

Northwest Regional Office CLEAN WATER PROGRAM

 Application Type
 Renewal

 Facility Type
 Non-Municipal

 Major / Minor
 Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

Application No. APS ID Authorization ID

PA0219258 1095567 1452120

Applicant and Facility Information

Applicant Name	Mechling Shakley Veterans Center Inc.	Facility Name	Mechling Shakley Veterans Center
Applicant Address	1431 State Route 268	Facility Address	Mechling Shakley Veterans Cent
	Cowansville, PA 16218		Cowansville, PA 16218
Applicant Contact	Sean Taladay, Executive Director	Facility Contact	
Applicant Phone	(724) 545-9016	Facility Phone	(724) 545-9016
Applicant E Mail	sean@268center.com	Facility E Mail	
Client ID	162952	Site ID	552248
Municipality	Sugarcreek Township	County	Armstrong
Ch 94 Load Status	Not Overloaded	Connection Status	No Limitations
SIC Code		SIC Code	4952
SIC Description		SIC Description	Trans. & Utilities - Sewerage Systems
Date Application Recei	ved August 9, 2023	EPA Waived?	Yes
Date Application Accept	bted September 6, 2023	If No, Reason	
Purpose of Application	NPDES permit renewal		

Summary of Review

No violations open or otherwise on file. 10/10/2023 CWY Existing TRC, DO, & pH monitoring is 3/week while daily monitoring is recommended by the and the NPDES Permits Writers Manual.

1 dry ton sludge sent to Allegheny Valley Joint Sewage Authority STP for further treatment and disposal.

Facility operation by CWM Environmental.

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Approve	Deny	Signatures	Date
\mathbf{V}		William H. Mentzer	
Λ		William H. Mentzer, P.E. Environmental Engineering Specialist	September 6, 2023
X		Chad W. Yurisic Chad W. Yurisic, P.E. Environmental Engineer Manager	10/10/2023

	Discharge, Receiving Waters	and Water Supply Informati	on
	004		0.000
Outfall No.	001	Design Flow (MGD)	0.008
Latitude DP	40° 55' 18.00"	Longitude DP	79° 36' 59.00"
Latitude NHD	<u>40° 55' 6.36"</u>	Longitude NHD	<u>79° 36' 54.71"</u>
Quad Name	East Brady	Quad Code	1109
Wastewater Descri	ption: Treated domestic sewage		
Receiving Waters	Unnamed Tributary of Patterson Cre	ek Stream Code	unknown
NHD Com ID	123971284	RMI	0.04
Drainage Area	0.158	Yield (cfs/mi ²)	0
Q ₇₋₁₀ Flow (cfs)	0	Q7-10 Basis	USGS topographic map
Elevation (ft)	1420.00	Slope (ft/ft)	0.095
Watershed No.	18-F	Chapter 93 Class.	HQ-TSF
Existing Use	statewide	Existing Use Qualifier	none
Exceptions to Use	none	Exceptions to Criteria	none
Comments	0.04-mile dry swale discharge to dry	stream RMI 0.15 at elevation	1320 feet Node and basin
	Drainage 0.158-squate mile, Conflue		
	RMI 2.69), elevation1392.86 feet ar	•	
	<i>I</i> :	X	, , , , , , , , , , , , , , , , , , ,
Assessment Status	Attaining Use(s)		
Cause(s) of Impair			
Source(s) of Impair			
Source(s) of Impair TMDL Status	ment	Name	
Source(s) of Impair TMDL Status		Name	
TMDL Status	ment NA		
TMDL Status Background/Ambie	ment NA	Name Data Source	
TMDL Status Background/Ambie pH (SU)	ment NA	Data Source	
TMDL Status Background/Ambie pH (SU) Temperature (°C)	ment	Data Source CWF default	
TMDL Status Background/Ambie pH (SU) Temperature (°C) Hardness (mg/L)	ment NA	Data Source	
TMDL Status Background/Ambie pH (SU) Temperature (°C) Hardness (mg/L) CBOD5 (mg/L)_	ment <u>NA</u> Int Data <u>20</u> 100	Data Source CWF default Default	
TMDL Status Background/Ambie pH (SU) Temperature (°C) Hardness (mg/L) CBOD5 (mg/L)_ Ammonia Nitrogen	rment <u>NA</u> ent Data <u>20</u> 100 (mg/L)	Data Source CWF default Default	
TMDL Status Background/Ambie pH (SU) Temperature (°C) Hardness (mg/L) CBOD5 (mg/L)_	ment <u>NA</u> Int Data <u>20</u> 100	Data Source CWF default Default	
TMDL Status Background/Ambie pH (SU) Temperature (°C) Hardness (mg/L) CBOD5 (mg/L)_ Ammonia Nitrogen Other:	ment <u>NA</u> Int Data <u>20</u> 100 (mg/L)	Data Source CWF default Default	ated on Buffalo Creek
TMDL Status Background/Ambie pH (SU) Temperature (°C) Hardness (mg/L) CBOD5 (mg/L)_ Ammonia Nitrogen Other: Nearest Downstrea	ment <u>NA</u> Int Data <u>20</u> 100 (mg/L)	Data Source CWF default Default Creekside Mushrooms LTD loc	ated on Buffalo Creek
TMDL Status Background/Ambie pH (SU) Temperature (°C) Hardness (mg/L) CBOD5 (mg/L)_ Ammonia Nitrogen Other:	ment <u>NA</u> Int Data <u>20</u> 100 (mg/L)	Data Source CWF default Default	ated on Buffalo Creek

Changes Since Last Permit Issuance

As the receiving waters are classified as high quality the water supply criteria is applied at the discharge.

The first downstream public (municipal) water supply is on the Allegheny River by the Harrison Township Water Authority at RMI 21.89. This is 29.0 miles downstream.

	Tr	eatment Facility Summar	у	
Treatment Facility Na	me: Mechling-Shakley \	/eterans Center STP		
WQM Permit No.	Issuance Date			
0303402	August 22, 2003			
Waste Type	Degree of Treatment	Process Type	Disinfection	Avg Annual Flow (MGD)
Sewage	Tertiary	Extended Aeration with solids removal	Chlorination followed by dechlorination	0.0015
Hydraulic Capacity (MGD)	Organic Capacity (Ibs/day)	Load Status	Biosolids Treatment	Biosolids Use/Disposal
0.008	13.4		Aerobic Digestion	Off site

Changes Since Last Permit Issuance: None

Treatment: comminutor with bypass bar screen, a flow equalization basin, an aeration tank, a final clarifier, an aerobic digester, a dual cell fixed media tank for TSS removal, a chlorine contact tank utilizing a tablet chlorinator, a de-chlorinator and post aeration.

			Co	omplian	ce Histo	ory					
No violations listed	Maath	Inflı Year	uent Flow	Maaa				Effl	uent		
Annual Average Design Hydraulic Design Capacity Organic Design Capacity	Month	rear	Mean MGD 0.008	Mass Mean PPD	Mean mg/L	Max mg/L	#	Min mg/L	Mean mg/L	Max mg/L	#
Annual Average		2022 2021 2020	0.112* 0.111* 0.121*								
Highest Monthly Average pH TRC Fecal coliform CBOD5 TSS NH3N N P	Dec		0.136 [∗]		290 320.5	813 816	48 48	6.7 0.01 1.40 7.30	0.01 1.88 4.24 4.56 0.25 31.9 7.44	7.29 0.01 249 6.8 14.0 1.01 62.4 7.58	624 312 48 48 48 48 48 2 2

The design annual average flow is 0.0015-MGD and the hydraulic average is flow 0.008 MGD. **The August 1, 2022 to July 31, 2023 self-monitoring report flow are a lot less than above.**

*As reported on Application. Based on a review of eDMRs, it appears the flow listed on the application is off by two orders of magnitude. 10/10/2023 CWY

Compliance History

DMR Data for Outfall 001 (from August 1, 2022 to July 31, 2023)

Parameter	JUL-23	JUN-23	MAY-23	APR-23	MAR-23	FEB-23	JAN-23	DEC-22	NOV-22	OCT-22	SEP-22	AUG-22
Flow (MGD)												
Average Monthly	0.004267	0.0040325	0.0037664	0.003548	0.003299	0.003001	0.002554	0.001985	0.001365	0.001059	0.000611	0.0009
pH (S.U.)												
Instant Minimum	6.92	7.28	7.8	6.9	7.03	7.15	6.98	6.9	6.92	6.89	6.9	6.93
pH (S.U.)												
Instant Maximum	7.72	8.4	7.11	7.62	7.59	7.50	7.51	7.11	7.01	7.03	7.06	7.04
DO (mg/L)												
Instant Minimum	8.13	7.48	8.8	9.08	9.9	9.86	10.0	8.28	8.01	8.05	7.96	7.92
TRC (mg/L)												
Average Monthly	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
TRC (mg/L)												
Instant Maximum	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.001	< 0.01	< 0.01	< 0.01
CBOD5 (mg/L)		1.0						4.0			0.7	
Average Monthly	< 3.0	< 4.2	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 4.9	< 3.0	< 3.0	< 3.7	< 3.0
CBOD5 (mg/L)		5.0		0.0	0.0	0.0	0.0	0.0	0.0			
Weekly Average	< 3.0	5.3	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	3.0	4.4	3.2
CBOD5 (mg/L)		5.0						<u> </u>		2.0		2.2
Instant Maximum	< 3.0	5.3	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	6.8	< 3.0	3.0	4.4	3.2
TSS (mg/L) Average Monthly	< 3.5	< 4.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	3.5	< 3.0	< 3.0	< 3.0
TSS (mg/L)	< 3.5	< 4.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	3.5	< 3.0	< 3.0	< 3.0
Weekly Average	4.0	5.0	< 3.0	< 3.0	< 3.0	3.0	< 3.0	3.0	4.0	< 3.0	< 3.0	< 3.0
TSS (mg/L)	4.0	5.0	< 5.0	< 3.0	< 3.0	5.0	< 3.0	5.0	4.0	< 5.0	< 3.0	< 3.0
Instant Maximum	4.0	5.0	< 3.0	< 3.0	< 3.0	3.0	< 3.0	3.0	4.0	< 3.0	< 3.0	< 3.0
Fecal Coliform (#/100	4.0	0.0	< 0.0	< 0.0	< 0.0	0.0	< 0.0	0.0	4.0	< 0.0	< 0.0	< 0.0
ml) Geo Mean	4.0	17.0	< 1.0	< 1.0	< 1.0	< 1.0	< 4.0	< 1.0	< 1.0	< 1.0	< 6.0	14.0
Fecal Coliform (#100												
ml) Instant Maximum	7.0	56.0	< 1.0	< 1.0	< 1.0	< 1.0	14.0	< 1.0	2.0	< 1.0	35.0	26.0
Total Nitrogen (mg/L)												
Daily Maximum								1.45				
Ammonia (mg/L)												
Average Monthly	0.12	0.57	1.57	< 0.23	0.13	< 0.10	< 0.42	0.26	< 0.3	< 0.1	< 0.1	< 0.15
Ammonia (mg/L)												
Instant Maximum	0.12	0.96	2.01	0.35	0.14	< 0.10	0.74	0.29	0.5	< 0.1	0.1	0.19
Total Phosphorus												
(mg/L) Daily Maximum								7.29				

Development of Effluent Limitations

Outfall No.	001		Design Flow (MGD)	.008
Latitude	40º 55' 18.00	n	Longitude	-79º 36' 59.00"
Wastewater De	escription:	Sewage Effluent		

Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
CROD-	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD₅	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
рН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform (5/1 – 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform (5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform (10/1 – 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform (10/1 – 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)
DO	4.0	Daily minimum		BPJ
E Coli	Report			BPJ

Comments: E coli monitoring proposed as the discharge is to a HQ-TSF stream and the discharge is over 0.002-MGD.

Water Quality-Based Limitations

The following limitations were determined through water quality modeling (output files attached):

Parameter	Limit (mg/l)	SBC	Model
Ammonia-Nitrogen			
May 1 – Oct 31	1.9	Average Monthly	WQAM63
Ammonia-Nitrogen			
Nov 1 – Apr 30	3.8	Average Monthly	WQAM63
Total Residual Chlorine	0.01	Average Monthly	TRC_CALA

Additional Limitations

Parameter	Limit (mg/l)	SBC	Basis
CBOD5			ABACT – Water Quality Anti-Degradation
CBODS	10	Average Monthly	Implementation Guidance
TSS			ABACT – Water Quality Anti-Degradation
155	10	Average Monthly	Implementation Guidance
Dissolved Oxygen			ABACT – Water Quality Anti-Degradation
Dissolved Oxygen	6	Minimum	Implementation Guidance
Total Nitrogen			SOP- Establishing Effluent Limitations for
Total Nillogen	Report	Annually	Individual Sewage Permits, Version 1.0
Total Phosphorus			SOP- Establishing Effluent Limitations for
	Report	Annually	Individual Sewage Permits, Version 1.0

Other Considerations

CBOD5 and ammonia modelling shifted from WQM6.3 to WQM 7.1 slightly changing the modelling layout and water quality-based requirements.

Best Professional Judgment (BPJ) Limitations

Comments: Not applicable

Anti-Backsliding

Not applicable

1A	В	С	D	E	F	G	Н	1	J	K L	М
	Discl	harger		akley Veterans				10110 00 00		y, August 1, 2023	
		lite			Center Inc. STF			Revised	Thursday,	September 7, 2023	
		cipality	Sugarcreek	lownship							
		unty S Permit	Armstrong PA0219258								
		0.5	1 40213230								
2						TRC EV	ALUATION				
3	Innut annronri	iate values in E	R4:R8 and E4:	=7							
4		001	= Q stream (c		ſ	0.	5 = CV Daily				
5		0295	= Q discharg		1		5 = CV Hourly				
6	3	30	= no. sample		1		1 = AFC_Partia	l Mix Factor			
7		0.3		emand of Strea			1 = CFC_Partia				
8		0		emand of Disch	arge			ia Compliance			
9		0.5	= BAT/BPJ V	alue f Safety (FOS)		/2	= CFC_Criter =Decay Coeff	ia Compliance '	lime (min)		
10		urce	Reference	AFC Calculatio	ine			erence		CFC Calculations	
11		RC	1.3.2.iii	Ai e calculatio	WLA afc =	0.025		3.2.iii		WLA cfc = 0.016	
12	PENTOXSD TH	RG	5.1a		LTAMULT afc =			5.1c	LTZ	AMULT cfc = 0.581	
	PENTOXSD TH	RG	5.1b		LTA_afc=	0.009		5.1d		LTA_cfc = 0.010	
14							F #		I P P = -		
15	Source PENTOXSD TR		5.1f			AML MULT		uent Limit Calcu	Jiations		
	PENTOX5D TH		5.1g		1.	LLIMIT (mg/l)			AFC		
18						LIMIT (mg/l)					
					10						
	WLA afc		(019/e/_k*AF	(te)) + [(AFC	Yc*Qs*.019/Qd*e(-k*AFC tol)					
	WEA OL			C_tc)) + [(AFC_ C_Yc*Qs*Xs/Qd		- A O_U))					
	LTAMULT afc		EXP((0.5*LN(cvh^2+1))-2.328	*LN(cvh^2+1)^0.5)						
	LTA_afc		wla_afc*LTAN								
	WLA_cfc		(011/0/ ****	C to) + MOEC	Yc*Qs*.011/Qd*e(-	ATCEC +all					
	WLA_CIC			C_(CFC_ C_Yc*Qs*Xs/Qd		• CFC_(C))					
	LTAMULT_cfc				les+1))-2.326*LN(c	vd^2/no_sam	ples+1)^0.5)				
	L TA_cfc		wla_cfc*LTAM	IULT_cfc							
	AMLMULT			1//		hl/au all O /a a					
	AME MOLT AVG MON LIMIT				nples+1)^0.5)-0.5* _TA_cfc)*AML_MU		samples+1))				
	INST MAX LIMIT				LT)/LTAMULT_afe						
		*CFC_tc/1440)) 'C_tc/1440)))+X									
		Chlorine Requir		=	perennial	Chlorin	e Demand	+	Chlorine Residua	al l	
	Stream	Reach/Node		1	1						
	Stream	Flow	Conditions		dry						
	Stream	Code Function			unknown OUTFALL						
	Samples	1 difeacin			30						
	reach	outfall		RMI	0.04						
		Reach End		RMI	0						
	reach drainage			feet sq miles	211.2 0.03						
	TRC	limitation	average	mg/L	0.011						
			maximum	mg/L	0.037						
	elevation		modelled	feet	1440						
	elevation		modelled	feet	1420.00						
	slope low flow		modelled	foot/foot cfs/sg mi	0.095 0.027						
	discharge			mgd	0.0295						
	Runoff	Period		hours	24.000						
	HQ-TSF wate										
	stream	flow		cfs	0.00080						
	stream	flow		MGD	0.000517						
	stream	flow	total	MGD	0.030017						
	stream	chlorine discharge	dem and	mg/L mg/l	0.3						
	discharge stream	discharge Total Stream/	demand Waste	mg/L ratio	1.0						
	Stroum	Total officially	avasto.	Tatio	1.0						
	BAT	TRC	mean	BAT	0.5						
	BAT	TRC	maximum	BAT	1.6						
	В	С	D	E	E	G	Н	3	J	K L	M

Input Data WQM 7.0

	SWP Basir			Stre	eam Nam	e	RMI	Elevati (ft)	A	nage rea mi)	Slope (ft/ft)	PWS Withdrawal (mgd)	Apply FC
	18F	427	708 Trib 42	2708 to Pa	atterson C	creek	2.69	90 139	2.86	0.28	0.00000	0.0	
					;	Stream Dat	a						
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	<u>Tribu</u> Temp	<u>itary</u> pH	Tem	<u>Stream</u> p pH	
	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C)		
Q7-10	0.027	0.00	0.00	0.000	0.000	0.0	0.00	0.00	20.00	7.0	io c	0.00 0.0	0
Q1-10		0.00	0.00	0.000	0.000								
230-10		0.00	0.00	0.000	0.000	l							
						Discharge I	Data						
			Name	Per	mit Numt	Existing Disc per Flow	Permitte Disc Flow	ed Design Disc Flow	Reserve Factor	Diso Tem			
						(mgd)	(mgd)	(mgd)		(°C)		
		-				0.000	0.000	0.000	0.000) 2:	5.00	7.00	
						Parameter	Data						
						Di	sc T	Trib Stre	eam Fa	te			

Conc

(mg/L)

25.00

3.00

25.00

Parameter Name

CBOD5

NH3-N

Dissolved Oxygen

Conc

(mg/L)

2.00

8.24

0.00

Conc

(mg/L) (1/days)

0.00

0.00

0.00

Coef

1.50

0.00

0.70

Input Data WQM 7.0

	SWP Basir			Stre	eam Nam	e	RMI	Elevati (ft)	A	nage rea 1 mi)	Slope (ft/ft)	PWS Withdrawal (mgd)	Apply FC
	18F	427	708 Trib 42	2708 to Pa	atterson C	Creek	2.42	2 0 133	0.77	0.43	0.00000	0.0	0
						Stream Dat	a						
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	<u>Tribı</u> Temp	<u>itary</u> pH	Tem	<u>Stream</u> p pH	
	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C)		
Q7-10	0.027	0.00	0.00	0.000	0.000	0.0	0.00	0.00	20.00	7.0	0 0	0.00 0.0	0
Q1-10		0.00	0.00	0.000	0.000)							
230-10		0.00	0.00	0.000	0.000)							
						Discharge I	Data						
			Name	Per	mit Numt	Existing Disc per Flow	Permitte Disc Flow	ed Design Disc Flow	Reserve Factor	Dise Tem			
						(mgd)	(mgd)	(mgd)		O°))		
		-				0.000	0 0.000	0.000	0.000) 2	5.00	7.00	
						Parameter	Data						
						Di	sc T	Trib Stre	eam Fa	ite			

Conc

(mg/L)

25.00

3.00

25.00

Parameter Name

CBOD5

NH3-N

Dissolved Oxygen

Conc

(mg/L)

2.00

8.24

0.00

Conc

(mg/L) (1/days)

0.00

0.00

0.00

Coef

1.50

0.00

0.70

			VVG	VI 1.U	nyur	ouyn	annic	Οuι	Juis				
	<u>sw</u>	P Basin	Strea	m Code				Stream	Name				
		18F	42708		Trib 42708 to Patterson Creek								
RMI	Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow	Reach Slope	Depth	Width	W/D Ratio	Velocity	Reach Trav Time	Analysis Temp	Analysis pH	
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)		
Q7-10	0 Flow												
2.880	0.00	0.00	0.00	.0124	0.09470	.304	.84	2.78	0.05	0.048	20.00	7.00	
2.840	0.00	0.00	0.00	.0124	0.03427	.271	1.64	6.06	0.04	0.246	20.00	7.00	
2.690	0.01	0.00	0.01	.0124	0.04355	.278	1.93	6.93	0.04	0.446	20.00	7.00	
Q1-1	0 Flow												
2.880	0.00	0.00	0.00	.0124	0.09470	NA	NA	NA	0.05	0.048	20.00	7.00	
2.840	0.00	0.00	0.00	.0124	0.03427	NA	NA	NA	0.04	0.260	20.00	7.00	
2.690	0.00	0.00	0.00	.0124	0.04355	NA	NA	NA	0.03	0.483	20.00	7.00	
Q30-	10 Flow	/											
2.880	0.00	0.00	0.00	.0124	0.09470	NA	NA	NA	0.05	0.047	20.00	7.00	
2.840	0.01	0.00	0.01	.0124	0.03427	NA	NA	NA	0.04	0.234	20.00	7.00	
2.690	0.01	0.00	0.01	.0124	0.04355	NA	NA	NA	0.04	0.415	20.00	7.00	

WQM 7.0 Hydrodynamic Outputs

	SWP Basir			Stre	am Name	L	RMI	Elevatio (ft)	A	nage rea 1 mi)	Slope (ft/ft)	PWS Withdrawa (mgd)	App I FC
	18F	427	708 Trib 42	2708 to Pa	atterson C	reek	2.88	0 1440	0.00	0.03 (0.00000	0.	00 🔽
					5	stream Data	a						
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	<u>Tribı</u> Temp	<u>utary</u> pH	Tem	<u>Stream</u> p p⊢	
Conta.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C))	
27-10	0.027	0.00	0.00	0.000	0.000	0.0	0.00	0.00	20.00	7.00) (0.00 0.	00
21-10		0.00	0.00	0.000	0.000								
30-10		0.00	0.00	0.000	0.000								
					j	Discharge D	Data						
			Name	Per	mit Numb	Disc	Permitte Disc Flow	d Design Disc Flow	Reserve Factor	Disc Temp	Dis p		
				1.61		(mgd)	(mgd)	(mgd)	. 20101	(°C)			
		MS V	et Ctr	PAC)219258a	0.0080	0.0080	0.0080	0.000) 20.	.00	7.00	
					F	Parameter D	Data						

Disc

Parameter Name

CBOD5

NH3-N

Dissolved Oxygen

Conc

(mg/L)

25.00

6.00

25.00

Trib

Conc

(mg/L)

2.00

8.24

0.10

Stream

Conc

Fate Coef

1.50

0.00

0.70

(mg/L) (1/days)

0.00

0.00

0.00

Input Data WQM 7.0

	SWP Basin	Strea	um Code		St	ream Name		
	18F	4	2708		Trib 42708	to Patterson	Creek	
NH3-N	Acute Alloc	ation	s					
RMI	Discharge	Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
2.88	0 MS Vet Ctr		16.76	17.45	16.76	17.45	0	0
2.84	0		NA	NA	16.76	NA	NA	NA
2.69	0		NA	NA	16.76	NA	NA	NA
H3-N	Chronic Alle	ocati	ons					
RMI	Discharge Na		Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
2.88	0 MS Vet Ctr		1.89	2.04	1.89	2.04	0	0
	0		NA	NA	1.89	NA	NA	NA
2.84			NA	NA	1.89	NA	NA	NA

		CBC	<u>DD5</u>	<u>NH3-N</u>		Dissolved	d Oxygen	Critical	Percent	
RMI	Discharge Name	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Reach	Reduction	
2.88	MS Vet Ctr	25	25	2.04	2.04	6	6	0	0	
2.84		NA	NA	NA	NA	NA	NA	NA	NA	
2.69		NA	NA	NA	NA	NA	NA	NA	NA	

Thursday, September 7, 2023

ram Code 42708 Total Discharge 0.000 Reach Deg 0.300 Reach Kc (1.492 Reach Kr (26.88 TravTime (days) 0.005 0.010 0.014 0.019 0.024 0.029 0.033 0.038 0.043	3 o <u>th (ft)</u> 4 1/days) 2 1/days)	<u>) Ana</u>	<u>Stream Name</u> 708 to Patterson Cre <u>lysis Temperature (°C)</u> 20.000 <u>Reach WDRatio</u> 2.779 <u>teach NH3-N (mg/L)</u> 1.93 <u>Kr Equation</u> Owens D.O. (mg/L) 6.24 6.33 6.41 6.48 6.55 6.61 6.66	
Total Discharge 0.000 <u>Reach De</u> 0.300 <u>Reach Kc (</u> 1.492 <u>Reach Kr (</u> 26.88 TravTime (days) 0.005 0.010 0.014 0.019 0.024 0.029 0.033 0.038	3 <u>oth (ft)</u> 4 <u>1/days)</u> 2 <u>1/days)</u> 6 Subreach CBOD5 (mg/L) 23.44 23.27 23.11 22.95 22.78 22.62 22.46) <u>Anal</u> Results NH3-N (mg/L) 1.92 1.91 1.91 1.90 1.89 1.89	Ivsis Temperature (°C) 20.000 Reach WDRatio 2.779 teach NH3-N (mg/L) 1.93 Kr Equation Owens D.O. (mg/L) 6.24 6.33 6.41 6.55 6.61) <u>Analysis pH</u> 7.000 <u>Reach Velocity (fps)</u> 0.051 <u>Reach Kn (1/days)</u> 0.700 <u>Reach DO Goal (mg/L)</u>
0.000 <u>Reach De</u> 0.300 <u>Reach Kc (</u> 1.492 <u>Reach Kr (</u> 26.88 TravTime (days) 0.005 0.010 0.014 0.019 0.024 0.029 0.033 0.038	3 <u>oth (ft)</u> 4 <u>1/days)</u> 2 <u>1/days)</u> 6 Subreach CBOD5 (mg/L) 23.44 23.27 23.11 22.95 22.78 22.62 22.46	Results NH3-N (mg/L) 1.92 1.91 1.91 1.90 1.89 1.89	20.000 <u>Reach WDRatio</u> 2.779 <u>teach NH3-N (mg/L)</u> 1.93 <u>Kr Equation</u> Owens D.O. (mg/L) 6.24 6.33 6.41 6.48 6.55 6.61	7.000 <u>Reach Velocity (fps)</u> 0.051 <u>Reach Kn (1/days)</u> 0.700 <u>Reach DO Goal (mg/L)</u>
Reach Der 0.300 Reach Kc (1.492 Reach Kr (' 26.88 TravTime (days) 0.005 0.010 0.014 0.024 0.029 0.033 0.038	oth (ft) 4 1/days) 6 Subreach CBOD5 (mg/L) 23.44 23.27 23.11 22.95 22.78 22.62 22.46	Results NH3-N (mg/L) 1.92 1.91 1.91 1.90 1.89 1.89	Reach WDRatio 2.779 1.93 Kr Equation Owens D.O. (mg/L) 6.24 6.33 6.41 6.48 6.55 6.61	<u>Reach Velocity (fps)</u> 0.051 <u>Reach Kn (1/days)</u> 0.700 <u>Reach DO Goal (mg/L)</u>
0.304 <u>Reach Kc (</u> 1.493 <u>Reach Kr ('</u> 26.88 TravTime (days) 0.005 0.010 0.014 0.019 0.024 0.029 0.033 0.038	4 <u>1/days</u>) 2 <u>1/days</u>) 6 Subreach CBOD5 (mg/L) 23.44 23.27 23.11 22.95 22.78 22.62 22.46	Results NH3-N (mg/L) 1.92 1.91 1.91 1.90 1.89 1.89	2.779 1.93 <u>Kr Equation</u> Owens D.O. (mg/L) 6.24 6.33 6.41 6.48 6.55 6.61	0.051 <u>Reach Kn (1/days)</u> 0.700 <u>Reach DO Goal (mg/L)</u>
Reach Kc (1.49) Reach Kr (26.88 TravTime (days) 0.005 0.010 0.014 0.019 0.024 0.029 0.033 0.038	1/days) 2 1/days) 6 Subreach CBOD5 (mg/L) 23.44 23.27 23.11 22.95 22.78 22.62 22.46	Results NH3-N (mg/L) 1.92 1.91 1.91 1.90 1.89 1.89	Leach NH3-N (mg/L) 1.93 <u>Kr Equation</u> Owens D.O. (mg/L) 6.24 6.33 6.41 6.48 6.55 6.61	<u>Reach Kn (1/days)</u> 0.700 <u>Reach DO Goal (mg/L)</u>
1.492 <u>Reach Kr ('</u> 26.88 TravTime (days) 0.005 0.010 0.014 0.019 0.024 0.029 0.033 0.038	2 1/days) 6 Subreach CBOD5 (mg/L) 23.44 23.27 23.11 22.95 22.78 22.62 22.46	Results NH3-N (mg/L) 1.92 1.91 1.91 1.90 1.89 1.89	1.93 <u>Kr Equation</u> Owens D.O. (mg/L) 6.24 6.33 6.41 6.48 6.55 6.61	0.700 Reach DO Goal (mg/L)
Reach Kr (26.88 TravTime (days) 0.005 0.010 0.014 0.019 0.024 0.029 0.033 0.038	1/days) 6 Subreach CBOD5 (mg/L) 23.44 23.27 23.11 22.95 22.78 22.62 22.46	NH3-N (mg/L) 1.92 1.91 1.91 1.90 1.89 1.89	<u>Kr Equation</u> Owens D.O. (mg/L) 6.24 6.33 6.41 6.48 6.55 6.61	Reach DO Goal (mg/L)
26.88 TravTime (days) 0.005 0.010 0.014 0.019 0.024 0.029 0.033 0.038	6 Subreact CBOD5 (mg/L) 23.44 23.27 23.11 22.95 22.78 22.62 22.46	NH3-N (mg/L) 1.92 1.91 1.91 1.90 1.89 1.89	Owens D.O. (mg/L) 6.24 6.33 6.41 6.48 6.55 6.61	NC AND A DESCRIPTION OF A DESCRIPTIONO OF A DESCRIPTION O
(days) 0.005 0.010 0.014 0.019 0.024 0.029 0.033 0.038	CBOD5 (mg/L) 23.44 23.27 23.11 22.95 22.78 22.62 22.46	NH3-N (mg/L) 1.92 1.91 1.91 1.90 1.89 1.89	(mg/L) 6.24 6.33 6.41 6.48 6.55 6.61	
(days) 0.005 0.010 0.014 0.019 0.024 0.029 0.033 0.038	(mg/L) 23.44 23.27 23.11 22.95 22.78 22.62 22.46	(mg/L) 1.92 1.91 1.91 1.90 1.89 1.89	(mg/L) 6.24 6.33 6.41 6.48 6.55 6.61	
0.010 0.014 0.019 0.024 0.029 0.033 0.038	23.27 23.11 22.95 22.78 22.62 22.46	1.91 1.91 1.90 1.89 1.89	6.33 6.41 6.48 6.55 6.61	
0.014 0.019 0.024 0.029 0.033 0.038	23.11 22.95 22.78 22.62 22.46	1.91 1.90 1.89 1.89	6.41 6.48 6.55 6.61	
0.019 0.024 0.029 0.033 0.038	22.95 22.78 22.62 22.46	1.90 1.89 1.89	6.48 6.55 6.61	
0.019 0.024 0.029 0.033 0.038	22.95 22.78 22.62 22.46	1.90 1.89 1.89	6.48 6.55 6.61	
0.029 0.033 0.038	22.62 22.46	1.89	6.61	
0.029 0.033 0.038	22.46	1.89	6.61	
0.038		1.88	6.66	
	22.30			
0.043		1.88	6.71	
	22.14	1.87	6.76	
0.048	21.99	1.86	6.80	
Total Discharge	Flow (mad) Ana	lvsis Temperature (°C)) <u>Analysis pH</u>
		<u>/ /////</u>		7.000
				Reach Velocity (fps)
0.27	1		6.060	0.037
Reach Kc (1/days)	<u>R</u>	<u>each NH3-N (mg/L)</u>	<u>Reach Kn (1/days)</u>
			1.50	0.700
				Reach DO Goal (mg/L)
26.78	8		Owens	6
TravTime			DO	
(days)	(mg/L)	(mg/L)	(mg/L)	
0.025	17.26	1.48	7.32	
0.049	16.65	1.45	7.46	
0.074	16.07	1.43	7.56	
0.098	15.51	1.40	7.63	
0.123	14.96	1.38	7.69	
0.148	14.44	1.35	7.75	
0.172	13.93	1.33	7.79	
0.197	13.44	1.31	7.79	
0.222	12.97	1.29	7.79	
0.246	12.52	1.26	7.79	
				Page 1
3	0.000 <u>Reach Der</u> 0.27' <u>Reach Kc (</u> 1.443 <u>Reach Kr (</u> 26.78 TravTime (days) 0.025 0.049 0.074 0.098 0.123 0.148 0.172 0.197 0.222 0.246	0.008 <u>Reach Depth (ft)</u> 0.271 <u>Reach Kc (1/days)</u> 1.449 <u>Reach Kr (1/days)</u> 26.788 TravTime CBOD5 (days) CBOD5 (mg/L) 0.025 17.26 0.049 16.65 0.074 16.07 0.098 15.51 0.123 14.96 0.148 14.44 0.172 13.93 0.197 13.44 0.222 12.97 0.246 12.52	0.008 <u>Reach Depth (ft)</u> 0.271 <u>Reach Kc (1/days)</u> 1.449 <u>Reach Kr (1/days)</u> 26.788 <u>TravTime</u> (days) CBOD5 (mg/L) 0.025 17.26 1.48 0.049 16.65 1.45 0.074 16.07 1.43 0.098 15.51 1.40 0.123 14.96 1.38 0.148 14.44 1.35 0.172 13.93 1.33 0.197 13.44 1.31 0.222 12.97 1.29 0.246 12.52 1.26	$ \begin{array}{c c c c c c c } 0.008 & 20.000 \\ \hline Reach Depth (ft) & Reach WDRatio \\ 0.271 & 6.060 \\ \hline Reach Kc (1/days) & Reach NH3-N (mg/L) \\ 1.449 & 1.50 \\ \hline Reach Kr (1/days) & Kr Equation \\ 26.788 & Owens \\ \hline TravTime & CBOD5 & NH3-N \\ (days) & (mg/L) & (mg/L) \\ \hline 0.025 & 17.26 & 1.48 & 7.32 \\ \hline 0.049 & 16.65 & 1.45 & 7.46 \\ 0.074 & 16.07 & 1.43 & 7.56 \\ 0.098 & 15.51 & 1.40 & 7.63 \\ 0.123 & 14.96 & 1.38 & 7.69 \\ 0.148 & 14.44 & 1.35 & 7.75 \\ 0.172 & 13.93 & 1.33 & 7.79 \\ 0.197 & 13.44 & 1.31 & 7.79 \\ 0.222 & 12.97 & 1.29 & 7.79 \\ 0.246 & 12.52 & 1.26 & 7.79 \\ \hline \end{array} $

WQM 7.0 D.O.Simulation

WQM 7.0 D.O.Simulati	on
----------------------	----

105				Stream Name	
18F	42708		Trib 42	708 to Patterson Cree	k
RMI	Total Discharge	e Flow (mgd	<u>) Ana</u>	lysis Temperature (°C)	<u>Analysis pH</u>
2.690	0.00	8		20.000	7.000
Reach Width (ft)	Reach De	pth (ft)		Reach WDRatio	Reach Velocity (fps)
1.926	0.27	8		6.931	0.037
Reach CBOD5 (mg/L)	Reach Kc	(1/days)	R	each NH3-N (mg/L)	Reach Kn (1/days)
10.80	1.35			1.04	0.700
Reach DO (mg/L)	<u>Reach Kr (</u>			Kr Equation	<u>Reach DO Goal (mg/L)</u>
7.860	25.47	72		Owens	6
Reach Travel Time (days)		Subreach	Results		
0.446	TravTime		NH3-N	D.O.	
	(days)	(mg/L)	(mg/L)	(mg/L)	
	0.045	10.16	1.00	7.79	
	0.089	9.57	0.97	7.79	
	0.134	9.01	0.94	7.79	
	0.178	8.48	0.91	7.79	
	0.223	7.98	0.89	7.79	
	0.267	7.51	0.86	7.79	
	0.312	7.07	0.83	7.79	
	0.357	6.66	0.81	7.79	
	0.401	6.27	0.78	7.79	
	0.446		0.76	7.79	

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	✓
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	✓
D.O. Saturation	85.00%	Use Balanced Technology	✓
D.O. Goal	6		

	SWP Basin	Strea Coc		Stre	eam Name	e	RMI	Elevatio (ft)	A	nage rea 1 mi)	Slope (ft/ft)	PWS Withdrawal (mgd)	Apply FC
	18F	427	708 Trib 42	2708 to Pa	atterson C	reek	2.84	D 1420	0.00	0.16	0.00000	0.00	
					5	Stream Dat	a						
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Tra∨ Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	<u>Tribı</u> Temp	<u>utary</u> pH	Tem	<u>Stream</u> p pH	
oona.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C)		
27-10	0.027	0.00	0.00	0.000	0.000	0.0	0.00	0.00	20.00	7.00) (0.00 0.0	0
21-10		0.00	0.00	0.000	0.000								
230-10		0.00	0.00	0.000	0.000								
					3	Discharge [Data						
			Name	Per	mit Numb	Disc	Permitte Disc Flow	d Design Disc Flow	Reserve Factor	Disc Temp	Dis pl		
						(mgd)	(mgd)	(mgd)		(°C)			
				А		0.000	0.000	0.0000	0.000) 25	.00	7.00	
					1	Parameter I	Data						

Conc

(mg/L)

25.00

4.00

25.00

Parameter Name

CBOD5

NH3-N

Dissolved Oxygen

Conc

(mg/L)

2.00

8.24

0.10

Conc

(mg/L) (1/days)

0.00

0.00

0.00

Coef

1.50

0.00

0.70

Input Data WQM 7.0

Page 2 of 4

	<u>SWP Basin</u> S	tream Code		Stream Nam	e		
	18F	42708	-	Trib 42708 to Patters	son Creek		
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
2.880	MS Vet Ctr	PA0219258a	0.008	CBOD5	25		
				NH3-N	2.04	4.08	
				Dissolved Oxygen			6

WQM 7.0 Effluent Limits

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (386-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

	Effluent Limitations										
Parameter	Mass Units	(lbs/day) (1)		Concentrat		Minimum ⁽²⁾	Required				
Farameter	Average Monthly	Average Weekly	Average Monthly	Weekly Average	Maximum	Instant. Maximum	Measurement Frequency	Sample Type			
Flow (MGD)	0.008	XXX	XXX	XXX	XXX	ххх	2/month	Measured			
рН (S.U.)	xxx	xxx	6.0 Inst Min	xxx	xxx	9.0	1/day	Grab			
DO	ХХХ	xxx	6.0 Inst Min	xxx	xxx	xxx	1/day	Grab			
TRC	ХХХ	XXX	0.01	XXX	XXX	0.03	1/day	Grab			
CBOD5	ххх	xxx	10.0	15.0	xxx	20.0	2/month	Grab			
TSS	XXX	XXX	10.0	15.0	XXX	20.0	2/month	Grab			
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	xxx	2000 Geo Mean	xxx	10000	2/month	Grab			
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	XXX	xxx	200 Geo Mean	XXX	1000	2/month	Grab			
E Coli	XXX	xxx	xxx	xxx	xxx	Report	1/year	Grab			
Total Nitrogen	XXX	XXX	XXX	XXX	XXX	Report	1/year	Grab			
Ammonia Nov 1 - Apr 30	ххх	XXX	xxx	2.5 Avg Mo	XXX	5.0	2/month	Grab			
Ammonia May 1 - Oct 31	XXX	XXX	xxx	1.9 Avg Mo	XXX	3.8	2/month	Grab			
Total Phosphorus	ХХХ	XXX	XXX	XXX	XXX	Report	1/year	Grab			

Compliance Sampling Location: Outfall 001 after disinfection