

Application Type	Renewal
Facility Type	Non- Municipal
Major / Minor	Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

 Application No.
 PA0221783

 APS ID
 1040549

 Authorization ID
 1357343

Applicant and Facility Information

Applicant Name	SMG Development LLC	Facility Name	Crystal Springs MHP				
Applicant Address	120 State Route 908 Ext	Facility Address	201 Crystal Lane				
	Tarentum, PA 15084-2911		Slippery Rock, PA 16057-1805				
Applicant Contact	Stephan Beacom	Facility Contact	Samuel Tosto				
Applicant Phone	_(412) 951-6414	Facility Phone	(724) 234-0092				
Client ID	243573	Site ID	451553				
Ch 94 Load Status	Not Overloaded	Municipality	_Mercer Township				
Connection Status	No Limitations	County	Butler				
Date Application Reco	eivedJune 3, 2021	EPA Waived?	Yes				
Date Application Acce	epted June 15, 2021	If No, Reason					

Summary of Review

This facility serves a mobile home park. They do not accept hauled in waste.

The permit is being transferred from Tomcats, LLC to SMG Development LLC as part of this permit renewal. The WQM Permits associated with this facility were transferred on February 16, 2022.

There is currently one open violation listed in EFACTS for this permittee, under the SDW Program (3/23/2022). 4/18/2023 CWY OK to issue draft per SDW 4/19/2023.

Sludge use and disposal description and location(s): Sludge is hauled offsite and disposed of at a landfill.

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Approve	Deny	Signatures	Date
х		Adam J. Pesek Adam J. Pesek, E.I.T. / Project Manager	March 23, 2023
х		Chad W. Yurisic, P.E. / Environmental Engineer Manager	

Discharge, Receiving W	Vaters and Water Supply Inform	nation	
Outfall No. 001		Design Flow (MGD)	0.0195
Latitude <u>41° 6' 1.</u>		Longitude	-80° 0' 47.2"
	ery Rock	Quad Code	
Wastewater Descriptic	on: Sewage Effluent		
1	Jnnamed Tributary to McDonald		
	Run	Stream Code	34578
NHD Com ID 1	26222152	RMI	1.04
Drainage Area 0) (dry); 0.5 (perennial)	Yield (cfs/mi ²)	0; 0.00746
_			Dry Stream, USGS
· · · · · · · · · · · · · · · · · · ·) (dry); 0.00373 (perennial)	Q7-10 Basis	Streamstats (Perennial)
· · · · · ·	1322	Slope (ft/ft)	
	20-C	Chapter 93 Class.	CWF
Existing Use			
Exceptions to Use		Exceptions to Criteria	
Assessment Status	Attaining Use(s)		<u>.</u>
Cause(s) of Impairmer	nt		<u>.</u>
Source(s) of Impairme	ent		
TMDL Status		Name	
		Data Cauraa	
Background/Ambient		Data Source	
pH (SU)	6.6	<u>'95 sample taken upstream</u>	
Temperature (°C)	20	Default (CWF)	
Hardness (mg/L)			
Other: NH3-N (mg/l)	0.02	'95 sample taken upstream	
Nearest Downstream	Public Water Supply Intake	PA American Water Company	- Ellwood District
	nnoqenessing Creek	Flow at Intake (cfs)	67
PWS RMI 0.2		Distance from Outfall (mi)	32.8

Changes Since Last Permit Issuance: N/A

Other Comments:

	Tr	eatment Facility Summar	у	
Treatment Facility Na	me: Crystal Springs MHP			
WQM Permit No.	Issuance Date			
1095406 T-2	9/16/2022			
1073406 T-2	9/16/2022			
	Degree of			Avg Annual
Waste Type	Treatment	Process Type	Disinfection	Flow (MGD)
Sewage	Secondary with Ammonia Reduction	Septic Tank Sand Filter	Hypochlorite	0.0195
Hydraulic Capacity	Organic Capacity			Biosolids
(MGD)	(lbs/day)	Load Status	Biosolids Treatment	Use/Disposal
0.0195		Not Overloaded	Anaerobic Digestion	Landfill

Changes Since Last Permit Issuance: Permits were transferred

Other Comments: WQM Permit No. 1073406 – (3) Septic tanks (primary and intermediate settling), an alum feeder, (2) dosing tanks, (2) intermittent sand filters, sludge holding tank, tablet chlorination and contact tank.

WQM Permit No. 1095406 - (1) 5220-gallon primary holding tank, (1) 2460-gallon dosing tank, (2) 30'x30' intermittent sand filters, (1) 3400-gallon chlorine contact tank, (1) 10,522 gallon pre-aeration tank, and (1) V-notch weir.

	Compliance History
Summary of Inspections:	An inspection was conducted on 9/28/2021. One violation was noted for failure to install pre-aeration blowers. It was recommended that the blowers be installed, remove vegetation from the sand filters and reinstallation of dosing laterals be completed. The last inspection was conducted on 4/12/2022. It was verified that the blowers had been installed, sand beds were free of vegetation.

Other Comments:

Compliance History

DMR Data for Outfall 001 (from February 1, 2022 to January 31, 2023)

Parameter	JAN-23	DEC-22	NOV-22	OCT-22	SEP-22	AUG-22	JUL-22	JUN-22	MAY-22	APR-22	MAR-22	FEB-22
Flow (MGD)												
Average Monthly	0.007	0.007	0.007	0.007	0.007	0.007	0.007	0.007	0.007	0.007	0.007	0.007
Flow (MGD)												
Daily Maximum	0.007	0.007	0.007	0.007	0.007	0.007	0.007	0.007	0.007	0.007	0.007	0.007
pH (S.U.)												
Minimum	7.0	7.0	7.3	7.0	6.9	7.0	6.7	6.7	6.7	6.6	6.6	6.6
pH (S.U.)												
Maximum	7.3	7.3	7.5	7.3	7.2	7.2	8.0	7.3	7.1	7.1	7.0	6.8
DO (mg/L)												
Minimum	5.0	4.6	5.3	4.5	4.4	4.9	5.0	4.7	5.0	5.0	5.0	5.0
TRC (mg/L)												
Average Monthly	0.5	0.5	0.5	0.4	0.4	0.4	0.49	0.5	0.47	0.5	0.43	0.39
TRC (mg/L)												
Instantaneous												
Maximum	0.6	0.6	0.5	0.6	0.5	0.5	0.6	0.6	0.6	0.6	0.6	0.6
CBOD5 (mg/L)												
Average Monthly	3.42	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 13.0	< 2.0	< 2.0	< 2.0	6.42
TSS (mg/L)	5.0			5.0	7.0	5.0	5.0		5.0		5.0	
Average Monthly	5.0	< 6.0	< 6.0	< 5.0	< 7.0	< 5.0	< 5.0	< 6.0	< 5.0	< 6.0	< 5.0	8.0
Fecal Coliform												
(CFU/100 ml)	20	. 4	. 47	. 10	10.0				.1.0		. 24	0.400
Geometric Mean	39	< 4	< 17	< 49	< 10.0	< 2.0	< 2.0	< 5.0	< 1.0	< 2.0	< 34	2420
Total Nitrogen												
(lbs/day) Annual Average		< 10.0										
Total Nitrogen (mg/L)		< 10.0										
Annual Average		10.9										
Ammonia (mg/L)		10.9										
Average Monthly	1.5	< 0.92	< 1.5	< 0.8	< 0.8	< 0.8	< 0.8	0.815	< 0.8	< 0.8	< 0.8	< 1.53
Total Phosphorus	1.5	< 0.3Z	< 1.5	< 0.0	< 0.0	< 0.0	< 0.0	0.013	< 0.0	< 0.0	< 0.0	× 1.55
(lbs/day)												
Annual Average		< 1.0										
Total Phosphorus	1	\$ 1.0										
(mg/L)												
Annual Average		0.84										

Development of Effluent Limitations

Outfall No.	001		Design Flow (MGD)	.0195
Latitude	41º 6' 1.70"		Longitude	-80° 0' 47.20"
Wastewater D	Description:	Treated domestic sewage		

Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
CBOD ₅	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD5	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
рН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform				
(5/1 – 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform				
(5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform				
(10/1 – 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform				
(10/1 – 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)
E. Coli	Report (No./100 ml)	IMAX	-	92a.61

Comments: Monitoring for E. Coli is placed in the permit in accordance with the Department's SOP entitled "Establishing Effluent Limitations for Individual Sewage Permits."

Water Quality-Based Limitations

The following limitations were determined through water quality modeling (output files attached):

Parameter	Limit (mg/l)	SBC	Model
Ammonia Nitrogen			
(May 1 – Oct 31)	3.5	Average Monthly	WQM 7.0 1.0b (previous modeling)
Ammonia Nitrogen			
(Nov 1 – April 30)	11.5	Average Monthly	WQM 7.0 1.0b (previous modeling)

Comments: TRC modeling was not done due the discharge to a ditch/intermittent stream and the residual is expected to decay prior to reaching perennial conditions.

Best Professional Judgment (BPJ) Limitations

Comments: The dissolved oxygen limit of a minimum of 4 mg/l and monitoring for total nitrogen and total phosphorus is in accordance with the department's SOP entitled "Establishing Effluent Limitations for Individual Sewage Permits." The TRC IMAX limit of 1.2 mg/l is being retained from the previous permit due to anti-backsliding provisions.

Anti-Backsliding

N/A

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

			Effluent L	imitations.			Monitoring Re	quirements
Deremeter	Mass Units	(lbs/day) ⁽¹⁾		Concentrat	ions (mg/L)		Minimum ⁽²⁾	Required
Parameter	Average Monthly	Average Weekly	Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report Daily Max	xxx	xxx	xxx	XXX	1/week	Measured
pH (S.U.)	xxx	xxx	6.0 Daily Min	XXX	9.0 Daily Max	ххх	1/day	Grab
DO	ххх	xxx	4.0 Daily Min	xxx	xxx	XXX	1/day	Grab
TRC	ххх	XXX	xxx	0.5	xxx	1.2	1/day	Grab
CBOD5	XXX	XXX	xxx	25.0	xxx	50	2/month	8-Hr Composite
TSS	xxx	xxx	xxx	30.0	xxx	60	2/month	8-Hr Composite
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	xxx	2000 Geo Mean	XXX	10000	2/month	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	ххх	xxx	xxx	200 Geo Mean	xxx	1000	2/month	Grab
E. Coli (No./100 ml)	XXX	XXX	XXX	XXX	XXX	Report	1/year	Grab
Total Nitrogen	Report Annl Avg	XXX	xxx	Report Annl Avg	XXX	xxx	1/year	8-Hr Composite
Ammonia Nov 1 - Apr 30	xxx	xxx	xxx	11.5	xxx	23	2/month	8-Hr Composite
Ammonia May 1 - Oct 31	XXX	XXX	XXX	3.5	XXX	7	2/month	8-Hr Composite
Total Phosphorus	Report Annl Avg	XXX	XXX	Report Annl Avg	XXX	xxx	1/year	8-Hr Composite

Compliance Sampling Location: Outfall 001 (after disinfection)

Dry Reach

Input Data WQM 7.0

	SWP Basin			Stre	eam Name		RMI	Eleva (ft		Drainage Area (sq mi)		ope t/ft)	PW Withdi (mg	rawal	Apply FC
	20C	34	578 Trib 34	1578 to M	cDonald Ru	n	1.04	10 13	27.00	0.1	5 0.0	0000		0.00	✓
					St	ream Dat	a								
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	<u>Tributary</u> p pl	H	Tem	<u>Stream</u> p	р рН	
Cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)			(°C))		
Q7-10 Q1-10 Q30-10	0.001	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00	0.00	20).00	7.40	C	0.00	0.00	
	<u> </u>	Discharge Data													
			Name	Per	mit Number	Disc	Permitte Disc Flow (mgd)	ed Design Disc Flow (mgd)	Rese Fac	erve T ctor	Disc emp °C)	Dis pl			
		Cryst	al Springs	PA	0221783	0.019	5 0.000	0 0.000)o c	0.000	20.00)	7.40		
					Pa	arameter	Data								
			,	Paramete	r Name				ream Conc	Fate Coef					
					(m	ng/L) (n	ng/L) (r	ng/L)	(1/days)						
			CBOD5				25.00	0.00	0.00	1.50					
			Dissolved	Oxygen			4.00	8.24	0.00	0.00					
			NH3-N				25.00	0.00	0.00	0.70					

Input Data WQM 7.0

	SWP Basin			Stre	eam Name		RMI	Eleva (ft)		Drainage Area (sq mi)	Slo (ft/	With	VS drawal Igd)	Apply FC
	20C	34	578 Trib 34	1578 to M	cDonald Ru	n	0.37	79 12	56.00	0.5	0 0.00	0000	0.00	✓
					St	ream Dat	a							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	<u>Tributary</u> p p⊦	ł	<u>Strea</u> Temp	m pH	
Cona.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C))		(°C)		
Q7-10	0.001	0.00	0.00	0.000	0.000	0.0	0.00	0.00	20	0.00 7	7.40	0.00	0.00	
Q1-10 Q30-10		0.00 0.00	0.00 0.00	0.000 0.000	0.000 0.000									
					Di	scharge	Data						1	
			Name	Per	mit Number	Disc	Permitte Disc Flow (mgd)	ed Design Disc Flow (mgd)	Res	erve Te ctor	isc emp °C)	Disc pH		
		31				0.000	0 0.000	00 0.000	0 0	0.000	25.00	7.00		
					Pa	arameter	Data							
			1	Paramete	r Name				ream Conc	Fate Coef				
			10	urumoto	Humo	(m	ng/L) (n	ng/L) (r	ng/L)	(1/days)				
			CBOD5				25.00	2.00	0.00	1.50				
			Dissolved	Oxygen			3.00	8.24	0.00	0.00				
			NH3-N				25.00	0.00	0.00	0.70				

Version 1.1

Page 2 of 2

	SV	/P Basin	<u>Strea</u>	m Code				Stream	Name			
		20C	3	4578			Trib 34	578 to M	cDonald	Run		
RMI	Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow	Reach Slope	Depth	Width	W/D Ratio	Velocity	Reach Trav Time	Analysis Temp	Analysis pH
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)	
Q7-1	0 Flow	6										
1.040	0.00	0.00	0.00	.0302	0.02034	.301	1.99	6.62	0.05	0.799	20.00	7.40
Q1-1	0 Flow											
1.040	0.00	0.00	0.00	.0302	0.02034	NA	NA	NA	0.00	0.000	0.00	0.00
Q30-	10 Flov	v										
1.040	0.00	0.00	0.00	.0302	0.02034	NA	NA	NA	0.00	0.000	0.00	0.00

WQM 7.0 Hydrodynamic Outputs

Thursday, March 23, 2023

Version 1.1

WQM 7.0 Modeling Specifications

Parameters	D.O.	Use Inputted Q1-10 and Q30-10 Flows	
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	✓
D.O. Saturation	90.00%	Use Balanced Technology	✓
D.O. Goal	2		

Thursday, March 23, 2023

Version 1.1

SWP Basin	Stream Code	Stream Name
20C	34578	Trib 34578 to McDonald Run

		CBC	<u>DD5</u>	<u>NH</u>	<u>3-N</u>	Dissolved	d Oxygen	Critical	Percent
RMI	Discharge Name	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Reach	Reduction
1.04	Crystal Springs	25	25	25	25	4	4	0	0

Version 1.1

<u>SWP Basin</u> Str 20C	ream Code 34578		Trib 34	<u>Stream Name</u> 1578 to McDonald Run	
RMI	Total Discharge	Flow (mgd) <u>Ana</u> l	lysis Temperature (°C)	Analysis pH
1.040	0.02	0		20.000	7.400
Reach Width (ft)	Reach De	pth (ft)		Reach WDRatio	Reach Velocity (fps)
1.992	0.30	1		6.622	0.051
Reach CBOD5 (mg/L)	Reach Kc (1/days)	<u>R</u>	each NH3-N (mg/L)	Reach Kn (1/days)
24.88	1.50			24.88	0.700
Reach DO (mg/L)	<u>Reach Kr (</u>			Kr Equation	<u>Reach DO Goal (mg/L)</u>
4.021	27.11	3		Owens	2
Reach Travel Time (days)		Subreach	Reculte		
0.799	TravTime	CBOD5	NH3-N	D.O.	
	(days)	(mg/L)	(mg/L)	(mg/L)	
	0.080	22.07	23.52	4.38	
	0.160	19.58	22.24	4.75	
	0.240	17.37	21.04	5.09	
	0.319	15.41	19.89	5.40	
	0.399	13.67	18.81	5.68	
	0.479	12.12	17.79	5.94	
	0.559	10.76	16.82	6.18	
	0.639	9.54	15.91	6.39	
	0.719	8.46	15.04	6.59	
	0.799	7.51	14.22	6.78	

WQM 7.0 D.O.Simulation

Thursday, March 23, 2023

Version 1.1

	<u>SWP Basin</u> <u>Str</u> 20C	<u>eam Code</u> 34578		<u>Stream Nam</u> Trib 34578 to McDo	_		
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
1.040	Crystal Springs	PA0221783	0.020	CBOD5	25		
				NH3-N	25	50	
				Dissolved Oxygen			4

WQM 7.0 Effluent Limits

Thursday, March 23, 2023

Version 1.1

Perennial Reach

Input Data WQM 7.0

	SWP Basin			Stre	am Name		RMI	Eleva (ft		Drainage Area (sq mi)		ope t/ft)	PWS Withdrav (mgd)	val	Apply FC
	20C	34:	578 Trib 34	1578 to M	cDonald Ru	n	0.37	'9 12	56.00	0.	50 0.0	0000	(0.00	\checkmark
o:					St	ream Dat	a								
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	<u>Tributary</u> p p	Н	Temp	<u>Stream</u> p p	H	
Cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C)			
Q7-10 Q1-10 Q30-10	0.007	0.00 0.00 0.00	0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00	0.00	2	0.00	6.60	0.	.00	0.00	
					Di	scharge	Data								
			Name	Per	mit Number	Disc	Permitte Disc Flow (mgd)	Disc Flow	Res Fa	erve T ctor	Disc 「emp (ºC)	Dis pH			
		Cryst	al Springs	PA)221783	0.019	5 0.000	0 0.000	00	0.000	20.00	7 כ	7.40		
					Pa	rameter	Data								
			1	⊃aramete	r Name				ream Conc	Fate Coef					
	_					(m	ıg/L) (m	ng/L) (r	ng/L)	(1/days)					
			CBOD5				7.51	2.00	0.00	1.50)	_			
			Dissolved	Oxygen			6.78	8.24	0.00	0.00)				
			NH3-N				14.22	0.02	0.00	0.70)				

Version 1.1

Input Data WQM 7.0

	SWP Basin	Strea Coo		Stre	eam Name		RMI	Eleva (ft)		Drainage Area (sq mi)		ope /ft)	PWS Vithdrawal (mgd)	Apply FC
	20C	34	578 Trib 34	1578 to M	cDonald Ru	n	0.00) 1 12	37.00	0.6	64 0.0	0000	0.00	✓
					St	ream Dat	a							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	<u>Tributary</u> ip pl	H	<u>St</u> Temp	t <u>ream</u> pH	
Cona.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C)		
Q7-10 Q1-10	0.007	0.00	0.00 0.00	0.000 0.000	0.000	0.0	0.00	0.00	2	0.00	6.60	0.0	0.00	í.
Q30-10		0.00	0.00	0.000	0.000									
					Di	scharge	Data							
			Name	Per	mit Numbe	Disc	Permitte Disc Flow (mgd)	ed Design Disc Flow (mgd)	Res Fa	erve T ctor	Disc emp (°C)	Disc pH		
						0.000	0 0.000	0 0.000	0	0.000	25.00) 7.	00	
					Pa	arameter	Data							
				Paramete	r Name				ream Conc	Fate Coef				
				aramete	Name	(m	ng/L) (n	ng/L) (n	ng/L)	(1/days)				
			CBOD5				25.00	2.00	0.00	1.50				
			Dissolved	Oxygen			3.00	8.24	0.00	0.00				
			NH3-N				25.00	0.00	0.00	0.70				

			-					-				
	SN	/P Basin	Strea	m Code				Stream	Name			
		20C	3	4578			Trib 34	578 to M	cDonald	Run		
RMI	Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow	Reach Slope	Depth	Width	W/D Ratio	Velocity	Reach Tra∨ Time	Analysis Temp	Analysis pH
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)	
Q7-1	0 Flow											
0.379	0.00	0.00	0.00	.0302	0.00952	.294	2.97	10.09	0.04	0.595	20.00	7.20
Q1-1	0 Flow											
0.379	0.00	0.00	0.00	.0302	0.00952	NA	NA	NA	0.04	0.609	20.00	7.26
Q30-	10 Flov	v										
0.379	0.01	0.00	0.01	.0302	0.00952	NA	NA	NA	0.04	0.583	20.00	7.15

WQM 7.0 Hydrodynamic Outputs

Thursday, March 23, 2023

Version 1.1

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	✓
D.O. Saturation	90.00%	Use Balanced Technology	✓
D.O. Goal	6		

Thursday, March 23, 2023

Version 1.1

		<u>am Code</u> 34578			ream Name 3 to McDonale	d Run	
IH3-N	Acute Allocatio	ıs					
RMI	Discharge Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
0.3	79 Crystal Springs	12.83	13.85	12.83	13.85	0	0
IH3-N	Chronic Allocat	ions					
RMI	Discharge Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
0.3	79 Crystal Springs	1.76	2.06	1.76	2.06	0	0

RMI	Discharge Name	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Reach	Reduction	
0.3	8 Crystal Springs	7.51	7.51	2.06	2.06	6.78	6.78	0	0	

Thursday, March 23, 2023

Version 1.1

			110 54	1578 to McDonald Run			
<u>RMI</u>	Total Discharge Flow (mgd)) <u>Anal</u>	lysis Temperature (°C)	Analysis pH		
0.379	0.020)		20.000	7.200		
Reach Width (ft)	Reach De	oth (ft)		Reach WDRatio	Reach Velocity (fps)		
2.969	0.294	1		10.088	0.039		
Reach CBOD5 (mg/L)	Reach Kc (1/days)		<u>R</u>	each NH3-N (mg/L)	Reach Kn (1/days)		
6.90	1.424			1.83	0.700		
Reach DO (mg/L)	<u>Reach Kr (1/days)</u>			Kr Equation	Reach DO Goal (mg/L)		
6.941	23.639			Owens	6		
<u>Reach Travel Time (days)</u>		Subreach	Results				
0.595	TravTime	CBOD5	NH3-N	D.O.			
	(days)	(mg/L)	(mg/L)	(mg/L)			
	0.060	6.34	1.76	7.99			
	0.119	5.83	1.69	8.24			
	0.179	5.35	1.62	8.24			
	0.238	4.92	1.55	8.24			
	0.298	4.52	1.49	8.24			
	0.357	4.15	1.43	8.24			
	0.417	3.81	1.37	8.24			
	0.476	3.50	1.31	8.24			
	0.536	3.22	1.26	8.24			
	0.595	2.96	1.21	8.24			

WQM 7.0 D.O.Simulation

Thursday, March 23, 2023

Version 1.1

RMI 0.379	SWP Basin 20C	Stream Code 34578	1	<u>Stream Name</u> Trib 34578 to McDon				
	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)	
	Crystal Sprin	gs PA0221783	0.020	CBOD5	7.51			
				NH3-N	2.06	4.12		
				Dissolved Oxygen)		6.78	
				Do	esn't m	eEn	ingui	sp'.
				0	- 6 0	(A)(t)		
				Co	= Ctc	(.7X.	799)	
				Co	= 2.06	e		
				Ca	$= C_{\pm} C_$	s mg/	1	

WQM 7.0 Effluent Limits

Thursday, March 23, 2023

Version 1.1