

Southwest Regional Office CLEAN WATER PROGRAM

Application Type Renewal
Facility Type Industrial
Maior / Minor
Minor

NPDES PERMIT FACT SHEET INDIVIDUAL INDUSTRIAL WASTE (IW) AND IW STORMWATER

Application No.	PA0219380
APS ID	691686
Authorization ID	790092

	Applicant and	Facility Information	
Applicant Name	Pureon, Inc.	Facility Name	Fayette Business Park
Applicant Address	1101 Mountain View Drive	Facility Address	1101 Mountain View Drive
	Smithfield, PA 15478		Smithville, PA 15478
Applicant Contact	Randy Breakiron	Facility Contact	Nancy Burke
Applicant Phone	724-564-2630	Facility Phone	724-737-0410
Client ID	202223	Site ID	604306
SIC Code	3972	 Municipality	Georges Township
SIC Description	Other Non-Metallic Mineral Product Manufacturing	County	Fayette
Date Application Rec	eived April 23, 2009	EPA Waived?	Yes
Date Application Acce	epted May 12, 2009	If No, Reason	
Purpose of Applicatio	nApplication is to renew Individua	ıl Waste NPDES Permit w	ithout ELG.

Summary of Review

On April 23, 2009, the Department received an NPDES Individual Wastewater Permit Renewal Application from Microdiamant USA, Inc. for the Fayette Business Park facility located in Georges Township, Fayette County. On March 8, 2021, the Department received an application for a name change from Microdiamant USA, Inc. to Pureon, Inc. The facility's industrial activities are classified by SIC Code 3972 – Other Non-Metallic Mineral Product Manufacturing.

The facility manufactures industrial diamond powders from synthetic diamonds. Wastewaters from the site include non-contact cooling water (NCCW), boiler blowdown, floor drains (drips from NCCW), containment trench, and uncontaminated stormwater. The containment trench is used to collect any spills that may occur during loading and unloading of materials. The wastewaters are collected in the pond, adjusted for pH, and then discharged to Georges Creek via Outfall 001. Outfall 002 only discharges uncontaminated storm water.

The facility entered into an agreement with Fairchance-Georges Joint Municipal Sewage Authority to connect to the sewer system and send all process wastewaters to the Authority for treatment on or after April 1, 2016. The facility would like to continue with the NPDES Individual Wastewater permit coverage as an emergency backup option.

Outfall 001 discharges to Georges Creek with Chapter 93 classification of Warm Water Fishes (WWF). All the facility process waters are directed to the cooling pond prior to ultimate discharge to the Sewage Authority or to Georges Creek if onsite treatment and discharge is utilized. The grading around the pond generally directs stormwater flow away from the cooling pond. The location of Outfall 001 is 39° 48' 26", -79° 46' 21".

Approve	Deny	Signatures	Date
х		Curtis Holes, P.E. / ENVIRONMENTAL ENGINEERING	June 28, 2021
х		Michael E. Fifth, P.E. / ENVIRONMENTAL ENGINEER MANAGER	June 30, 2021

Summary of Review

Internal Monitoring Point 101 discharges to Outfall 001 and ultimately to Georges Creek with Chapter 93 classification of Warm Water Fishes (WWF).

Outfall 002 discharges uncontaminated stormwater to Georges Creek with Chapter 93 classification of Warm Water Fishes (WWF). In the drainage area of Outfall 002, the activities that exist are parking area and facility roof drains. The location of Outfall 002 is 39° 48' 27", -79° 46' 22".

The permittee has no open violations with the Clean Water Program.

It is recommended that a Draft NPDES Permit be published for public comment in response to this application.

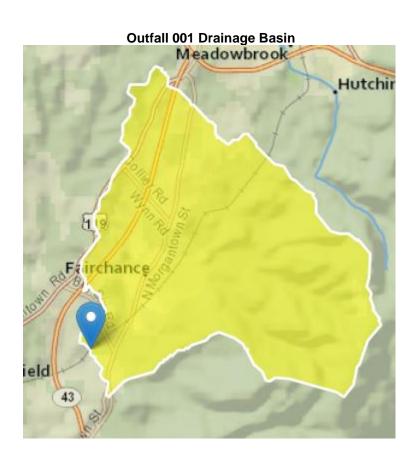
Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

	Compliance History			
Summary of DMRs:	No exceedances with permit effluent limits.			
Summary of Inspections:	The last inspection conducted by the Department was on July 6, 2018 by Howard Dunn with no violations identified.			

Other Comments: None

	Treatment Facility Summary			
Treatment Facility Na	me: Fayette Business Par	k		
WQM Permit No.	Issuance Date			
2603201	April 9, 2007			
	Degree of			Avg Annual
Waste Type	Treatment	Process Type	Disinfection	Flow (MGD)
Industrial				
Hydraulic Capacity	Organic Capacity			Biosolids
(MGD)	(lbs/day)	Load Status	Biosolids Treatment	Use/Disposal


Changes Since Last Permit Issuance:

Other Comments:

Outfall No. 00	1	Design Flow (MGD)	0.016
Latitude 39	⁰ 48' 26"	Longitude	-79º 46' 21"
Quad Name	Smithfield	Quad Code	2007
Wastewater Description:		ter, Boiler Blowdown, Floor Drains Uncontaminated Stormwater.	(drips from NCCW),
Receiving Water	s Georges Creek	Stream Code	41340
NHD Com ID	99417214	RMI	13.25
Drainage Area	13.6 miles ²	Yield (cfs/mi²)	0.0168
Q ₇₋₁₀ Flow (cfs)	0.228	Q ₇₋₁₀ Basis	USGS StreamStats
Elevation (ft)	990	Slope (ft/ft)	
Watershed No.	19-G	Chapter 93 Class.	WWF
Assessed Use		Existing Use Qualifier	
Exceptions to Us	e	Exceptions to Criteria	
Nearest Downstr	eam Public Water Supply Intake Monongahela River	Dunkard Valley Joint Municipa Flow at Intake (cfs)	al Authority (0.25 MGD)
i vvo vvaters	Monoriganeia Kivei	i low at intake (cis)	

Changes Since Last Permit Issuance: Outfall 001 is secondary/emergency discharge option.

Other Comments: None

Outfall No.	101		Design Flow (MGD)	0.016
Latitude			Longitude	
Quad Name	Smithfield		Quad Code	2007
Wastewater I	Description:	Non-Contact Cooling Wate Containment Trench.	er, Boiler Blowdown, Floor Drair	ns (drips from NCCW),
Receiving Wa	aters <u>Georg</u>	ges Creek	Stream Code	_41340
anges Since Las nicipal Sewage /	t Permit Issua Authority.	nce: All the facility's wastew	vaters are discharge to the Faird	chance-Georges Joint
anges Since Las nicipal Sewage /	t Permit Issua Authority.	nce: All the facility's wastew		chance-Georges Joint

Development of Effluent Limitations			
Outfall No.	001	Design Flow (MGD)	0.016
Latitude	39º 48' 26"	Longitude	-79º 46' 21"
Non-Contact Cooling Water, Boiler Blowdown, Floor Drains (drips from NCCW),			
Wastewater [Wastewater Description: Containment Trench, and Uncontaminated Stormwater.		

Technology-Based Limitations

Outfall 001 discharge consists of NCCW which are not subject to Federal Effluent Limitation Guidelines (ELGs) as the SIC code is not listed under 40 CFR parts 405 through 471.

Regulatory Effluent Standards and Monitoring Requirements

In accordance with the recommendations given in Chapter 6, Table 6-4 of DEP's Permit Writer's Manual for NCCW discharges, self-monitoring requirements at Outfall 001 will include, at a minimum, the following parameters: flow, pH and temperature.

Flow monitoring is required pursuant to 25 Pa. Code § 92a.61(d)(1).

Effluent standards for pH (see Table 6) are also imposed on industrial wastes by 25 Pa. Code § 95.2(1).

Total Residual Chlorine (TRC)

The facility utilizes public water supply as a source from the NCCW activities, but the facility does not conduct chlorination activities. 25 Pa. Code § 92a.48 applies to facilities or activities that use chlorination. Since USAP does not use chlorine, the TRC technology-based limits 25 Pa. Code § 92a.48 do not apply to Outfall 001.

Total Dissolved Solids (TDS)

Integral to the implementation of 25 Pa. Code § 95.10 is the principle that existing, authorized mass loadings of TDS are exempt from any treatment requirements under these provisions. Existing mass loadings of TDS up to and including the maximum daily discharge loading for any existing discharge, provided that the loading was authorized prior to August 21, 2010 are exempt. Discharge loadings of TDS authorized by the Department are typically exempt from the treatment requirements of Chapter 95.10 until the net TDS loading is increased, an existing discharge proposes a hydraulic expansion or a change in the waste stream. If there are existing mass or production-based TDS effluent limits, then these are used as the basis for the existing mass loading. The facility is not new or expanding waste loading of TDS, therefore, the facility is exempt from 25 Pa. Code § 95.10 treatment requirements.

Water Quality-Based Effluent Limitations

Toxics Management Analysis

The Department's Toxics Management Spreadsheet (TMS) was utilized to facilitate calculations necessary for completing a reasonable potential analysis and determine Water Quality-Based Effluent Limitations (WQBELs) for discharges containing toxic pollutant concentrations. TMS combines the functionality of two (2) of the Department's analysis tools, Toxics Screening Analysis Spreadsheet and PENTOXSD water quality model.

DEP's procedures for evaluating reasonable potential are as follows:

- 1. For IW discharges, the design flow to use in modeling is the average flow during production or operation and may be taken form the permit application.
- 2. Perform a Toxics Screening Analysis to identify toxic pollutants of concern. All toxic pollutants, as reported in the permit application or on DMRs, are modeled by the TMS to determine the parameters of concern. [This includes pollutants reported as "Not Detectable" or as "<MDL" where the method detection limit for the analytical method used by the applicant is greater than the most stringent water quality criterion].
 - Establish limits in the draft permit where the maximum reported concentration equals or exceeds 50% of the WQBEL. Use the average monthly and maximum daily limits for the permit as recommended by TMS. Establish an IMAX limit at 2.5 times the average monthly limit.

- For non-conservative pollutants, establish monitoring requirements where the maximum reported concentration is between 25% 50% of the WQBEL.
- For conservative pollutants, establish monitoring requirements where the maximum reported concentration is between 10% 50% of the WQBEL.

Discharges from Outfall 001 are evaluated based on concentrations reported on the application and contained in the DMRs; data from those sources are used as inputs into the TMS. A summary of TMS Inputs is contained in Table 1 below.

Table 1: TMS Inputs

Parameter	Value
Discharge In	
Facility	Fayette Business Park
Evaluation Type	Índustrial
NPDES Permit No.	PA0219380
Wastewater Description	Industrial Wastewater and Stormwater
Outfall ID	001
Design Flow (MGD)	0.016
Hardness (mg/L)	100
pH (S.U.)	7.0
Partial Mix Factors	Unknown – Calculated by TMS
Complete Mix Times	·
Q ₇₋₁₀ (min)	0.228
Q _h (mìn)	
Stream Input	ts
Receiving Surface Water	Georges Creek
Number of Reaches to	
Model	1
Stream Code	41340
RMI	13.25
Elevation (ft)	990
Drainage Area (mi ²)	13.6
Slope (ft/ft)	
PWS Withdrawal (MGD)	0.25
Apply Fish Criteria	Yes
Low Flow Yield (cfs/mi²)	
Flows	0.000/0.007#
Stream (cfs)	0.228/0.237*
Tributary (cfs)	N/A
Width (ft)	10/10*
Stream Hardness (mg/L)	100
Stream pH (S.U.)	7

^{*} Denotes discharge location/downstream location values.

Based on the recommendations of the TMS, monitor and report are imposed for Total Copper and Total Zinc at Outfall 001. Analysis Report from the TMS run is included in Attachment A.

Thermal WQBELs for Heated Discharges (Non-Contact Cooling Water)

Thermal WQBELs are evaluated using the Department's program called "Thermal Discharge Limit Calculation Spreadsheet" created with Microsoft Excel for Windows. The program calculates temperature WLAs through the application of a heat transfer equation, which takes two forms in the program depending on the source of the facility's cooling water. In Case 1, intake water to a facility is from the receiving stream. In Case 2, intake water is from a source other than the receiving stream (e.g., municipal water supply). The determination of which case applies to a given discharge is determined by the input data which include the receiving stream flow rate (Q_{7-10} or the minimum regulated flow for large rivers), the stream intake flow rate, external source intake flow rates, consumptive flow rates and site-specific ambient stream temperatures. Case 1 limits are generally expressed as heat rejection rates while Case 2 limits are usually expressed as temperatures.

Since the temperature criteria from 25 Pa. Code Chapter 93.7(a) are expressed on monthly and semi-monthly bases for three different aquatic life-uses—cold water fishes, warm water fishes and trout stocking—the program generates monthly and semi-monthly limits for each use. The Department selects the output that corresponds to the aquatic life-use of the receiving stream and consequently which limits apply to the discharge. Temperature WLAs are bounded by an upper limit of 110°F (as discussed in Technology-Based Limitations) for the safety of sampling personnel and anyone who may come

into contact with the heated discharge where it enters the receiving water. If no WLAs below 110°F are calculated, an instantaneous maximum limit of 110°F is recommended by the program.

The Department's *Implementation Guidance for Temperature Criteria* directs permit writers to assume instantaneous complete mixing of the discharge with the receiving stream when calculating thermal effluent limits unless adverse factors exist. One such factor listed in the guidance is that the "discharge is to a receiving water that is very wide, resulting in restricted dispersion of the plume, and horizontal stratification of the plume." Since wastewaters from Outfall 001 will be discharged to the Georges Creek, the dispersion of the discharge plume is assumed to be instantaneous.

Discharges from Outfall 001 are classified under Case 2 because the facility's water is obtained from the local municipal supply. The flow rates used for modeling are 0.016 MGD, which is the monthly average flow of the facility's heated effluent sources (NCCW) and 0.228 cfs, which is the Q_{7-10} from the USGS StreamStats model. The results of the thermal analysis, included in Attachment B, indicate that 110.0°F provides adequate protection to the environment at Outfall 001 as summarized below in Table 2.

Table 2: Outfall 001 WQBELs for Temperature

Date	WWF Daily WLA (°F)
Jan 1-31	110.0
Feb 1-29	110.0
Mar 1-31	110.0
Apr 1-15	110.0
Apr 16-30	110.0
May 1-15	110.0
May 16-30	110.0
Jun 1-15	110.0
Jun 16-30	110.0
Jul 1-31	110.0
Aug 1-15	110.0
Aug 16-31	110.0
Sep 1-15	110.0
Sep 16-30	110.0
Oct 1-15	110.0
Oct 16-31	110.0
Nov 1-15	110.0
Nov 16-30	110.0
Dec 1-31	110.0

Total Residual Chlorine (TRC)

To determine if WQBELs are required for discharges containing total residual chlorine (TRC), a discharge evaluation is performed using a DEP program called TRC_CALC created with Microsoft Excel for Windows. TRC_CALC calculates TRC Waste Load Allocations (WLAs) through the application of a mass balance model which considers TRC losses due to stream and discharge chlorine demands and first-order chlorine decay. Input values for the program include flow rates and discharge chlorine demands for the receiving stream, the number of samples taken per month, coefficients of TRC variability, partial mix factors, and an optional factor of safety. The mass balance model calculates WLAs for acute and chronic criteria that are then converted to long term averages using calculated multipliers. The multipliers are functions of the number of samples taken per month and the TRC variability coefficients (normally kept at default values unless site specific information is available). The most stringent limitation between the acute and chronic long-term averages is converted to an average monthly limit for comparison to the BAT average monthly limit of 0.5 mg/L from 25 Pa. Code § 92a.48(b)(2). The more stringent of these average monthly TRC limitations is then proposed. The results of the modeling are included in Attachment C, which identify that BAT is the most stringent criteria for TRC at an average monthly limit of 0.5 mg/L. The maximum daily limit is 2 times the average monthly limit resulting in a 1.0 mg/L limit for maximum daily.

Anti-Backsliding

Section 402(o) of the Clean Water Act (CWA), enacted in the Water Quality Act of 1987, establishes anti-backsliding rules governing two situations. The first situation occurs when a permittee seeks to revise a Technology-Based effluent limitation based on BPJ to reflect a subsequently promulgated effluent guideline which is less stringent. The second situation

addressed by Section 402(o) arises when a permittee seeks relaxation of an effluent limitation which is based upon a State treatment standard of water quality standard.

Previous limits can be used pursuant to EPA's anti-backsliding regulation 40 CFR 122.44 (I) Reissued permits. (1) Except as provided in paragraph (I)(2) of this section when a permit is renewed or reissued. Interim effluent limitations, standards or conditions must be at least as stringent as the final effluent limitations, standards, or conditions in the previous permit (unless the circumstances on which the previous permit was based have materially and substantially changed since the time the permit was issued and would constitute cause for permit modification or revocation and reissuance under §122.62). (2) In the case of effluent limitations established on the basis of Section 402(a)(1)(B) of the CWA, a permit may not be renewed, reissued, or modified on the basis of effluent guidelines promulgated under section 304(b) subsequent to the original issuance of such permit, to contain effluent limitations which are less stringent than the comparable effluent limitations in the previous permit.

The facility is not seeking to revise the previously permitted effluent limits.

Effluent Limitations and Monitoring Requirements for Outfall 001

Effluent limits applicable at Outfall 001 are the more stringent of TBELs, regulatory effluent standards, WQBELs, previously permitted effluent limits and the monitoring requirements are summarized in Table 3.

Table 3: Final Effluent limits and monitoring requirements for Outfall 001

	Mass (p	oounds)	Cor	ncentration (ı	ng/L)	
Parameter	Average Monthly	Daily Maximum	Average Monthly	Daily Maximum	Instant Maximum	Basis
Flow (MGD)	Report	Report	_	_	_	25 Pa. Code § 92a.61(d)(1)
Copper, Total	Report	Report	Report	Report	_	25 Pa. Code § 96.3
Zinc, Total	Report	Report	Report	Report	_	25 Pa. Code § 96.3
Temperature (°F)	_	_	_		110.0	25 Pa. Code § 93.7
TRC			0.5	1.0		25 Pa. Code § 92a.48
pH (S.U.)		Within the range of 6.0 to 9.0				25 Pa. Code § 95.2

Monitoring requirements for the interim and final effluent limits are based on the current operations of the facility. With the facility's primary treatment and discharge method being the public sewer line, on-site treatment and discharge are expected to be infrequent. The monitoring requirements are displayed in Table 4 below.

Table 4: Monitoring Requirements for Outfall 001

Parameter	Sample Type	Minimum Sample Frequency
Flow	Measured	1/discharge*
Copper, Total	Grab	1/discharge*
Zinc, Total	Grab	1/discharge*
Temperature	Grab	1/discharge*
TRC	Grab	1/discharge*
рН	Grab	1/discharge*

• In accordance with Part C, Condition I.E of the NPDES permit, whenever the discharge duration exceeds one week, the permittee shall collect and report at least one sample per week until the discharge ceases.

	Development of Effluent Limitations										
Outfall No.	101	Design Flow (MGD) 0.016									
Latitude		Longitude									
		Non-Contact Cooling Water, Boiler Blowdown, Floor Drains (drips from NCCW),									
Wastewater D	Description:	Containment Trench.									

During the previous permit cycle, the Steam Electric Effluent Limitation Guidelines (40 CFR 423.12(b)3 Low-Volume Waste) were imposed at Outfall 101 since boiler blowdown is contained in the low-volume waste. The boiler blowdown is approximately 220 gallons per day of the 16,000 gallon per day NCCW discharge. Review of the DMRs for Outfall 101 indicate that the ELG parameters for low-volume waste, total suspended solids and oil and grease, were typically reported as non-detect.

After a permit cycle of monitoring at Outfall 101, it has been determined that additional self-monitoring is not required.

Uncontaminated Stormwater Outfall 002

The Department's policy for stormwater discharges is to either (1) require that the stormwater is uncontaminated, (2) impose "Monitor and Report", to establish effluent goals and require the permittee to submit a Stormwater Pollution Prevention Plan (SWPPP), or (3) impose effluent limits. In all cases, a storm water special condition is placed in the permit in Part C.

Stormwater effluent data reported in the application are compared to stream criteria, EPA's Multi-Sector General Permit "benchmark values", ELGs and other references while considering site specific conditions such as stream flow and location to determine if actual discharge concentrations of various pollutants in stormwater warrant further controls. If there is insufficient data available, or if pollutant levels are excessive, monitoring for specific pollutants and/or a SWPPP are required in the permit. Otherwise, the storm water outfalls are simply listed as discharge points. In either case, a special condition is added to the permit to include some of the key components of the Department's General Permit (PAG-03) for Discharges of Stormwater Associated with Industrial Activities.

Due to site grading, the facility is able to collect and discharge stormwater exposed to industrial activities and stormwater outside of industrial activities separately. The uncontaminated stormwater Outfall 002, with drainage areas outside of industrial activities, is identified in the NPDES permit and have no monitoring or reporting requirements imposed.

		Tools and References Used to Develop Permit
	1	WQM for Windows Model (see Attachment)
X	<u>. </u>	TMS Model (see Attachment A)
	1	TRC Model Spreadsheet (see Attachment B)
	1	Temperature Model Spreadsheet (see Attachment C)
		Toxics Screening Analysis Spreadsheet (see Attachment)
		Water Quality Toxics Management Strategy, 361-0100-003, 4/06.
	i	Technical Guidance for the Development and Specification of Effluent Limitations, 362-0400-001, 10/97.
		Policy for Permitting Surface Water Diversions, 362-2000-003, 3/98.
		Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 362-2000-008, 11/96.
		Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97.
]	Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 362-2183-004, 12/97.
		Pennsylvania CSO Policy, 385-2000-011, 9/08.
		Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.
\boxtimes		Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 391-2000-002, 4/97.
		Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97.
		Implementation Guidance Design Conditions, 391-2000-006, 9/97.
]	Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004.
]	Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 391-2000-008, 10/1997.
]	Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 391-2000-010, 3/99.
]	Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 391-2000-011, 5/2004.
		Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97.
]	Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 391-2000-014, 4/2008.
		Implementation Guidance Total Residual Chlorine (TRC) Regulation, 391-2000-015, 11/1994.
		Implementation Guidance for Temperature Criteria, 391-2000-017, 4/09.
		Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/97.
]	Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97.
]	Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 391-2000-021, 3/99.
]	Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/1999.
		Design Stream Flows, 391-2000-023, 9/98.
]	Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 391-2000-024, 10/98.
		Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97.
	<u> </u>	Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.
	<u> </u>	SOP:
		Other:

Attachment A – Toxic Management Spreadsheet Outfall 001

Attachment B – Temperature Model Spreadsheet

Attachment C – TRC Calculation Spreadsheet

Attachment D – Water Flow Diagram

 $Attachment \ E-USGS \ Stream Stats \ Output$

NPDES Permit Fact Sheet Fayette Business Park	NPDES Permit No. PA0219380
Attachment A – Toxic Management Spreadsheet	Outfall 001
Transfer Toxic Management Spreadsneet	

Toxics Management Spreadsheet Version 1.3, March 2021

Discharge Information

Instructions	Discharge	Stream				
Facility:	Fayette Busin	ess Park		NPDES Permit No.:	PA0219380	Outfall No.: 001
Evaluation Ty	/pe: Major	Sewage / Indus	trial Waste	Wastewater Descript	tion: Industrial Waste	water and Stormwater

	Discharge Characteristics											
Design Flow Partial Mix Factors (PMFs) Complete Mix Times (min)												
(MGD)*	Hardness (mg/l)*	pH (SU)*	AFC	CFC	THH	CRL	Q ₇₋₁₀	Qh				
0.016	100	7										

						0 If le	ft blank	0.5 M le	eft blank	0	If left blan	k	1 If left blank	
	Discharge Pollutant	Units	Max	Discharge Conc	1 -	rib	Stream Conc	Daily CV	Hourly CV	Strea m CV	Fate Coeff	FOS	Criteri a Mod	Chem Transl
	Total Dissolved Solids (PWS)	mg/L				Ш								
7	Chloride (PWS)	mg/L			II.	\Box								
ΙĒ	Bromide	mg/L			+		-							
Group	Sulfate (PWS)	mg/L			H									
	Fluoride (PWS)	mg/L			Ħ	\sqcap								
	Total Aluminum	μg/L				П								
1	Total Antimony	μg/L			1	\square	-							
1	Total Arsenic	μg/L			H	+								
1	Total Barium	μg/L			H									
	Total Beryllium	μg/L				\sqcap								
	Total Boron	μg/L			П	П								
	Total Cadmium	μg/L			H	\Box								
	Total Chromium (III)	μg/L			H	$\overline{\Box}$								
	Hexavalent Chromium	μg/L			Ħ	Ħ								
	Total Cobalt	μg/L												
	Total Copper	μg/L		48	II.	П								
2	Free Cyanide	μg/L			H									\rightarrow
Group	Total Cyanide	μg/L			H									
ق	Dissolved Iron	μg/L			Ħ	Ħ								
	Total Iron	μg/L				Ш								
	Total Lead	μg/L			1	\Box								
1	Total Manganese	μg/L			H									
1	Total Mercury	μg/L			H									
1	Total Nickel	μg/L												
1	Total Phenols (Phenolics) (PWS)	μg/L			П	П								
1	Total Selenium	μg/L			H	\Box								
1	Total Silver	μg/L			\top									
	Total Thallium	μg/L			Ħ									
	Total Zinc	μg/L		418										
	Total Molybdenum	µg/L			П	П								
	Acrolein	μg/L	<			\Box	-							
	Acrylamide	μg/L	<		H									
	Acrylonitrile	μg/L	<			П								
	Benzene	μg/L	<											
	Bromoform	μg/L	<		H	П								

Chlorochemomehane µgL <	1	Carbon Talasaklasida		-										
Chlorodbromomehane	1	Carbon Tetrachloride	μg/L	<		3	-							\blacksquare
Chlororethy Viny Ether	1			_	Ц	4	4						L	щ
C-Chloroethy Viryl Ether pgl,	1			_	Ц	4	4						L	Щ
Chloroformomethane	1	Chloroethane	μg/L	<	Ц	4	4						L	Щ
Dictionarbomomethane	1	2-Chloroethyl Vinyl Ether	μg/L	<	Н	4	4						L	
1.1.Dichloroethane	1	Chloroform	μg/L	<	Н	7	7	1				Н	F	H
1.1-Dichlorsethane	1	Dichlorobromomethane	μg/L	<	Ħ	₹	7					F		Ħ
1.1-Dichorethyne	1	1.1-Dichloroethane		<	П	╗	\neg							
1.1.Dehloroethylene				<	П	T	Ť					П		
1,4-Doxane	2			_		3	#							
1,4-Doxane	1 8			_		=	_	_						
1,4-Dioxane	اق			_	H	⇉	#	-					H	₩
Ettylbenzene				_	Н	-	+					Н	L	₩
Methy Chloride µg/L	1	-1		_	Н	4	4					L	L	H
Methylene Chloride	1			_	Н	4	\Rightarrow						H	H
Methylene Chloride	1	Methyl Bromide	μg/L	<	H	\dashv	+						H	
Methylene Chloride	1	Methyl Chloride	μg/L	<	H	₹	7	1				П	Г	Ħ
1.1.2.2-Terkachloroethylene	1	Methylene Chloride		<	Ħ	T	T						П	Ħ
Totalen	1			<	П	T	T					П		\Box
Toluene	1			<		=1	7							
1.2-trans-Dichloroethylene	1			_		_	_							
1.1.1-Trichloroethane	1			_	H	⇉	#	-				H	H	H
1.1.2-Trichloroethylene	1			_	Н	4	+	-				Н	H	щ
Trichloroethylene	1			_	Н	4	4					H	H	4
Vinyl Chloride	1			_	Н	4	4						L	H
2-Chlorophenol	1		μg/L	<	H	\exists	\pm							
2.4 Dichlorophenol		Vinyl Chloride	μg/L	<	H	7	\pm							
2.4-Dimethylphenol		2-Chlorophenol	μg/L	<	Ħ	╗	7	1					Г	
2.4-Dimethylphenol	1	2,4-Dichlorophenol	μg/L	<	П		\neg							П
4.6-Dinitro-o-Cresol μg/L < 2.4-Dinitrophenol μg/L < 2.4-Trichlorophenol μg/L < 2.4-Trichlorophenol μg/L < 2.4-Trichlorophenol μg/L < 3.4-Trichlorophenol μg/L < 3.4-Trichlorophenol μg/L < 3.4-Dinitrophenol μg/L < 3.4-Din	1			<										
2.4-Dinitrophenol	1			<		⇉	#							
2-Nitrophenol	4	0.4.000.00		_	H	⇉	#	-				H	H	H
P-Chloro-m-Cresol	1	2 Nitrophopol		_	H	4	+	-				H	H	H
P-Chloro-m-Cresol	2	2-Nitroprienoi		_	Н	+	+					Н	H	H
Pentachlorophenol µg/L	၂ဖ	4-Nitrophenoi		_	H	4	+					H	H	H
Phenol	1	1		_	H	4	4						H	H
2.4,6-Trichlorophenol µg/L	1	Pentachlorophenol		<	Ħ	=	\Rightarrow							
Acenaphthylene	1		μg/L	<	Tì		Ì	1						
Acenaphthylene		2,4,6-Trichlorophenol		<										
Acenaphthylene		Acenaphthene	μg/L	<	Ц	Į	Į							П
Anthracene	1	Acenaphthylene		<	П	4	7							\Box
Benzidine	1			<	H	7	7						H	H
Benzo(a)Anthracene μg/L	1	Benzidine		<	Ħ	7	7					H	H	Ħ
Benzo(a)Pyrene	1			-	Н	7	+	_				Н	Н	H
3,4-Benzofluoranthene	1			_	H	7	+	-				H	H	H
Benzo(ghi)Perylene	1			_	H	7	7	_				H	H	H
Benzo(k)Fluoranthene	1	-		-	Ħ	7	7						F	\Rightarrow
Bis(2-Chloroethoxy)Methane	1	Benzo(ghi)Perylene	μg/L	<										
Bis(2-Chloroethyl)Ether	1			_			_							Ш
Bis(2-Chloroisopropyl)Ether	1	Bis(2-Chloroethoxy)Methane	μg/L	<	Ц	4	4						L	Щ
Bis(2-Ethylhexyl)Phthalate	1	Bis(2-Chloroethyl)Ether	μg/L	<	Н	4	4	-				Н	H	H
Bis(2-Ethylhexyl)Phthalate	1	Bis(2-Chloroisopropyl)Ether	μg/L	<	H	7	7					Н	F	H
4-Bromophenyl Phenyl Ether	1			<	Ħ	₹	7					Е	F	Ħ
Butyl Benzyl Phthalate	1			<	Ħ	⇉	寸					F	Н	Ħ
2-Chloronaphthalene	1			_	H	7	7					Н	Н	т
4-Chlorophenyl Phenyl Ether	1			_	Ħ	Ħ	Ŧ					H	H	Ħ
Chrysene	1			_	Ħ	\exists	7	-					Е	\Box
Dibenzo(a,h)Anthrancene	1			_		4	4							\Box
1,2-Dichlorobenzene	1			_	Ц	4	4					Ц	Ļ	щ
1,3-Dichlorobenzene	1			_	Ц		4							Щ
1,4-Dichlorobenzene			μg/L	<	Ы		4							H
1,4-Dichlorobenzene		1,3-Dichlorobenzene	μg/L	<	H		T							H
3,3-Dichlorobenzidine µg/L < Diethyl Phthalate µg/L < Dimethyl Phthala	100	1,4-Dichlorobenzene		<	H	7	7							H
Different Francisco	<u>a</u>			_	Ħ	7	7							Ħ
Difficulty 1 Indicate 1981	0.0	Diethyl Phthalate		_			+							
Difficulty 1 Thousand	စ်	Dimethyl Phthalate		_										
1 Operation Company		Difficulty i fluidate		_										
				_			J							
2,4-Dinitrotoluene µg/L <	I	z,4-Dinitroloidene	μg/L	<										

1	2,6-Dinitrotoluene		<									
1		μg/L	-	#	$\overline{}$						Ε	\blacksquare
1	Di-n-Octyl Phthalate	μg/L	<	4	ļļ						Ļ	щ
1	1,2-Diphenylhydrazine	μg/L	<	4	4					L	Ļ	щ
1	Fluoranthene	μg/L	<	4	\bot						L	щ
1	Fluorene	μg/L	<	+	+					_	H	\vdash
1	Hexachlorobenzene	μg/L	<	7						\vdash	F	\Box
1	Hexachlorobutadiene	μg/L	<	Ŧ	77					F	F	Ħ
1	Hexachlorocyclopentadiene	μg/L	<	\forall	1					Н	Т	$\overline{}$
1	Hexachloroethane	µg/L	<	\vdash	1					Н	Н	\Box
1	Indeno(1,2,3-cd)Pyrene		<	Ŧ						H	F	$\overline{\Box}$
1		μg/L	_	$\overline{}$	$\overline{\Box}$						F	\Box
1	Isophorone	μg/L	<	\pm	\Box						₽	\Box
1	Naphthalene	μg/L	<	\perp	\perp					L	L	\sqcup
1	Nitrobenzene	μg/L	<	4	Ш						L	Щ
1	n-Nitrosodimethylamine	μg/L	<	\rightarrow						_	L	\vdash
1	n-Nitrosodi-n-Propylamine	μg/L	<	7		-				\vdash	F	\Box
1	n-Nitrosodiphenylamine	μg/L	<	7	+					F	F	Ħ
1	Phenanthrene	μg/L	<	+	+					H	F	Ħ
1	Pyrene	µg/L	<	+	+++					Н	H	\vdash
1	1,2,4-Trichlorobenzene		<	Ħ	+						F	#
\vdash		μg/L		Ť							F	\Rightarrow
1	Aldrin	μg/L	<		\Box							\Box
1	alpha-BHC	μg/L	<									
1	beta-BHC	μg/L	<									
1	gamma-BHC	μg/L	<	Д	П							П
1	delta BHC	μg/L	<	#	#						F	\Rightarrow
1	Chlordane	µg/L	<	#	₩						E	\Rightarrow
1	4,4-DDT	µg/L	<	+	+					H	H	Ħ
1	4.4-DDE		<	+	+	_				H	⊢	+
1		μg/L		+	+					H	H	\rightarrow
1	4,4-DDD	μg/L	<	\Rightarrow	\Rightarrow						F	#
1	Dieldrin	μg/L	<									
1	alpha-Endosulfan	μg/L	<	Ť								
1	beta-Endosulfan	μg/L	<	\neg	\sqcap						Г	\Box
9	Endosulfan Sulfate	μg/L	<									
Group	Endrin	μg/L	<								E	
1 %	Endrin Aldehyde	µg/L	<	#	##						H	\Rightarrow
١٠	Heptachlor	µg/L	<	+	#						H	Ħ
1	Heptachlor Epoxide		<	+	+-+	_				H	H	++
1		μg/L		+	+					H	Ļ	-
1	PCB-1016	μg/L	<	+	\dashv					H	F	\Rightarrow
1	PCB-1221	μg/L	<	\perp							L	
1	PCB-1232	μg/L	<	$^{+}$	1							
1	PCB-1242	μg/L	<	T							F	\Box
1	PCB-1248	μg/L	<		\sqcap					Г	Г	
1	PCB-1254	μg/L	<	T							Г	
1	PCB-1260	µg/L	<								E	\blacksquare
1	PCBs, Total		<	\pm								\blacksquare
1		μg/L	_	+	₩	_				H	H	₩
1	Toxaphene	μg/L	<	+	+					L	L	\vdash
<u> </u>	2,3,7,8-TCDD	ng/L	<	4	+						Ł	₩
1	Gross Alpha	pCi/L		+		-					L	
	Total Beta	pCi/L	<	+	+					_		
Group	Radium 226/228	pCi/L	<	T	77					Н	F	Ħ
Ιē	Total Strontium	μg/L	<	T	\forall					F	F	Ħ
O	Total Uranium	μg/L	<	\vdash	$\neg \neg$					Н	г	\Box
1	Osmotic Pressure	mOs/kg		Ť	$\overline{\Box}$						F	\Box
	Osiliotic Flessure	mosky	\vdash	\equiv						F	=	
											_	
				Ļ	ĻĻ						_	
					Щ							
				Ŧ								
											-	
											_	
											_	

Toxics Management Spreadsheet Version 1.3, March 2021

Stream / Surface Water Information

Fayette Business Park, NPDES Permit No. PA0219380, Outfall 001

Instructions Disch	arge Str	eam													
Receiving Surface W	ater Name:	Georges C	Creek				No. Rea	aches to I	Model:	1	×	tewide Criteri			
Location	Stream Co	de' RM	Elevai (ft)	DA (mi	2)* Slo	ope (ft/ft)		Withdraw MGD)	al Apply F		OR	SANCO Crite	eria		
Point of Discharge	041340	13.3	25 990	13.6					Yes	5					
End of Reach 1	041340	12.	.5 985	5 14.1					Yes	5					
Q 7-10	RMI	LFY		v (cfs)	W/D	Width		Velocit	i ravei Time	Tributa		Strea		Analys	
		(cfs/mi ²)*	Stream	Tributary	Ratio	(ft)	(ft)	y (fps)	(days)	Hardness	pН	Hardness*	pH*	Hardness	pН
Point of Discharge	13.25	0.1										100	7		
End of Reach 1	12.5	0.1													
Qn															
Location	RMI	LFY	Flov	v (cfs)	W/D	Width	Depth	Velocit	Time	Tributa	ary	Strea	m	Analys	is
Location	KWII	(cfs/mi ²)	Stream	Tributary	Ratio	(ft)	(ft)	y (fps)	(days)	Hardness	pН	Hardness	pН	Hardness	pН
Point of Discharge	13.25														
End of Reach 1	12.5														

Toxics Management Spreadsheet Version 1.3, March 2021

Model Results

Fayette Business Park, NPDES Permit No. PA0219380, Outfall 001

Instructions Results	RETURN TO INPUTS	SAVE AS PDF	PRINT	All Inputs Results Limits
Hydrodynamics				
✓ Wasteload Allocations				
☑ AFC	CCT (min): 15 PMF:	. 0.673 Ar	alysis Hardness (mg/l):	100 Analysis pH: 7.00
Pollutants	Conc CV (µg/L)	Coef (µg/L)	WQ Obj (µg/L) WLA (µg/L)	Comments
Total Copper	0 0	0 13.439	14.0 532	Chem Translator of 0.96 applied
Total Zinc	0 0	0 117.180	120 4,552	Chem Translator of 0.978 applied
☑ CFC	CCT (min): 33.087 PMF		nalysis Hardness (mg/l):	100 Analysis pH: 7.00
Pollutants	Conc CV (µg/L)		WQ Obj (µg/L) WLA (µg/L)	Comments
Total Copper	0 0	0 8.956	9.33 522	Chem Translator of 0.98 applied
Total Copper Total Zinc	0 0	0 8.956 0 118.139	9.33 522 120 6,703	Chem Translator of 0.98 applied Chem Translator of 0.988 applied
	0 0 CCT (min): 33.087 PMF	0 118.139		
Total Zinc	0 0	0 118.139 : 1 Ar nc Fate WQC Coef (µg/L)	120 6,703 nalysis Hardness (mg/l): WQ Obj (µg/L) WLA (µg/L)	Chem Translator of 0.986 applied N/A Analysis pH: N/A
Total Zinc ✓ THH	0 0 CCT (min): 33.087 PMF Sueam Conc CV (un/l)	0 118.139 : 1 A	120 6,703 nalysis Hardness (mg/l): WQ Obj (µg/L) WLA (µg/L) N/A N/A	Chem Translator of 0.986 applied N/A Analysis pH: N/A
Total Zinc THH Pollutants	0 0 CCT (min): 33.087 PMF Stream Conc CV (µg/L)	0 118.139 : 1 Ar nc Fate WQC (μg/L)	120 6,703 nalysis Hardness (mg/l): WQ Obj (µg/L) WLA (µg/L)	Chem Translator of 0.986 applied N/A Analysis pH: N/A
Total Zinc THH Pollutants Total Copper	0 0 CCT (min): 33.087 PMF Sueam Conc CV (µg/L) 0 0 0 CCT (min): 9.415 PMF	0 118.139 E 1 A nc Fate WQC Coef (μg/L) 0 N/A 0 N/A	120 6,703 nalysis Hardness (mg/l): WQ Obj (µg/L) WLA (µg/L) N/A N/A	Chem Translator of 0.986 applied N/A Analysis pH: N/A
Total Zinc THH Pollutants Total Copper Total Zinc CRL Pollutants	0 0 CCT (min): 33.087 PMF Sueam Conc CV (µg/L) 0 0 0 0	0 118.139 1 A 1 A 1 Coef (μg/L) 0 N/A 0 N/A 1 A 1 A 1 A 1 Coef (μg/L)	120 6,703 nalysis Hardness (mg/l):	Chem Translator of 0.986 applied N/A Analysis pH: N/A Comments N/A Analysis pH: N/A
Total Zinc THH Pollutants Total Copper Total Zinc CRL	0 0 0 CCT (min): 33.087 PMF Stream Conc CV (µg/L) 0 0 0 CCT (min): 9.415 PMF Stream Conc CV (µg/L)	0 118.139 The state of the st	120 6,703 nalysis Hardness (mg/l):	Chem Translator of 0.986 applied N/A Analysis pH: N/A Comments N/A Analysis pH: N/A

[☑] Recommended WQBELs & Monitoring Requirements

No. Samples/Month:

4

	Mass	Limits		Concentra	tion Limits				
Pollutants	AML (lbs/dav)	MDL (lbs/day)	AML	MDL	IMAX	Units	Governing WQBEL	WQBEL Basis	Comments
Total Copper	Report	Report	Report	Report	Report	μg/L	341	AFC	Discharge Conc > 10% WQBEL (no RP)
Total Zinc	Report	Report	Report	Report	Report	μg/L	2,918	AFC	Discharge Conc > 10% WQBEL (no RP)

Other Pollutants without Limits or Monitoring

The following pollutants do not require effluent limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharge concentration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QL).

Pollutants	Governing WQBEL	Units	Comments

Attachment B – Temperature Model Spreadsheet

Facility: Fayette Business Park

Permit Number: PA0219380 Stream Name: Georges Creek Analyst/Engineer: Curt Holes Stream Q7-10 (cfs): 0.228

	Facility Flows					Stream Flows			
•	Intake	Intake	Consumptive	Discharge		Upstream	Adjusted	Downstream	
	(Stream)	(External)	Loss	Flow	PMF	Stream Flow	Stream Flow	Stream Flow	
_	(MGD)	(MGD)	(MGD)	(MGD)		(cfs)	(cfs)	(cfs)	
Jan 1-31	0	0.016	0	0.016	0.50	0.70	0.35	0.38	
Feb 1-29	0	0.016	0	0.016	0.50	0.80	0.40	0.42	
Mar 1-31	0	0.016	0	0.016	0.50	1.48	0.74	0.77	
Apr 1-15	0	0.016	0	0.016	0.50	2.04	1.02	1.05	
Apr 16-30	0	0.016	0	0.016	0.50	2.04	1.02	1.05	
May 1-15	0	0.016	0	0.016	0.50	1.16	0.58	0.60	
May 16-31	0	0.016	0	0.016	0.50	1.16	0.58	0.60	
Jun 1-15	0	0.016	0	0.016	0.50	0.67	0.34	0.36	
Jun 16-30	0	0.016	0	0.016	0.50	0.67	0.34	0.36	
Jul 1-31	0	0.016	0	0.016	0.50	0.31	0.16	0.18	
Aug 1-15	0	0.016	0	0.016	0.50	0.32	0.16	0.18	
Aug 16-31	0	0.016	0	0.016	0.50	0.32	0.16	0.18	
Sep 1-15	0	0.016	0	0.016	0.50	0.25	0.12	0.15	
Sep 16-30	0	0.016	0	0.016	0.50	0.25	0.12	0.15	
Oct 1-15	0	0.016	0	0.016	0.50	0.29	0.15	0.17	
Oct 16-31	0	0.016	0	0.016	0.50	0.29	0.15	0.17	
Nov 1-15	0	0.016	0	0.016	0.50	0.41	0.21	0.23	
Nov 16-30	0	0.016	0	0.016	0.50	0.41	0.21	0.23	
Dec 1-31	0	0.016	0	0.016	0.50	0.68	0.34	0.37	

Please forward all comments to Tom Starosta at 717-787-4317, tstarosta@state.pa.us.

Version 2.0 -- 07/01/2005 Reference: Implementation Guidance for Temperature Criteria, DEP-ID: 391-2000-017

NOTE: The user can only edit fields that are blue.

NOTE: MGD x 1.547 = cfs.

Facility: Fayette Business Park

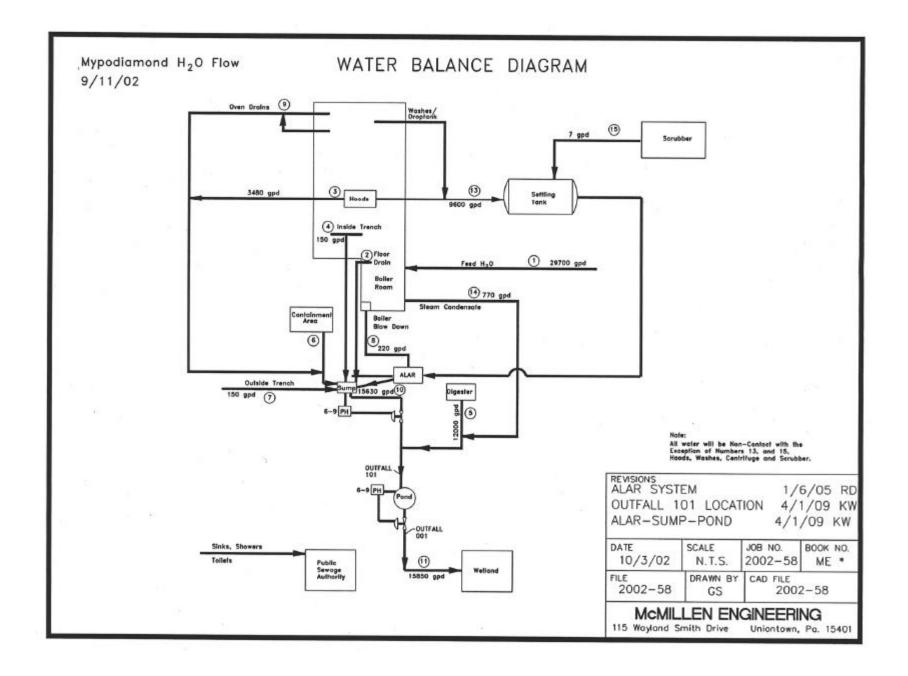
Permit Number: PA0219380 Stream: Georges Creek

	WWF			WWF	WWF		PMF
	Ambient Stream	Ambient Stream	Target Maximum	Daily	Daily		
	Temperature (°F)	Temperature (°F)	Stream Temp.1	WLA ²	WLA ³	at Discharge	
	(Default)	(Site-specific data)	(°F)	(Million BTUs/day)	(°F)	Flow (MGD)	
Jan 1-31	35	0	40	N/A Case 2	110.0	0.016	0.50
Feb 1-29	35	0	40	N/A Case 2	110.0	0.016	0.50
Mar 1-31	40	0	46	N/A Case 2	110.0	0.016	0.50
Apr 1-15	47	0	52	N/A Case 2	110.0	0.016	0.50
Apr 16-30	53	0	58	N/A Case 2	110.0	0.016	0.50
May 1-15	58	0	64	N/A Case 2	110.0	0.016	0.50
May 16-31	62	0	72	N/A Case 2	110.0	0.016	0.50
Jun 1-15	67	0	80	N/A Case 2	110.0	0.016	0.50
Jun 16-30	71	0	84	N/A Case 2	110.0	0.016	0.50
Jul 1-31	75	0	87	N/A Case 2	110.0	0.016	0.50
Aug 1-15	74	0	87	N/A Case 2	110.0	0.016	0.50
Aug 16-31	74	0	87	N/A Case 2	110.0	0.016	0.50
Sep 1-15	71	0	84	N/A Case 2	110.0	0.016	0.50
Sep 16-30	65	0	78	N/A Case 2	110.0	0.016	0.50
Oct 1-15	60	0	72	N/A Case 2	110.0	0.016	0.50
Oct 16-31	54	0	66	N/A Case 2	110.0	0.016	0.50
Nov 1-15	48	0	58	N/A Case 2	110.0	0.016	0.50
Nov 16-30	42	0	50	N/A Case 2	110.0	0.016	0.50
Dec 1-31	37	0	42	N/A Case 2	110.0	0.016	0.50

¹ This is the maximum of the WWF WQ criterion or the ambient temperature. The ambient temperature may be either the design (median) temperature for WWF, or the ambient stream temperature based on site-specific data entered by the user. A minimum of 1°F above ambient stream temperature is allocated.

² The WLA expressed in Million BTUs/day is valid for Case 1 scenarios, and disabled for Case 2 scenarios.

³ The WLA expressed in °F is valid only if the limit is tied to a daily discharge flow limit (may be used for Case 1 or Case 2). WLAs greater than 110°F are displayed as 110°F.

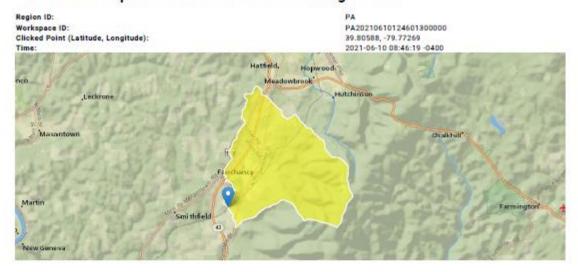

NPDES Permit No. PA0219380

Attachment C – TRC Calculation Spreadsheet

TRC EVALUATION Fayette Business Park

0.288	= Q stream (cfs)	0.5	= CV Daily	
0.016	= Q discharg	je (MGD)	0.5	= CV Hourly	
4	= no. sample	es	0.705	= AFC_Partial I	Mix Factor
0.3	= Chlorine D	emand of Stream	1	= CFC_Partial I	Mix Factor
0	= Chlorine D	emand of Discharge	15	= AFC_Criteria	Compliance Time (min)
0.5	= BAT/BPJ V	'alue	720	= CFC_Criteria	Compliance Time (min)
	= % Factor o	of Safety (FOS)		=Decay Coeffic	cient (K)
Source	Reference	AFC Calculations		Reference	CFC Calculations
TRC	1.3.2.iii	WLA afc =	2.636	1.3.2.iii	WLA cfc = 3.630
PENTOXSD TRO	5.1a	LTAMULT afc =	0.373	5.1c	LTAMULT cfc = 0.581
PENTOXSD TRO	5.1b	LTA_afc=	0.982	5.1d	LTA_cfc = 2.110
Source			nt Limit Calcu		
PENTOXSD TRO			AML MULT =		
PENTOXSD TRO	5.1g		.IMIT (mg/l) =		BAT/BPJ
		INST MAX L	.IMIT (mg/l) =	1.170	
WLA afc LTAMULT afc LTA_afc	+ Xd + (AF(FC_tc)) + [(AFC_Yc*Q: C_Yc*Qs*Xs/Qd)]*(1-F (cvh^2+1))-2.326*LN(MULT_afc	OS/100)		
WLA_cfc (.011/e(-k*CFC_tc) + [(CFC_Yc*Qs*.011/Qd*e(-k*CFC_tc))+ Xd + (CFC_Yc*Qs*Xs/Qd)]*(1-FO\$/100) LTAMULT_cfc EXP((0.5*LN(cvd^2/no_samples+1))-2.326*LN(cvd^2/no_samples+1)^0.5) LTA_cfc wla_cfc*LTAMULT_cfc					
AML MULT EXP(2.326*LN((cvd^2/no_samples+1)^0.5)-0.5*LN(cvd^2/no_samples+1)) AVG MON LIMIT MIN(BAT_BPJ,MIN(LTA_afc,LTA_cfc)*AML_MULT) INST MAX LIMIT 1.5*((av_mon_limit/AML_MULT)/LTAMULT_afc)					

Attachment D – Water Flow Diagram



NPDES Permit No. PA0219380

Attachment E – USGS StreamStats Output

StreamStats Report - Pureon Outfall 001 to Georges Creek

Basin Characteristics			
Parameter Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	13.6	square miles
STORAGE	Percentage of area of storage (lakes ponds reservoirs wetlands)	0.16	percent
ELEV	Mean Basin Elevation	1442	feet
PRECIP	Mean Annual Precipitation	45	inches
FOREST	Percentage of area covered by forest	60.0192	percent
URBAN	Percentage of basin with urban development	10.8982	percent
CARBON	Percentage of area of carbonate rock	0	percent

	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	13.6	square miles	0.92	1160
STORAGE	Percent Storage	0.16	percent	0	8.9
il: Prediction Interval-Lo Statistic	ower, Plu: Prediction Interval-Uppe	er, SEp: Standard I	Error of Prediction, SE Value	Standard Error (other Unit	see report) SEp
50-percent AEP flood			567	ft^3/s	26.1
20-percent AEP flood			909	ft^3/s	27
			1180	ft^3/s	28.9
10-percent AEP flood			1570	ft^3/s	31.6
10-percent AEP flood 4-percent AEP flood					34.8
			1890	ft^3/s	34.0
4-percent AEP flood			1890 2250	ft^3/s ft^3/s	37.8
4-percent AEP flood 2-percent AEP flood			7.00		700

https://streamstats.usgs.gov/ss/

Roland, M.A., and Stuckey, M.H.,2019, Development of regression equations for the estimation of flood flows at ungaged streams in Pennsylvania: U.S. Geological Survey Scientific Investigations Report 2019-5094, 36 p. (https://doi.org/10.3133/sir20195094)

Low-Flow Statistics Par	armeters [Low Flow Region 4]	

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	13.6	square miles	2.26	1400
ELEV	Mean Basin Elevation	1442	feet	1050	2580

Low-Flow Statistics Flow Report [Low Flow Region 4]

PII: Prediction Interval-Lower, Piu: Prediction Interval-Upper, SEp: Standard Error of Prediction, SE: Standard Error (other -- see report)

Statistic	Value	Unit	SE	SEp
7 Day 2 Year Low Flow	0.64	ft*3/s	43	43
30 Day 2 Year Low Flow	1.11	ft*3/s	38	38
7 Day 10 Year Low Flow	0.228	ft*3/s	66	66
30 Day 10 Year Low Flow	0.408	ft*3/s	54	54
90 Day 10 Year Low Flow	0.766	ft*3/s	41	41

Low-Flow Statistics Citations

Stuckey, M.H., 2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p. (http://pubs.usgs.gov/sir/2006/5130/)

Annual Flow Statistics Parameters [Statewide Mean and Base Flow]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	13.6	square miles	2.26	1720
ELEV	Mean Basin Elevation	1442	feet	130	2700
PRECIP	Mean Annual Precipitation	45	Inches	33.1	50.4
FOREST	Percent Forest	60.0192	percent	5.1	100
URBAN	Percent Urban	10.8982	percent	0	89

Annual Flow Statistics Flow Report [Statewide Mean and Base Flow]

PII: Prediction Interval-Lower, Plu: Prediction Interval-Upper, SEp: Standard Error of Prediction, SE: Standard Error (other -- see report)

Statistic	Value	Unit	SE	SEp
Mean Annual Flow	24.1	ft*3/s	12	12

Annual Flow Statistics Citations

Stuckey, M.H., 2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p. (http://pubs.usgs.gov/sir/2006/5130/)

General Flow Statistics Parameters [Statewide Mean and Base Flow]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	13.6	square miles	2.26	1720
PRECIP	Mean Annual Precipitation	45	Inches	33.1	50.4
CARBON	Percent Carbonate	0	percent	0	99
FOREST	Percent Forest	60.0192	percent	5.1	100
URBAN	Percent Urban	10.8982	percent	0	89

General Flow Statistics Flow Report [Statewide Mean and Base Flow]

PII: Prediction Interval-Lower, Plu: Prediction Interval-Upper, SEp: Standard Error of Prediction, SE: Standard Error (other -- see report)

Statistic Value Unit SE SEp

ittos://streamstats.usgs.gov/ss/ 6/10/2021

Statistic	Value	Unit	SE	SEp	
Harmonic Mean Streamflow	6.02	ft^3/s	38	38	

General Flow Statistics Citations

Stuckey, M.H., 2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p. (http://pubs.usgs.gov/sir/2006/5130/)

Base Flow Statistics Parameters [Statewide Mean and Base Flow]					
Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	13.6	square miles	2.26	1720
PRECIP	Mean Annual Precipitation	45	inches	33.1	50.4
CARBON	Percent Carbonate	0	percent	0	99
FOREST	Percent Forest	60.0192	percent	5.1	100
URBAN	Percent Urban	10.8982	percent	0	89

Base Flow Statistics Flow Report [Statewide Mean and Base Flow]

PII: Prediction Interval-Lower, Plu: Prediction Interval-Upper, SEp: Standard Error of Prediction, SE: Standard Error (other -- see report)

Statistic	Value	Unit	SE	SEp
Base Flow 10 Year Recurrence Interval	8.84	ft^3/s	21	21
Base Flow 25 Year Recurrence Interval	7.87	ft^3/s	21	21
Base Flow 50 Year Recurrence Interval	7.31	ft^3/s	23	23

Base Flow Statistics Citations

Stuckey, M.H., 2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p. (http://pubs.usgs.gov/sir/2006/5130/)

5066

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	13.6	square miles	2.62	207
CARBON	Percent Carbonate	0	percent		

Bankfull Statistics Flow Report [Statewide Bankfull Noncarbonate 2018 5066]

PII: Prediction Interval-Lower, Piu: Prediction Interval-Upper, SEp: Standard Error of Prediction, SE: Standard Error (other -- see report)

Statistic	Value	Unit	SE
Bankfull Area	98.2	ft^2	64
Bankfull Streamflow	437	ft^3/s	74
Bankfull Width	47.4	ft	59
Bankfull Depth	2.1	ft	56

Bankfull Statistics Citations

Clune, J.W., Chaplin, J.J., and White, K.E., 2018, Comparison of regression relations of bankfull discharge and channel geometry for the glaciated and nonglaciated settings of Pennsylvania and southern New York: U.S. Geological Survey Scientific Investigations Report 2018 –5066, 20 p. (https://doi.org/10.3133/sir20185066)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

https://streamstats.usgs.gov/ss/

6/10/2021

NPDES Permit No. PA0219380

NPDES Permit Fact Sheet Fayette Business Park

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Application Version: 4.5.3 StreamStats Services Version: 1.2.22 NSS Services Version: 2.1.2