

Northwest Regional Office CLEAN WATER PROGRAM

Application Type Renewal

Wastewater Type Sewage

Facility Type SFTF

NPDES PERMIT FACT SHEET INDIVIDUAL SFTF/SRSTP

Application No. PA0221279

APS ID 857151

Authorization ID 1049848

Applicant Name		on Road Properties Owners ciation, Inc.	Facility Name	Station Road Properties Owners Association	
Applicant Address	7018	Station Road	Facility Address	7040 Station Road	
	Erie,	PA 16510	<u></u>	Erie, PA 16510	
Applicant Contact	David	l Dombkowski	Facility Contact	David Dombkowski	
Applicant Phone	(715)	587-5150	Facility Phone	(715) 587-5150	
Client ID	4473	7	Site ID	3292	
SIC Code	8800		Municipality	Harborcreek Township	
SIC Description	Priva	te Households	County	Erie County	
Date Application Received		May 12, 2020	WQM Required	No	
Date Application Accepted		May 13, 2021	WQM App. No.	-	

Summary of Review

Act 14 - Proof of Notification was submitted and received.

A Part II Water Quality Management permit is not required at this time.

The applicant should be able to meet the limits of this permit, which will continue to protect the uses of the receiving stream.

I. OTHER REQUIREMENTS:

A. AMRs

F. Stormwater into sewers

B. DMRs

G. Right of way

C. Depth of Septage and Scum Measurement

H. Solids handling

D. Septic Tank Pumping

Public Sewerage Availability

E. Effluent Chlorine Optimization and Minimization

SPECIAL CONDITIONS: None.

Permitted treatment consists of: (WQM Permit no. 2594407)

Four 1,250 gallon septic tanks, one at each of four lots (A, B, C, and D), an effluent pump and a 300 gallon pump tank for lots C and D, a common 1,250 gallon dosing tank, a 2,400 square foot (24'x100') subsurface sand filter, alum addition for phosphorus removal with a 1,000 gallon

precipitation tank, and tablet chlorine disinfection with a 1,000 gallon contact tank.

There are no open violations in efacts associated with the subject Client ID (44737) as of 5/25/2021.

Approve	Deny	Signatures	Date		
V		Stephen A. McCauley	5/25/2021		
]		Stephen A. McCauley, E.I.T. / Environmental Engineering Specialist	3/23/2021		
V		Justin C. Dickey	May 26, 2021		
Ju		Justin C. Dickey, P.E. / Environmental Engineer Manager	May 26, 2021		

Discharge, Receiving Wa	aters and Water Supply Information
Outfall No. 001 Latitude 42° 07' 04.00" Quad Name - Wastewater Description: Sewage Effluent	700 EC! 2E 00"
Unnamed Tributary to the Receiving Waters Sixmile Creek (CWF, MF) NHD Com ID 123923461 Drainage Area - Q ₇₋₁₀ Flow (cfs) - Elevation (ft) - Watershed No. 15-A Existing Use - Exceptions to Use - Assessment Status Attaining Use(s) Cause(s) of Impairment -	Yield (cfs/mi²) - Q ₇₋₁₀ Basis - Slope (ft/ft) - Chapter 93 Class. CWF, MF Existing Use Qualifier -
Source(s) of Impairment - TMDL Status -	Name
Background/Ambient Data pH (SU) Temperature (°F) Hardness (mg/L) Other:	Data Source
Nearest Downstream Public Water Supply Intake PWS Waters Lake Erie PWS RMI N/A	Pennsylvania - Canada International border Flow at Intake (cfs) N/A Distance from Outfall (mi) 20.0

This SFTF was designed where applicable in accordance with the SFTF Manual, but it does not qualify for the PAG-04 General Permit due to it discharging to a tributary of Lake Erie which requires a phosphorus limit due to the 1969 International Joint Committee (IJC) agreement.

No modeling was performed for this NPDES Permit renewal as septic tank/sand filter systems have been shown to be capable of meeting CBOD5 and TSS averages of <10 mg/l, which are less than the inputs of the WQ model.

The previous TRC limits were verified using the TRC Spreadsheet, which can be found at the end of this fact sheet.

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the Pennsylvania Bulletin in accordance with 25 Pa. Code § 92a.82. Upon publication in the Pennsylvania Bulletin, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the Pennsylvania Bulletin at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

	Effluent Limitations						Monitoring Requirements	
Parameter	Mass Units (lbs/day) (1)		Concentrations (mg/L)				Minimum ⁽²⁾	Required
raiametei	Average Monthly	Average Weekly	Minimum	Annual Average	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report Annl Avg	XXX	XXX	XXX	XXX	XXX	1/year	Estimate
TRC	XXX	XXX	XXX	0.5 Avg Mo	XXX	1.6	1/month	Grab
BOD5	XXX	XXX	XXX	10.0	XXX	20.0	1/year	Grab
TSS	XXX	XXX	XXX	10.0	XXX	20.0	1/year	Grab
Fecal Coliform (No./100 ml)	XXX	XXX	XXX	200	XXX	1000	1/year	Grab
Total Phosphorus	XXX	XXX	XXX	1.0 Avg Mo	XXX	XXX	1/month	Grab

Compliance Sampling Location: Outfall 001, after disinfection.

Flow is monitor only based on Chapter 92a.61. The limits for Total Residual Chlorine, BOD5, Total Suspended Solids, and Fecal Coliform are technology-based on Chapter 92a.47. The limits for Total Phosphorus are to protect Lake Erie based on the 1969 International Joint Committee (IJC) agreement.

In consideration of this only serving 4 residential dwellings, the existing monitoring frequency will be continued to mimic the frequency typically established for an SRSTP.

TRC EVALUA	ATION									
Input appropria	ite values in A3	3:A9 and D3:D9								
0.0183 = Q stream (cfs)			0.5	.5 = CV Daily						
0.0016	= Q discharge	(MGD)	0.5	= CV Hourly						
0.3 = Chlorine Demand of Stream 1			= AFC_Partial Mix Factor = CFC_Partial Mix Factor = AFC_Criteria Compliance Time (min)							
							0.5			Compliance Time (min)
							C	= % Factor of	Safety (FOS)	0
Source	Reference	AFC Calculations		Reference	CFC Calculations					
TRC	1.3.2.iii	WLA afc =	2.377	1.3.2.iii	WLA cfc = 2.310					
PENTOXSD TRG	5.1a	LTAMULT afc =	0.373	5.1c	LTAMULT cfc = 0.581					
PENTOXSD TRG	5.1b	LTA_afc=	0.886	5.1d	LTA_cfc = 1.343					
Source		Efflue	nt Limit Calcu	lations						
PENTOXSD TRG	5.1f		AML MULT =	1.231						
PENTOXSD TRG	5.1g	5.1g AVG MON LIMIT (mg/l) = 0.500 BAT/BPJ								
		INST MAX	LIMIT (mg/l) =	1.635						
WLA afc	(.019/e(-k*AFC_tc)) + [(AFC_Yc*Qs*.019/Qd*e(-k*AFC_tc))									
LTABALLT	+ Xd + (AFC_Yc*Qs*Xs/Qd)]*(1-FOS/100)									
LTAMULT afc LTA_afc	EXP((0.5*LN(cvh^2+1))-2.326*LN(cvh^2+1)^0.5)									
LIA_aic	wla_afc*LTAMULT_afc									
WLA_cfc	Control of the contro	C_tc) + [(CFC_Yc*Qs*.011/	minute management more with	_tc))						
	+ Xd + (CFC_Yc*Qs*Xs/Qd)]*(1-FOS/100)									
LTAMULT_cfc	EXP((0.5*LN(cvd^2/no_samples+1))-2.326*LN(cvd^2/no_samples+1)^0.5)									
LTA_cfc	wla_cfc*LTAM	ULT_cfc								
AML MULT	EXP(2.326*LN)	((cvd^2/no_samples+1)^0.	5)-0.5*LN(cvd	l^2/no_samples+	1))					
AVG MON LIMIT	MIN(BAT_BPJ,MIN(LTA_afc,LTA_cfc)*AML_MULT)									
AVG MUN LIMIT	1.5*((av_mon_limit/AML_MULT)/LTAMULT_afc)									