

Northwest Regional Office CLEAN WATER PROGRAM

Application Type

Renewal

Non
Facility Type

Major / Minor

Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

Application No. PA0222381

APS ID 1088492

Authorization ID

1439686

Applicant Name	Clearfield Jefferson County Region Airport Authority	_ Facility Name	Dubois Region Airport
Applicant Address	377 Aviation Way	_ Facility Address	377 Aviation Way
	Reynoldsville, PA 15851-8143	_	Reynoldsville, PA 15851-8143
Applicant Contact	Robert Shaffer	_ Facility Contact	
Applicant Phone	(814) 328-5311	_ Facility Phone	
Client ID	47734	Site ID	453087
Ch 94 Load Status	Not Overloaded	_ Municipality	Washington Township
Connection Status	No Limitations	County	Jefferson
Date Application Rece	eived May 3, 2023	EPA Waived?	Yes
Date Application Acce	pted	If No, Reason	

Summary of Review

This renewal application is for the treatment of sewage effluent. Based on discussions with the consultant, the airplane deicing activities are not completed indoors and qualifies for "no exposure" conditions.

Treatments consists of (WQM Permit No. 3397405): An Extended aeration style package plant consisting of a comminutor, aeration basin, clarifier, chlorination, dechlorination and aerated digestion.

Act 14 - Notification was submitted and received.

There are NO open violations in WMS for the subject Client ID (47734) as of 2/20/2024.

Sludge use and disposal description and location(s): The facility has disposed of .56 Dry Tons of sewage sludge to the Punxsutawney Boro over the last year.

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Approve	Deny	Signatures	Date
Х		Dustin Hargenrater Dustin Hargenrater / Civil Engineer Trainee	February 20, 2024
		(Vacant) / Program Manager	Okay to Draft JCD 3/4/2024

Outfall No. 001			Design Flow (MGD)	0.006		
Latitude 41°	10' 52.07	"	Longitude	-78º 53' 59.14"		
Quad Name Ha	azen		Quad Code	41078B8		
Wastewater Descri	iption:	Treated Sanitary Sewage	e Effluent			
Daniel La Matana		med Tributary to Keys Rur		40500		
Receiving Waters	(CWF)	Stream Code	48598 Dry – 0.12		
NHD Com ID	12385	9849	RMI	Perennial – 1.0299		
Dry08			<u></u>	Dry - 0.001		
Drainage Area			Yield (cfs/mi²)	Perennial – 0.037		
Dry – 0			0 5 .	11000 01 01 1		
Q ₇₋₁₀ Flow (cfs) Perennial - 0.004 Dry - 1760			Q ₇₋₁₀ Basis	USGS – StreamStats		
Elevation (ft)		nial - 1740	Slope (ft/ft)	.02355		
Watershed No.	17-C		Chapter 93 Class	CWF		
Existing Use	None					
Exceptions to Use			Exceptions to Criteria			
Assessment Status	3	Attaining Use(s)				
Cause(s) of Impair	ment					
Source(s) of Impair	rment					
TMDL Status			Name			
Background/Ambie	ent Data		Data Source			
(0.1)		- 40	Monitoring Point: 150821 (Loc	cated 1.88 mi downstream of		
pH (SU)		7.43	discharge)			
Temperature (°F)			Default - CWF			
Hardness (mg/L)						
Other:						
Nearest Downstrea	am Public	c Water Supply Intake	Hawthorne Area Water Autho	rity		
PWS Waters	Redbank	Creek	Flow at Intake (cfs)	30.5		
PWS RMI 28.0			Distance from Outfall (mi)	36.5		

Changes Since Last Permit Issuance: None

	Tre	atment Facility Summa	ry	
Freatment Facility Nai	me: Dubois Region Airport			
WQM Permit No.	Issuance Date			
3397405	11/18/1997			
	Degree of			Avg Annual
Waste Type	Treatment	Process Type	Disinfection	Flow (MGD)
Sewage	Secondary With Ammonia Reduction	Extended Aeration	Hypochlorite	0.006
Hydraulic Canacity	Organic Canacity			Biosolids
Hydraulic Capacity (MGD)	Organic Capacity (lbs/day)	Load Status	Biosolids Treatment	Use/Disposal
0.006	33.8	Not Overloaded	Aerobic Digestion	Punxsutawney Boro

Changes Since Last Permit Issuance: Biosolids Use/Disposal updated to Punxsutawney Boro.

Other Comments: The facility has installed a dechlorinator within the permit term to reduce violations of TRC and Fecal Coliform, currently there are still violations for TRC and Fecal Coliform within the permit term but they are in extreme weather months which is expected to cause fluctuations in Fecal Coliform and TRC.

Stormwater Outfalls

Outfall No.	<u>Lat</u>	<u>Long</u>	Receiving Stream
001	41° 10′ 53.57″	78° 53' 45.06"	UNT - Keys Run
002	41° 11′ 0.43	78° 53' 28.67"	Kyle Run
003A	41° 10′ 56.39″	78° 53' 49.67"	UNT - Keys Run
003B	41° 10′ 55.77″	78° 53' 49.97"	UNT - Keys Run
003C	41° 10′ 55.37″	78° 53' 49.96"	UNT - Keys Run
005	41° 10′ 55.22″	78° 53' 47.71"	UNT - Keys Run
006	41° 10′ 48.09″	78° 54' 1.87"	UNT - Keys Run
007A	41º 11' 18.33"	78° 53' 32.53"	Keys Run
007B	41° 11′ 1.32″	78° 53′ 25.78"	Kyle Run
007C	41° 11′ 1.37″	78° 53' 41.9"	Keys Run

Other Comments: These outfalls qualify for a no exposure exemption so they will not be included in the permit.

Note: The application identifies 001 as a stormwater outfall and 004 as the sewage discharge. The NPDES permit will denote Outfall 001 as the sewage discharge.

Compliance History

DMR Data for Outfall 001 (from May 1, 2022 to April 30, 2023)

Parameter	APR-23	MAR-23	FEB-23	JAN-23	DEC-22	NOV-22	OCT-22	SEP-22	AUG-22	JUL-22	JUN-22	MAY-22
Flow (MGD)				0.00109	0.00098							
Average Monthly	0.0009	0.00105	0.00053	1	5	0.00073	0.00071	0.00056	0.00064	0.00062	0.0007	0.00046
pH (S.U.)												
Instantaneous												
Minimum	6.8	6.7	6.8	6.2	6.0	6.8	6.9	6.9	6.8	6.0	6.9	6.8
pH (S.U.)												
Instantaneous												
Maximum	7.3	7.4	7.3	7.3	7.2	7.7	7.7	8.0	7.3	7.1	7.4	7.2
DO (mg/L)												
Instantaneous												
Minimum	5.0	6.0	8.0	4.0	6.0	5.0	5.0	4.0	5.0	6.0	5.0	5.0
TRC (mg/L)												
Average Monthly	< 0.02	< 0.01	< 0.01	< 0.03	< 0.04	< 0.02	< 0.02	0.02	< 0.02	0.01	< 0.02	0.01
TRC (mg/L)												
Instantaneous												
Maximum	0.05	0.05	0.43	0.05	0.07	0.04	0.04	0.04	0.04	0.04	0.04	0.03
CBOD5 (mg/L)												
Average Monthly	4	< 2	3.0	8	5	13	< 3	12	17	22	12	8
TSS (mg/L)	_								_	_	_	
Average Monthly	6	11	10	13	19	24	11	23	6	6	7	< 23
Fecal Coliform												
(No./100 ml)			400	1010						_		_
Geometric Mean	23	4	< 180	1842	1177	63	3	< 2	6	4	19	5
Fecal Coliform												
(No./100 ml)	405	_	0.400	0.400	4444	4000			00	_	00	
Weekly Average	135	5	> 2420	2420	1414	1986	3	3	36	5	38	9
Total Nitrogen (mg/L)		4.0			04.4			00.4			47.0	
Average Quarterly		1.0			31.1			29.1			17.6	
Total Phosphorus												
(mg/L)		0.57			4.05			4.7			4.00	
Average Quarterly		0.57			4.25			1.7			1.68	

Compliance History

Effluent Violations for Outfall 001, from: June 1, 2022 To: April 30, 2023

Parameter	Date	SBC	DMR Value	Units	Limit Value	Units
Fecal Coliform	02/28/23	Wkly Avg	> 2420	No./100 ml	10000	No./100 ml

Other Comments: According to the DMR value for the effluent violation listed above, this violation is in compliance as the DMR value of 2420 is well below the limit value.

Summary of Inspections:

Inspection ID: 3465838

Date of Inspection: 11/29/2022

Type of Inspection: Compliance Evaluation Inspection Result: No Violations Noted

Inspector: Brian Tollini

		Development	of Effluent Limitations	
Outfall No.	001		Design Flow (MGD)	0.006
Latitude	41º 10' 54.62"		Longitude	-78º 53' 51.15"
Wastewater D	escription: Treat	ed Sewage Effluent	-	

Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
CROD	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD₅	25 40 30 45 6.0 – 9.0 S.U. Sliform 30) 200 / 100 ml Sliform 30) 1,000 / 100 ml		133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
рН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform (5/1 – 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform (5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform (10/1 – 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform (10/1 – 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)

Water Quality-Based Limitations

This discharge was modeled using WQM 7.0 to evaluate CBOD5, Ammonia-Nitrogen, and Dissolved Oxygen parameters. The modeling results show technology based effluent limitations for CBOD5 are appropriate. The modeling results also confirm that Ammonia-Nitrogen and Dissolved Oxygen limitations are necessary to meet in-stream water quality criterion. Since this facility discharges to a dry stream the dry stream was modeled first. Dry stream conditions exist for roughly .32 miles above the beginning of perennial conditions, the sewage is discharged directly into the dry stream from the facility .12 miles above perennial conditions. The following modeling considerations were used when modeling the dry stream:

D.O. Goal: 2 mg/L for dry streams

CBOD5: In stream concentration of 0 for dry streams NH3-N: In stream concentration of 0 for dry streams

Yield: 0.001 used for dry streams

Discharge pH: Calculated used averages of June-September (dry season) for the facility

Using the dry stream models D.O. Simulation, we can accurately represent the concentration of the parameters entering the stream at perennial conditions. The perennial stream modeling suggest that more stringent limits were not necessary for CBOD, Dissolved Oxygen, and Ammonia-Nitrogen. This determination was made because the inputted data from the D.O. Simulation did not change when modeling the stream for perennial conditions. This suggests that the effluent that is being discharged is equivalent to secondary treatment standards. This facility was originally intended to begin monitoring for Ammonia-Nitrogen in the last permit term, however the previous reviewer did not code the monitor only limit into WMS. For the new permit term, the facility will be subject to a monitor only condition for Ammonia-Nitrogen with a testing frequency of twice per month to remain consistent with Table 6-3 Self-Monitoring Requirements for Sewage Discharges. Since no actual limit is being placed on the effluent at this time, no compliance schedule will be developed.

Total Residual Chlorine limitations were calculated using the TRC_CALC model and showed no change from the previous limit.

WQM Modeling and TRC_CALC output files will be attached to the bottom of this fact sheet.

Best Professional Judgment (BPJ) Limitations

Comments: BPJ limits to be used for this permit will be for Dissolved Oxygen. Although this parameter was calculated using WQM 7.0, the limits for Dissolved Oxygen are the same as the default values per the SOP for Establishing Effluent Limitations for Individual Sewage Permits.

Anti-Backsliding

N/A

Additional Considerations

Nutrient monitoring is required to establish the nutrient load from the wastewater treatment facility and the impacts that load may have on the quality of the receiving stream(s). Sewage discharges with design flows > 2,000 gpd require monitoring, at a minimum, for Total Nitrogen and Total Phosphorous in new and reissued permits. A monitoring frequency of once per year is acceptable as the discharge is not to waters impaired for nutrients. A monitoring frequency of once per quarter was established in the previous permit cycle and will remain the same.

Monitoring frequency of the proposed effluent limits are based on Table 6-3, Self-Monitoring Requirements for Sewage Dischargers, from the Departments Technical Guidance for the Development and Specification of Effluent Limitations.

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

			Effluent L	imitations			Monitoring Red	quirements
Parameter	Mass Units	(lbs/day) ⁽¹⁾		Concentrat	ions (mg/L)		Minimum (2)	Required
Farameter	Average Monthly	Average Weekly	Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	XXX	XXX	XXX	XXX	XXX	1/week	Estimate
pH (S.U.)	XXX	XXX	6.0 Inst Min	XXX	XXX	9.0	1/day	Grab
DO	XXX	XXX	4.0 Inst Min	XXX	XXX	XXX	1/day	Grab
TRC	XXX	XXX	XXX	0.5	XXX	1.6	1/day	Grab
CBOD5	XXX	XXX	XXX	25	XXX	50	2/month	Grab
TSS	XXX	XXX	XXX	30	XXX	60	2/month	Grab
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2000 Geo Mean	10000 Wkly Avg	XXX	2/month	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	XXX	XXX	200 Geo Mean	1000 Wkly Avg	XXX	2/month	Grab
E. Coli (No./100 ml)	XXX	XXX	XXX	XXX	XXX	Report	1/year	Grab
Total Nitrogen	XXX	XXX	XXX	Report Avg Qrtly	XXX	XXX	1/quarter	Grab
Ammonia-Nitrogen	XXX	XXX	XXX	Report Avg Monthly	XXX	XXX	2/month	Grab
Total Phosphorus	XXX	XXX	XXX	Report Avg Qrtly	XXX	XXX	1/quarter	Grab

Compliance Sampling Location: Outfall 001, after disinfection

Development of WQBEL - TRC_CALC

TRC_CALC

TRC EVALUA	ATION									
Input appropria	te values in <i>i</i>	43:A9 and D3:D9								
0.037	= Q stream (cfs)	0.5	= CV Daily						
0.006	= Q discharg	e (MGD)	0.5	= CV Hourly						
24	= no. sample	S	1	= AFC_Partial Mix Factor						
0.3	= Chlorine D	emand of Stream	1	= CFC_Partial Mix Factor						
0	= Chlorine D	emand of Discharge	15	= AFC Criteria Compliance Time (min)						
0.5	= BAT/BPJ V	alue	720	= CFC_Criteria Compliance Time (min)						
0	= % Factor o	of Safety (FOS)		Decay Coeffic	ient (K)					
Source	Reference	AFC Calculations		Reference	CFC Calculations					
TRC	1.3.2.iii	WLA afc =	1.291	1.3.2.iii	WLA cfc = 1.251					
PENTOXSD TRG	5.1a	LTAMULT afc =	0.373	5.1c	LTAMULT cfc = 0.581					
PENTOXSD TRG	5.1b	LTA_afc=	0.481	5.1d	$LTA_cfc = 0.727$					
Source		Effluent Limit Calculations								
PENTOXSD TRG	5.1f	Lilide	AML MULT =							
PENTOXSD TRG	5.1g	AVG MON	LIMIT (mg/l) =		BAT/BPJ					
I ENTOXOD TRO	J. 19		LIMIT (mg/l) =		BATABLE					
			(g,							
WLA afc	(.019/e(-k*AF	C_tc)) + [(AFC_Yc*Qs*.019/	Qd*e(-k*AFC_	_tc))						
	+ Xd + (AF	C_Yc*Qs*Xs/Qd)]*(1-FOS/10	D)							
LTAMULT afc	EXP((0.5*LN)	(cvh^2+1))-2.326*LN(cvh^2+	1)^0.5)							
LTA_afc	wla_afc*LTA	MULT_afc								
WLA_cfc	(.011/e(-k*Cf	FC_tc) + [(CFC_Yc*Qs*.011/0	od*e(-k*CFC	te))						
	- 17	C_Yc*Qs*Xs/Qd)]*(1-FOS/10	320	, ,						
LTAMULT_cfc	Annual Company of the	(cvd^2/no samples+1))-2.32	2000	samples+1)^0	.5)					
LTA_cfc	wla_cfc*LTA		100 100 000 3 00 1 00		ango €s					
AML MULT	200	N((cvd^2/no_samples+1)^0.	200	^2/no_samples+	1))					
AVG MON LIMIT	10104 00001114 00001	J,MIN(LTA_afc,LTA_cfc)*AN								
INST MAX LIMIT	1.5*((av_mor	_limit/AML_MULT)/LTAMUL	T_afc)							

Development of WQBEL - WQM Dry Stream Model

Input Data WQM 7.0

	SWP Basin	Strea		Stre	eam Name	Э	RMI		ration ft)	Drainag Area (sq mi		flope	PW Withdr (mg	rawal	Apply FC
	17C	48	598 Trib 48	598 to Ke	eys Run		0.12	20 1	760.00	C	0.08 0.	.00000		0.00	✓
8					;	Stream Dat	a								
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	<u>Tributar</u> ıp	¥ pH	Tem	<u>Stream</u> ip	<u>1</u> pH	
Cona.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C)		
Q7-10 Q1-10 Q30-10	0.001	0.00 0.00 0.00	0.00	0.000 0.000 0.000	0.000 0.000 0.000		0.00	0.00) 2	0.00	7.43	9	0.00	0.00	
		Discharge Data													
			Name	Per	mit Numb	Disc	Permitte Disc Flow (mgd)	Disc Flov	Res v Fa	erve ctor	Disc Temp (°C)	Di: P	sc H		
		Dubo	is Reg. Air	PA	222381	0.0060	0.006	0.00	060	0.000	20.0	00	6.98		
)	Parameter I	Data								
			F	Paramete	r Name	Di C		Trib S Conc	Stream Conc	Fate Coef					
			70	200000000000000000000000000000000000000	0401004000000	(m	g/L) (n	ng/L)	(mg/L)	(1/days	i)				
			CBOD5				25.00	0.00	0.00	1.5	60				
			Dissolved	Oxygen			4.00	8.24	0.00	0.0	00				
			NH3-N				25.00	0.00	0.00	0.7	0				

Input Data WQM 7.0

	SWP Basin	Strea Cod		Stre	eam Nam	e	RMI		ation ft)	Draina Area (sq m	a	Slope (ft/ft)	PWS Withdra (mga	awal	Apply FC
	17C	485	598 Trib 48	3598 to Ke	eys Run		0.00	00 1	740.00		0.12 0	.00000		0.00	✓
						Stream Dat	ta								
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	<u>Tributa</u> ıp	<u>ry</u> pH	Tem	<u>Stream</u> np	рН	
Cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C)		
Q7-10 Q1-10	0.001	0.00	0.00	0.000	0.000)	0.00	0.00) 2	0.00	7.43	1	0.00	0.00	
Q30-10	2	0.00	0.00	0.000	0.000	,									
						Discharge	Data								
			Name	Per	mit Numb	Disc	Permitt Disc Flow (mgd)	Disc Flow	Res / Fa	erve ctor	Disc Temp (°C)		sc H		
		100				0.000	0.000	0.00	000	0.000	20.0	00	7.43		
						Parameter	Data								
			1	Paramete	r Name	_			Stream Conc	Fate Coef					
					3.1.7.13.1.TO	(m	ng/L) (r	ng/L) ((mg/L)	(1/day	s)				
	-		CBOD5				0.00	0.00	0.00	1.	50				
			Dissolved	Oxygen			0.00	0.00	0.00	0.	00				
			NH3-N				0.00	0.00	0.00	0.	70				

WQM 7.0 Hydrodynamic Outputs

	sw	P Basin	Strea	m Code				Stream	<u>Name</u>			
		17C	4	8598			Trib	48598 to	Keys Ru	n		
RMI	Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow	1.00	Depth	Width	W/D Ratio	Velocity	Reach Trav Time	Analysis Temp	Analysis pH
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)	
Q7-10	0 Flow											
0.120	0.00	0.00	0.00	NA	0.03157	.252	1.19	4.73	0.03	0.236	20.00	6.98
Q1-10	0 Flow											
0.120	0.00	0.00	0.00	NA	0.03157	NA	NA	NA	0.00	0.000	0.00	0.00
Q30-	10 Flow											
0.120	0.00	0.00	0.00	NA	0.03157	NA	NA	NA	0.00	0.000	0.00	0.00

WQM 7.0 Modeling Specifications

Parameters	D.O.	Use Inputted Q1-10 and Q30-10 Flows	
WLA Method	Simulation	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	✓
D.O. Saturation	90.00%	Use Balanced Technology	✓
D.O. Goal	2		

WQM 7.0 D.O.Simulation

SWP Basin St	ream Code			Stream Name	
17C	48598		Trib	48598 to Keys Run	
<u>RMI</u>	Total Discharge	Flow (mgd) Ana	ysis Temperature (°C)	Analysis pH
0.120	0.006	6		20.000	6.982
Reach Width (ft)	Reach Dep	oth (ft)		Reach WDRatio	Reach Velocity (fps)
1.193	0.252	2		4.730	0.031
Reach CBOD5 (mg/L)	Reach Kc (1/days)	<u>R</u>	each NH3-N (mg/L)	Reach Kn (1/days)
24.78	1.500			24.78	0.700
Reach DO (mg/L)	Reach Kr (*	- 44		Kr Equation	Reach DO Goal (mg/L)
4.037	27.12	7		Owens	2
Reach Travel Time (days)		Subreach	Results		
0.236	TravTime	CBOD5	NH3-N	D.O.	
	(days)	(mg/L)	(mg/L)	(mg/L)	
	0.024	23.92	24.38	4.14	
	0.047	23.09	23.98	4.24	
	0.071	22.29	23.59	4.35	
	0.094	21.52	23.20	4.47	
	0.118	20.77	22.82	4.58	
	0.141	20.05	22.45	4.68	
	0.165	19.35	22.08	4.79	
	0.189	18.68	21.72	4.89	
	0.212	18.03	21.36	4.99	
	0.236	17.40	21.01	5.09	

WQM 7.0 Effluent Limits

	SWP Basin St	ream Code 48598		<u>Stream Name</u> Trib 48598 to Keys Run	
RMI	Name	Permit Number	Disc Flow (mgd)		
0.120	Dubois Reg. Air	PA0222381	0.006		

Development of WQBEL – WQM Perennial Conditions Modeling

Input Data WQM 7.0

	SWP Basin	Strea Cod		Stre	am Nam	e	RMI		vation (ft)	Drainag Area (sq mi		Slope (ft/ft)	PW Withd (mg	rawal	Apply FC
	17C	48	598 Trib 48	598 to Ke	ys Run		1.0	30	1740.00	C	0.12 0.	.00000		0.00	~
31					į	Stream Dat	ta								
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	<u>Tributar</u> ip	Υ pH	Tem	Strean np	<u>p</u> H	
Corra.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C	;)		
Q7-10 Q1-10 Q30-10	0.037	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000 0.000 0.000)	0.00	0.0	00 2	0.00	7.43		0.00	0.00	
						Discharge	Data								
			Name	Per	mit Numt	Disc	Permitt Disc Flow (mgd	Dis Flo	c Res	erve ctor	Disc Temp (°C)		sc H		
		Dubo	is Reg Arpl	PAC	222381	0.006	0.000	30 0.0	0060	0.000	20.0	00	6.98		
						Parameter	Data								
			ı	Paramete	r Name			Trib Conc	Stream Conc	Fate Coef					
			- 15			(m	ng/L) (r	ng/L)	(mg/L)	(1/days	s)				
	-		CBOD5				17.40	2.00	0.00	1.5	50				
			Dissolved	Oxygen			5.09	8.24	0.00	0.0	00				
			NH3-N				21.01	0.10	0.00	0.7	'0				

Input Data WQM 7.0

					600000	put Date	a vvQi	VI 7.0						
	SWP Basin			Stre	eam Name	e	RMI		evation (ft)	Drainage Area (sq mi)	Slope (ft/ft)	PW Withd (mg	rawal	Apply FC
	17C	485	598 Trib 48	3598 to Ke	eys Run		0.1	30	1588.00	0.53	0.00000)	0.00	~
5					5	Stream Dat	ta							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Ten	<u>Tributary</u> np pH	Ter	<u>Strean</u> mp	<u>p</u> H	
Coriu.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C	;)	(°(C)		
Q7-10 Q1-10 Q30-10	0.041	0.02 0.00 0.00	0.00	0.000 0.000 0.000	0.000	į	0.00	0.0	00 2	0.00 7.	43	0.00	0.00	
					6	Discharge	Data							
			Name	Per	mit Numb	Disc	Permitt Disc Flow (mgd	Dis Flo	sc Res	Dis serve Ter actor (°C	np	Disc pH		
		-				0.000	0.00	0.0	0000	0.000	20.00	7.43		
					j	Parameter	Data							
			,	Paramete	r Name			Trib Conc	Stream Conc	Fate Coef				
				raiaillete	INAIIIE	(m	ng/L) (r	mg/L)	(mg/L)	(1/days)				
	-		CBOD5				25.00	2.00	0.00	1.50				
			Dissolved	Oxygen			4.00	8.24	0.00	0.00				
			NH3-N				25.00	0.00	0.00	0.70				

WQM 7.0 Hydrodynamic Outputs

	<u>sw</u>	P Basin	Strea	m Code				Stream	Name			
		17C	4	8598			Trib	48598 to	Keys Ru	n		
RMI	Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow	Reach Slope	Depth	Width	W/D Ratio	Velocity	Reach Trav Time	Analysis Temp	Analysis pH
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)	
Q7-1	0 Flow											
1.030	0.00	0.00	0.00	.0093	0.03199	.265	1.47	5.53	0.04	1.551	20.00	7.08
Q1-1	0 Flow											
1.030	0.00	0.00	0.00	.0093	0.03199	NA	NA	NA	0.00	0.000	0.00	0.00
Q30-	10 Flow											
1.030	0.01	0.00	0.00	.0093	0.03199	NA	NA	NA	0.00	0.000	0.00	0.00

WQM 7.0 Modeling Specifications

Parameters	D.O.	Use Inputted Q1-10 and Q30-10 Flows	✓
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	✓
D.O. Saturation	90.00%	Use Balanced Technology	~
D.O. Goal	6		

WQM 7.0 Wasteload Allocations

 SWP Basin
 Stream Code
 Stream Name

 17C
 48598
 Trib 48598 to Keys Run

Dissolved Oxygen Allocations

		CBC	DD5	<u>NH</u>	<u>3-N</u>	Dissolved	d Oxygen	Critical	Percent
RMI	Discharge Name	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Reach	Reduction
1.03	Dubois Reg Arpt	17.4	17.4	21.01	21.01	5.09	5.09	0	0

WQM 7.0 D.O.Simulation

SWP Basin St	ream Code			Stream Name	
17C	48598		Trib	48598 to Keys Run	
<u>RMI</u>	Total Discharge	Flow (mgd	<u>) Ana</u>	lysis Temperature (°C)	Analysis pH
1.030	0.006	3		20.000	7.083
Reach Width (ft)	Reach Dep	oth (ft)		Reach WDRatio	Reach Velocity (fps)
1.466	0.265	5		5.532	0.035
Reach CBOD5 (mg/L)	Reach Kc (<u>1/days)</u>	<u>R</u>	each NH3-N (mg/L)	Reach Kn (1/days)
12.38	1.175			14.19	0.700
Reach DO (mg/L)	Reach Kr (*			Kr Equation	Reach DO Goal (mg/L)
6.118	27.03	4		Owens	6
Reach Travel Time (days)		Subreach	Results		
1.551	TravTime	CBOD5	NH3-N	D.O.	
	(days)	(mg/L)	(mg/L)	(mg/L)	
	0.155	10.32	12.73	6.90	
	0.310	8.60	11.42	7.18	
	0.465	7.17	10.25	7.43	
	0.620	5.97	9.19	7.63	
	0.776	4.98	8.25	7.82	
	0.931	4.15	7.40	7.98	
	1.086	3.46	6.64	8.12	
	1.241	2.88	5.96	8.24	
	1.396	2.40	5.34	8.24	
	1.551	2.00	4.79	8.24	

WQM 7.0 Effluent Limits

	SWP Basin Stream 17C 485			Stream Name Trib 48598 to Key	-		
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
1.030	Dubois Reg Arpt	PA0222381	0.006	CBOD5	17.4		*
				NH3-N	21.01	42.02	
				Dissolved Oxygen			5.09