

Northwest Regional Office CLEAN WATER PROGRAM

Application Type

Facility Type

Major / Minor

Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

Application No. PA0221708

APS ID 1039735

Authorization ID 1356009

Applicant Name	Chico	ra Borough Sewer Authority	Facility Name	Chicora Borough STP
Applicant Address	PO Bo	ox 35, 110 Firehouse Cartway	Facility Address	219 Chicora-Fenelton Road
	Chico	ra, PA 16025	_	Chicora, PA 16025
Applicant Contact	Timotl	ny McGregor	Facility Contact	Timothy McGregor
Applicant Phone	(724)	355-4905	Facility Phone	(724) 355-4905
Client ID	44842		Site ID	251178
Ch 94 Load Status	Not O	verloaded	Municipality	Chicora Borough
Connection Status	No Lir	nitations	County	Butler County
Date Application Rece	eived	May 28, 2021	EPA Waived?	Yes
Date Application Acce	epted	June 1, 2021	If No, Reason	-

Summary of Review

Act 14 - Proof of Notification was submitted and received.

A Part II Water Quality Management permit is not required at this time.

The applicant should be able to meet the limits of this permit, which will protect the uses of the receiving stream.

I. OTHER REQUIREMENTS:

SPECIAL CONDITIONS:

A. Stormwater into sewers

II. Solids Management

- B. Right of way
- C. Solids handling
- D. Limited Assimilative Capacity/Dilution
- E. Batch discharge

There is 1 open violation in efacts associated with the subject Client ID (44842) as of 3/17/2022 (see Attachment 3).

Approve	Deny	Signatures	Date	
V	Stephen A. McCauley		3/17/2022	
^		Stephen A. McCauley, E.I.T. / Environmental Engineering Specialist	3/11/2022	
V		Justin C. Dickey	3/18/2022	
^		Justin C. Dickey, P.E. / Environmental Engineer Manager	3/10/2022	

Discharge, Receivi	ng Wate	rs and Water Supply Info	rmation				
Outfall No. 001	1		Design Flow (MGD)	0.201			
Latitude 40°	56' 30.0	O"	Longitude	-79º 44' 1.00"			
Quad Name			Quad Code				
Wastewater Desc	ription:	Sewage Effluent					
5	Б."	(110 014/5)	0. 0.1	40557			
Receiving Waters		lo Creek (HQ-CWF)	Stream Code	42557			
NHD Com ID	-	70926	RMI	33.5			
Drainage Area	7.36			0.047			
Q ₇₋₁₀ Flow (cfs)	0.34			calculated			
Elevation (ft)	1133		Slope (ft/ft)	0.0037			
Watershed No.	18-F		Chapter 93 Class.	HQ-CWF			
Existing Use			Existing Use Qualifier				
Exceptions to Use	e <u>-</u>		Exceptions to Criteria				
Assessment State	JS	Impaired*					
Cause(s) of Impa	irment	Nutrients, Siltation					
			Discharges, On-site Treatment Sy				
Source(s) of Impa	airment	Similar Decentralized Sy	rstems), Urban Runoff/Storm Sew	rers			
TMDL Status			Name				
Background/Amb	iont Data		Data Source				
pH (SU)	ieni Dala	_	-				
Temperature (°F)			_ 				
Hardness (mg/L)		_ 	_ -				
Other:		-	<u>-</u>				
Other.			_ -				
Nearest Downstre	eam Publ	ic Water Supply Intake	At the discharge point (HQ str	eam)			
PWS Waters	Buffalo	Creek	Flow at Intake (cfs)				
PWS RMI	33.5		Distance from Outfall (mi)				

^{* -} The receiving stream is impaired for Nutrients and Siltation. This discharge is not expected to be contributing to the impairment as the eDMR data shows that the Total Phosphorus is less than 1.0 mg/l and the Total Nitrogen is less than 9.7 mg/l in the discharge.

Sludge use and disposal description and location(s): Sludge is transported by Daltons Service company, LLC to the Waste Management Landfill.

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the

NPDES Permit Fact Sheet Chicora Borough STP

Pennsylvania Bulletin at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Narrative: This Fact Sheet details the determination of draft NPDES permit limits for an existing discharge of 0.201 MGD of

treated sewage from an existing Publicly Owned Treatment Works (POTW) in Chicora Borough, Butler County.

Permitted treatment consists of: (WQM Permit no. 106405)

A pump station, grit and bar screen, two SBRs, and a decant tank with ultraviolet (UV) light disinfection. Sludge management consists of two aerobic digesters and sand drying beds.

1. Streamflow:

Buffalo Creek at Freeport, PA (1976-1996) - used for most Connoquenessing Creek discharges:

Drainage Area: <u>137</u> sq. mi. from StreamStats Q₇₋₁₀: 6.37 cfs from StreamStats

Yieldrate: 0.047 cfsm calculated

Buffalo Creek at Outfall 001:

Yieldrate: <u>0.047</u> cfsm calculated above Drainage Area: 7.36 sg. mi. from StreamStats

% of stream allocated: 100% Basis: no nearby discharges

Q₇₋₁₀: <u>0.34</u> cfs calculated

2. Wasteflow:

Maximum discharge: 0.201 MGD = 0.311 cfs

Runoff flow period: 24 hours Basis: Runoff flow for a Municipal STP

There is less than 3 parts stream flow (Q7-10) to 1 part effluent (design flow). However, since this is an existing discharge, the more stringent treatment requirements cannot be achieved, and the receiving stream is not impaired by the discharge, the standards in DEP guidance (391-2000-014) will not be applied. Flow will be required to be monitored as authorized under Chapter 92a.61, and as recommended in the SOP.

Flow will be required to be monitored as authorized under Chapter 92a.61, and as recommended in the SOP.

3. Parameters:

The following parameters were evaluated: pH, Total Suspended Solids, Fecal Coliform, E. Coli, Phosphorus, NH₃-N, CBOD₅, Dissolved Oxygen, and Total Residual Chlorine.

a. <u>pH</u>

Between 6.0 and 9.0 at all times

Basis: Application of Chapter 93.7 technology-based limits.

The measurement frequency was previously set to 1/day as recommended in the SOP, based on Table 6-3 in the "Technical Guidance for the Development and Specification of Effluent Limitations" (362-0400-001), which will be retained.

NPDES Permit Fact Sheet Chicora Borough STP

b. Total Suspended Solids

Limits are 30.0 mg/l as a monthly average and 60.0 as an instantaneous maximum.

Basis: Application of Chapter 92a47 technology-based limits.

c. Fecal Coliform

05/01 - 09/30: <u>200/100ml</u> (monthly average geometric mean)

1,000/100ml (instantaneous maximum)

10/01 - 04/30: 2,000/100ml (monthly average geometric mean)

10,000/100ml (instantaneous maximum)

Basis: Application of Chapter 92a47 technology-based limits

d. <u>E. Coli</u>

Monitoring was added for E. Coli at a frequency of 1/quarter.

Basis: Application of Chapter 92a.61 as recommended by the SOP for flows greater than 0.05 MGD and less than 1.0 MGD.

e. <u>Total Phosphorus</u>

Discharge to lake, pond, or impoundment

□ Discharge to stream

Basis: The basin-wide limit of 2.0 mg/l for the Connoquenessing Creek (nutrient impaired)

will be retained with this renewal.

☐ Limit not necessary

Basis: N/A

f. <u>Total Nitrogen</u>

Monitoring for Total Nitrogen will be retained with this renewal in accordance with the SOP, based on Chapter 92a.61.

g. <u>Ammonia-Nitrogen (NH₃-N)</u>

Median discharge pH to be used: <u>7.6</u> Standard Units (S.U.)

Basis: Average pH value from DMR summary

Discharge temperature: <u>25°C</u> (default value used in the absence of data)

Median stream pH to be used: 7.0 Standard Units (S.U.)

Basis: default value used in the absence of data

Stream Temperature: 20°C (default value used for HQ-CWF modeling)

Background NH₃-N concentration: 0.1 mg/l

Basis: Default value.

Calculated NH₃-N Summer limits: 3.9 mg/l (monthly average)

7.8 mg/l (instantaneous maximum)

Calculated NH₃-N Winter limits: 11.7 mg/l (monthly average)

<u>23.4</u> mg/l (instantaneous maximum)

Result: WQ modeling resulted in the calculated summer limits above (see Attachment 1), which are less

stringent than the previous NPDES Permit. The winter limits are calculated as three times the summer limits per the SOP. Since the previous more restrictive limits are being attained, they

will be retained with this renewal.

h. <u>CBOD₅</u>

Median discharge pH to be used: 7.6 Standard Units (S.U.)

Basis: Average pH value from DMR summary

Discharge temperature: <u>25°C</u> (default value used in the absence of data)

Median stream pH to be used: 7.0 Standard Units (S.U.)

Basis: default value used in the absence of data

Stream Temperature: 20°C (default value used for HQ-CWF modeling)

Background CBOD₅ concentration: 2.0 mg/l

Basis: Default value

Calculated CBOD₅ Summer limits: <u>25.0</u> mg/l (monthly average)

50.0 mg/l (instantaneous maximum)

Calculated CBOD₅ Winter limits: 25.0 mg/l (monthly average)

50.0 mg/l (instantaneous maximum)

Result: WQ modeling resulted in the summer limits above (see Attachment 1). The winter limits

are calculated as three times the summer limits, but since the technology-based limits would govern, they will be used. Since the previous more restrictive limits are being attained, they will be retained with this renewal. Per the SOP, the year-round limits for

CBOD5 will be retained with this renewal.

i. Influent Total Suspended Solids and BOD5

Monitoring for these two parameters will be retained as recommended in the SOP for POTWs, as authorized under Chapter 92a.61.

j. <u>Dissolved Oxygen (DO)</u>

1 /1 /1	man	_	minimiim	aacıraa	IN OF	tii iant ta	nratact al	120	HIATIC LITA
1 T.U	ma/l	_	minimum	uesiieu	111 61	HUGHL LO	DIOLECT AL	ıau	iualic ilic.

- 5.0 mg/l required in effluent for CWF, WWF, or TSF based on WQ Model.
- 6.0 mg/l required in effluent for CWF, WWF, or TSF based on WQ Model.
- 7.0 mg/l minimum required due to discharge going to a High-Quality stream

		<u>8.0</u>	mg/l	- required due to discharge going to a naturally reproducing salmonid stream
				A Dissolved Oxygen technology-based minimum of 6.0 mg/l is recommended by the WQ Model (see Attachment 1), and the SOP, based on Chapter 93.7, under the authority of Chapter 92a.61. The previous minimum of 7.0 mg/l from the previous permit will be retained.
				The measurement frequency was previously set to 1/day as recommended in the SOP, based on Table 6-3 in the "Technical Guidance for the Development and Specification of Effluent Limitations" (362-0400-001), which will be retained.
k.	Total F	Residu	al Chloi	rine (TRC)
	\boxtimes	No lii	mit nece	essary
		Bas		nce Ultraviolet (UV) light is used for disinfection, limits for TRC are not necessary. UV ensity (µw/cm²) reporting will be added with this renewal, per the SOP.
			Ta	e measurement frequency will be set to 1/day as recommended in the SOP, based on ble 6-3 in the "Technical Guidance for the Development and Specification of Effluent nitations" (362-0400-001).
		TRO	C limits:	mg/l (monthly average) mg/l (instantaneous maximum)
		Bas	is: N/	A

4. Reasonable Potential Analysis:

A Reasonable Potential Analysis was performed in accordance with State practices for Outfall 001 by the Department's Toxics Management Spreadsheet (see Attachment 2).

Result: No reasonable potential was calculated, so no WQBELs are necessary for this renewal.

5. Reasonable Potential for Downstream Public Water Supply (PWS):

The Reasonable Potential Analysis performed above does not calculate limits for parameters that are based on PWS criteria (TDS, Chloride, Bromide, and Sulfate). However, since the sample data was provided, mass-balance calculations were performed (see below).

Nearest Downstream potable water supply (PWS): At the discharge point (HQ stream)

Distance downstream from the point of discharge: <u>0.0</u> miles

PWS Evaluation:

Stream flow (sf) at the PWS intake = 0.34 cfs

Waste flow (wf) from the STP = 0.201 MGD = 0.311 cfs

Total flow = 0.651 cfs

Background Concentrations: No data available (assumed zero)

Mass balance for TDS at the PWS intake:

(sf @ PWS)(bkrd. conc.) + (wf)(x) = (tot. flow)(criteria)

(0.34 cfs)(0 mg/l) + (0.311 cfs)(x) = (0.651 cfs)(500 mg/l)

x = 1,046 mg/l (renewal application maximum was 531 mg/l - ok)

Mass balance for Chlorides at the PWS intake:

```
(sf @ PWS)(bkrd. conc.) + (wf)(x) = (tot. flow)(criteria)
(0.34 cfs)(0 mg/l) + (0.311 cfs)(x) = (0.651 cfs)(250 mg/l)
x = 523 mg/l (renewal application maximum was 188 mg/l - ok)
```

Mass balance for Bromide at the PWS intake:

```
(sf @ PWS)(bkrd. conc.) + (wf)(x) = (tot. flow)(criteria)
(0.34 cfs)(0 mg/l) + (0.311 cfs)(x) = (0.651 cfs)(1 mg/l)
x = 2.0 mg/l (renewal application maximum was 0.106 mg/l - ok)
```

Bromide has been linked to the formation of disinfection byproducts at increased levels in public water systems. Where the concentration of Bromide in a discharge exceeds 1 mg/L, and the discharge flow exceeds 0.1 MGD, Part A of the permit should include monitoring and reporting for bromide. The permitted discharge flow is greater than 0.1 MGD (0.201 MGD), but since the maximum reported sample data for Bromide was 0.106 mg/l, monitoring will not be added to this renewal permit.

Mass balance for Sulfates at the PWS intake:

Basis: Significant dilution available.

6. Flow Information:

The Chicora Borough STP receives 74.14% of its flow from the Chicora Borough, 22.13% from the Donegal Township, and 3.73% from the Fairview Township.

The Chicora Borough, the Donegal Township, and the Fairview Township are all 100% separate sewer systems.

7. Anti-Backsliding:

Since all the permit limits in this renewal are the same or more restrictive than the previous NPDES Permit, anti-backsliding is not applicable.

8. Attachment List:

Attachment 1 - WQ Modeling Printouts

Attachment 2 - Toxics Management Spreadsheet

Attachment 3 - WMS Open Violations by Client

(The Attachments above can be found at the end of this document)

Compliance History

DMR Data for Outfall 001 (from February 1, 2021 to January 31, 2022)

Parameter	JAN-22	DEC-21	NOV-21	OCT-21	SEP-21	AUG-21	JUL-21	JUN-21	MAY-21	APR-21	MAR-21	FEB-21
Flow (MGD)												
Average Monthly	0.109	0.113	0.101	0.106	0.108	0.114	0.139	0.111	0.120	0.102	0.114	0.121
Flow (MGD)												
Weekly Average	0.117	0.127	0.104	0.123	0.128	0.129	0.189	0.140	0.170	0.104	0.139	0.127
pH (S.U.)												
Minimum	7.6	7.4	7.4	7.4	7.2	7.3	7.2	7.3	7.4	7.4	7.3	7.7
pH (S.U.)												
Maximum	8.8	8.5	8.4	8.2	8.2	7.9	8.1	8.1	8.5	8.3	8.2	8.3
DO (mg/L)												
Minimum '	7.7	7.1	7.2	7.1	7.2	7.1	7.1	7.3	7.1	7.4	9.5	9.9
CBOD5 (lbs/day)												
Average Monthly	5.8	6.0	< 3.3	< 1.9	3.9	3.6	10.3	8.7	< 4.5	3.8	5.5	9.1
CBOD5 (lbs/day)												
Weekly Average	9.4	8.6	6.3	2.8	6.2	5.2	14.8	11.8	6.4	5.0	7.4	14.5
CBOD5 (mg/L)												
Average Monthly	8	7	< 4	< 2	5	5	9	10	< 5	6	6	9
CBOD5 (mg/L)												
Weekly Average	12	10	7	3	6	7	13	12	8	9	9	15
BOD5 (lbs/day)												
Influent Average Monthly	161	140	193	144	150	165	230	234	163	122	203	230
BOD5 (mg/L)												
Influent Average Monthly	194	171	229	184	188	206	205	259	203	187	203	225
TSS (lbs/day)												
Average Monthly	7.8	10.1	7.6	6.7	< 9.8	< 4.7	10.6	16.4	< 5.6	4.6	< 7.5	13.6
TSS (lbs/day)												
Influent Average Monthly	176	128	135	114	151	169	203	168	147	85	116	140
TSS (lbs/day)												
Weekly Average	12.9	17.4	13.7	8.3	22.8	6.4	13.9	39.7	9.8	4.7	9.5	29.2
TSS (mg/L)												
Average Monthly	10	12	9	8	< 12	< 6	10	17	< 7	7	< 9	13
TSS (mg/L)												
Influent Average Monthly	223	164	159	147	194	210	167	182	183	129	119	139
TSS (mg/L)												
Weekly Average	13	18	16	11	23	8	16	40	11	8	18	25
Fecal Coliform (No./100 ml)												
Geometric Mean	< 24	88	< 10	< 30	28	< 10	< 12	< 6	< 7	< 7	< 10	< 32
Fecal Coliform (No./100 ml)												
Instantaneous Maximum	380	2100	90	3244	586	38	31	8	16	20	26	762

NPDES Permit Fact Sheet Chicora Borough STP

Total Nitrogen (mg/L)												
Average Monthly		2.13			4.62			9.7			1.85	
Ammonia (lbs/day)												
Average Monthly	< 0.6	< 0.8	< 0.7	< 0.6	< 0.6	< 5.2	12.4	< 7.3	< 4.2	6.5	< 3.2	< 0.8
Ammonia (mg/L)												
Average Monthly	< 0.8	< 1.0	< 0.8	< 0.8	< 0.8	< 6.6	10.0	< 8.0	< 5.0	10.2	< 3.2	< 0.8
Total Phosphorus (lbs/day)												
Average Monthly	0.2	0.5	0.3	0.3	0.5	0.2	0.7	0.8	0.4	0.5	0.3	0.3
Total Phosphorus (mg/L)												
Average Monthly	0.3	0.5	0.4	0.3	0.7	0.3	0.5	0.9	0.5	0.7	0.3	0.3

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

			Effluent L	imitations			Monitoring Re	quirements
Parameter	Mass Units	(lbs/day) (1)		Concentrat	ions (mg/L)		Minimum (2)	Required
Farameter	Average Monthly	Weekly Average	Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report	XXX	XXX	XXX	XXX	Continuous	Recorded
pH (S.U.)	XXX	XXX	6.0 Inst Min	XXX	XXX	9.0	1/day	Grab
DO	XXX	XXX	7.0 Inst Min	XXX	XXX	XXX	1/day	Grab
CBOD5	16.8	25.1	XXX	10.0	15.0	20	1/week	24-Hr Composite
BOD5 Raw Sewage Influent	Report	XXX	XXX	Report	XXX	XXX	1/week	24-Hr Composite
TSS	50.3	76.4	XXX	30.0	45.0	60	1/week	24-Hr Composite
TSS Raw Sewage Influent	Report	XXX	XXX	Report	XXX	XXX	1/week	24-Hr Composite
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2000 Geo Mean	XXX	10000	1/week	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	XXX	XXX	200 Geo Mean	XXX	1000	1/week	Grab
E. Coli (No./100 ml)	XXX	XXX	XXX	XXX	XXX	Report	1/quarter	Grab
UV Intensity (μw/cm²)	XXX	XXX	XXX	Report Daily Max	XXX	XXX	1/day	Metered
Total Nitrogen	XXX	XXX	XXX	Report Avg Qrtly	XXX	XXX	1/quarter	24-Hr Composite
Ammonia-Nitrogen Nov 1 - Apr 30	7.5	XXX	XXX	4.5	XXX	9	1/week	24-Hr Composite
Ammonia-Nitrogen May 1 - Oct 31	2.5	XXX	XXX	1.5	XXX	3	1/week	24-Hr Composite

Outfall 001, Continued (from Permit Effective Date through Permit Expiration Date)

		Effluent Limitations							
Parameter	Mass Units	(lbs/day) (1)		Concentrat	Minimum ⁽²⁾	Required			
Faiametei	Average	Weekly		Average	Weekly	Instant.	Measurement	Sample	
	Monthly	Average	Minimum	Monthly	Average	Maximum	Frequency	Type	
								24-Hr	
Total Phosphorus	3.4	XXX	XXX	2.0	XXX	4	1/week	Composite	

Compliance Sampling Location: at Outfall 001, after ultraviolet (UV) light disinfection.

Flow is monitor only based on Chapter 92a.61. The limits for pH and Dissolved Oxygen are technology-based on Chapter 93.7. The limits for CBOD₅, Total Suspended Solids, and Fecal Coliforms are technology-based on Chapter 92a.47. Monitoring for influent BOD5 and Total Suspended Solids is based on Chapter 92a.61. Monitoring for E. Coli, UV Intensity, and Total Nitrogen is based on Chapter 92a.61. The limits for Ammonia-Nitrogen are water quality-based on Chapter 93.7. The limits for Total Phosphorus are technology-based on Chapter 96.5.

Attachment 1

WQM 7.0 Effluent Limits

	SWP Basin	Stream Code		Stream Name	<u> </u>		
	18F	42557		BUFFALO CRE	EK		
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
33.500	Chicora	PA0024571a	0.201	CBOD5	25		
				NH3-N	3.9	7.8	
				Dissolved Oxygen			6

WQM 7.0 D.O.Simulation

SWP Basin St	ream Code			Stream Name	
18F	42557		E	BUFFALO CREEK	
<u>RMI</u>	Total Discharge	Flow (mgd	<u> Ana</u>	lysis Temperature (°C)	Analysis pH
33.500	0.20			22.367	7.190
Reach Width (ft)	Reach Dep	oth (ft)		Reach WDRatio	Reach Velocity (fps)
13.027	0.483	3		26.952	0.104
Reach CBOD5 (mg/L)	Reach Kc (1/days)	<u>R</u>	each NH3-N (mg/L)	Reach Kn (1/days)
12.89	1.229			1.85	0.840
Reach DO (mg/L)	Reach Kr (comp.		Kr Equation	Reach DO Goal (mg/L)
7.181	19.37	9		Owens	7
Reach Travel Time (days)		Subreach	Paculte		
0.996	Tra∨Time	CBOD5	NH3-N	D.O.	
	(days)	(mg/L)	(mg/L)	(mg/L)	
	0.100	11.24	1.70	7.17	
	0.199	9.81	1.56	7.33	
	0.299	8.56	1.44	7.50	
	0.398	7.47	1.32	7.65	
	0.498	6.51	1.21	7.78	
	0.597	5.68	1.12	7.89	
	0.697	4.96	1.03	7.89	
	0.797	4.32	0.95	7.89	
	0.896	3.77	0.87	7.89	
	0.996	3.29	0.80	7.89	

Thursday, March 10, 2022 Version 1.1 Page 1 of 1

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	✓
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	✓
D.O. Saturation	90.00%	Use Balanced Technology	✓
D.O. Goal	7		

Thursday, March 10, 2022 Version 1.1 Page 1 of 1

Input Data WQM 7.0

					IIIþ	ut Date	a www.	VI 7.U						
	SWP Basir			Stre	eam Name		RMI		vation (ft)	Drainage Area (sq mi)	Slope (ft/ft)	Witho	VS drawal gd)	Apply FC
	18F	425	557 BUFF	ALO CRE	EK		33.5	00	1133.00	7.36	0.000	00	0.00	~
					St	ream Da	ta							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Ten	<u>Tributary</u> np pH	Т	<u>Strear</u> emp	<u>m</u> pH	
Cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)	((°C)		
Q7-10 Q1-10 Q30-10	0.047	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00	0.0	00 2	0.00 7	.00	0.00	0.00	
					Di	scharge	Data						1	
			Name	Per	mit Number	Existing Disc	Permitt Disc Flow (mgd	Dis Flo	c Res	Di serve Te ctor	mp	Disc pH		
		Chico	ora	PA	0024571a	0.201	0.00	0.0	000	0.000	25.00	7.60		
					Pa	arameter	Data							
				Paramete	r Name			Trib Conc	Stream Conc	Fate Coef				
					000000000000000000000000000000000000000	(m	ng/L) (r	mg/L)	(mg/L)	(1/days)				
			CBOD5				25.00	2.00	0.00	1.50				
			Dissolved	Oxygen			4.00	8.24	0.00	0.00				
			NH3-N				25.00	0.00	0.00	0.70				

Input Data WQM 7.0

					Jiilþ.	ut Date	A WWGEN	11 7.0						
	SWP Basin	Strea Cod		Stre	eam Name		RMI		/ation ft)	Drainage Area (sq mi)	Slop (ft/ft	With	VS drawal igd)	Apply FC
	18F	425	557 BUFF	ALO CRE	EK		31.80	00 1	100.00	10.0	0.000	000	0.00	~
					St	ream Dat	a							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	<u>Tributary</u> p pł	1	<u>Strea</u> Temp	m pH	
Cona.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C)		
Q7-10 Q1-10 Q30-10	0.047	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00	0.00	0 2	0.00 7	7.00	0.00	0.00	
					Di	scharge l	Data							
			Name	Per	rmit Number	Disc	Permitte Disc Flow (mgd)	Disc Flo	Res W Fa	erve Te ctor	isc emp PC)	Disc pH		
		. 				0.000	0.000	0.0	000	0.000	25.00	7.00		
					Pa	arameter	Data							
			Į	Paramete	r Name	С	onc C	Conc	Stream Conc	Fate Coef				
	_					(m	ıg/L) (n	ng/L)	(mg/L)	(1/days)				
			CBOD5				25.00	2.00	0.00	1.50				
			Dissolved	Oxygen			3.00	8.24	0.00	0.00				
			NH3-N				25.00	0.00	0.00	0.70				

WQM 7.0 Wasteload Allocations

SWP Basin	Stream Code	Stream Name
18F	42557	BUFFALO CREEK

RMI	Discharge Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
33.500) Chicora	10.16	17.4	10.16	17.4	0	0
H3-N C	hronic Allocati			A-04 DE 12	475 PAGE 19	NEC 1810 - 10	
Н3-N С RMI	Chronic Allocati	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction

Dissolved Oxygen Allocations

		CBC	DD5	<u>NH</u>	<u>3-N</u>	Dissolve	d Oxygen	Critical	Percent
RMI	Discharge Name	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Reach	Reduction
33.50	Chicora	25	25	3.9	3.9	6	6	0	0

WQM 7.0 Hydrodynamic Outputs

	sw	P Basin	Strea	m Code				Stream	<u>Name</u>			
		18F	4	2557								
RMI	Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow	Reach Slope	Depth	Width	W/D Ratio	Velocity	Reach Trav Time	Analysis Temp	Analysis pH
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)	
Q7-1	0 Flow											
33.500	0.35	0.00	0.35	.3109	0.00368	.483	13.03	26.95	0.10	0.996	22.37	7.19
Q1-1	0 Flow											
33.500	0.22	0.00	0.22	.3109	0.00368	NA	NA	NA	0.09	1.120	22.92	7.25
Q30-	10 Flow	,										
33.500	0.47	0.00	0.47	.3109	0.00368	NA	NA	NA	0.11	0.904	21.99	7.15

Attachment 2

Toxics Management Spreadsheet Version 1.3, March 2021

Discharge Information

Instructions	Discharge Stream		
Facility: C	Chicora Borough STP	NPDES Permit No.: PA0221708	Outfall No.: 001
Evaluation Ty	pe: Major Sewage / Industrial Waste	Wastewater Description: Municipal Sewage	9

	Discharge Characteristics												
Design Flow	Hardness (mg/l)*	mU (CU)*	F	Partial Mix Fa	actors (PMF	s)	Complete Mi	x Times (min)					
(MGD)*	nardness (mg/l)	pH (SU)*	AFC	CFC	THH	CRL	Q ₇₋₁₀	Q _h					
0.201	100	7.6											

					0 if lef	t blank	0.5 if le	eft blank	0	if left blan	k	1 if left	t blank
	Discharge Pollutant	Units	Ма	x Discharge Conc	Trib Conc	Stream Conc	Daily CV	Hourly CV	Strea m CV	Fate Coeff	FOS	Criteri a Mod	Chem Transl
	Total Dissolved Solids (PWS)	mg/L		531									
1	Chloride (PWS)	mg/L		188									
Group 1	Bromide	mg/L		0.106									
Š	Sulfate (PWS)	mg/L		57.1									
5.50	Fluoride (PWS)	mg/L											
	Total Aluminum	μg/L											
	Total Antimony	μg/L											
	Total Arsenic	μg/L											
	Total Barium	μg/L					j i						
	Total Beryllium	μg/L											
	Total Boron	μg/L											
	Total Cadmium	μg/L											1
	Total Chromium (III)	μg/L											
	Hexavalent Chromium	μg/L											
	Total Cobalt	μg/L											
	Total Copper	μg/L	٧	5									
2	Free Cyanide	μg/L											
Ιž	Total Cyanide	μg/L											
Group ;	Dissolved Iron	μg/L											
===	Total Iron	μg/L											
	Total Lead	μg/L	٧	1									
	Total Manganese	μg/L											1
	Total Mercury	μg/L											
	Total Nickel	μg/L		Î									
	Total Phenols (Phenolics) (PWS)	μg/L											
	Total Selenium	μg/L											
	Total Silver	μg/L											
	Total Thallium	μg/L					İ		j				
	Total Zinc	μg/L		26									- 1
	Total Molybdenum	μg/L											
	Acrolein	μg/L											
1	Acrylamide	μg/L											
1	Acrylonitrile	μg/L											
	Benzene	μg/L											
	Bromoform	μg/L											

1	B 1 = 1 00 11	I a []			
1	Carbon Tetrachloride	μg/L			
1	Chlorobenzene	μg/L			
	Chlorodibromomethane	μg/L			
	Chloroethane	µg/L			
	2-Chloroethyl Vinyl Ether	μg/L			
	Chloroform	µg/L			
1	Dichlorobromomethane		+ + +		
		µg/L	+ + +		
	1,1-Dichloroethane	μg/L			
က	1,2-Dichloroethane	μg/L			
Group	1,1-Dichloroethylene	μg/L			
2	1,2-Dichloropropane	µg/L			
٥	1,3-Dichloropropylene	μg/L			
	1.4-Dioxane	μg/L			
	Ethylbenzene	µg/L	+ + +		
			 		
	Methyl Bromide	µg/L			
	Methyl Chloride	μg/L			
	Methylene Chloride	μg/L			
	1,1,2,2-Tetrachloroethane	μg/L			
	Tetrachloroethylene	μg/L			
	Toluene	μg/L			
I	1,2-trans-Dichloroethylene	µg/L			
	1,1,1-Trichloroethane	µg/L			
	1,1,2-Trichloroethane				
		µg/L			
I	Trichloroethylene	μg/L			
	Vinyl Chloride	μg/L		.,	
	2-Chlorophenol	μg/L			
	2,4-Dichlorophenol	μg/L			
	2,4-Dimethylphenol	μg/L			
	4,6-Dinitro-o-Cresol	μg/L		- 1 - 1	
4	2,4-Dinitrophenol	µg/L	 		
Group			+ + +		
Ιē	2-Nitrophenol	µg/L			
O	4-Nitrophenol	μg/L			
	p-Chloro-m-Cresol	μg/L			
	Pentachlorophenol	μg/L			
	Phenol	μg/L			
	2,4,6-Trichlorophenol	μg/L		1 1	
	Acenaphthene	μg/L		1 1	
	Acenaphthylene	µg/L	1 1		
	Anthracene	µg/L			
	BOOK AND THE REPORT OF THE PARTY OF THE PART		+		
	Benzidine	μg/L			
	Benzo(a) Anthracene	μg/L			
	Benzo(a)Pyrene	μg/L			
	3,4-Benzofluoranthene	μg/L			
	Benzo(ghi)Perylene	μg/L			
	Benzo(k)Fluoranthene	µg/L			
	Bis(2-Chloroethoxy)Methane	µg/L	+ + +	1	
	Bis(2-Chloroethyl)Ether		+ + +	-	
		µg/L			
	Bis(2-Chloroisopropyl)Ether	μg/L			
	Bis(2-Ethylhexyl)Phthalate	μg/L			
	4-Bromophenyl Phenyl Ether	μg/L			
	Butyl Benzyl Phthalate	μg/L			
	2-Chloronaphthalene	μg/L			
	4-Chlorophenyl Phenyl Ether	μg/L			
	Chrysene	µg/L			
	Dibenzo(a,h)Anthrancene				
		µg/L			
I	1,2-Dichlorobenzene	μg/L			
	1,3-Dichlorobenzene	μg/L			
2	1,4-Dichlorobenzene	μg/L			
<u>a</u>	3,3-Dichlorobenzidine	μg/L			
Group	Diethyl Phthalate	μg/L			
Ō	Dimethyl Phthalate	µg/L	+ + +		
	Di-n-Butyl Phthalate				
		µg/L			
i	2,4-Dinitrotoluene	μg/L			

ı	2,6-Dinitrotoluene	//							
		μg/L							
	Di-n-Octyl Phthalate	μg/L							
	1,2-Diphenylhydrazine	μg/L		5			4		
	Fluoranthene	μg/L			_				
	Fluorene	μg/L							
ı	Hexachlorobenzene	μg/L							
ı	Hexachlorobutadiene	μg/L							
ı	Hexachlorocyclopentadiene	μg/L							
	Hexachloroethane	μg/L		and the second					
	Indeno(1,2,3-cd)Pyrene	μg/L							
ı	Isophorone	μg/L							
ł	Naphthalene	μg/L							
	Nitrobenzene								
		μg/L		2					
	n-Nitrosodimethylamine	μg/L			_				
	n-Nitrosodi-n-Propylamine	μg/L							
ı	n-Nitrosodiphenylamine	μg/L							
ı	Phenanthrene	μg/L							
-	Pyrene	μg/L							
ı	1,2,4-Trichlorobenzene	μg/L							
_	Aldrin	μg/L							
	alpha-BHC	μg/L							
	beta-BHC	μg/L							
	gamma-BHC								
		μg/L		2					
	delta BHC	μg/L							
	Chlordane	μg/L							
	4,4-DDT	μg/L							
١	4,4-DDE	μg/L							
ı	4,4-DDD	μg/L							
1	Dieldrin	μg/L		*					
	alpha-Endosulfan	μg/L							
	beta-Endosulfan	μg/L				1			
	Endosulfan Sulfate	μg/L							
:	Endrin	μg/L	_						
	Endrin Aldehyde	μg/L							
	Heptachlor	μg/L							
	Heptachlor Epoxide	μg/L							
ı	PCB-1016	μg/L							
- [PCB-1221	μg/L							
ı	PCB-1232	μg/L							
ı	PCB-1242	μg/L							
	PCB-1248	μg/L							
	PCB-1254	μg/L							
	PCB-1260	μg/L μg/L							
	PCBs, Total	μg/L							
	Toxaphene	μg/L							
	2,3,7,8-TCDD	ng/L							
I	Gross Alpha	pCi/L							
. [Total Beta	pCi/L							
	Radium 226/228	pCi/L							
١	Total Strontium	µg/L							
ij	Total Uranium	μg/L				4			
	Osmotic Pressure	mOs/kg							
4	OSMORO FIESSUR	ııı⊃ə/kg							
١									
١									
J									
ſ									
-									
-									
ı									
ı									
ŀ									

Toxics Management Spreadsheet Version 1.3, March 2021

Stream / Surface Water Information

Chicora Borough STP, NPDES Permit No. PA0221708, Outfall 001

Toxics Management Spreadsheet Version 1.3, March 2021

Model Results

Chicora Borough STP, NPDES Permit No. PA0221708, Outfall 001

			KETUKI	N TO INPU	rs] [SAVE AS PDI		PRINT	● All	O Inputs	O Results	O Limits	
Hydrodyi	namics												
7-10													
PMI	Stream Flow (cfs)	PWS Withdra (cfs)	awal	Net Stream Flow (cfs)		rge Analysis ow (cfs)	Slope (ft/ft)	Depth (ft)	Width (ft)	W/D Ratio	Velocity (fps)	Time (days)	Complete Mix Tim (min)
33.5	0.35			0.35		0.311	0.004	0.483	13.027	26.952	0.104	0.996	3.166
31.8	0.47			0.47		***************************************							
'n													
RMI	Stream Flow (cfs)	PWS Withdra	awal	Net Stream Flow (cfs)		rge Analysis ow (cfs)	Slope (ft/ft)	Depth (ft)	Width (ft)	W/D Ratio	Velocity (fps)	Time	Complete Mix Tim (min)
33.5	2.94			2.94		0.311	0.004	0.977	13.027	13.339	0.255	0.407	3.25
31.8	3.841			3.84									
☑ AFC		CCT (I	min): 3		PMF:	1		s Hardness ((mg/l):	100	Analysis pH:	7.42	
f	Pollutants		Conc	Stream CV	Trib Conc (µg/L)			VQ Obj (µg/L) WI	LA (µg/L)		C	omments	
S112417118701171870171	solved Solids		0	0			N/A	N/A	N/A				
	loride (PWS		0	0		0	N/A	N/A	N/A				
	ulfate (PWS)		0	0			N/A	N/A	N/A				
	otal Copper		0	0			3.439	14.0	29.6		Chem Trans	lator of 0.96	applied
	Total Lead Total Zinc		0	0			34.581 17.180	81.6 120	172 253		Chem Transl		
	TOTAL ZINC		U	0		0 1	17.100	120	200		Chem Hansi	at01 01 0.976	applied
				_									
				1									

	1							
	1							
	1							
	-	+					_	
	-	_					_	
	_	_						
	1							
		_						
Pollutants	Stream Conc	Stream		1 Fate	WQC	alysis Hardne	wla (µg/L)	Analysis pH: 7.42 Comments
	(uall)	CV	(µg/L)	Coef	(µg/L)	(µg/L)		Comments
otal Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Total Copper	0	0		0	8.956	9.33	19.7	Chem Translator of 0.96 applied
Total Lead	0	0		0	2.517	3.18	6.72	Chem Translator of 0.791 applied
Total Zinc	0	0		0	118.139	120	253	Chem Translator of 0.731 applied
1 Otal ZIIIC	U	0		U	110.139	120	200	Chem translator of 0.900 applied
	1							
	-	_					_	
	-	_						
	-	_						
	1							
	1							
	_						-	
	_							
	1							
	1							
	+							
				ı		1	1	
		_						

				2				
☑ THH CC	Γ (min): 3.:		PMF:			ılysis Hardne	ess (mg/l):	N/A Analysis pH: N/A
Pollutants	Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	(1-3)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	500,000	500,000	N/A	
Chloride (PWS)	0	0		0	250,000	250,000	N/A	
Sulfate (PWS)	0	0		0	250,000	250,000	N/A	
Total Copper	0	0		0	N/A	N/A	N/A	
Total Lead	0	0		0	N/A	N/A	N/A	
Total Zinc	0	0		0	N/A	N/A	N/A	

Pollutants	Conc (ug/L)	CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	(19'-)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
Chloride (PWS) Sulfate (PWS) Total Copper Total Lead	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Total Copper	0	0		0	N/A	N/A	N/A	
Total Lead	0	0		0	N/A	N/A	N/A	
Total Zinc	0	0		0	N/A	N/A	N/A	
						İ		
						İ		

	And the second s		
		- 	
—			

☑ Recommended WQBELs & Monitoring Requirements

No. Samples/Month: 4

	Mass	Limits	Concentration Limits						
Pollutants	AML (lbs/day)	MDL (lbs/day)	AML	MDL	IMAX	Units	Governing WQBEL	WQBEL Basis	Comments
Total Copper	Report	Report	Report	Report	Report	μg/L	19.0	AFC	Discharge Conc > 10% WQBEL (no RP)
Total Zinc	Report	Report	Report	Report	Report	μg/L	162	AFC	Discharge Conc > 10% WQBEL (no RP)

		7				
_						
			_			

☑ Other Pollutants without Limits or Monitoring

The following pollutants do not require effluent limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharge concentration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QL).

Pollutants	Governing WQBEL	Units	Comments
Total Dissolved Solids (PWS)	N/A	N/A	PWS Not Applicable
Chloride (PWS)	N/A	N/A	PWS Not Applicable
Bromide	N/A	N/A	No WQS
Sulfate (PWS)	N/A	N/A	PWS Not Applicable
Total Lead	N/A	N/A	Discharge Conc < TQL
	1		

Attachment 3

WATER MANAGEMENT SYSTEM OPEN VIOLATIONS BY CLIENT

Client ID: 44842 Client: All

Open Violations: 1

CLIENT ID	CLIENT	PF ID	FACILITY	PF KIND	PF STATUS	INSP PROGRAM
44842	CHICORA BORO SEW AUTH BUTLER CNTY	259130	CHICORA BORO SEWER AUTHORITY	Sewage Publicly Owned (Muni)	Active	WPC NPDES

	PROGRAM SPECIFIC ID	INSP ID	VIOLATION ID	INSPECTION CATEGORY	VIOLATION DATE	VIOLATION CODE	VIOLATION	PF INSPECTOR	INSP REGION
I	PA0221708	3279741	935835	PF	11/09/2021	92A.44	NPDES - Violation of effluent limits in Part A of permit	LEIDY,BRUCE	NWRO