

Northwest Regional Office CLEAN WATER PROGRAM

Application Type

Facility Type

Major / Minor

Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

 Application No.
 PA0221449

 APS ID
 1061683

 Authorization ID
 1393103

Applicant Name	Buffa	lo Township Municipal Authority	Facility Name	Buffalo Township Municipal Authority STP		
Applicant Address	707 S	outh Pike Road	Facility Address	161 Monroe Road		
	Sarve	r, PA 16055-9201		Sarver, PA 16055		
Applicant Contact	Kristir	ne Donaldson	Facility Contact	Kristine Donaldson		
Applicant Phone	(724)	383-2259 (mabt@zoominternet.net)	Facility Phone			
Client ID	62915	5	Site ID	262419		
Ch 94 Load Status	Not O	verloaded	Municipality	Buffalo Township		
Connection Status	No Li	mitations	County	Butler		
Date Application Rece	eived	April 19, 2022	EPA Waived?	Yes		
Date Application Acce	pted	May 2, 2022	If No, Reason			

Summary of Review

This is a publicly operated sewage treatment plant which services parts of Buffalo and Winfield Townships, Butler County. In addition, the facility has, and plans to continue accepting hauled in WTP filter backwash sludge.

No changes to discharge quantity or quality are proposed as part of this permit renewal.

There are currently five open violations listed in EFACTS for this client, all from the Safe Drinking Water Program (12/28/2023). The permittee will be notified of the open violations in the Draft Permit Cover Letter and given an opportunity to address the violations prior to final permit issuance. CWY 12/29/2023

Sludge use and disposal description and location(s): Dewatered sludge is hauled to Seneca Landfill for disposal.

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Approve	Deny	Signatures	Date
Х		Adam J. Pesek Adam J. Pesek, E.I.T. / Project Manager	December 28, 2023
Х		Chad W. Yurisic Chad W. Yurisic, P.E. / Environmental Engineer Manager	12/29/2023

		s and Water Supply Info				
Outfall No. 001			Design Flow (MGD)	0.89		
Latitude 40° 42' 19" Quad Name Freeport			Longitude	-79º 41' 38"		
			Quad Code	1708		
Wastewater Descri	iption:	Treated domestic sewage	9			
Receiving Waters	Buffal	o Creek (TSF)	Stream Code	42557		
NHD Com ID	12397	71892	RMI	3.42		
Drainage Area	167.6	5	Yield (cfs/mi²)	0.04284		
Q ₇₋₁₀ Flow (cfs)	7.182		Q ₇₋₁₀ Basis	USGS #03049000 ('77-'11		
Elevation (ft)	778		Slope (ft/ft)	0.00183		
Watershed No.	_18-F		Chapter 93 Class.	TSF		
Existing Use			Existing Use Qualifier			
Exceptions to Use			Exceptions to Criteria			
Assessment Status	3	Impaired				
Cause(s) of Impair	ment	CAUSE UNKNOWN				
Source(s) of Impair	rment	SOURCE UNKNOWN				
TMDL Status			Name			
Background/Ambie	ent Data		Data Source			
pH (SU)		8.3	DEP 4/21/09 macroinvertebra	ite sample taken upstream		
Temperature (°C)		20	Default			
Hardness (mg/L)		108	7/13/17 upstream sample take	en by permittee.		
Other:						
Nearest Downstrea	am Publi	c Water Supply Intake	Harrison Twp. Water Authority	y		
		ny River	Flow at Intake (cfs)	2390		
PWS RMI	24.2	·	Distance from Outfall (mi)	8.0		

Changes Since Last Permit Issuance: None

Other Comments:

Treatment Facility Summary

Treatment Facility Name: Buffalo Township Municipal Authority STP

WQM Permit No.	Issuance Date
1096406 A-1	5/16/2012

Waste Type	Degree of Treatment	Process Type	Disinfection	Avg Annual Flow (MGD)
Sewage	Secondary with Ammonia Reduction	Activated Sludge	Ultraviolet	0.89
Hydraulic Capacity	Organic Capacity			Biosolids
Hydraulic Capacity (MGD)	Organic Capacity (lbs/day)	Load Status	Biosolids Treatment	Biosolids Use/Disposal

Changes Since Last Permit Issuance: None

Other Comments: Treatment consists of influent pump station, aeration (4 tanks), settling (2 tanks), UV disinfection, sludge holding / aerobic digestion and sludge press.

Compliance History								
Summary of DMRs:	There have been ten effluent limit excursions since September 2018.							
Summary of Inspections:	The last facility inspection was conducted on 8/6/2020. No violations or issues were report in the inspection report. Five are for D.O., four for fecal coliform, and one for TSS.							

Other Comments:

Compliance History

DMR Data for Outfall 001 (from November 1, 2022 to October 31, 2023)

Parameter	OCT-23	SEP-23	AUG-23	JUL-23	JUN-23	MAY-23	APR-23	MAR-23	FEB-23	JAN-23	DEC-22	NOV-22
Flow (MGD)												
Average Monthly	0.502	0.506	0.575	0.554	0.505	0.668	0.681	0.810	0.664	0.695	0.709	0.693
Flow (MGD)												
Weekly Average	0.502	0.596	0.630	0.598	0.557	0.747	0.773	0.906	0.680	0.784	0.808	0.792
pH (S.U.)												
Daily Minimum	6.04	6.0	6.03	6.05	6.0	6.18	6.35	6.04	6.26	6.18	6.08	6.07
pH (S.U.)												
Daily Maximum	7.07	6.47	6.58	6.52	6.4	6.61	6.77	6.81	6.65	6.72	6.62	6.77
DO (mg/L)												
Daily Minimum	6.06	5.54	5.29	4.93	4.78	4.77	4.5	4.33	4.15	4.13	4.2	4.31
CBOD5 (lbs/day)												
Average Monthly	< 10	< 10	< 10	< 11	< 12	< 15	15	19	< 16	< 12	< 13	< 9
CBOD5 (lbs/day)												
Weekly Average	< 10	16	< 11	15	23	19	18	30	14	< 20	17	< 13
CBOD5 (mg/L)												
Average Monthly	< 2.1	< 2.5	< 2.0	< 2.5	< 2.7	< 2.8	2.7	3.1	< 2.7	< 2.1	< 2.7	< 2.0
CBOD5 (mg/L)												
Weekly Average	< 2.0	3.5	< 2.0	3.4	5.0	3.3	3.3	3.9	2.5	2.4	4.9	< 2.0
BOD5 (lbs/day)												
Raw Sewage Influent												
 br/> Average												
Monthly	589	552	606	480	< 589	669	602	465	768	< 383	560	570
BOD5 (lbs/day)												
Raw Sewage Influent												
 br/> Daily Maximum	765	624	981	604	849	767	829	549	915	< 598	656	859
BOD5 (mg/L)												
Raw Sewage Influent												
 br/> Average												
Monthly	138.1	136	135.1	104	< 135	121.8	108.4	78.3	141.8	< 67.3	118.7	120.2
TSS (lbs/day)												
Average Monthly	< 34	< 22	< 28	< 28	< 22	< 29	< 33	< 51	< 47	< 36	< 25	< 34
TSS (lbs/day)												
Raw Sewage Influent												
 Average												
Monthly	441	430	414	350	728	354	318	358	667	387	496	495

NPDES Permit Fact Sheet Buffalo Township Municipal Authority STP

<u> </u>	ı			ı	1			T	ı	T	ı	
TSS (lbs/day)												
Raw Sewage Influent												
 br/> Daily Maximum	593	641	500	401	1350	453	428	380	903	495	707	978
TSS (lbs/day)												
Weekly Average	< 25	27	40	43	< 24	38	43	103	61	< 50	< 31	60
TSS (mg/L)												
Average Monthly	< 6.8	< 5.5	< 5.8	< 6.0	< 5.0	< 5.2	< 6.0	< 8.0	< 8.0	< 6.4	< 5.0	< 7.2
TSS (mg/L)												
Raw Sewage Influent												
 br/> Average												
Monthly	103	104	87	76	171	64	58	61	125	70	108	103
TSS (mg/L)												
Weekly Average	5.0	6.0	7.0	9.0	< 5.0	6.0	8.0	14.0	11.0	8.0	< 5.0	11.0
Fecal Coliform												
(No./100 ml)												
Geometric Mean	< 6	< 4	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Fecal Coliform												
(No./100 ml)												
Înstantaneous												
Maximum	1	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
UV Intensity (µw/cm²)		_						_	-			
Minimum	2	2.3	2.5	3.4	3.4	4.1	4	4.4	4	3.8	3.7	3.5
UV Intensity (µw/cm²)		_	-								_	
Average Monthly	3	2.9	3.0	3.9	4.6	5.8	4.7	5.6	4.6	4.4	4.4	4.3
Total Nitrogen												
(lbs/day)												
Annual Average											184	
Total Nitrogen (mg/L)												
Annual Average											24.87	
Ammonia (lbs/day)												
Average Monthly	< 0.9	< 0.8	< 1.0	< 0.9	< 0.9	< 1.1	< 8	< 1	< 3	< 0.8	< 2	< 4
Ammonia (mg/L)												
Average Monthly	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 1.4	< 0.2	< 0.57	< 0.10	< 0.5	< 0.80
Total Phosphorus	7 0.2	10.2		7 0.2	10.2	, ,,,		, ,,,	1 0.0.	10110	, ,,,	1 0.00
(lbs/day)												
Annual Average											12	
Total Phosphorus											1	
(mg/L)												
Annual Average											1.65	
Total Copper (lbs/day)												
Average Quarterly		< 0.04			< 0.055			0.03			< 0.01	
Total Copper (mg/L)		1 0.0 1			1 0.000			0.00			1 0.01	
Average Quarterly		< 0.01			< 0.01			0.006			< 0.004	
orago additionly	ı			1	, 5.01			0.000	1	l	- 0.001	

	Development of Effluent Limitations										
Outfall No.	001		Design Flow (MGD)	0.89							
Latitude	40° 42' 19.00)"	Longitude	-79° 41' 38.00"							
Wastewater D	escription:	Treated domestic sewage	_								

Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
CBOD ₅	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD5	40	40 Average Weekly		92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
pН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform				
(5/1 – 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform				
(5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform				
(10/1 - 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform				
(10/1 - 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)
E. Coli	Report (No./100 ml)	IMAX	-	92a.61

Comments: The TRC limit is not applicable because UV disinfection is utilized.

Monitoring for E. Coli is placed in the permit in accordance with the Department's SOP entitled "Establishing Effluent Limitations for Individual Sewage Permits."

Water Quality-Based Limitations

The following limitations were determined through water quality modeling (output files attached):

Parameter Limit (mg/l		SBC	Model
Ammonia Nitrogen			
(5/01 - 10/31)	8.5	Average Monthly	Previous WQM or WQAM modeling
Total Copper	0.0242	Average Monthly	TMS Ver 1.4
Total Copper	0.0377	Daily Maximum	TMS Ver 1.4

Comments: A seasonal multiplier of "3" is typically applied for ammonia nitrogen. Current WQM 7.0 modeling (attached) did not produce effluent limits for ammonia that were as stringent as the previous limits. Previous summertime limit will remain due to anti-backsliding provisions. Wintertime period for ammonia nitrogen will receive monitoring instead of limits since the WQBEL limit of 25 mg/l, which is close the raw sewage concentration, can be easily met based on utilization of secondary treatment and historical DMR data.

The Toxics Management also recommended monitoring and reporting requirements for total zinc, which will thus be placed in the permit at a monitoring frequency of 1/quarter.

Best Professional Judgment (BPJ) Limitations

Comments: A dissolved oxygen limit of a minimum of 4.0 mg/l and monitoring for total nitrogen and total phosphorus is being placed in the renewed permit in accordance with the Department's SOP entitled "Establishing Effluent Limitations for Individual Sewage Permits."

Anti-Backsliding

N/A

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (386-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

			Effluent L	imitations			Monitoring Re	quirements
Parameter	Mass Units	(lbs/day) (1)		Concentrat	ions (mg/L)		Minimum (2)	Required
Farameter	Average Monthly	Weekly Average	Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report	XXX	XXX	XXX	XXX	Continuous	Measured
pH (S.U.)	XXX	XXX	6.0 Daily Min	XXX	9.0 Daily Max	XXX	1/day	Grab
DO	XXX	XXX	4.0 Daily Min	XXX	XXX	XXX	1/day	Grab
CBOD5	185	295	XXX	25.0	40.0	50	1/week	24-Hr Composite
BOD5 Raw Sewage Influent	Report	Report Daily Max	XXX	Report	XXX	XXX	1/week	24-Hr Composite
TSS Raw Sewage Influent	Report	Report Daily Max	XXX	Report	XXX	XXX	1/week	24-Hr Composite
TSS	225	335	XXX	30.0	45.0	60	1/week	24-Hr
Fecal Coliform (No./100 ml)				2000				Composite
Oct 1 - Apr 30 Fecal Coliform (No./100 ml)	XXX	XXX	XXX	Geo Mean 200	XXX	10000	1/week	Grab
May 1 - Sep 30	XXX	XXX	XXX	Geo Mean	XXX	1000	1/week	Grab
E. Coli (No./100 ml)	XXX	XXX	XXX	XXX	XXX	Report	1/quarter	Grab
UV Intensity (µw/cm²)	XXX	XXX	Report	Report	XXX	XXX	1/day	Measured
Total Nitrogen	Report Annl Avg	XXX	XXX	Report Annl Avg	XXX	XXX	1/year	24-Hr Composite
Ammonia Nov 1 - Apr 30	Report	XXX	XXX	Report	XXX	XXX	1/week	24-Hr Composite

Outfall 001, Continued (from Permit Effective Date through Permit Expiration Date)

			Effluent L	imitations			Monitoring Red	quirements
Parameter	Mass Units	(lbs/day) ⁽¹⁾		Concentrat	ions (mg/L)		Minimum ⁽²⁾	Required
Farameter	Average Monthly	Weekly Average	Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
Ammonia								24-Hr
May 1 - Oct 31	63.0	XXX	XXX	8.5	XXX	17	1/week	Composite
	Report			Report				24-Hr
Total Phosphorus	Anni Avg	XXX	XXX	Anni Avg	XXX	XXX	1/year	Composite
		0.28						24-Hr
Total Copper (ug/l)	0.18	Daily Max	XXX	24.2	37.7	60.4	2/month	Composite
	Report	-		Report				24-Hr
Total Zinc	Avg Qrtly	XXX	XXX	Avg Qrtly	XXX	XXX	1/quarter	Composite

Compliance Sampling Location: Outfall 001 (after disinfection)

Other Comments:

Input Data WQM 7.0

	SWF Basi	10770000000		Str	eam Name		RMI	Ele	evation (ft)	Drainage Area (sq mi)	Slope (ft/ft)	PW Withd (mg	rawal	Apply FC
	18F	42:	557 BUFF	ALO CRE	EK		3.4	20	778.00	167.65	0.0000	00	0.00	~
					St	ream Dat	a							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	n Tem	<u>Tributary</u> np pH	Te	<u>Strean</u> emp	<u>n</u> pH	
Cona.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C	()	(°C)		
ຊ7-10 ຊ1-10 ຊ30-10	0.043	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000	0.0	0.00	0.	00 2	0.00 8.	30	0.00	0.00	
					Di	scharge l	Data]	
			Name	Pe	rmit Numbei	Disc	Permitt Disc Flow (mgd	Di:	sc Res	Dis serve Ten actor (°C	np	Disc pH		
		Buffa	lo Twp MA	PA	0221449	0.890	0.000	00 0.	0000	0.000 2	20.00	6.30		
					Pa	arameter l	Data							
			1	Paramete	er Name			Trib Conc	Stream Conc	Fate Coef				
						(m	ng/L) (r	mg/L)	(mg/L)	(1/days)				
			CBOD5				25.00	2.00	0.00	1.50				
			Dissolved	Oxygen			4.00	8.24	0.00	0.00				
			NH3-N				25.00	0.10	0.00	0.70				

Input Data WQM 7.0

	SWP Basir			Stre	eam Name		RMI	El	evation (ft)	Drainage Area (sq mi)	Slop (ft/fl	With	WS drawal ngd)	Apply FC
	18F	425	557 BUFF	ALO CRE	EK		0.0	01	745.00	171.00	0.00	000	0.00	~
					St	ream Dat	a							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depti		<u>Tributary</u> np pH		<u>Strea</u> Temp	<u>m</u> pH	
	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C	:)		(°C)		
27-10 21-10 230-10	0.043	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00	0.	00 2	0.00 8	.30	0.00	0.00	To de
					Di	scharge I	Data							
			Name	Per	mit Number	Disc	Permitt Disc Flow (mgd	Di Fl	sc Res	erve Te ctor	sc mp C)	Disc pH		
						0.0000	0.00	00 0.	0000	0.000	25.00	7.00		
					Pa	rameter I	Data							
			1	Paramete	r Name			Trib Conc	Stream Conc	Fate Coef				
						(m	g/L) (i	mg/L)	(mg/L)	(1/days)				
			CBOD5				25.00	2.00	0.00	1.50				
			Dissolved	Oxygen			3.00	8.24	0.00	0.00				
			NH3-N				25.00	0.00	0.00	0.70				

WQM 7.0 Hydrodynamic Outputs

	sw	P Basin	Strea	m Code				Stream	<u>Name</u>			
		18F	4	2557			В	JFFALO	CREEK			
RMI	Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow	Reach Slope	Depth	Width	W/D Ratio	Velocity	Reach Trav Time	Analysis Temp	Analysis pH
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)	
Q7-1	0 Flow											
3.420	7.21	0.00	7.21	1.3768	0.00183	.794	51.77	65.17	0.21	1.001	20.00	7.07
Q1-1	0 Flow											
3.420	4.61	0.00	4.61	1.3768	0.00183	NA	NA	NA	0.17	1.224	20.00	6.92
Q30-	10 Flow	,										
3.420	9.80	0.00	9.80	1.3768	0.00183	NA	NA	NA	0.24	0.863	20.00	7.18

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	✓
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	✓
D.O. Saturation	90.00%	Use Balanced Technology	✓
D.O. Goal	6		

WQM 7.0 Wasteload Allocations

SWP Basin	Stream Code	Stream Name
18F	42557	BUFFALO CREEK

RMI	Discharge Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
3.42	0 Buffalo Twp MA	17.85	50	17.85	50	0	0
H3-N (Chronic Allocati	one					
I H3-N (Chronic Allocati	ons Baseline Criterion	Baseline WLA	Multiple Criterion	Multiple WLA	Critical Reach	Percent Reduction

Dissolved Oxygen Allocations

		CBC	<u>DD5</u>	<u>NH</u> :	<u>3-N</u>	Dissolved	d Oxygen	Critical	Percent
RMI	Discharge Name	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Reach	Reduction
3.42	Buffalo Twp MA	25	25	13.42	13.42	4	4	0	0

WQM 7.0 D.O.Simulation

SWP Basin St	ream Code			Stream Name	
18F	42557		E	BUFFALO CREEK	
<u>RMI</u>	Total Discharge	Flow (mgd	<u> Ana</u>	ysis Temperature (°C)	Analysis pH
3.420	0.890	0		20.000	7.073
Reach Width (ft)	Reach De	oth (ft)		Reach WDRatio	Reach Velocity (fps)
51.768	0.79	4		65.168	0.209
Reach CBOD5 (mg/L)	Reach Kc (1/days)	<u>R</u>	each NH3-N (mg/L)	Reach Kn (1/days)
5.69	0.793	10 March 1997		2.24	0.700
Reach DO (mg/L)	Reach Kr (Kr Equation	Reach DO Goal (mg/L)
7.563	3.626	6		Tsivoglou	6
Reach Travel Time (days)		Subreach	Reculte		
1.001	TravTime	CBOD5	NH3-N	D.O.	
	(days)	(mg/L)	(mg/L)	(mg/L)	
	0.100	5.25	2.08	6.93	
	0.200	4.85	1.94	6.56	
	0.300	4.48	1.81	6.39	
	0.400	4.14	1.69	6.33	
	0.500	3.83	1.57	6.36	
	0.600	3.53	1.47	6.44	
	0.701	3.26	1.37	6.55	
	0.801	3.02	1.28	6.68	
	0.901	2.79	1.19	6.81	
	1.001	2.57	1.11	6.95	

WQM 7.0 Effluent Limits

Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
Buffalo Twp MA	PA0221449	0.890	CBOD5	25		-
			NH3-N	13.42	26.84	
			Dissolved Oxygen			4
	18F 425	18F 42557 Name Permit Number	18F 42557 Disc Name Permit Flow Number (mgd)	Name Permit Number Disc Flow (mgd) Parameter Buffalo Twp MA PA0221449 0.890 CBOD5 NH3-N	18F 42557 BUFFALO CREEK Name Permit Number Disc Flow (mgd) Parameter Effl. Limit 30-day Ave. (mg/L) Buffalo Twp MA PA0221449 0.890 CBOD5 25 NH3-N 13.42	Name Permit Number Disc Flow (mgd) Parameter Effl. Limit 30-day Ave. (mg/L) Effl. Limit Maximum (mg/L) Buffalo Twp MA PA0221449 0.890 CBOD5 25 NH3-N 13.42 26.84

Buffalo Township Muni Auth STP

Buffalo Township, Butler County

PA0221449 Discharge pH

Outfall 001

<u>Date</u>	<u>pH min</u>	<u>pH max</u>	10^ -pH m	<u>in</u> 10^ -pH max	& pH max)	-Log (Ave pH)
Jul-21	6.2	6.8	6.31E-0	7 1.58E-07	3.95E-07	6.4
Aug-21	6.02	6.95	9.55E-0	7 1.12E-07	5.34E-07	6.3
Sep-21	6.07	6.96	8.51E-0	7 1.1E-07	4.8E-07	6.3
Jul-22	6.0	6.8	0.00000	1 1.58E-07	5.79E-07	6.2
Aug-22	6.16	6.75	6.92E-0	7 1.78E-07	4.35E-07	6.4
Sep-22	6.04	6.71	9.12E-0	7 1.95E-07	5.53E-07	6.3
Jul-23	6.05	6.52	8.91E-0	7 3.02E-07	5.97E-07	6.2
Aug-23	6.03	6.58	9.33E-0	7 2.63E-07	5.98E-07	6.2
Sep-23	6.0	6.47	0.00000	1 3.39E-07	6.69E-07	6.2
					Median:	6.3

Parameter Name	
Sample Date When entering values below the detection limit, enter "ND" or use the < rotation (eg. <0.02)	
Sample Date When entering values below the detection limit enter "ND" or use the < notation (eg. 4.0.2)	
1/1/2020 20	
1/1/2020 20	
4/1/2020 12 7/1/2020 20 10/1/2020 16 1/1/2021 ND 4/1/2021 183 7/1/2021 15 10/1/2021 15 10/1/2021 15 10/1/2021 17 1/1/2022 10 1/1/2022 10 1/1/2022 ND 1/1/2022 ND 1/1/2022 ND 1/1/2023 6 1/1/2023 6 1/1/2023 10	
7/1/2020 20	
10/1/2020 16	
1/1/2021 ND	
4/1/2021 183	
7/1/2021 15 10/1/2021 12 1/1/2022 10 4/1/2022 13 7/1/2022 ND 10/1/2022 ND 11/1/2023 6 4/1/2033 10	
10/1/2021 12	
1/1/2022 10	
### ##################################	
7/1/2022 ND 10/1/2022 ND 1/1/2023 6 1/1/2023 10 1 1 1/2023 10 1 1 1/2023 10 1 1 1/2023 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
10/1/2022 ND 1/1/2023 6 1 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
1/1/2023 6 4/1/2023 10	
4/1/2023 10	
	1
	- 1
	3
	- 8
	- 3

12/28/2023

Reviewer/Permit Engineer: A. Pesek

Facility:Buffalo Township MA STPNPDES #:PA0221449

 NPDES #:
 PA0221449

 Outfall No:
 001

 n (Samples/Month):
 4

Parameter	Distribution Applied	Coefficient of Variation (daily)	Avg. Monthly
Total Copper (µg/L)	Delta-Lognormal	0.5019452	19.7307282
11 (13)			
	+		

TOXCON Output 12/28/2023

Toxics Management Spreadsheet Version 1.4, May 2023

Discharge Information

Instructions	Discharge Stream		
Facility:	Buffalo Township MA STP	NPDES Permit No.: PA0221449	Outfall No.: 001
Evaluation T	ype: Major Sewage / Industrial Waste	Wastewater Description: Treated Dome	estic Sewage

			Discharge	Characterist	tics			
Design Flow	Hardness (mail)*	»H (CII)*	P	artial Mix Fa	actors (PMF	s)	Complete Mi	x Times (min)
(MGD)*	Hardness (mg/l)*	pH (SU)*	AFC	CFC	THH	CRL	Q ₇₋₁₀	Q _h
0.89	100	6.3						

					0 if left	t blank	0.5 if le	eft blank	() if left blan	k	1 if lef	t blank
	Discharge Pollutant	Units	Мa	x Discharge Conc	Trib Conc	Stream Conc	Daily CV	Hourly CV	Strea m CV	Fate Coeff	FOS	Criteri a Mod	Chem Transl
	Total Dissolved Solids (PWS)	mg/L		518									
Group 1	Chloride (PWS)	mg/L		175									
1 <u>9</u>	Bromide	mg/L	٧	0.1									
ច	Sulfate (PWS)	mg/L		36.5									
	Fluoride (PWS)	mg/L											
	Total Aluminum	μg/L											
	Total Antimony	μg/L											
	Total Arsenic	μg/L											
	Total Barium	μg/L											
	Total Beryllium	μg/L				Î							
	Total Boron	μg/L											
	Total Cadmium	μg/L											
	Total Chromium (III)	μg/L											
	Hexavalent Chromium	μg/L											
	Total Cobalt	μg/L											
	Total Copper	μg/L		19.73			0.5019						
2	Free Cyanide	μg/L											
Group	Total Cyanide	μg/L											
18	Dissolved Iron	μg/L							i				
-	Total Iron	μg/L											- 8
	Total Lead	μg/L	<	1		Î							7
	Total Manganese	μg/L				Ĭ						i i	i i
	Total Mercury	μg/L											
	Total Nickel	μg/L											
	Total Phenols (Phenolics) (PWS)	μg/L											
	Total Selenium	μg/L											
	Total Silver	μg/L											
	Total Thallium	μg/L											
	Total Zinc	μg/L		70.5									1
	Total Molybdenum	µg/L		100.00									
	Acrolein	µg/L	<										
	Acrylamide	µg/L	<										
	Acrylonitrile	µg/L	<										
	Benzene	µg/L	<										
	Bromoform	µg/L	<										

1 1			23		_			r	
	Carbon Tetrachloride	μg/L	<						
	Chlorobenzene	μg/L	<		1				
	Chlorodibromomethane	μg/L	<						
	Chloroethane	μg/L	<						
	2-Chloroethyl Vinyl Ether	μg/L	<						
	Chloroform	μg/L	<						
	Dichlorobromomethane	μg/L	<						
	1,1-Dichloroethane	μg/L	<						
က	1,2-Dichloroethane	μg/L	٧						
Group	1,1-Dichloroethylene	μg/L	٧]				
<u> 5</u>	1,2-Dichloropropane	μg/L	<					<u> </u>	
ဗ	1,3-Dichloropropylene	μg/L	<						
	1,4-Dioxane	μg/L	<						
	Ethylbenzene	μg/L	<						
	Methyl Bromide	μg/L	<						
	Methyl Chloride	μg/L	<						
	Methylene Chloride	μg/L	<		1				
	1,1,2,2-Tetrachloroethane	μg/L	` <						
	Tetrachloroethylene		<i>'</i>		4				
		μg/L	_		-				
	Toluene	μg/L	<		-				
	1,2-trans-Dichloroethylene	μg/L	<		1				
	1,1,1-Trichloroethane	μg/L	<						
	1,1,2-Trichloroethane	μg/L	<						
	Trichloroethylene	μg/L	<						
	Vinyl Chloride	μg/L	<						
	2-Chlorophenol	μg/L	<						
	2,4-Dichlorophenol	μg/L	<						
	2,4-Dimethylphenol	μg/L	٧						
	4,6-Dinitro-o-Cresol	μg/L	٧						
4	2,4-Dinitrophenol	μg/L	<						
l ă l	2-Nitrophenol	μg/L	<						
Group	4-Nitrophenol	μg/L	<						
8 - 8	p-Chloro-m-Cresol	μg/L	<		1				
	Pentachlorophenol	µg/L	<						
	Phenol	μg/L	<		1				
	2,4,6-Trichlorophenol	μg/L	<		1				
	Acenaphthene	µg/L	<					4	
	Acenaphthylene	µg/L	<		1				
	Anthracene	μg/L	<					8	
	Benzidine	μg/L	\ \	2022 2022 2022				i i	
			′		1				
	Benzo(a)Anthracene	μg/L			ļ				
	Benzo(a)Pyrene	μg/L	<						
	3,4-Benzofluoranthene	μg/L	<						
	Benzo(ghi)Perylene	μg/L	<						
	Benzo(k)Fluoranthene	μg/L	<						
	Bis(2-Chloroethoxy)Methane	μg/L	<						
	Bis(2-Chloroethyl)Ether	μg/L	<						
	Bis(2-Chloroisopropyl)Ether	μg/L	<						
	Bis(2-Ethylhexyl)Phthalate	μg/L	٧						
	4-Bromophenyl Phenyl Ether	μg/L	٧						
	Butyl Benzyl Phthalate	μg/L	٧						
	2-Chloronaphthalene	μg/L	<						
	4-Chlorophenyl Phenyl Ether	μg/L	<						
	Chrysene	μg/L	<						
	Dibenzo(a,h)Anthrancene	μg/L	<						
	1,2-Dichlorobenzene	µg/L	<						
	1,3-Dichlorobenzene	μg/L	<						
ا ا	1,4-Dichlorobenzene	μg/L	` <						
p 5	3,3-Dichlorobenzidine	μg/L	/					b	
8	Diethyl Phthalate		/ /					2	
/n		μg/L	-					5 5	
	Dimethyl Phthalate	μg/L	<		-				
	Di-n-Butyl Phthalate	μg/L	٧ ٧						
	2,4-Dinitrotoluene	μg/L							

	2,6-Dinitrotoluene	μg/L	<				1				
	Di-n-Octyl Phthalate	μg/L	<								
	1,2-Diphenylhydrazine	μg/L	<				-				
	Fluoranthene	μg/L	<								
	Fluorene	μg/L	<				-		—		
	Hexachlorobenzene	μg/L	<						-		
	Hexachlorobutadiene	μg/L	<						-		
			<				-				
	Hexachlorocyclopentadiene	μg/L	10,100			-				-	
	Hexachloroethane	μg/L	<								
	Indeno(1,2,3-cd)Pyrene	μg/L	<								
	Isophorone	μg/L	<								
	Naphthalene	μg/L	<								
	Nitrobenzene	μg/L	<								
	n-Nitrosodimethylamine	μg/L	<								
	n-Nitrosodi-n-Propylamine	μg/L	<								
	n-Nitrosodiphenylamine	μg/L	<								
	Phenanthrene	μg/L	<								
	Pyrene	μg/L	<								
	1,2,4-Trichlorobenzene	μg/L	<								
	Aldrin	μg/L	<								
	alpha-BHC	μg/L	<								
	beta-BHC	μg/L	<								
	gamma-BHC	μg/L	<								
	delta BHC	μg/L	<								
	Chlordane	μg/L	<								
	4,4-DDT	μg/L	<								
	4,4-DDE	μg/L	<								
	4,4-DDD	μg/L	<								
	Dieldrin	μg/L	<								
	alpha-Endosulfan	μg/L	<								
	beta-Endosulfan	μg/L	<								
9	Endosulfan Sulfate	μg/L	<								
Group (Endrin	μg/L	<								
370	Endrin Aldehyde	μg/L	<								
0	Heptachlor	μg/L	<								
	Heptachlor Epoxide	μg/L	<								
	PCB-1016	μg/L	<								
	PCB-1010	μg/L	<								
	PCB-1232		<								
	PCB-1232 PCB-1242	μg/L μg/L	<								
	PCB-1242 PCB-1248		<				-				
	G MARKET PERSON POR	μg/L	_								
	PCB-1254	μg/L	<								
	PCB-1260	μg/L	<								
	PCBs, Total	μg/L	<								
	Toxaphene	μg/L	<								
Щ.	2,3,7,8-TCDD	ng/L	<								
	Gross Alpha	pCi/L									
7	Total Beta	pCi/L	<								
Group	Radium 226/228	pCi/L	<								
370	Total Strontium	μg/L	<								
_	Total Uranium	μg/L	<								
	Osmotic Pressure	mOs/kg									
				1							
					**************************************					2.5	

Toxics Management Spreadsheet Version 1.4, May 2023

Stream / Surface Water Information

Buffalo Township MA STP, NPDES Permit No. PA0221449, Outfall 001

Receiving Surface V	latar Nama:	Buffalo C	rook				No Pos	aches to Mo	adal:	,	@ Sto	tewide Criteri			
Receiving Surface v	valer Name.	Bullalo C	leek		_		No. Rea	acries to ivid		<u>. </u>		at Lakes Crit			
Location	Stream Coo	de* RN	/II* Eleva		ni²)* \$	Slope (ft/ft)		Withdrawal MGD)	Apply Criter		O OR	SANCO Crite	eria		
Point of Discharge	042557	- 8	3 77	8 167.	65				Yes	S					
End of Reach 1	042122	0.0	01 75	5 114	10			4	Yes	S					
2 ₇₋₁₀ Location	RMI	LFY		v (cfs)	W/E		Depth	Velocit	Time	Tributa		Strea		Analys	_
Daint of Disaboses	8	(cfs/mi ²)*	Stream	Tributary	Rati	io (ft)	(ft)	y (fps)	(days)	Hardness	pН	Hardness*	pH*	Hardness	р
Point of Discharge End of Reach 1	0.001	0.043	2390			-1						108	8.3		
Q,						•	•	•							
Location	RMI	LFY	Flov	v (cfs)	W/E) Width	Depth	Velocit	Time	Tributa	агу	Strea	m	Analys	sis
Location	RIVII	(cfs/mi ²)	Stream	Tributary	Rati	io (ft)	(ft)	y (fps)	(days)	Hardness	рН	Hardness	pН	Hardness	pl
Point of Discharge	8														
	0.001	DESCRIPTION OF THE PARTY OF THE													

Toxics Management Spreadsheet Version 1.4, May 2023

Model Results

Buffalo Township MA STP, NPDES Permit No. PA0221449, Outfall 001

							_ (0 -	^	
nstruction	ns Results		RETUR	N TO INPU	TS (SAVE AS PD	F, L	PRINT) • All	O Inputs	O Results	O Limits	
Hydrod	dynamics												
7-10													
RMI	Stream	PWS With	drawal	Net Stream	n Dischar	ge Analysis	Slope (ft/ft	t) Depth (f	t) Width (ft) W/D Ratio	Velocity	Time	Complete Mix Time
(2)(2)(2)(2)(1)	Flow (cfs)	(cfs))	Flow (cfs		ow (cfs)		, , ,		,	(fps)	(days)	(min)
8	7.21			7.21		1.377	0.00054	0.826	55.046	66.638	0.189	2.589	167.121
0.001	2390.00	6.188	8	2383.812	2								
h													
RMI	Stream Flow (cfs)	PWS With (cfs)		Net Stream		ge Analysis w (cfs)	Slope (ft/ft	t) Depth (f	t) Width (ft) W/D Ratio	Velocity (fps)	Time	Complete Mix Time (min)
							0.00054	1.681	55.046	32.753	0.466	1.048	76,553
8	41.76			41.76		1.377	0.00054	1.001	33.040	32.733	0.400	1.040	10.000
0.001	41.76 6663.595 load Allocation	6.188 ons	8	41.76 6657.41		1.377	0.00054	1.001	33.040	32.733	0.466	1.046	70.000
0.001	6663.595	ons	8 T (min):		PMF:	0.300	Analys	is Hardness		04.89	Analysis pH:	6.70	70.000
0.001 Wastel	6663.595	ons	T (min):	6657.41	PMF:	0.300 Fate	Analys	is Hardness			Analysis pH:		70.303
0.001 Wastel	6663.595	ons	T (min):	6657.41	PMF:	0.300 Fate	Analys	is Hardness	s (mg/l): 1		Analysis pH:	6.70	70.333
0.001 Wastel AF	6663.595 load Allocation FC Pollutants issolved Solid Chloride (PWS	cct ds (PWS)	Conc	6657.41 15 Stream CV 0 0	PMF:	0.300 Fate Coef 0 0 0	Analys WQC (µg/L) N/A N/A	is Hardness WQ Obj (µg/L) N/A N/A	s (mg/l): 1 NLA (µg/L) N/A N/A		Analysis pH:	6.70	70.333
0.001 Wastel AF	6663.595 load Allocation FC Pollutants issolved Solid Chloride (PWS Sulfate (PWS	ds (PWS)	Conc (ual) 0 0	6657.41 15 Stream CV 0 0 0	PMF:	0.300 Fate Coef 0 0 0 0 0	Analys WQC (µg/L) N/A N/A N/A	is Hardness WQ Obj (µg/L) N/A N/A N/A	S (mg/l): 1 NLA (μg/L) N/A N/A N/A		Analysis pH:	6.70 omments	
0.001 Wastel AF	6663.595 load Allocation FC Pollutants issolved Solid Chloride (PWS Sulfate (PWS) Total Copper	ds (PWS)	Conc (uall) 0 0 0 0	6657.41 15 Stream CV 0 0 0 0	PMF:	0.300 Fate Coef 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Analys WQC (µg/L) N/A N/A N/A N/A 14.057	is Hardness WQ Obj (µg/L) N/A N/A N/A 14.6	NLA (µg/L) N/A N/A N/A N/A 37.6	04.89	Analysis pH:	6.70 omments	applied
0.001 Wastel AF	6663.595 load Allocation FC Pollutants issolved Solid Chloride (PWS Sulfate (PWS) Total Coppet Total Lead	ds (PWS)	Conc Conc O O O O	15 Stream CV 0 0 0 0 0 0 0 0	PMF:	0.300 Fate Coef 0 0 0 0	Analys WQC (µg/L) N/A N/A N/A N/A 14.057 68.021	is Hardness WQ Obj (µg/L) N/A N/A N/A 14.6 86.8	NLA (µg/L) N/A N/A N/A N/A N/A 27.6 223	04.89	Analysis pH: C Chem Trans Chem Transl	6.70 omments lator of 0.96 ator of 0.784	applied applied
0.001 Wastel AF	6663.595 load Allocation FC Pollutants issolved Solid Chloride (PWS Sulfate (PWS) Total Copper	ds (PWS)	Conc (uall) 0 0 0 0	6657.41 15 Stream CV 0 0 0 0	PMF:	0.300 Fate Coef 0 0 0 0	Analys WQC (µg/L) N/A N/A N/A N/A 14.057	is Hardness WQ Obj (µg/L) N/A N/A N/A 14.6	NLA (µg/L) N/A N/A N/A N/A 37.6	04.89	Analysis pH:	6.70 omments lator of 0.96 ator of 0.784	applied applied
0.001 Wastel AF	FC Pollutants issolved Solid Chloride (PWS Sulfate (PWS Total Copper Total Lead Total Zinc	ds (PWS) S)	T (min): Sueam Conc (mail) 0 0 0 0 0 0 0 0	15 Stream CV 0 0 0 0 0 0 0 0	PMF:	0.300 Fate Coef 0 0 0 0	Analys WQC (µg/L) N/A N/A N/A 14.057 68.021 22.013	is Hardness WQ Obj (µg/L) N/A N/A N/A 14.6 86.8	NLA (μg/L) N/A N/A N/A 37.6 223 320	04.89	Analysis pH: C Chem Trans Chem Transl	6.70 omments lator of 0.96 ator of 0.784	applied applied
O.001 Wastel AF	FC Pollutants issolved Solid Chloride (PWS Sulfate (PWS Total Copper Total Lead Total Zinc	ds (PWS) S)	T (min): Sueam Conc	Stream CV O O O O O O O O O	PMF: Trib Conc (µg/L)	0.300 Fate Coef 0 0 0 0 0 0 1 1 1 Fate	Analys WQC (µg/L) N/A N/A N/A 14.057 68.021 22.013 Analys	is Hardness WQ Obj (µg/L) N/A N/A N/A 14.6 86.8 125	NLA (μg/L) N/A N/A N/A 37.6 223 320	04.89	Analysis pH: Chem Transi Chem Transi Chem Transi Analysis pH:	6.70 omments lator of 0.96 ator of 0.784 ator of 0.978	applied applied
O.001 Wastel AF	FC Pollutants issolved Solid Chloride (PWS Total Copper Total Lead Total Zinc	cons ccr ds (PWS) S) r	Conc (min): Conc (min): 0 0 0 0 0 T (min): ##	Stream CV O O O O O O Stream Stream	PMF: Trib Conc (μg/L) PMF: Trib Conc	0.300 Fate Coef 0 0 0 0 0 0 1 1 1 Fate	Analys WQC (µg/L) N/A N/A N/A 14.057 68.021 22.013 Analys	is Hardness WQ Obj (μg/L) N/A N/A N/A 14.6 86.8 125 sis Hardnes	NLA (µg/L) N/A N/A N/A N/A 37.6 223 320 s (mg/l): 1	04.89	Analysis pH: Chem Transi Chem Transi Chem Transi Analysis pH:	6.70 omments lator of 0.96 ator of 0.784 ator of 0.978	applied applied

Model Results 12/28/2023 Page 5

Total Copper 0 Total Lead 0	0		0	9.467	9.86	61.5	Chem Translator of 0.96 applied
Total Lead 0					0.00	01.0	Chem manageror or 0.50 applied
	0		0	2.701	3.46	21.6	Chem Translator of 0.782 applied
Total Zinc 0	0		0	124.829	127	789	Chem Translator of 0.986 applied
✓ THH CCT (min):	######	THH PMF:	1	Ana	alysis Hardne	ss (mg/l):	N/A Analysis pH: N/A PWS PMF: 1
Pollutants Coi	c Stream	n Trib Conc (μg/L)	Fate Coef	WQC (µg/L)	WQ Obj (μg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS) 0	0		0	500,000	500,000	#########	WQC applied at RMI 0.001 with a design stream flow of 2390 c
Chloride (PWS) 0	0		0	250,000	250,000	#########	WQC applied at RMI 0.001 with a design stream flow of 2390 c
Sulfate (PWS) 0	0		0	250,000	250,000	#########	WQC applied at RMI 0.001 with a design stream flow of 2390 c
Total Copper 0	0		0	N/A	N/A	N/A	
Total Lead 0	0		0	N/A	N/A	N/A	
Total Zinc 0	0		0	N/A	N/A	N/A	
Total Lead 0	0	PMF:	0	N/A N/A	N/A	N/A N/A	N/A Analysis pH: N/A

Pollutants	Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (μg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Total Copper	0	0		0	N/A	N/A	N/A	
Total Lead	0	0		0	N/A	N/A	N/A	
Total Zinc	0	0		0	N/A	N/A	N/A	

✓ Recommended WQBELs & Monitoring Requirements

No. Samples/Month:

	Mass	Limits		Concentra	tion Limits				
Pollutants	AML (lbs/day)	MDL (lbs/day)	AML	MDL	IMAX	Units	Governing WQBEL	WQBEL Basis	Comments
Total Copper	0.18	0.28	24.2	37.7	60.4	μg/L	24.2	AFC	Discharge Conc ≥ 50% WQBEL (RP)
Total Zinc	Report	Report	Report	Report	Report	μg/L	205	AFC	Discharge Conc > 10% WQBEL (no RP)

☑ Other Pollutants without Limits or Monitoring

The following pollutants do not require effluent limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharge concentration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QL).

Pollutants	Governing WQBEL	Units	Comments
Total Dissolved Solids (PWS)	868,436	mg/L	Discharge Conc ≤ 10% WQBEL
Chloride (PWS)	434,218	mg/L	Discharge Conc ≤ 10% WQBEL

Model Results 12/28/2023 Page 6

Bromide	N/A	N/A	No WQS
Sulfate (PWS)	434,218	mg/L	Discharge Conc ≤ 10% WQBEL
Total Lead	N/A	N/A	Discharge Conc < TQL