Dis	Pollutants ssolved Solids Chloride (PWS Sulfate (PWS Tuoride (PWS Total Aluminur Total Antimon Total Arsenic Total Barium Total Boron	s (PWS) (FWS)	Stream Conc (µg/L 0 0 0 0 0 0 0 0 0 0 0 0 0	Stream (CV) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Trib Conc	Fate Coef 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	WQC (µg/L) N/A N/A N/A N/A 750 1,100 340 21,000 8,100	WQ Obj V (µg/L) N/A N/A N/A N/A N/A T50 1,100 340 21,000 (8,100 3	VLA (µg/L) N/A N/A N/A N/A N/A 236,614 347,034 107,265 6,625,192 2,565,431	01.01	Chem Trans	Comments	applied
Total Dis	Pollutants ssolved Solids chloride (PWS Sulfate (PWS Tuoride (PWS Total Aluminur Total Antimon Total Barium Total Boron Total Cadmiur al Chromium avalent Chrom	s (PWS) s) s) m y (III) nium	Stream Conc (µg/L 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Stream (CV) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Trib Conc	Fate Coef 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	WQC (µg/L) N/A N/A N/A N/A 750 1,100 340 21,000 8,100 2.033 674.463 16	WQ Obj (µg/L) N/A N/A N/A N/A N/A 750 1,100 340 21,000 (2,16 1,818 16.3	VLA (µg/L) N/A N/A N/A N/A N/A 236,614 347,034 107,265 6,625,192 2,555,431 680 573,527 5,140	01.01	Chem Trans Chem Trans	Comments anslator of 1 applications of 0.944	applied applied
Total Dis	Pollutants ssolved Solids chloride (PWS Sulfate (PWS Tuoride (PWS Total Aluminur Total Antimon Total Barium Total Boron Total Cadmiur al Chromium avalent Chrom Total Cobalt	s (PWS) s) s) m y (III) nium	Stream Conc (µg/L 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Stream (CV) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Trib Conc	Fate Coef 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	WQC (µg/L) N/A N/A N/A N/A N/A 750 1,100 340 21,000 8,100 2.033 374.463 16 95	WQ Obj (µg/L) N/A N/A N/A N/A N/A 750 1,100 340 21,000 (8,100 2.16 1,818 16.3 95.0	VLA (µg/L) N/A N/A N/A N/A N/A 236,614 347,034 107,265 8,625,192 2,555,431 680 573,527 5,140 29,971	01.01	Chem Trans Chem Trans Chem Trans	anslator of 1 apslator of 0.944 slator of 0.982	applied applied applied
Total Dis	Pollutants ssolved Solids chloride (PWS Sulfate (PWS Tuoride (PWS Total Aluminur Total Antimon Total Barium Total Boron Total Cadmiur al Chromium avalent Chrom	s (PWS) s) s) m y (III) nium	Stream Conc (µg/L 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Stream (CV) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Trib Conc	Fate Coef 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	WQC (µg/L) N/A N/A N/A N/A 750 1,100 340 21,000 8,100 2.033 674.463 16	WQ Obj (µg/L) N/A N/A N/A N/A N/A 750 1,100 340 21,000 (2,16 1,818 16.3	VLA (µg/L) N/A N/A N/A N/A N/A 236,614 347,034 107,265 6,625,192 2,555,431 680 573,527 5,140	01.01	Chem Trans Chem Trans Chem Trans	Comments anslator of 1 applications of 0.944 slator of 0.316	applied applied applied

Total Manganese 0 0 N/A N/A N/A N/A Total Mercury 0 0 1.400 1.65 520 Chem Translator of 0.85 applie Total Nickel 0 0 472.226 473 149,279 Chem Translator of 0.998 applie Total Phenols (Phenolics) (PWS) 0 0 N/A N/A N/A Total Selenium 0 0 N/A N/A N/A Chem Translator of 0.922 applie Total Silver 0 0 3.273 3.85 1,215 Chem Translator of 0.85 applie Total Thallium 0 0 65 65.0 20,507				 				
Total Manganese 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0								
Total Miscrary 0 0 0 1.400 1.85 5.20 Chem Translator of 0.85 applicated to 1.00 1.400 1.85 5.20 Chem Translator of 0.86 applications (Phenolics) (PWS) 0 0 0 1.00 N/A N/A N/A N/A Chem Translator of 0.98 applications (Phenolics) (PWS) 0 0 0 N/A N/A N/A N/A N/A Chem Translator of 0.98 applications (PWS) 0 0 0 N/A N/A N/A N/A N/A Chem Translator of 0.82 applications (PWS) 1.00 N/A			_					Chem Translator of 0.79 applied
Total Nickel		_						
Total Phenols (Phenols) (PWS)	,	_		0				Chem Translator of 0.85 applied
Total Salenium		0	0	0	472.226	473	149,279	Chem Translator of 0.998 applied
Total Silver		0	0	0	N/A	N/A	N/A	
Total Thallium Total Zino To	Total Selenium	0	0	0	N/A	N/A	N/A	Chem Translator of 0.922 applied
Total Zinc	Total Silver	0	0	0	3.273	3.85	1,215	Chem Translator of 0.85 applied
Acrolein 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Total Thallium	0	0	0	65	65.0	20,507	
Acrolein	Total Zinc	0	0	0	118.180	121	38,123	Chem Translator of 0.978 applied
Benzene	Acrolein	0	0	0	3	3.0	946	
Bromoform	Acrylonitrile	0	0	0	650	650	205,065	
Carbon Tetrachloride	Benzene	0	0	0	640	640	201,911	
Chlorobenzene 0 0 1,200 1,200 378,582 Chlorodibromomethane 0 0 N/A N/A N/A N/A 2-Chloroform 0 0 1,800 18,000 5,678,738 Chloroform 0 0 1,900 1,900 594,22 Dichlorobromomethane 0 0 1,900 1,900 594,22 Dichlorobromomethane 0 0 1,000 15,000 4,732,280 1,1-Dichlorobrograme 0 0 15,000 15,000 3,470,338 1,3-Dichloropropylene 0 0 0 310 310 97,800 Ethylbenzene 0 0 0 2,900 2,900 2,900 9,900 Methyl Bromide 0 0 0 28,000 2,900 2,900 9,900 Methyl Bromide 0 0 0 22,000 2,900 3,808,90 Methylene Chloride 0 0 1,200 1,200<	Bromoform	0	0	0	1,800	1,800	567,874	
Chlorodibromomethane	Carbon Tetrachloride	0	0	0	2,800	2,800	883,359	
2-Chloroethyl Vinyl Either	Chlorobenzene	0	0	0	1,200	1,200	378,582	
Chloroform	Chlorodibromomethane	0	0	0	N/A	N/A	N/A	
Chloroform	2-Chloroethyl Vinyl Ether	0	0	0	18,000	18,000	5,678,736	
1,2-Dichloroethylene 0 0 15,000 15,000 2,732,280 1,1-Dichloroethylene 0 0 1,000 7,500 2,366,140 1,2-Dichloropropylene 0 0 11,000 11,000 3,470,338 1,3-Dichloropropylene 0 0 11,000 310 310 97,800 Ethylbenzene 0 0 2,900 2,900 9,900 914,907 Methyl Bromide 0 0 0 550 550 173,517 Methylene Chloride 0 0 0 28,000 28,000 8,833,589 Methylene Chloride 0 0 12,000 12,000 3,785,824 Tetrachloroethylene 0 0 10,000 11,000 315,485 Tetrachloroethylene 0 0 1,700 1,700 363,325 Tetrachloroethylene 0 0 1,700 1,700 368,0325 1,1,1-Trichloroethylene 0 0 0 3,400 <t< td=""><td></td><td>0</td><td>0</td><td>0</td><td>1,900</td><td>1,900</td><td>599,422</td><td></td></t<>		0	0	0	1,900	1,900	599,422	
1,1-Dichloroethylene 0 0 7,500 7,500 2,386,140 1,2-Dichloropropane 0 0 0 11,000 11,000 3,470,338 1,3-Dichloropropylene 0 0 0 310 97,800 Ethylbenzene 0 0 2,900 2,900 914,907 Methyl Chloride 0 0 0 28,000 28,933,589 Methylene Chloride 0 0 0 28,000 28,933,589 Methylene Chloride 0 0 12,000 12,000 3,785,824 1,1,2,2-Tetrachloroethane 0 0 10 70 220,800 8,833,589 Methylene Chloride 0 0 1,000 12,000 12,000 3,785,824 1,1,2,2-Tetrachloroethane 0 0 1,000 1,000 316,485 Tetrachloroethylene 0 0 1,700 1,700 538,325 1,2-trans-Dichloroethylene 0 0 3,000 3,400 3,400 <td>Dichlorobromomethane</td> <td>0</td> <td>0</td> <td>0</td> <td>N/A</td> <td>N/A</td> <td>N/A</td> <td></td>	Dichlorobromomethane	0	0	0	N/A	N/A	N/A	
1,2-Dichloropropane	1.2-Dichloroethane	0	0	0	15.000	15.000	4.732.280	
1,2-Dichloropropane		0		_				
1,3-Dichloropropylene					_			
Ethylbenzene	1 1	_		_				
Methyl Bromide 0 0 550 550 173,517 Methyl Chloride 0 0 28,000 28,000 3,833,589 Methylene Chloride 0 0 12,000 12,000 3,785,824 1,1,2,2-Tetrachloroethane 0 0 1,000 1,000 315,485 Tetrachloroethylene 0 0 0 700 700 220,840 Toluene 0 0 1,700 1,700 536,325 1,12-trans-Dichloroethylene 0 0 8,800 2,145,300 1,1,1-Trichloroethane 0 0 0 3,000 3,000 3,000 3,400 1,072,650 Trichloroethylene 0 0 0 3,400 3,400 1,072,650 Trichloroethylene 0 0 0 3,400 3,400 1,072,650 Trichloroethylene 0 0 0 3,400 3,400 1,072,650 Trichloroethylene 0 0 0 1,00 <							,	
Methyl Chloride 0 0 28,000 28,000 8,833,589 Methylene Chloride 0 0 12,000 12,000 3,785,824 1,1,2,2-Tetrachloroethane 0 0 1,000 1,000 315,485 Tetrachloroethylene 0 0 1,700 700 220,840 Toluene 0 0 1,700 1,700 536,325 1,2-trans-Dichloroethylene 0 0 0 8,800 6,800 2,145,300 1,1,1-Trichloroethane 0 0 3,000 3,000 3,400 1,072,650 Trichloroethylene 0 0 3,400 3,400 1,072,650 Trichlorophenol 0 0 0 72,5016 Vinyl Chloride 0 0 0 1,700 1,700 2,4-Dichlorophenol 0 0 1,700 1,700 1,76,672 2,4-Dimethylphenol 0 0 1,700 1,700 536,325 2,-Mirophenol 0 <td>-</td> <td>_</td> <td></td> <td></td> <td>_,</td> <td>_,</td> <td></td> <td></td>	-	_			_,	_,		
Methylene Chloride 0 0 12,000 12,000 3,785,824 1,1,2,2-Tetrachloroethane 0 0 1,000 1,000 315,485 Tetrachloroethylene 0 0 0 700 700 220,840 Toluene 0 0 0 1,700 1,700 536,325 1,2-trans-Dichloroethylene 0 0 0 8,800 2,145,300 1,1,1-Trichloroethane 0 0 0 3,000 3,000 948,456 1,1,2-Trichloroethane 0 0 0 3,400 3,700 1,072,650 Trichloroethylene 0 0 0 3,400 3,400 1,072,650 Vinyl Chloride 0 0 0 N/A N/A N/A Vinyl Chloride 0 0 0 1,700 1,700 536,325 2,4-Dichlorophenol 0 0 0 1,700 1,700 536,325 2,4-Dinitro-O-Cresol 0 0		_						
1,1,2,2-Tetrachloroethane 0 0 1,000 1,000 315,485 Tetrachloroethylene 0 0 700 700 220,840 Toluene 0 0 1,700 1,700 536,325 1,2-trans-Dichloroethylene 0 0 8,800 6,800 2,145,300 1,1,1-Trichloroethane 0 0 3,000 3,000 3,000 46,456 1,1,2-Trichloroethane 0 0 3,400 3,400 1,072,650 Trichloroethylene 0 0 3,400 3,400 1,072,650 Trichlorophenol 0 0 0 1,072,650 725,616 Vinyl Chloride 0 0 0 1,00 1,072,650 2,4-Dichlorophenol 0 0 1,00 1,70 1,70 2,4-Dichlorophenol 0 0 1,70 1,70 536,325 2,4-Dimethylphenol 0 0 680 660 208,220 4,8-Dinitro-o-Cresol 0 <td></td> <td></td> <td></td> <td></td> <td>,</td> <td>,</td> <td>-,,</td> <td></td>					,	,	-,,	
Tetrachloroethylene	,	_				,		
Toluene 0 0 0 1,700 1,700 538,325 1,2-trans-Dichloroethylene 0 0 0 8,800 8,800 2,145,300 1,1,1-Trichloroethane 0 0 0 3,000 3,000 948,458 1,1,2-Trichloroethylene 0 0 0 0 3,400 3,400 1,072,650 Trichloroethylene 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				_	1,000			
1,2-trans-Dichloroethylene 0 0 6,800 6,800 2,145,300 1,1,1-Trichloroethane 0 0 3,000 3,000 948,456 1,1,2-Trichloroethylene 0 0 3,400 1,072,650 Trichloroethylene 0 0 2,300 2,300 725,616 Vinyl Chloride 0 0 N/A N/A N/A 2-Chlorophenol 0 0 560 560 176,672 2,4-Dichlorophenol 0 0 1,700 1,700 538,325 2,4-Dimitro-Cresol 0 0 0 80 80.0 25,239 2,4-Dinitrophenol 0 0 0 80 80.0 25,239 2,4-Dinitrophenol 0 0 0 80 80.0 25,239 2,4-Dinitrophenol 0 0 0 80 80.0 25,23,883 4-Nitrophenol 0 0 0 8,000 8,000 2,523,883 4-Nitro		_		_				
1,1,1-Trichloroethane 0 0 3,000 3,000 948,458 1,1,2-Trichloroethane 0 0 3,400 3,400 1,072,650 Trichloroethylene 0 0 2,300 2,300 725,616 Vinyl Chloride 0 0 0 N/A N/A N/A 2-Chlorophenol 0 0 0 560 560 176,672 2,4-Dichlorophenol 0 0 1,700 1,700 538,325 2,4-Dimitrophenol 0 0 0 680 680 208,220 4,6-Dinitro-o-Cresol 0 0 0 80 80.0 25,239 2,4-Dinitrophenol 0 0 0 8,000 8,000 2,523,883 4-Nitrophenol 0 0 0 8,000 8,000 2,523,883 4-Nitrophenol 0 0 0 160 160 50,478 Pentachlorophenol 0 0 0 0 8,728 <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td>,</td> <td></td>		_					,	
1,1,2-Trichloroethane 0 0 3,400 3,400 1,072,650 Trichloroethylene 0 0 0 2,300 2,300 725,616 Vinyl Chloride 0 0 0 N/A N/A N/A 2-Chlorophenol 0 0 0 580 580 176,672 2,4-Dichlorophenol 0 0 1,700 1,700 538,325 2,4-Dimethylphenol 0 0 0 680 680 208,220 4,6-Dinitro-o-Cresol 0 0 0 80 80.0 25,239 2,4-Diritrophenol 0 0 0 660 680 208,220 4,6-Dinitro-o-Cresol 0 0 0 8,000 25,239 2,4-Diritrophenol 0 0 0 8,000 2,523,883 4-Nitrophenol 0 0 0 8,000 2,523,883 4-Nitrophenol 0 0 0 160 160 50,478		_		1				
Trichloroethylene 0 0 2,300 2,300 725,816 Vinyl Chloride 0 0 0 N/A N/A N/A 2-Chlorophenol 0 0 560 560 176,672 2,4-Dichlorophenol 0 0 1,700 1,700 538,325 2,4-Dimethylphenol 0 0 680 680 208,220 4,8-Dinitro-o-Cresol 0 0 80 80.0 25,239 2,4-Dinitrophenol 0 0 660 660 208,220 2,4-Dinitrophenol 0 0 8,000 25,239 2,4-Dinitrophenol 0 0 80 80.0 25,239 2,4-Dinitrophenol 0 0 8,000 25,239 2,4-Dinitrophenol 0 0 8,000 2,5239 2,4-Dinitrophenol 0 0 8,000 2,5239 3,000 2,5239 2,5239 2,520 4-Nitrophenol 0 0		_			-,	-,		
Vinyl Chloride 0 0 N/A N/A N/A 2-Chlorophenol 0 0 560 560 176,672 2,4-Dichlorophenol 0 0 1,700 1,700 536,325 2,4-Dimethylphenol 0 0 660 660 208,220 4,6-Dinitro-o-Cresol 0 0 0 80 80.0 25,239 2,4-Dinitrophenol 0 0 0 660 660 208,220 2,4-Dinitrophenol 0 0 0 8,000 25,239 2,4-Dinitrophenol 0 0 8,000 8,000 2,523,883 4-Nitrophenol 0 0 8,000 8,000 2,523,883 4-Nitrophenol 0 0 2,300 2,300 725,616 p-Chloro-m-Cresol 0 0 0 160 160 50,478 Pentachlorophenol 0 0 0 N/A N/A N/A Acenaphthene 0		_						
2-Chlorophenol 0 0 560 560 176,672 2,4-Dichlorophenol 0 0 1,700 1,700 536,325 2,4-Dimethylphenol 0 0 660 660 208,220 4,6-Dinitro-o-Cresol 0 0 0 80 80.0 25,239 2,4-Dinitrophenol 0 0 0 660 660 208,220 2,4-Dinitrophenol 0 0 0 8,000 2,523,98 2,4-Dinitrophenol 0 0 0 8,000 2,523,98 2,4-Dinitrophenol 0 0 8,000 2,523,98 4-Nitrophenol 0 0 8,000 2,523,883 4-Nitrophenol 0 0 2,300 2,300 725,616 p-Chloro-m-Cresol 0 0 160 160 50,478 Pentachlorophenol 0 0 8,728 8,73 2,754 Phenol 0 0 0 460 480 <td></td> <td>_</td> <td></td> <td></td> <td>-,</td> <td>_,</td> <td></td> <td></td>		_			-,	_,		
2,4-Dichlorophenol 0 0 1,700 1,700 536,325 2,4-Dimethylphenol 0 0 660 660 208,220 4,6-Dinitro-o-Cresol 0 0 0 80 80.0 25,239 2,4-Dinitrophenol 0 0 0 660 660 208,220 2-Nitrophenol 0 0 0 8,000 8,000 2,523,883 4-Nitrophenol 0 0 0 2,300 2,300 725,616 p-Chloro-m-Cresol 0 0 0 160 160 50,478 Pentachlorophenol 0 0 8.728 8.73 2,754 Phenol 0 0 N/A N/A N/A 2,4,6-Trichlorophenol 0 0 460 460 145,123 Acenaphthene 0 0 83 83.0 26,185		_						
2,4-Dimethylphenol 0 0 0 660 660 208,220 4,6-Dinitro-o-Cresol 0 0 0 80 80.0 25,239 2,4-Dinitrophenol 0 0 0 660 660 208,220 2-Nitrophenol 0 0 0 8,000 8,000 2,523,883 4-Nitrophenol 0 0 0 2,300 2,300 725,616 p-Chloro-m-Cresol 0 0 160 160 50,478 Pentachlorophenol 0 0 8.728 8.73 2,754 Phenol 0 0 N/A N/A N/A 2,4,6-Trichlorophenol 0 0 480 480 145,123 Acenaphthene 0 0 83 83.0 28,185		_					,	
4,8-Dinitro-o-Cresol 0 0 80 80.0 25,239 2,4-Dinitrophenol 0 0 660 660 208,220 2-Nitrophenol 0 0 8,000 8,000 2,523,883 4-Nitrophenol 0 0 0 2,300 2,300 725,616 p-Chloro-m-Cresol 0 0 160 160 50,478 Pentachlorophenol 0 0 8.728 8.73 2,754 Phenol 0 0 N/A N/A N/A 2,4,6-Trichlorophenol 0 0 460 460 145,123 Acenaphthene 0 0 83 83.0 26,185		_					,	
2,4-Dinitrophenol 0 0 0 680 680 208,220 2-Nitrophenol 0 0 0 8,000 2,523,883 4-Nitrophenol 0 0 0 2,300 2,300 725,616 p-Chloro-m-Cresol 0 0 0 160 160 50,478 Pentachlorophenol 0 0 8,728 8,73 2,754 Phenol 0 0 N/A N/A N/A 2,4,6-Trichlorophenol 0 0 460 460 145,123 Acenaphthene 0 0 83 83.0 26,185		_						
2-Nitrophenol 0 0 8,000 2,523,883 4-Nitrophenol 0 0 0 2,300 725,616 p-Chloro-m-Cresol 0 0 0 160 160 50,478 Pentachlorophenol 0 0 8,728 8,73 2,754 Phenol 0 0 N/A N/A N/A 2,4,6-Trichlorophenol 0 0 460 460 145,123 Acenaphthene 0 0 83 83.0 26,185			_					
4-Nitrophenol 0 0 0 2,300 2,300 725,616 p-Chloro-m-Cresol 0 0 160 160 50,478 Pentachlorophenol 0 0 8,728 8,73 2,754 Phenol 0 0 N/A N/A N/A 2,4,6-Trichlorophenol 0 0 460 460 145,123 Acenaphthene 0 0 83 83.0 26,185			_	_				
p-Chloro-m-Cresol 0 0 160 160 50,478 Pentachlorophenol 0 0 8.728 8.73 2,754 Phenol 0 0 N/A N/A N/A 2,4,6-Trichlorophenol 0 0 460 460 145,123 Acenaphthene 0 0 83 83.0 26,185			_	_	-,			
Pentachlorophenol 0 0 8.728 8.73 2,754 Phenol 0 0 0 N/A N/A N/A 2,4,6-Trichlorophenol 0 0 460 460 145,123 Acenaphthene 0 0 83 83.0 26,185			_	_	-,	-,		
Phenol 0 0 0 N/A N/A N/A 2,4,6-Trichlorophenol 0 0 460 460 145,123 Acenaphthene 0 0 83 83.0 26,185		_	_					
2,4,8-Trichlorophenol 0 0 480 480 145,123 Acenaphthene 0 0 83 83.0 26,185		_	_				-111	
Acenaphthene 0 0 0 83 83.0 28,185		_	_					
		_	_	_				
Anthracene 0 0 N/A N/A N/A		_		_				
	Anthracene	0	0	0	N/A	N/A	N/A	

☑ CFC

Benzidine	0	0	0	300	300	94,646	
Benzo(a)Anthracene	0	0	0	0.5	0.5	158	
Benzo(a)Pyrene	0	0	0	N/A	N/A	N/A	
3,4-Benzofluoranthene	0	0	0	N/A	N/A	N/A	
Benzo(k)Fluoranthene	0	0	0	N/A	N/A	N/A	
Bis(2-Chloroethyl)Ether	0	0	0	30,000	30,000	9,484,559	
Bis(2-Chloroisopropyl)Ether	0	0	0	N/A	N/A	N/A	
Bis(2-Ethylhexyl)Phthalate	0	0	0	4,500	4,500	1,419,684	
4-Bromophenyl Phenyl Ether	0	0	0	270	270	85,181	
Butyl Benzyl Phthalate	0	0	0	140	140	44,168	
2-Chloronaphthalene	0	0	0	N/A	N/A	N/A	
Chrysene	0	0	0	N/A	N/A	N/A	
Dibenzo(a,h)Anthrancene	0	0	0	N/A	N/A	N/A	
1,2-Dichlorobenzene	0	0	0	820	820	258,698	
1,3-Dichlorobenzene	0	0	0	350	350	110,420	
1,4-Dichlorobenzene	0	0	0	730	730	230,304	
3,3-Dichlorobenzidine	0	0	0	N/A	N/A	N/A	
Diethyl Phthalate	0	0	0	4,000	4,000	1,261,941	
Dimethyl Phthalate	0	0	0	2,500	2,500	788,713	
Di-n-Butyl Phthalate	0	0	0	110	110	34,703	
2,4-Dinitrotoluene	0	0	0	1,600	1,600	504,777	
2,6-Dinitrotoluene	0	0	0	990	990	312,330	
1,2-Diphenylhydrazine	0	0	0	15	15.0	4,732	
Fluoranthene	0	0	0	200	200	63,097	
Fluorene	0	0	0	N/A	N/A	N/A	
Hexachlorobenzene	0	0	0	N/A	N/A	N/A	
Hexachlorobutadiene	0	0	0	10	10.0	3,155	
Hexachlorocyclopentadiene	0	0	0	5	5.0	1,577	
Hexachloroethane	0	0	0	60	60.0	18,929	
Indeno(1,2,3-cd)Pyrene	0	0	0	N/A	N/A	N/A	
Isophorone	0	0	0	10,000	10,000	3,154,853	
Naphthalene	0	0	0	140	140	44,168	
Nitrobenzene	0	0	0	4,000	4,000	1,261,941	
n-Nitrosodimethylamine	0	0	0	17,000	17,000	5,363,250	
n-Nitrosodi-n-Propylamine	0	0	0	N/A	N/A	N/A	
n-Nitrosodiphenylamine	0	0	0	300	300	94,646	
Phenanthrene	0	0	0	5	5.0	1,577	
Pyrene	0	0	0	N/A	N/A	N/A	
1,2,4-Trichlorobenzene	0	0	0	130	130	41,013	

Pollutants	Stream	Stream	Trib Conc	Fate	WQC	WQ Obj	WLA (µg/L)	Comments
	Conc (µg/L)	CV	(µg/L)	Coef	(µg/L)	(µg/L)	WEA (pg/E)	Continents
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Fluoride (PWS)	0	0		0	N/A	N/A	N/A	
Total Aluminum	0	0		0	N/A	N/A	N/A	

Analysis Hardness (mg/l):

100.15

Analysis pH:

7.00

PMF: 0.756

Model Results 5/10/2021

CCT (min): 720

Total Antimony	0	0	0	220	220	479,560	
Total Arsenic	0	0	0	150	150	326,973	Chem Translator of 1 applied
Total Barium	0	0	0	4,100	4,100	8,937,255	
Total Boron	0	0	0	1,600	1,600	3,487,709	
Total Cadmium	0	0	0	0.246	0.27	591	Chem Translator of 0.909 applied
Total Chromium (III)	0	0	. 0	74.203	86.3	188,080	Chem Translator of 0.86 applied
Hexavalent Chromium	0	0	0	10	10.4	22,659	Chem Translator of 0.962 applied
Total Cobalt	0	0	0	19	19.0	41,417	
Total Copper	0	0	0	8.967	9.34	20,361	Chem Translator of 0.98 applied
Dissolved Iron	0	0	0	N/A	N/A	N/A	
Total Iron	0	0	0	1,500	1,500	4,324,986	WQC = 30 day average; PMF = 1
Total Lead	0	0	0	2.521	3.19	6,948	Chem Translator of 0.791 applied
Total Manganese	0	0	0	N/A	N/A	N/A	
Total Mercury	0	0	0	0.770	0.91	1,975	Chem Translator of 0.85 applied
Total Nickel	0	0	0	52.071	52.2	113,846	Chem Translator of 0.997 applied
Total Phenols (Phenolics) (PWS)	0	0	0	N/A	N/A	N/A	
Total Selenium	0	0	0	4.600	4.99	10,875	Chem Translator of 0.922 applied
Total Silver	0	0	0	N/A	N/A	N/A	Chem Translator of 1 applied
Total Thallium	0	0	. 0	13	13.0	28,338	
Total Zinc	0	0	0	118.285	120	261,501	Chem Translator of 0.986 applied
Acrolein	0	0	0	3	3.0	6,539	
Acrylonitrile	0	0	0	130	130	283,376	
Benzene	0	0	0	130	130	283,376	
Bromoform	0	0	0	370	370	806,533	
Carbon Tetrachloride	0	0	0	560	560	1,220,698	
Chlorobenzene	0	0	0	240	240	523,156	
Chlorodibromomethane	0	0	0	N/A	N/A	N/A	
2-Chloroethyl Vinyl Ether	0	0	0	3,500	3,500	7,629,364	
Chloroform	0	0	0	390	390	850,129	
Dichlorobromomethane	0	0	0	N/A	N/A	N/A	
1,2-Dichloroethane	0	0	0	3,100	3,100	6,757,436	
1,1-Dichloroethylene	0	0	0	1,500	1,500	3,269,727	
1,2-Dichloropropane	0	0	0	2,200	2,200	4,795,600	
1,3-Dichloropropylene	0	0	0	61	61.0	132,969	
Ethylbenzene	0	0	0	580	580	1,264,295	
Methyl Bromide	0	0	0	110	110	239,780	
Methyl Chloride	0	0	0	5,500	5,500	11,989,000	
Methylene Chloride	0	0	0	2,400	2,400	5,231,564	
1,1,2,2-Tetrachloroethane	0	0	0	210	210	457,762	
Tetrachloroethylene	0	0	0	140	140	305,175	
Toluene	0	0	0	330	330	719,340	
1,2-trans-Dichloroethylene	0	0	0	1,400	1,400	3,051,745	
1,1,1-Trichloroethane	0	0	0	610	610	1,329,689	
1,1,2-Trichloroethane	0	0	0	680	680	1,482,276	
Trichloroethylene	0	0	. 0	450	450	980,918	
Vinyl Chloride	0	0	0	N/A	N/A	N/A	
2-Chlorophenol	0	0	0	110	110	239,780	
	-	-	 -		-		

2,4-Dichlorophenol	0	0	0	340	340	741,138	
2,4-Dimethylphenol	0	0	0	130	130	283,376	
4,6-Dinitro-o-Cresol	0	0	0	16	16.0	34,877	
2,4-Dinitrophenol	0	0	0	130	130	283,376	
2-Nitrophenol	0	0	0	1,600	1,600	3,487,709	
4-Nitrophenol	0	0	0	470	470	1,024,515	
p-Chloro-m-Cresol	0	0	0	500	500	1,089,909	
Pentachlorophenol	0	0	0	6.696	6.7	14,597	
Phenol	0	0	0	N/A	N/A	N/A	
2,4,6-Trichlorophenol	0	0	0	91	91.0	198,363	
Acenaphthene	0	0	0	17	17.0	37,057	
Anthracene	0	0	0	N/A	N/A	N/A	
Benzidine	0	0	0	59	59.0	128,609	
Benzo(a)Anthracene	0	0	0	0.1	0.1	218	
Benzo(a)Pyrene	0	0	0	N/A	N/A	N/A	
3,4-Benzofluoranthene	0	0	0	N/A	N/A	N/A	
Benzo(k)Fluoranthene	0	0	0	N/A	N/A	N/A	
Bis(2-Chloroethyl)Ether	0	0	0	6,000	6,000	13,078,909	
Bis(2-Chloroisopropyl)Ether	0	0	0	N/A	N/A	N/A	
Bis(2-Ethylhexyl)Phthalate	0	0	0	910	910	1,983,635	
4-Bromophenyl Phenyl Ether	0	0	0	54	54.0	117,710	
Butyl Benzyl Phthalate	0	0	0	35	35.0	76,294	
2-Chloronaphthalene	0	0	0	N/A	N/A	N/A	
Chrysene	0	0	0	N/A	N/A	N/A	
Dibenzo(a,h)Anthrancene	0	0	0	N/A	N/A	N/A	
1,2-Dichlorobenzene	0	0	0	160	160	348,771	
1,3-Dichlorobenzene	0	0	0	69	69.0	150,407	
1,4-Dichlorobenzene	0	0	0	150	150	326,973	
3,3-Dichlorobenzidine	0	0	0	N/A	N/A	N/A	
Diethyl Phthalate	0	0	0	800	800	1,743,855	
Dimethyl Phthalate	0	0	0	500	500	1,089,909	
Di-n-Butyl Phthalate	0	0	0	21	21.0	45,776	
2,4-Dinitrotoluene	0	0	0	320	320	697,542	
2,6-Dinitrotoluene	0	0	0	200	200	435,964	
1,2-Diphenylhydrazine	0	0	0	3	3.0	6,539	
Fluoranthene	0	0	0	40	40.0	87,193	
Fluorene	0	0	0	N/A	N/A	N/A	
Hexachlorobenzene	0	0	0	N/A	N/A	N/A	
Hexachlorobutadiene	0	0	0	2	2.0	4,360	
Hexachlorocyclopentadiene	0	0	0	1	1.0	2,180	
Hexachloroethane	0	0	0	12	12.0	26,158	
Indeno(1,2,3-cd)Pyrene	0	0	0	N/A	N/A	N/A	
Isophorone	0	0	0	2,100	2,100	4,577,618	
Naphthalene	0	0	0	43	43.0	93,732	
Nitrobenzene	0	0	0	810	810	1,765,653	
n-Nitrosodimethylamine	0	0	0	3,400	3,400	7,411,382	
n-Nitrosodi-n-Propylamine	0	0	0	N/A	N/A	N/A	

	n-Nitrosodiphenylamine	0	0		0	59	59.0	128,609	
	Phenanthrene	0	0		0	1	1.0	2,180	
	Pyrene	0	0		0	N/A	N/A	N/A	
	1,2,4-Trichlorobenzene	0	0		0	26	26.0	56,675	
	₫ THH CC	T (min): 72	20	PMF:	0.756	Ana	lysis Hardne	ess (mg/l):	N/A Analysis pH: N/A
	Pollutants	Stream Conc (µg/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Γ	Total Dissolved Solids (PWS)	0	0		0	500,000	500,000	N/A	

Pollutants	Stream	Stream	Т		Cor	nc	Fate	WQC	WQ Obj	WLA (µg/L)	Comments
	Conc (µg/L)	CV		(µg	3/L)	_	Coef	(µg/L)	(µg/L)		
Total Dissolved Solids (PWS)	0	0		\Box	#	\vdash	0	500,000	500,000	N/A	
Chloride (PWS)	0	0					0	250,000	250,000	N/A	
Sulfate (PWS)	0	0	Ļ	Щ	4	Ļ	0	250,000	250,000	N/A	
Fluoride (PWS)	0	0			\pm	\vdash	0	2,000	2,000	N/A	
Total Aluminum	0	0		Ш		\Box	0	N/A	N/A	N/A	
Total Antimony	0	0		П	1		0	5.6	5.6	12,207	
Total Arsenic	0	0	-	H	\pm	\vdash	0	10	10.0	21,798	
Total Barium	0	0	士				0	2,400	2,400	5,231,564	
Total Boron	0	0					0	3,100	3,100	6,757,436	
Total Cadmium	0	0	-	H	7	Ť	0	N/A	N/A	N/A	
Total Chromium (III)	0	0			\top		0	N/A	N/A	N/A	
Hexavalent Chromium	0	0					0	N/A	N/A	N/A	
Total Cobalt	0	0		П	7		0	N/A	N/A	N/A	
Total Copper	0	0		H	\top	\vdash	0	N/A	N/A	N/A	
Dissolved Iron	0	0		П	T	Ħ	0	300	300	653,945	
Total Iron	0	0		П	Ţ		0	N/A	N/A	N/A	
Total Lead	0	0	\vdash	H	7	\vdash	0	N/A	N/A	N/A	
Total Manganese	0	0		H	\top	Н	0	1,000	1,000	2,179,818	
Total Mercury	0	0					0	0.050	0.05	109	
Total Nickel	0	0		H	7		0	610	610	1,329,689	
Total Phenols (Phenolics) (PWS)	0	0		H	\mp	Н	0	5	5.0	N/A	
Total Selenium	0	0					0	N/A	N/A	N/A	
Total Silver	0	0		П	7		0	N/A	N/A	N/A	
Total Thallium	0	0	\vdash	H	7	\vdash	0	0.24	0.24	523	
Total Zinc	0	0		Ħ	T	Ħ	0	N/A	N/A	N/A	
Acrolein	0	0		П	I		0	3	3.0	6,539	
Acrylonitrile	0	0		H	7	\vdash	0	N/A	N/A	N/A	
Benzene	0	0		H	7	Н	0	N/A	N/A	N/A	
Bromoform	0	0		П	ļ		0	N/A	N/A	N/A	
Carbon Tetrachloride	0	0		H	7	H	0	N/A	N/A	N/A	
Chlorobenzene	0	0		Ħ	\mp	\vdash	0	100	100.0	217,982	
Chlorodibromomethane	0	0					0	N/A	N/A	N/A	
2-Chloroethyl Vinyl Ether	0	0		П	7		0	N/A	N/A	N/A	
Chloroform	0	0		H	+		0	N/A	N/A	N/A	
Dichlorobromomethane	0	0					0	N/A	N/A	N/A	
1,2-Dichloroethane	0	0		П			0	N/A	N/A	N/A	
1,1-Dichloroethylene	0	0			+		0	33	33.0	71,934	
1,2-Dichloropropane	0	0		Ħ			0	N/A	N/A	N/A	

1,2-Dichloropropane 0 0 0 N/A N
Model Results 5/10/2021

	1,3-Dichloropropylene	0	0		0	N/A	N/A	N/A	
	Ethylbenzene	0	0		0	68	68.0	148,228	
	Methyl Bromide	0	0		0	100	100.0	217,982	
	Methyl Chloride	0	0		0	N/A	N/A	N/A	
	Methylene Chloride	0	0		0	N/A	N/A	N/A	
\vdash	1.1.2.2-Tetrachloroethane	0	0		0	N/A	N/A	N/A	
\vdash	Tetrachloroethylene	0	0		0	N/A	N/A	N/A	
\vdash	Toluene	0	0	 	0	57	57.0	124,250	
\vdash	1,2-trans-Dichloroethylene	0	0		0	100	100.0	217,982	
\vdash	1,1,1-Trichloroethane	0	0		0	10.000	10.000	21,798,182	
\vdash	1,1,2-Trichloroethane	0	0		Ö	N/A	N/A	N/A	
\vdash	Trichloroethylene	0	0		0	N/A	N/A	N/A	
\vdash			0		0				
\vdash	Vinyl Chloride	0	0		0	N/A 30	N/A 30.0	N/A	
\vdash	2-Chlorophenol	0	_		_			65,395	
\vdash	2,4-Dichlorophenol	0	0		0	10	10.0	21,798	
\perp	2,4-Dimethylphenol	0	0		- 0	100	100.0	217,982	
\perp	4,6-Dinitro-o-Cresol	0	0		0	2	2.0	4,360	
L	2,4-Dinitrophenol	0	0		0	10	10.0	21,798	
	2-Nitrophenol	0	0		_ 0	N/A	N/A	N/A	
	4-Nitrophenol	0	0		0	N/A	N/A	N/A	
	p-Chloro-m-Cresol	0	0		0	N/A	N/A	N/A	
	Pentachlorophenol	0	0		0	N/A	N/A	N/A	
	Phenol	0	0		0	4,000	4,000	8,719,273	
\vdash	2,4,6-Trichlorophenol	0	0		0	N/A	N/A	N/A	
\vdash	Acenaphthene	0	0		0	70	70.0	152.587	
\vdash	Anthracene	0	0		0	300	300	653,945	
\vdash	Benzidine	0	0		0	N/A	N/A	N/A	
\vdash	Benzo(a)Anthracene	0	0	+	0	N/A	N/A	N/A	
\vdash	Benzo(a)Pyrene	0	0		0	N/A	N/A	N/A	
\vdash	3.4-Benzofluoranthene	0	0		- -	N/A	N/A	N/A	
\vdash	Benzo(k)Fluoranthene	0	0		0	N/A	N/A	N/A	
\vdash	. ,	0	0		0	N/A N/A	N/A N/A	N/A N/A	
\vdash	Bis(2-Chloroethyl)Ether	_							
\vdash	Bis(2-Chloroisopropyl)Ether	0	0		0	200	200	435,964	
\vdash	Bis(2-Ethylhexyl)Phthalate	0	0		0	N/A	N/A	N/A	
\vdash	4-Bromophenyl Phenyl Ether	0	0		0	N/A	N/A	N/A	
	Butyl Benzyl Phthalate	0	0		- 0	0.1	0.1	218	
	2-Chloronaphthalene	0	0		0	800	800	1,743,855	
	Chrysene	0	0		0	N/A	N/A	N/A	
	Dibenzo(a,h)Anthrancene	0	0		- 0	N/A	N/A	N/A	
	1,2-Dichlorobenzene	0	0		0	1,000	1,000	2,179,818	
	1,3-Dichlorobenzene	0	0		0	7	7.0	15,259	
	1,4-Dichlorobenzene	0	0		0	300	300	653,945	
	3,3-Dichlorobenzidine	0	0		0	N/A	N/A	N/A	
	Diethyl Phthalate	0	0		0	600	600	1,307,891	
	Dimethyl Phthalate	0	0		0	2,000	2.000	4,359,636	
\vdash	Di-n-Butyl Phthalate	0	0		0	20	20.0	43,598	
\vdash	2.4-Dinitrotoluene	0	0		0	N/A	N/A	N/A	
. <u>.</u>	L D	U	U		U	IN/A		140	

2,6-Dinitrotoluene	0	0	0	N/A	N/A	N/A	
1,2-Diphenylhydrazine	0	0	0	N/A	N/A	N/A	
Fluoranthene	0	0	0	20	20.0	43,596	
Fluorene	0	0	0	50	50.0	108,991	
Hexachlorobenzene	0	0	0	N/A	N/A	N/A	
Hexachlorobutadiene	0	0	0	N/A	N/A	N/A	
Hexachlorocyclopentadiene	0	0	0	4	4.0	8,719	
Hexachloroethane	0	0	0	N/A	N/A	N/A	
Indeno(1,2,3-cd)Pyrene	0	0	0	N/A	N/A	N/A	
Isophorone	0	0	0	34	34.0	74,114	
Naphthalene	0	0	0	N/A	N/A	N/A	
Nitrobenzene	0	0	0	10	10.0	21,798	
n-Nitrosodimethylamine	0	0	0	N/A	N/A	N/A	
n-Nitrosodi-n-Propylamine	0	0	0	N/A	N/A	N/A	
n-Nitrosodiphenylamine	0	0	0	N/A	N/A	N/A	
Phenanthrene	0	0	- 0	N/A	N/A	N/A	
Pyrene	0	0	0	20	20.0	43,596	
1,2,4-Trichlorobenzene	0	0	0	0.07	0.07	153	

☑ CRL CC	T (min): ###	###	PMF:	1	Ana	lysis Hardne	ess (mg/l):	N/A Analysis pH: N/A
Pollutants	Stream Conc (µg/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (μg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Fluoride (PWS)	0	0		0	N/A	N/A	N/A	
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Antimony	0	0		0	N/A	N/A	N/A	
Total Arsenic	0	0		0	N/A	N/A	N/A	
Total Barium	0	0		0	N/A	N/A	N/A	
Total Boron	0	0		0	N/A	N/A	N/A	
Total Cadmium	0	0		0	N/A	N/A	N/A	
Total Chromium (III)	0	0		0	N/A	N/A	N/A	
Hexavalent Chromium	0	0		0	N/A	N/A	N/A	
Total Cobalt	0	0		0	N/A	N/A	N/A	
Total Copper	0	0		0	N/A	N/A	N/A	
Dissolved Iron	0	0		0	N/A	N/A	N/A	
Total Iron	0	0		0	N/A	N/A	N/A	
Total Lead	0	0		0	N/A	N/A	N/A	
Total Manganese	0	0		0	N/A	N/A	N/A	
Total Mercury	0	0		0	N/A	N/A	N/A	
Total Nickel	0	0		0	N/A	N/A	N/A	
Total Phenols (Phenolics) (PWS)	0	0		0	N/A	N/A	N/A	
Total Selenium	0	0		0	N/A	N/A	N/A	
Total Silver	0	0		0	N/A	N/A	N/A	
Total Thallium	0	0		0	N/A	N/A	N/A	

Total Zinc	0	0	0	N/A	N/A	N/A	
Acrolein	0	0	0	N/A	N/A	N/A	
Acrylonitrile	0	0	0	0.06	0.06	482	
Benzene	0	0	0	0.58	0.58	4,662	
Bromoform	0	0	0	7	7.0	56,261	
Carbon Tetrachloride	0	0	0	0.4	0.4	3,215	
Chlorobenzene	0	0	0	N/A	N/A	N/A	
Chlorodibromomethane	0	0	0	0.8	0.8	6,430	
2-Chloroethyl Vinyl Ether	0	0	0	N/A	N/A	N/A	
Chloroform	0	0	0	5.7	5.7	45,812	
Dichlorobromomethane	0	0	0	0.95	0.95	7,635	
1,2-Dichloroethane	0	0	0	9.9	9.9	79,569	
1,1-Dichloroethylene	0	0	0	N/A	N/A	N/A	
1,2-Dichloropropane	0	0	0	0.9	0.9	7,234	
1,3-Dichloropropylene	0	0	0	0.27	0.27	2,170	
Ethylbenzene	0	0	0	N/A	N/A	N/A	
Methyl Bromide	0	0	0	N/A	N/A	N/A	
Methyl Chloride	0	0	0	N/A	N/A	N/A	
Methylene Chloride	0	0	0	20	20.0	160,745	
1,1,2,2-Tetrachloroethane	0	0	0	0.2	0.2	1,607	
Tetrachloroethylene	0	0	0	10	10.0	80,373	
Toluene	0	0	0	N/A	N/A	N/A	
1,2-trans-Dichloroethylene	0	0	0	N/A	N/A	N/A	
1,1,1-Trichloroethane	0	0	0	N/A	N/A	N/A	
1,1,2-Trichloroethane	0	0	0	0.55	0.55	4,420	
Trichloroethylene	0	0	0	0.6	0.6	4,822	
Vinyl Chloride	0	0	0	0.02	0.02	161	
2-Chlorophenol	0	0	0	N/A	N/A	N/A	
2,4-Dichlorophenol	0	0	0	N/A	N/A	N/A	
2,4-Dimethylphenol	0	0	0	N/A	N/A	N/A	
4,6-Dinitro-o-Cresol	0	0	0	N/A	N/A	N/A	
2,4-Dinitrophenol	0	0	0	N/A	N/A	N/A	
2-Nitrophenol	0	0	0	N/A	N/A	N/A	
4-Nitrophenol	0	0	0	N/A	N/A	N/A	
p-Chloro-m-Cresol	0	0	0	N/A	N/A	N/A	
Pentachlorophenol	0	0	0	0.030	0.03	241	
Phenol	0	0	0	N/A	N/A	N/A	
2,4,6-Trichlorophenol	0	0	0	1.5	1.5	12,056	
Acenaphthene	0	0	0	N/A	N/A	N/A	
Anthracene	0	0	0	N/A	N/A	N/A	
Benzidine	0	0	0	0.0001	0.0001	0.8	
Benzo(a)Anthracene	0	0	0	0.001	0.001	8.04	_
Benzo(a)Pyrene	0	0	0	0.0001	0.0001	0.8	
3,4-Benzofluoranthene	0	0	0	0.001	0.001	8.04	
Benzo(k)Fluoranthene	0	0	0	0.01	0.01	80.4	
Bis(2-Chloroethyl)Ether	0	0	0	0.03	0.03	241	
Bis(2-Chloroisopropyl)Ether	0	0	0	N/A	N/A	N/A	
adal Danille				E /40	/2024		

Bis(2-Ethylhexyl)Phthalate	0	0	0	0.32	0.32	2,572	
4-Bromophenyl Phenyl Ether	0	0	0	N/A	N/A	N/A	
Butyl Benzyl Phthalate	0	0	0	N/A	N/A	N/A	
2-Chloronaphthalene	0	0	0	N/A	N/A	N/A	
Chrysene	0	0	0	0.12	0.12	964	
Dibenzo(a,h)Anthrancene	0	0	0	0.0001	0.0001	0.8	
1,2-Dichlorobenzene	0	0	0	N/A	N/A	N/A	
1,3-Dichlorobenzene	0	0	0	N/A	N/A	N/A	
1,4-Dichlorobenzene	0	0	0	N/A	N/A	N/A	
3,3-Dichlorobenzidine	0	0	0	0.05	0.05	402	
Diethyl Phthalate	0	0	0	N/A	N/A	N/A	
Dimethyl Phthalate	0	0	0	N/A	N/A	N/A	
Di-n-Butyl Phthalate	0	0	0	N/A	N/A	N/A	
2,4-Dinitrotoluene	0	0	0	0.05	0.05	402	
2,6-Dinitrotoluene	0	0	0	0.05	0.05	402	
1,2-Diphenylhydrazine	0	0	0	0.03	0.03	241	
Fluoranthene	0	0	0	N/A	N/A	N/A	
Fluorene	0	0	0	N/A	N/A	N/A	
Hexachlorobenzene	0	0	0	0.00008	0.00008	0.64	
Hexachlorobutadiene	0	0	0	0.01	0.01	80.4	
Hexachlorocyclopentadiene	0	0	0	N/A	N/A	N/A	
Hexachloroethane	0	0	0	0.1	0.1	804	
Indeno(1,2,3-cd)Pyrene	0	0	0	0.001	0.001	8.04	
Isophorone	0	0	0	N/A	N/A	N/A	
Naphthalene	0	0	0	N/A	N/A	N/A	
Nitrobenzene	0	0	0	N/A	N/A	N/A	
n-Nitrosodimethylamine	0	0	0	0.0007	0.0007	5.63	
n-Nitrosodi-n-Propylamine	0	0	0	0.005	0.005	40.2	
n-Nitrosodiphenylamine	0	0	0	3.3	3.3	26,523	
Phenanthrene	0	0	0	N/A	N/A	N/A	
Pyrene	0	0	0	N/A	N/A	N/A	
1,2,4-Trichlorobenzene	0	0	0	N/A	N/A	N/A	

☑ Recommended WQBELs & Monitoring Requirements

No. Samples/Month: 4

	Mass	Limits	Concentrat		Concentration Limits				
Pollutants	AML (lbs/day)	MDL (lbs/day)	AML	MDL	IMAX	Units	Governing WQBEL	WQBEL Basis	Comments

Other Pollutants without Limits or Monitoring

The following pollutants do not require effluent limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QI

Model Results 5/10/2021

Pollutants	Governing WQBEL	Units	Comments
Total Dissolved Solids (PWS)	N/A	N/A	PWS Not Applicable
Chloride (PWS)	N/A	N/A	PWS Not Applicable
Bromide	N/A	N/A	No WQS
Sulfate (PWS)	N/A	N/A	PWS Not Applicable
Fluoride (PWS)	N/A	N/A	PWS Not Applicable
Total Aluminum	151,660	µg/L	Discharge Conc ≤ 10% WQBEL
Total Antimony	12,207	µg/L	Discharge Conc ≤ 10% WQBEL
Total Arsenic	21,798	µg/L	Discharge Conc ≤ 10% WQBEL
Total Barium	4,246,480	µg/L	Discharge Conc ≤ 10% WQBEL
Total Beryllium	N/A	N/A	No WQS
Total Boron	1,637,928	µg/L	Discharge Conc ≤ 10% WQBEL
Total Cadmium	436	µg/L	Discharge Conc ≤ 10% WQBEL
Total Chromium (III)	188,080	µg/L	Discharge Conc ≤ 10% WQBEL
Hexavalent Chromium	3,295	µg/L	Discharge Conc ≤ 10% WQBEL
Total Cobalt	19,210	µg/L	Discharge Conc ≤ 10% WQBEL
Total Copper	2,858	µg/L	Discharge Conc ≤ 10% WQBEL
Total Cyanide	N/A	N/A	No WQS
Dissolved Iron	653,945	µg/L	Discharge Conc ≤ 10% WQBEL
Total Iron	4,324,986	µg/L	Discharge Conc ≤ 10% WQBEL
Total Lead	6,948	μg/L	Discharge Conc ≤ 10% WQBEL
Total Manganese	2,179,818	µg/L	Discharge Conc ≤ 10% WQBEL
Total Mercury	109	µg/L	Discharge Conc ≤ 10% WQBEL
Total Nickel	95,682	µg/L	Discharge Conc ≤ 10% WQBEL
Total Phenols (Phenolics) (PWS)	00,002	µg/L	PWS Not Applicable
Total Selenium	10,875		Discharge Conc < TQL
Total Silver	779	μg/L μg/L	Discharge Conc < TQL
Total Thallium	523		Discharge Conc < TQL
Total Thailium Total Zinc	24.435	µg/L	Discharge Conc < TQL Discharge Conc ≤ 10% WQBEL
		μg/L	No WQS
Total Molybdenum Acrolein	N/A 607	N/A	Discharge Conc < TQL
		μg/L	
Acrylonitrile	482	μg/L	Discharge Conc < TQL
Benzene	4,662	μg/L	Discharge Conc < TQL
Bromoform	56,261	μg/L	Discharge Conc ≤ 25% WQBEL
Carbon Tetrachloride	3,215	µg/L	Discharge Conc < TQL
Chlorobenzene	217,982	μg/L	Discharge Conc < TQL
Chlorodibromomethane	6,430	µg/L	Discharge Conc ≤ 25% WQBEL
Chloroethane	N/A	N/A	No WQS
2-Chloroethyl Vinyl Ether	3,639,840	μg/L	Discharge Conc < TQL
Chloroform	45,812	μg/L	Discharge Conc ≤ 25% WQBEL
Dichlorobromomethane	7,635	µg/L	Discharge Conc ≤ 25% WQBEL
1,1-Dichloroethane	N/A	N/A	No WQS
1,2-Dichloroethane	79,569	μg/L	Discharge Conc < TQL
	74.004	μg/L	Discharge Conc < TQL
1,1-Dichloroethylene	71,934	P8/C	
1,1-Dichloroethylene 1,2-Dichloropropane 1,3-Dichloropropylene	71,934 7,234 2,170	μg/L μg/L	Discharge Conc < TQL Discharge Conc ≤ 25% WQBEL

Vlodel Results 5/10/2021

1,4-Dioxane	N/A	N/A	No WQS
Ethylbenzene	148,228	μg/L	Discharge Conc < TQL
Methyl Bromide	111,217	μg/L	Discharge Conc < TQL
Methyl Chloride	5,661,974	μg/L	Discharge Conc < TQL
Methylene Chloride	160,745	μg/L	Discharge Conc < TQL
1,1,2,2-Tetrachloroethane	1,607	µg/L	Discharge Conc < TQL
Tetrachloroethylene	80,373	µg/L	Discharge Conc < TQL
Toluene	124,250	μg/L	Discharge Conc < TQL
1,2-trans-Dichloroethylene	217,982	µg/L	Discharge Conc < TQL
1,1,1-Trichloroethane	606,640	μg/L	Discharge Conc < TQL
1,1,2-Trichloroethane	4,420	μg/L	Discharge Conc < TQL
Trichloroethylene	4,822	µg/L	Discharge Conc < TQL
Vinyl Chloride	161	μg/L	Discharge Conc < TQL
2-Chlorophenol	65,395	μg/L	Discharge Conc < TQL
2.4-Dichlorophenol	21,798		Discharge Conc < TQL
2,4-Dimethylphenol	133,461	µg/L	Discharge Conc < TQL
		μg/L	•
4,6-Dinitro-o-Cresol	4,360	μg/L	Discharge Conc < TQL
2,4-Dinitrophenol	21,798	μg/L	Discharge Conc < TQL
2-Nitrophenol	1,617,707	μg/L	Discharge Conc < TQL
4-Nitrophenol	465,091	μg/L	Discharge Conc < TQL
p-Chloro-m-Cresol	32,354	μg/L	Discharge Conc < TQL
Pentachlorophenol	241	μg/L	Discharge Conc < TQL
Phenol	8,719,273	μg/L	Discharge Conc < TQL
2,4,6-Trichlorophenol	12,056	μg/L	Discharge Conc ≤ 25% WQBEL
Acenaphthene	16,784	μg/L	Discharge Conc < TQL
Acenaphthylene	N/A	N/A	No WQS
Anthracene	653,945	μg/L	Discharge Conc < TQL
Benzidine	0.8	µg/L	Discharge Conc < TQL
Benzo(a)Anthracene	8.04	µg/L	Discharge Conc < TQL
Benzo(a)Pyrene	0.8	μg/L	Discharge Conc < TQL
3,4-Benzofluoranthene	8.04	μg/L	Discharge Conc < TQL
Benzo(ghi)Perylene	N/A	N/A	No WQS
Benzo(k)Fluoranthene	80.4	µg/L	Discharge Conc < TQL
Bis(2-Chloroethoxy)Methane	N/A	N/A	No WQS
Bis(2-Chloroethyl)Ether	241	μg/L	Discharge Conc < TQL
Bis(2-Chloroisopropyl)Ether	435,964	μg/L	Discharge Conc < TQL
Bis(2-Ethylhexyl)Phthalate	2,572	μg/L	Discharge Conc < TQL
4-Bromophenyl Phenyl Ether	54.598		Discharge Conc < TQL
Butyl Benzyl Phthalate	218	µg/L	Discharge Conc < TQL Discharge Conc < TQL
2-Chloronaphthalene		µg/L	•
4-Chlorophenyl Phenyl Ether	1,743,855	μg/L	Discharge Conc < TQL No WQS
4-Unioropnenyi Phenyi Ether	MIZA		IND WILLS
01	N/A	N/A	***************************************
Chrysene	964	μg/L	Discharge Conc < TQL
Dibenzo(a,h)Anthrancene	964 0.8	μg/L μg/L	Discharge Conc < TQL Discharge Conc < TQL
Dibenzo(a,h)Anthrancene 1,2-Dichlorobenzene	964 0.8 165,815	µg/L µg/L µg/L	Discharge Conc < TQL Discharge Conc < TQL Discharge Conc < TQL
Dibenzo(a,h)Anthrancene 1,2-Dichlorobenzene 1,3-Dichlorobenzene	964 0.8 165,815 15,259	µg/L µg/L µg/L µg/L	Discharge Conc < TQL Discharge Conc < TQL Discharge Conc < TQL Discharge Conc < TQL
Dibenzo(a,h)Anthrancene 1,2-Dichlorobenzene	964 0.8 165,815	µg/L µg/L µg/L	Discharge Conc < TQL Discharge Conc < TQL Discharge Conc < TQL

Model Results 5/10/2021

Diethyl Phthalate	808.853	μg/L	Discharge Conc ≤ 25% WQBEL
	-		
Dimethyl Phthalate	505,533	μg/L	Discharge Conc ≤ 25% WQBEL
Di-n-Butyl Phthalate	22,243	μg/L	Discharge Conc < TQL
2,4-Dinitrotoluene	402	μg/L	Discharge Conc < TQL
2,6-Dinitrotoluene	402	μg/L	Discharge Conc < TQL
Di-n-Octyl Phthalate	N/A	N/A	No WQS
1,2-Diphenylhydrazine	241	μg/L	Discharge Conc < TQL
Fluoranthene	40,443	μg/L	Discharge Conc < TQL
Fluorene	108,991	μg/L	Discharge Conc < TQL
Hexachlorobenzene	0.64	μg/L	Discharge Conc < TQL
Hexachlorobutadiene	80.4	μg/L	Discharge Conc < TQL
Hexachlorocyclopentadiene	1,011	μg/L	Discharge Conc < TQL
Hexachloroethane	804	μg/L	Discharge Conc < TQL
Indeno(1,2,3-cd)Pyrene	8.04	μg/L	Discharge Conc < TQL
Isophorone	74,114	μg/L	Discharge Conc ≤ 25% WQBEL
Naphthalene	28,310	μg/L	Discharge Conc < TQL
Nitrobenzene	21,798	μg/L	Discharge Conc < TQL
n-Nitrosodimethylamine	5.63	μg/L	Discharge Conc < TQL
n-Nitrosodi-n-Propylamine	40.2	μg/L	Discharge Conc < TQL
n-Nitrosodiphenylamine	26,523	μg/L	Discharge Conc < TQL
Phenanthrene	1,011	μg/L	Discharge Conc < TQL
Pyrene	43,596	μg/L	Discharge Conc ≤ 25% WQBEL
1,2,4-Trichlorobenzene	153	μg/L	Discharge Conc < TQL

Model Results 5/10/2021

Attachment C:

Outfall 001 TRC Evaluation

TRC EVALUATION

2390	= Q stream (cfs)	0.5	= CV Daily			
0.536	0.536 = Q discharge (MGD)		0.5	= CV Hourly			
4	4 = no. samples		0.5	= AFC_Partial Mix Factor			
0.3	= Chlorine D	emand of Stream	0.5	= CFC_Partial Mix Factor			
0	0 = Chlorine Demand of Discharge			= AFC_Criteria	Compliance Time (min)		
0.5	= BAT/BPJ V	alue	720	= CFC_Criteria	Compliance Time (min)		
= % Factor of Safety (FOS)				=Decay Coeffic	cient (K)		
Source	Reference	AFC Calculations		Reference	CFC Calculations		
TRC	1.3.2.iii	WLA afc =	459.750	1.3.2.iii	WLA cfc = 448.212		
PENTOXSD TRO	5.1a	LTAMULT afc =	0.373	5.1c	LTAMULT cfc = 0.581		
PENTOXSD TRO	5.1b	LTA_afc=	171.314	5.1d	LTA_cfc = 260.570		
Source		Effluer	nt Limit Calcu	lations			
PENTOXSD TRO	5.1f		AML MULT =	1.720			
PENTOXSD TRO	5.1g	AVG MON L	IMIT (mg/I) =	0.500	BAT/BPJ		
		INST MAX L	IMIT (mg/I) =	1.170			
WLA afc	+ Xd + (AFC EXP((0.5*LN	FC_tc)) + [(AFC_Yc*Qs C_Yc*Qs*Xs/Qd)]*(1-F (cvh^2+1))-2.326*LN(OS/100)				
LTA_afc	wla_afc*LTA	MULT_afc					
WLA_cfc LTAMULT_cfc	+ Xd + (CFC	FC_tc) + [(CFC_Yc*Qs C_Yc*Qs*Xs/Qd)]*(1-F	OS/100)		loc (1)(0,5)		
LTAMULT_cfc EXP((0.5*LN(cvd^2/no_samples+1))-2.326*LN(cvd^2/no_samples+1)^0.5) LTA_cfc wla_cfc*LTAMULT_cfc							
AML MULT	EXP(2.326*L	.N((cvd^2/no_samples	s+1)^0.5)-0.5*	LN(cvd^2/no_sa	amples+1))		
AVG MON LIMIT	MIN(BAT_BP	J,MIN(LTA_afc,LTA_cf	c)*AML_MUL	T)			
INST MAX LIMIT	1.5*((av_mo	n_limit/AML_MULT)/L	TAMULT_afc)			

Attachment D:

Site Thermal Discharge Evaluation

NPDES Permit Fact Sheet Springdale Generating Facility

Facility:	Springdale Ge	nerating Facili	ity			
Permit Number:	PA0219134					
Stream Name:	Allegheny River					
Analyst/Engineer:						
Stream Q7-10 (cfs):						
	2390					
		Facilit	y Flows ¹		Stream	Flows
	Stream	External	Consumptive	Discharge	Adj. Q7-10	Downstream ²
	(Intake)	(Intake)	(Loss)		Stream Flow	Stream Flow
	(MGD)	(MGD)	(MGD)	(MGD)	(cfs)	(cfs)
Jan 1-31	3.95	0.205	3.619	0.536	7648.0	7642.7
Feb 1-29	3.95	0.223	3.619	0.554	8365.0	8359.7
Mar 1-31	3.95	0.223	3.619	0.554	16730.0	16724.7
Apr 1-15	3.95	0.223	3.619	0.554	22227.0	22221.7
Apr 16-30	3.95	0.223	3.619	0.554	22227.0	22221.7
May 1-15	3.95	0.223	3.619	0.554	12189.0	12183.7
May 16-31	3.95	0.223	3.619	0.554	12189.0	12183.7
Jun 1-15	3.95	0.223	3.619	0.554	7170.0	7164.7
Jun 16-30	3.95	0.223	3.619	0.554	7170.0	7164.7
Jul 1-31	3.95	0.223	3.619	0.554	4063.0	4057.7
Aug 1-15	3.95	0.223	3.619	0.554	3346.0	3340.7
Aug 16-31	3.95	0.223	3.619	0.554	3346.0	3340.7
Sep 1-15	3.95	0.223	3.619	0.554	2629.0	2623.7
Sep 16-30	3.95	0.223	3.619	0.554	2629.0	2623.7
Oct 1-15	3.95	0.223	3.619	0.554	2868.0	2862.7
Oct 16-31	3.95	0.223	3.619	0.554	2868.0	2862.7
Nov 1-15	3.95	0.223	3.619	0.554	3824.0	3818.7
Nov 16-30	3.95	0.223	3.619	0.554	3824.0	3818.7
Dec 1-31	3.95	0.223	3.619	0.554	5736.0	5730.7
Facility flows are not requ		·			Case 1),	
Downstream Stream Flow			,			
Please forward all commer			starosta@state na us			
Version 1.0 08/01/2004			· · · · · · · · · · · · · · · · · · ·	e Criteria, DEP-ID: 391-200	00-017	
NOTE: The user can only e			adilioo for romporature	ο οποπα, σει πο . 531-200		
NOTE: MGD x $1.547 = cfs$.		-				

NPDES Permit Fact Sheet Springdale Generating Facility

	Springdale Gene	rating Facility				
Permit Number:						
Stream:	Allegheny River					
	WWF Criteria	CWF Criteria	TSF Criteria	316 Criteria		Q7-10 Multipliers
	(°F)	(°F)	(°F)	(°F)		(Default - Info Only)
Jan 1-31	40	38	40	0	3.2	3.2
Feb 1-29	40	38	40	0	3.5	3.5
Mar 1-31	46	42	46	0	7	7
Apr 1-15	52	48	52	0	9.3	9.3
Apr 16-30	58	52	58	0	9.3	9.3
May 1-15	64	54	64	0	5.1	5.1
May 16-30	72	58	68	0	5.1	5.1
Jun 1-15	80	60	70	0	3	3
Jun 16-30	84	64	72	0	3	3
Jul 1-31	87	66	74	0	1.7	1.7
Aug 1-15	87	66	80	0	1.4	1.4
Aug 16-31	87	66	87	0	1.4	1.4
Sep 1-15	84	64	84	0	1.1	1.1
Sep 16-30	78	60	78	0	1.1	1.1
Oct 1-15	72	54	72	0	1.2	1.2
Oct 16-31	66	50	66	0	1.2	1.2
Nov 1-15	58	46	58	0	1.6	1.6
Nov 16-30	50	42	50	0	1.6	1.6
Dec 1-31	42	40	42	0	2.4	2.4
NOTES:						
NWF= Warm wate	er fishes					
CWF= Cold water f	ishes					
SF= Trout stockin	ia					

NPDES Permit Fact Sheet Springdale Generating Facility

Facility:	Springdale Gene	rating Facility				
Permit Number:	PA0219134					
Stream:	Allegheny River					
	J J					
	WWF			WWF	WWF	
	Ambient Stream	Ambient Stream	Target Maximum	Daily	Daily	
	Temperature (°F)	Temperature (°F)	Stream Temp. ¹	WLA ²	WLA ³	at Discharge
	(Default)	(Site-specific data)		(Million BTUs/day)	(°F)	Flow (MGD)
Jan 1-31	35	0	40	N/A Case 2	110.0	0.536
Feb 1-29	35	0	40	N/A Case 2	110.0	0.554
Mar 1-31	40	0	46	N/A Case 2	110.0	0.554
Apr 1-15	47	0	52	N/A Case 2	110.0	0.554
Apr 16-30	53	0	58	N/A Case 2	110.0	0.554
May 1-15	58	0	64	N/A Case 2	110.0	0.554
May 16-30	62	0	72	N/A Case 2	110.0	0.554
Jun 1-15	67	0	80	N/A Case 2	110.0	0.554
Jun 16-30	71	0	84	N/A Case 2	110.0	0.554
Jul 1-31	75	0	87	N/A Case 2	110.0	0.554
Aug 1-15	74	0	87	N/A Case 2	110.0	0.554
Aug 16-31	74	0	87	N/A Case 2	110.0	0.554
Sep 1-15	71	0	84	N/A Case 2	110.0	0.554
Sep 16-30	65	0	78	N/A Case 2	110.0	0.554
Oct 1-15	60	0	72	N/A Case 2	110.0	0.554
Oct 16-31	54	0	66	N/A Case 2	110.0	0.554
Nov 1-15	48	0	58	N/A Case 2	110.0	0.554
Nov 16-30	42	0	50	N/A Case 2	110.0	0.554
Dec 1-31	37	0	42	N/A Case 2	110.0	0.554

¹ This is the maximum of the WWF WQ criterion or the ambient temperature. The ambient temperature may be either the design (median) temperature for WWF, or the ambient stream temperature based on site-specific data entered by the user. A minimum of 1°F above ambient stream temperature is allocated.

² The WLA expressed in Million BTUs/day is valid for Case 1 scenarios, and disabled for Case 2 scenarios.

³ The WLA expressed in °F is valid only if the limit is tied to a daily discharge flow limit (may be used for Case 1 or Case 2).

WLAs greater than 110°F are displayed as 110°F.

Attachment E

PFBC comments on Springdale's CWIS and 316(b) coordination

Pennsylvania Fish & Boat Commission

Bureau of Fisheries Division of Environmental Services 595 E Rolling Ridge Drive Bellefonte, PA 16823 (814) 330-5111

23 July 2021

Mr. Adam Olesnanik, E.I.T.
Department of Environmental Protection, Clean Water Program
Southwest Regional Office
400 Waterfront Drive
Pittsburgh, PA 15222

RE: Draft Springdale Generating Facility Cooling Water Intake Structure (CWIS)

Dear Mr. Olesnanik:

The Pennsylvania Fish and Boat Commission (PFBC) has reviewed information pertaining to the cooling water intake structure (CWIS) and 316b coordination for the Springdale Generating Facility, located in Springdale Township, Allegheny County, Pennsylvania. The comments below are provided regarding aquatic resource concerns resulting from the activities within the scope of this project.

- The PFBC appreciates the compliance summary provided by the applicant and the measures
 taken to adhere to state and federal recommendations to minimize impingement and entrainment
 (I&E) at the CWIS. The adherence to flow velocities below the suggested 0.5 feet per second is
 one of the critical components to assuring maximum protection of aquatic organisms.
- 2. The second component to minimizing impacts to aquatic organisms is adherence to the screen size recommendations. PFBC is concerned regarding the mesh screen size used at the Springdale CWIS which is almost double the size (0.5 inches) compared to those recommended by state and federal guidance (3/16" or 0.19"). As the applicant notes, small organisms are still capable of becoming entrained in the CWIS which is likely to result in stress or mortality to those individuals. Despite the low volume pumped into the CWIS relative to the size of the river itself, these organisms are likely to be eggs, larvae, and young-of-year (i.e. the most sensitive life stages) and could thus have a disproportionate effect on population dynamics of the species that become entrained. Many of these effects would not be realized until years later, particularly given the lack of regular and adequate ecological monitoring at this site.
- 3. Previous PFBC surveys indicate that there are numerous sport fish species present including but not limited to Smallmouth Bass (Micropterus dolomieu), Spotted Bass (M. punctulatus), Rock Bass (Ambloplites rupestris), Walleye (Sander vitreus), Sauger (S. canadensis), and Channel Catfish (Ictalurus punctatus). In addition to supporting recreational angling opportunities, these and other fish species serve as hosts for developing freshwater mussels that use fish for dispersal into historically occupied habitats. Given the substantial aquatic resources present in this basin, PFBC recommends adhering to both the velocity and screen size specifications to be as protective as possible.

Our Mission: www.fish.state.pa.us

To protect, conserve and enhance the Commonwealth's aquatic resources and provide fishing and boating opportunities.

We appreciate your consideration of these comments. If you have questions or would like to discuss these comments further please do not hesitate to contact me via email (hgalbraith@pa.gov) or phone (814-330-5111).

Sincerely,

Heather S. Galbraith Water Planning Biologist

Pennsylvania Fish and Boat Commission

cc: Ben Lorson, Heather Smiles