

Northwest Regional Office CLEAN WATER PROGRAM

Application Type

Facility Type

Major / Minor

Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

 Application No.
 PA0220779

 APS ID
 1100635

 Authorization ID
 1461300

Applicant Name	ASH West Springfield Properties, LLC		Facility Name	ASH West Springfield MHP				
Applicant Address	7427	Chestnut Street	Facility Address	13079 Ridge Road				
	Fairvi	ew, PA 16415-1132		West Springfield, PA 16443-9732				
Applicant Contact		Armstrong, Managing Member n@ashrealestateinvestments.com)	Facility Contact	Ethen Armstrong, Managing Member (ethen@ashrealestateinvestments.com)				
Applicant Phone	(814)	795-8676	Facility Phone	(814) 795-8676				
Client ID	36014	41	Site ID	264272				
Ch 94 Load Status	Not C	verloaded	Municipality	Springfield Township				
Connection Status	No Li	mitations	County	Erie				
Date Application Rece	eived	October 20, 2023	EPA Waived?	Yes				
Date Application Acce	epted	November 9, 2023	If No, Reason	-				

Summary of Review

Act 14 - Proof of Notification was submitted and received.

A Part II Water Quality Management permit amendment has been submitted and will be issued with the Final NPDES Permit. The applicant should be able to meet the limits of this permit, which will protect the uses of the receiving stream.

I. OTHER REQUIREMENTS:

- A. Stormwater into Sewers
- B. Right of Way
- C. Solids Handling
- D. Public Sewerage Availability
- E. Little or No Assimilative Capacity

SPECIAL CONDITIONS:

II. Solids Management

There are 4 open violations in efacts associated with the subject Client ID (360141) as of 2/7/2024 (see Attachment 1).

Approve	Deny	Signatures	Date
		Stephen A. McCauley	2/7/2024
^		Stephen A. McCauley, E.I.T. / Environmental Engineering Specialist	2/1/2024
V			Okay to Draft
^		Vacant / Environmental Engineer Manager	JCD 2/12/2024

Discharge, Receiving Waters and Water Supply Infor	mation	
Outfall No. 001	Design Flow (MGD)	0.01185
Latitude 41° 57′ 13.6″	Longitude	-80° 26' 56.9"
Quad Name -	Quad Code	-
Wastewater Description: Sewage Effluent		
Unnamed Tributary to the Receiving Waters NHD Com ID Drainage Area Unnamed Tributary to the Raccoon Creek (CWF, MF) 123922149 0.24	Stream Code RMI Yield (cfs/mi²)	62695 0.49 0.067
Q ₇₋₁₀ Flow (cfs) 0.016	O Pagis	calculated
Elevation (ft) 695	Slope (ft/ft)	0.01546
Watershed No. 15-A	Chapter 93 Class.	CWF, MF
Existing Use	Existing Use Qualifier	
Exceptions to Use	Exceptions to Criteria	-
Assessment Status Attaining Use(s)		
Cause(s) of Impairment		
Source(s) of Impairment		
TMDL Status	Name	
Background/Ambient Data pH (SU) Temperature (°F) Hardness (mg/L) Other:		
Nearest Downstream Public Water Supply Intake	Pennsylvania - Canada interna	ational border
PWS Waters Lake Erie	Flow at Intake (cfs)	
PWS RMI -	Distance from Outfall (mi)	27.0

Sludge use and disposal description and location(s): All sludge is hauled by the Graden Septic Service to the McKean Township WWTP where it is disposed of at an approved landfill.

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the Pennsylvania Bulletin in accordance with 25 Pa. Code § 92a.82. Upon publication in the Pennsylvania Bulletin, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the Pennsylvania Bulletin at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Narrative: This Fact Sheet details the determination of draft NPDES permit limits for an existing discharge of 0.01185 MGD of treated sewage from an existing non-municipal STP in Springfield Township, Erie County.

Treatment permitted under Water Quality Management (WQM) Permits No. 2593413 T-4 and 2599412 A-1, T-2 consists of the following:

One 500 gallon, four 1,500 gallon, one 2,500 gallon, two 3,000 gallon, and one 4,000 gallon septic tank (combined capacity of 19,000 gallons), a 4,000 gallon dosing tank, soda ash and alum addition, two intermittent surface sand filters, and ultraviolet (UV) light disinfection.

An amendment application for WQM 2599412 that was received on August 28, 2023 proposes the addition of two new dosing pumps, modifications to the dosing tank, a new manhole to house the new pumps, a new splitter box, and the replacement of the two surface sand filters with two 2,730 square foot surface sand filters. The permitted flow will not change with the upgrades proposed.

WQM Permit 2599412 will permit the entire sewage treatment plant. Therefore, WQM Permit 2593413 will be cancelled with the Final NPDES Permit issuance.

1. Streamflow:

Brandy Run near Girard, PA (1988-2008) - USGS Gage 04213075:

Drainage Area: 4.45 sq. mi. (USGS StreamStats)

Q₇₋₁₀: <u>0.3</u> cfs (USGS StreamStats)

Yieldrate: <u>0.067</u> cfsm Calculated)

Unnamed Tributary to the Raccoon Creek at Outfall 001:

Yieldrate: 0.067 cfsm

Drainage Area: <u>0.24</u> sq. mi. (USGS StreamStats)

% of stream allocated: 100% Basis: No nearby discharges

Q₇₋₁₀: <u>0.016</u> cfs (USGS StreamStats)

2. Wasteflow:

Maximum discharge: 0.01185 MGD = 0.018 cfs

Runoff flow period: 24 hours Basis: Runoff flow with equalization

The calculated stream flow is less than the discharge flow. In accordance with the SOP, since there is less than 3 parts stream flow (Q7-10) to 1 part effluent (design flow), the treatment requirements in document number 391-2000-014, titled, "Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers", dated April 12, 2008, were evaluated. Based on eDMR data, the treatment requirements are not attainable, so they will not be implemented in this NPDES Permit renewal.

Flow will be required to be monitored as authorized under Chapter 92a.61, and as recommended in the SOP.

3. Parameters:

The following parameters were evaluated: pH, Total Suspended Solids, Fecal Coliform, E. Coli, Total Phosphorus, Total Nitrogen, NH₃-N, CBOD₅, Dissolved Oxygen, and Disinfection.

a. pH

Between 6.0 and 9.0 at all times

Basis: Application of Chapter 93.7 technology-based limits.

The measurement frequency will remain as 1/day as recommended in the SOP, based on Table 6-3 in the "Technical Guidance for the Development and Specification of Effluent Limitations" (362-0400-001).

b. Total Suspended Solids

Limits are 30.0 mg/l as a monthly average and 60.0 as an instantaneous maximum.

Basis: Application of Chapter 92a47 technology-based limits.

c. Fecal Coliform

05/01 - 09/30: <u>200/100ml</u> (monthly average geometric mean)

1,000/100ml (instantaneous maximum)

10/01 - 04/30: <u>2,000/100ml</u> (monthly average geometric mean)

10,000/100ml (instantaneous maximum)

Basis: Application of Chapter 92a47 technology-based limits

d. E. Coli

Monitoring was added for E. Coli at a frequency of 1/year.

Basis: Application of Chapter 92a.61 as recommended by the SOP for flows between 0.002 MGD and

0.05 MGD.

e. Total Phosphorus

The previous limits for Total Phosphorus set for Lake Erie are based on the 1969 International Joint Committee (IJC) agreement, under the authority of Chapter 96.5, will be retained.

f. <u>Total Nitrogen</u>

The previous monitoring for Total Nitrogen will be retained in accordance with the SOP, based on Chapter 92a.61.

g. <u>Ammonia-Nitrogen (NH₃-N)</u>

Median discharge pH to be used: 7.6 Standard Units (S.U.)

Basis: eDMR data from previous 12 months

Discharge temperature: 25°C (default value used in the absence of data)

Median stream pH to be used: 7.0 Standard Units (S.U.)

Basis: default value used in the absence of data

Stream Temperature: 20°C (default value used for CWF modeling)

Background NH₃-N concentration: 0.1 mg/l

Basis: Default value

h.

Calculated NH₃-N Summer limits: 3.2 mg/l (monthly average) mg/l (instantaneous maximum) 6.4 Calculated NH₃-N Winter limits: 9.6 mg/l (monthly average) mg/l (instantaneous maximum) 19.2 Result: WQ modeling resulted in the summer limits above (see Attachment 2). The winter limits are calculated as three times the summer limits. The calculated limits are less restrictive than the previous permit. Based on the eDMR data, the more restrictive limits are attainable, so they will be retained with this renewal. CBOD₅ Median discharge pH to be used: 7.6 Standard Units (S.U.) Basis: eDMR data from previous 12 months Discharge temperature: 25°C (default value used in the absence of data) 7.0 Standard Units (S.U.) Median stream pH to be used: default value used in the absence of data Basis: Stream Temperature: 20°C (default value used for CWF modeling) Background CBOD₅ concentration: 2.0 mg/l Basis: Default value

Result: WQ modeling resulted in the limits above (see Attachment 2). The calculated limits are the same as

mg/l (monthly average)

ma/l (instantaneous maximum)

the previous permit and will be retained.

Calculated CBOD₅ limits:

i. Dissolved Oxygen (DO)

The technology-based minimum of 5.0 mg/l is recommended by the WQ Model (see Attachment 2) and the SOP based on Chapter 93.7, under the authority of Chapter 92a.61. However, since it is being attained, the Dissolved Oxygen minimum of 6.0 mg/l will be retained with this renewal

The measurement frequency will remain as 1/day as recommended in the SOP, based on Table 6-3 in the "Technical Guidance for the Development and Specification of Effluent Limitations" (362-0400-001).

j. <u>Disinfection</u>

\boxtimes	Ultraviolet (UV) light	
	Total Residual Chlorine (TRC):	 mg/l (monthly average) mg/l (instantaneous maximum)
		 mg/i (mstantaneous maximum)

25.0

50.0

Basis: <u>UV Transmittance (%) reporting will be retained with this renewal.</u>

The measurement frequency will remain as 1/day as recommended in the SOP, based on Table 6-3 in the "Technical Guidance for the Development and Specification of Effluent Limitations" (362-0400-001).

4. Reasonable Potential Analysis for Receiving Stream:

A Reasonable Potential Analysis was not performed in accordance with State practices for Outfall 001 using the Department's Toxics Management Spreadsheet since no sampling other than sewage-related parameters was performed for this facility with the renewal application.

5. Reasonable Potential for Downstream Public Water Supply (PWS):

The Department's Toxics Management Spreadsheet does not calculate limits for parameters that are based on PWS criteria (TDS, Chloride, Bromide, and Sulfate). Since no relevant sampling was provided, mass-balance calculations were not performed.

Nearest Downstream potable water supply (PWS): Pennsylvania - Canada international border

Distance downstream from the point of discharge: 27.0 miles

Result: No limits or monitoring are necessary as there is significant dilution available.

6. Anti-Backsliding:

Since all the permit limits in this renewal are the same or more restrictive than the previous NPDES Permit, anti-backsliding is not applicable.

7. Attachment List:

Attachment 1 - WMS Open Violations by Client

Attachment 2 - WQ Modeling Printouts

(The Attachments above can be found at the end of this document)

NPDES Permit No. PA0220779

Compliance History

DMR Data for Outfall 001 (from January 1, 2023 to December 31, 2023)

Parameter	DEC-23	NOV-23	OCT-23	SEP-23	AUG-23	JUL-23	JUN-23	MAY-23	APR-23	MAR-23	FEB-23	JAN-23
Flow (MGD)												
Average Monthly	0.005	0.005	0.004	0.003	0.008	0.008	0.009	0.008	0.003	0.007	0.012	0.017
pH (S.U.)												
Instantaneous Minimum	7.38	7.45	7.5	7.5	7.35	7.31	7.5	7.5	6.86	7.09	8.05	7.94
pH (S.U.)												
Instantaneous Maximum	7.67	7.85	7.66	7.65	7.6	7.68	7.81	7.8	7.85	7.83	9.14	8.97
DO (mg/L)												
Daily Minimum	6.8	6.4	7.25	7.29	6.0	5.89	5.95	6.48	6.99	8.74	10.01	9.18
CBOD5 (mg/L)												
Average Monthly	< 2.2	5.3	< 2.0	< 3.4	< 2.0	< 3.2	< 3.3	< 3.0	2.5	< 2.0	< 4.8	< 4.7
TSS (mg/L)												
Average Monthly	14.5	< 5.0	6.0	< 6.5	11.0	< 5.5	< 6.5	< 6.0	< 8.5	< 5.0	< 5.0	< 5.0
Fecal Coliform (No./100 ml)												
Geometric Mean	66.0	116	510	98.0	389	1207	66.0	3.0	15.0	< 7.0	43.0	43
UV Transmittance (%)												
Average Monthly	100	100	100	100	100	100	100	100	100	100	100	100.0
Total Nitrogen (mg/L)												
Average Monthly	13.2	12	17.4	11.6	9.88	< 0.91	19.6	4.78	5.83	5.52	8.4	6.4
Ammonia (mg/L)												
Average Monthly	3.2	5.5	4.2	< 0.4	5.8	< 0.5	8.2	4.1	6.0	< 3.4	4.5	< 0.8
Total Phosphorus (mg/L)												
Average Monthly	0.6	0.6	0.6	0.5	< 0.6	< 0.3	8.0	0.9	1.1	0.6	0.8	0.6

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (386-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

			Effluent L	imitations			Monitoring Requirements		
Parameter	Mass Units	(lbs/day) (1)		Concentrat	ions (mg/L)		Minimum (2)	Required	
r al allietei	Average Monthly	Average Weekly	Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type	
Flow (MGD)	Report	XXX	XXX	XXX	XXX	XXX	1/week	Measured	
pH (S.U.)	XXX	XXX	6.0 Daily Min	XXX	9.0 Daily Max	XXX	1/day	Grab	
DO	XXX	XXX	6.0 Daily Min	XXX	XXX	XXX	1/day	Grab	
CBOD5	XXX	XXX	XXX	25.0	XXX	50	2/month	8-Hr Composite	
TSS	XXX	XXX	XXX	30.0	XXX	60	2/month	8-Hr Composite	
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2000 Geo Mean	XXX	10000	2/month	Grab	
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	XXX	XXX	200 Geo Mean	XXX	1000	2/month	Grab	
E. Coli (No./100 ml)	XXX	XXX	XXX	XXX	XXX	Report	1/year	Grab	
UV Transmittance (%)	XXX	XXX	XXX	Report	XXX	XXX	1/day	Metered	
Total Nitrogen	XXX	XXX	XXX	Report	XXX	XXX	2/month	8-Hr Composite	
Ammonia Nov 1 - Apr 30	XXX	XXX	XXX	4.5	XXX	9	2/month	8-Hr Composite	
Ammonia May 1 - Oct 31	XXX	XXX	XXX	1.5	XXX	3	2/month	8-Hr Composite	
Total Phosphorus	XXX	XXX	XXX	1.0	XXX	XXX	2/month	8-Hr Composite	

Compliance Sampling Location: at Outfall 001, after ultraviolet (UV) light disinfection.

Flow is monitor only based on Chapter 92a.61. The limits for pH and Dissolved Oxygen are technology-based on Chapter 93.7. The limits for CBOD₅, Total Suspended Solids (TSS), and Fecal Coliforms are technology-based on Chapter 92a.47. Monitoring for E. Coli, UV Transmittance (%), and Total Nitrogen is based on Chapter 92a.61. The limits for Ammonia-Nitrogen are water quality-based on Chapter 93.7. The limits for Total Phosphorus for Lake Erie are based on the 1969 International Joint Committee (IJC) agreement.

Attachment 1

WATER MANAGEMENT SYSTEM OPEN VIOLATIONS BY CLIENT

Client ID: 360141 Client: All

Open Violations: 4

CLIENTID	CLIENT	PF ID	FACILITY	PF KIND	PF STATUS	INSP PROGRAM	PROGRAM SPECIFIC ID
360141	ASH WEST SPRINGFIELD PROP LLC	283980	SPRINGFIELD VILLAGE	Community	Active	Safe Drinking Water	6250005
360141	ASH WEST SPRINGFIELD PROP LLC	283980	SPRINGFIELD VILLAGE	Community	Active	Safe Drinking Water	6250005
360141	ASH WEST SPRINGFIELD PROP LLC	283980	SPRINGFIELD VILLAGE	Community	Active	Safe Drinking Water	6250005
360141	ASH WEST SPRINGFIELD PROP LLC	283980	SPRINGFIELD VILLAGE	Community	Active	Safe Drinking Water	6250005

INSP ID	VIOLATION ID	INSPECTION CATEGORY	VIOLATION DATE	VIOLATION CODE	VIOLATION	PF INSPECTOR	INSP REGION
3642210	8164538	PF	11/07/2023	C9	EXCEEDANCE OF A SECONDARY MCL	HADDEN,MICHAEL	NWRO
3642210	8164539	PF	11/07/2023	C7	FAILURE TO COMPLY WITH A PERMIT CONDITION	HADDEN,MICHAEL	NWRO
3642210	8164540	PF	11/07/2023	C7	FAILURE TO COMPLY WITH A PERMIT CONDITION	HADDEN,MICHAEL	NWRO
3655394	8167273	PF	12/06/2023	C2F	FAILURE TO SAMPLE AT APPROPRIATE LOCATIONS OR FOLLOW SAMPLE COLLECTION PROTOCOLS	HADDEN,MICHAEL	NWRO

Attachment 2

WQM 7.0 Effluent Limits

	SWP Basin Stream			Stream Name			
	15 626	i95 		Trib 62695 to Raccoo	on Creek		
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
0.490	ASH West MHP	PA0220779	0.012	CBOD5	25		
				NH3-N	3.29	6.58	
				Dissolved Oxygen			5

WQM 7.0 D.O.Simulation

SWP Basin St	ream Code			Stream Name			
15	62695		Trib 62	2695 to Raccoon Cre	ek		
<u>RMI</u>	Total Discharge	Flow (mgd	I) <u>Ana</u>	Analysis pH			
0.490	0.012	2		22.664	7.221		
Reach Width (ft)	Reach Dep	oth (ft)		Reach WDRatio	Reach Velocity (fps)		
2.391	0.30	1		7.952	0.048		
Reach CBOD5 (mg/L)	Reach Kc (1/days)	<u>R</u>	each NH3-N (mg/L)	Reach Kn (1/days)		
14.25	1.335	5		1.75	0.859		
Reach DO (mg/L)	Reach Kr (<u>1/days)</u>		Kr Equation	Reach DO Goal (mg/L)		
6.515	27.86	1		Owens	6		
Reach Travel Time (days)		Subreach					
0.626							
	(days)	(mg/L)	(mg/L)	(mg/L)			
	0.063	12.97	1.66	7.24			
	0.125	11.80	1.57	7.46			
	0.188	10.74	1.49	7.58			
	0.250	9.77	1.41	7.68			
	0.313	8.89	1.34	7.77			
	0.375	8.09	1.27	7.85			
	0.438	7.36	1.20	7.85			
	0.500	6.70	1.14	7.85			
	0.563	6.10	1.08	7.85			
	0.626	5.55	1.02	7.85			

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	✓
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	✓
D.O. Saturation	90.00%	Use Balanced Technology	✓
D.O. Goal	6		

Input Data WQM 7.0

								ALLE SE SERVE						
	SWP Basin			Stre	eam Name		RMI		ation ft)	Drainage Area (sq mi)	s Slop	With	WS drawal ngd)	Apply FC
	15	626	395 Trib 62	2695 to R	accoon Cre	ek	0.4	90	695.00	0.:	24 0.00	0000	0.00	✓
					St	ream Dat	ta							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	<u>Tributary</u> np p	Н	<u>Strea</u> Temp	<u>m</u> pH	
- Jona.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C)		
Q7-10 Q1-10 Q30-10	0.067	0.00 0.00 0.00	0.00	0.000 0.000 0.000	0.000	0.0	0.00	0.00) 2	0.00	7.00	0.00	0.00	Discourse the second
					Di	ischarge	Data							
		Name		Per	Existir Disc Permit Number Flow (mgd				Res Fa	Reserve Temp Factor (°C)		Disc pH		
		ASH	West MHP	PA	0220779	0.011	9 0.000	0.00	000	0.000	25.00	7.60	-	
					Pa	arameter	Data							
			1	Paramete	r Name				Stream Conc	Fate Coef				
						(m	ng/L) (r	ng/L)	(mg/L)	(1/days)				
			CBOD5				25.00	2.00	0.00	1.50	Ē.			
			Dissolved	Oxygen			4.00	8.24	0.00	0.00	l			
			NH3-N				25.00	0.00	0.00	0.70	E)			
													70	

Input Data WQM 7.0

	SWP Basin			Stre	eam Name		RMI		vation (ft)	Drainag Area (sq mi		lope ft/ft)	PW Withd (mg	rawal	Apply FC
	15	626	395 Trib 62	2695 to R	accoon Cre	ek	0.00	00	655.00	3	3.03 0.0	00000		0.00	~
					St	ream Dat	a								
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Ten	<u>Tributar</u> np	⊻ pH	Tem	<u>Strean</u> p	<u>n</u> pH	
Coriu.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C	:)		(°C)		
Q7-10 Q1-10 Q30-10	0.067	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000	0.0	0.00	0.0	00 2	0.00	7.00	0	0.00	0.00	
					Di	scharge	Data								
			Name	Per	rmit Numbei	Disc	Permitt Disc Flow (mgd)	Dis Flo	c Res	erve ctor	Disc Temp (°C)	Di: p			
		*				0.000	0.000	0.0	0000	0.000	25.0	0	7.00		
					Pa	arameter	Data								
			1	Paramete	r Name			Trib Conc	Stream Conc	Fate Coef					
			200		and the second s	(m	ng/L) (r	ng/L)	(mg/L)	(1/days	s)				
			CBOD5				25.00	2.00	0.00	1.5	50				
			Dissolved	Oxygen			3.00	8.24	0.00	0.0	00				
			NH3-N				25.00	0.00	0.00	0.7	70				

WQM 7.0 Hydrodynamic Outputs

	SW	P Basin	Strea	m Code				Stream	<u>Name</u>			
		15	6	2695			Trib 626	95 to R	accoon C	reek		
RMI	Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow	14	Depth	Width	W/D Ratio	Velocity	Reach Trav Time	Analysis Temp	Analysis pH
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)	
Q7-1	0 Flow											
0.490	0.02	0.00	0.02	.0183	0.01546	.301	2.39	7.95	0.05	0.626	22.66	7.22
Q1-1	0 Flow											
0.490	0.01	0.00	0.01	.0183	0.01546	NA	NA	NA	0.04	0.694	23.20	7.28
Q30-	10 Flow	1										
0.490	0.02	0.00	0.02	.0183	0.01546	NA	NA	NA	0.05	0.573	22.28	7.18

WQM 7.0 Wasteload Allocations

SWP Basin	Stream Code	Stream Name				
15	62695	Trib 62695 to Raccoon Creek				

RMI	Discharge Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
0.49	0 ASH West MHP	9.53	14.88	9.53	14.88	0	0
NH3-N	Chronic Allocati	ons					
NH3-N (Chronic Allocati	ONS Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction

Dissolved Oxygen Allocations

		CBOD5		<u>NH</u>	<u>3-N</u>	Dissolved Oxygen		Critical	Percent	
RMI	Discharge Name	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Reach	Reduction	
0.49	ASH West MHP	25	25	3.29	3.29	5	5	0	0	