

Northwest Regional Office CLEAN WATER PROGRAM

Application Type

Facility Type

Major / Minor

Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

Application No. PA0223000

APS ID 1075228

Authorization ID 1416808

	Applicant and Faci	ility information	
Applicant Name	Kalyumet Campground, LLC	Facility Name	Kalyumet Campground
Applicant Address	716 Waverly Street, Unit A	Facility Address	8630 Miola Road
	Houston, TX 77007		Lucinda, PA 16235
Applicant Contact	Ryan Magaziner (rmagaziner@atlanticrecreationgroup.com)	Facility Contact	Kerry Tyson, Century Engineering (ktyson@centuryeng.com)
Applicant Phone	(713) 304-9394	Facility Phone	(814) 364-2262
Client ID	373548	Site ID	449418
Ch 94 Load Status	Not Overloaded	Municipality	Highland Township
Connection Status	No Limitations	County	Clarion
Date Application Rece	eived April 27, 2022	EPA Waived?	Yes
Date Application Acce	epted April 29, 2022	If No, Reason	-

Summary of Review

Act 14 - Proof of Notification was submitted and received.

A Part II Water Quality Management permit is not required at this time.

The applicant should be able to meet the limits of this permit, which will protect the uses of the receiving stream.

I. OTHER REQUIREMENTS:

- A. Stormwater into Sewers
- B. Right of Way
- C. Solids Handling
- D. Public Sewerage Availability
- E. Effluent Chlorine Optimization and Minimization
- F. Little Assimilative Capacity

SPECIAL CONDITIONS:

II. Solids Management

There are no open violations in efacts associated with the subject Client ID (373548) as of 3/22/2023. There are 3 open violations in WMS under the Safe Drinking Water Program as of 4/18/2023 CWY. OK to issue draft per SDW 4/19/2023.

Approve	Deny	Signatures	Date
		Stephen A. McCauley	2/22/2022
^		Stephen A. McCauley, E.I.T. / Environmental Engineering Specialist	3/22/2023
		Chad W. Yurisic	4/40/2022
_ ^		Chad W. Yurisic, P.E. / Environmental Engineer Manager	4/19/2023

ischarge, Receiving Wate	rs and Water Supply Inform	nation	
0 ((1)		D	0.04
Outfall No. 001		Design Flow (MGD)	0.01
Latitude 41° 18' 25.0	0"	Longitude	-79° 17' 12.00"
Quad Name	.	Quad Code	-
Wastewater Description:	Sewage Effluent		
Receiving Waters Callih	nan Run (CWF (existing use*))) Stream Code	49809
	69011	DMI	2.2
Drainage Area 0.26		Viold (ofo/mi2)	0.07 (assumed)
Q ₇₋₁₀ Flow (cfs) 0.018		O Bosis	calculated
Elevation (ft) 1470		Class (ft/ft)	0.031508
Watershed No. 17-B		Chapter 93 Class.	CWF
Existing Use CWF	(Cold Water Fishes)	Existing Use Qualifier	RBP - Antidegradation
Exceptions to Use		Exceptions to Criteria	-
Assessment Status	Impaired**		
Cause(s) of Impairment	Metals and pH		
Source(s) of Impairment	Acid Mine Drainage		
TMDL Status		Name	
D 1 1/4 1: +D +		D 0	
Background/Ambient Data		Data Source	
pH (SU)	<u>-</u>	-	
Temperature (°F)	<u>-</u>		
Hardness (mg/L)		-	
Other:	-	-	
Nearest Downstream Publ	ic Water Supply Intake	PA American Water Company	∕ - Clarion
PWS Waters Clarion	,	Flow at Intake (cfs)	90.7
PWS RMI 33.3	-	Distance from Outfall (mi)	10.0

Sludge use and disposal description and location(s): <u>All s</u>

All sludge is removed and disposed of by Williams and Sons Services, Inc. (PAG-09-8301).

^{* -} DEP has evaluated information indicating that the existing use of the receiving waters is different than the designated use under 25 Pa. Code § 93.9. In developing the draft NPDES permit, DEP is proposing to protect the existing use of the receiving waters. Following DEP's notice of the receipt of the application and the draft permit in the Pennsylvania Bulletin, DEP will accept written comments during the public comment period regarding DEP's tentative determination to protect the existing use. DEP will make a final determination on existing use protection for the receiving waters as part of the final permit action.

^{** -} This discharge flows to a stream impaired by AMD, monitoring was included in this renewal for Aluminum, Iron, and Manganese to provide data to determine if the discharge is having any impact on the stream. The monitoring frequency was reduced from 1/quarter to 1/year with this renewal.

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the Pennsylvania Bulletin in accordance with 25 Pa. Code § 92a.82. Upon publication in the Pennsylvania Bulletin, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the Pennsylvania Bulletin at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Narrative: This Fact Sheet details the determination of draft NPDES permit limits for an existing discharge of 0.01 MGD of treated sewage from an existing campground in Highland Township, Clarion County.

Treatment permitted under Sewerage Permit No. 1600403 consists of the following: Three 5,000 gallon septic tanks in series, a 2,000 gallon dosing tank, two 3,600 square foot subsurface sand filters, and tablet chlorination with a 500 gallon contact tank.

1. Streamflow:

Calihan Run at Outfall 001:

Yieldrate: <u>0.07</u> cfsm default for small streams
Drainage Area: 0.26 sq. mi. (USGS StreamStats)

% of stream allocated: 100% Basis: No nearby discharges

 Q_{7-10} : 0.018 cfs calculated

2. Wasteflow:

Maximum discharge: 0.01 MGD = 0.015 cfs

Runoff flow period: 16 hours Basis: Campground flow

24 hour flow: 0.01 MGD x 24/16 = 0.015 MGD = 0.023 cfs

Based on DEP Biologist Jay Gerber in 2017, the receiving stream at the discharge point is dry, but aquatic life was found as far upstream as the Highland Drive Bridge, which is 1.87 miles upstream (0.33 miles downstream of the discharge). The calculated stream flow (Q7-10) is less than 3 times the permitted discharge flow.

The previous permit included all the treatment standards in DEP guidance number 391-2000-014. However, based on eDMR data, some of the parameter limits are not attainable by the treatment at this facility. Since the receiving stream is not impaired by nutrients (only AMD), the limits for Total Nitrogen and Total Phosphorus will be replaced with 1/year monitoring for this renewal. Also, the limits for Total Suspended Solids will be reduced to the Chapter 92a47 technology-based limits for this renewal.

Flow will be required to be monitored as authorized under Chapter 92a.61, and as recommended in the SOP.

3. Parameters:

The following parameters were evaluated: pH, Total Suspended Solids, Fecal Coliform, E. Coli, Total Phosphorus, Total Nitrogen, NH₃-N, CBOD₅, Dissolved Oxygen, and Total Residual Chlorine.

a. pH

Between 6.0 and 9.0 at all times

NPDES Permit Fact Sheet Kalyumet Campground

Basis: Application of Chapter 93.7 technology-based limits.

The measurement frequency will remain as 1/day as recommended in the SOP, based on Table 6-3 in the "Technical Guidance for the Development and Specification of Effluent

Limitations" (362-0400-001).

b. <u>Total Suspended Solids</u>

Limits are 30.0 mg/l as a monthly average and 60.0 as an instantaneous maximum based on Chapter 92a47.

Basis: The previous limits based on DEP guidance number 391-2000-014 are being reduced to the

limits above with this renewal since the limits are not attainable.

c. Fecal Coliform

05/01 - 09/30: 200/100ml (monthly average geometric mean)

1,000/100ml (instantaneous maximum)

10/01 - 04/30: <u>2,000/100ml</u> (monthly average geometric mean)

10,000/100ml (instantaneous maximum)

Basis: Application of Chapter 92a47 technology-based limits

d. E. Coli

Monitoring was added for E. Coli at a frequency of 1/year.

Basis: Application of Chapter 92a.61 as recommended by the SOP for flows between 0.002 MGD and

0.05 MGD.

e. Total Phosphorus

The previous Total Phosphorus limits based on DEP guidance number 391-2000-014 are being reduced to monitoring with this renewal since the limits are not attainable. The monitoring frequency is also being reduced from 1/month to 1/year.

f. Total Nitrogen

The previous Total Nitrogen limits based on DEP guidance number 391-2000-014 are being reduced to monitoring with this renewal since the limits are not attainable. The monitoring frequency is also being reduced from 1/month to 1/year.

g. <u>Ammonia-Nitrogen (NH₃-N)</u>

Median discharge pH to be used: 7.1 Standard Units (S.U.)

Basis: eDMR data from previous 12 months

Discharge temperature: 25°C (default value used in the absence of data)

Median stream pH to be used: 7.0 Standard Units (S.U.)

Basis: <u>default value used in the absence of data</u>

Stream Temperature: 20°C (default value used for CWF modeling)

Background NH₃-N concentration: <u>0.1</u> mg/l

Basis: Default value

Calculated NH₃-N Summer limits: 7.2 mg/l (monthly average)

<u>14.4</u> mg/l (instantaneous maximum)

Calculated NH₃-N Winter limits: 21.6 mg/l (monthly average)

43.2 mg/l (instantaneous maximum)

Result: WQ modeling resulted in the calculated NH3-N summer limits above (see Attachment 1), which are

the same as in the previous permit and will be retained. The winter limits are calculated as three

times the summer limits.

h. CBOD₅

Median discharge pH to be used: 7.1 Standard Units (S.U.)

Basis: <u>eDMR data from previous 12 months</u>

Discharge temperature: <u>25°C</u> (default value used in the absence of data)

Median stream pH to be used: 7.0 Standard Units (S.U.)

Basis: <u>default value used in the absence of data</u>

Stream Temperature: 20°C (default value used for CWF modeling)

Background CBOD₅ concentration: <u>2.0</u> mg/l

Basis: Default value

Calculated CBOD₅ limits: 25.0 mg/l (monthly average)

50.0 mg/l (instantaneous maximum)

Result: WQ modeling resulted in the calculated CBOD5 limits above (see Attachment 1). However, the

previous technology-based limits of 10.0 mg/l as a monthly average and 20.0 as an instantaneous

maximum from DEP guidance number 391-2000-014 will be retained.

j. <u>Dissolved Oxygen (DO)</u>

The technology-based minimum of 4.0 mg/l is recommended by the WQ Model (see Attachment 1) and the SOP based on Chapter 93.7, under the authority of Chapter 92a.61. However, the previous technology-based limit of 6.0 mg/l from DEP guidance number 391-2000-014 will be retained.

The measurement frequency will remain as 1/day as recommended in the SOP, based on Table 6-3 in the "Technical Guidance for the Development and Specification of Effluent Limitations" (362-0400-001).

k. Disinfection

Ultraviolet (UV) light

Basis: N/A

☐ TRC limits: 0.22 mg/l (monthly average)

0.72 mg/l (instantaneous maximum)

Basis:

The TRC limits above were calculated using the Department's TRC Calculation Spreadsheet (see Attachment 2). The limits are the same as the previous NPDES Permit and will be retained.

The measurement frequency will remain as 1/day as recommended in the SOP, based on Table 6-3 in the "Technical Guidance for the Development and Specification of Effluent Limitations" (362-0400-001).

4. Reasonable Potential Analysis for Receiving Stream:

A Reasonable Potential Analysis was not performed in accordance with State practices using the Department's Toxics Management Spreadsheet since no sampling other than sewage-related parameters was performed for this facility with the renewal application.

5. Reasonable Potential for Downstream Public Water Supply (PWS):

The Department's Toxics Management Spreadsheet does not calculate limits for parameters that are based on PWS criteria (TDS, Chloride, Bromide, and Sulfate). However, since no sample data was provided, mass-balance calculations were not performed.

Nearest Downstream potable water supply (PWS): <u>Pennsylvania American Water Company - Clarion</u>
Distance downstream from the point of discharge: 10.0 miles

Result: No limits or monitoring is necessary as there is significant dilution available.

6. Anti-Backsliding:

Multiple changes were made to the previous permit to make the renewal permit consistent with the current SOP and other statewide non-municipal sewage permits. Based on 40 CFR §122.44(I)(i)(B)(1) and 40 CFR §122.44(I)(i)(B)(2), this permit can be renewed with modifications including the reduction in measurement frequencies for Total Nitrogen, Total Phosphorus, Total Aluminum, Total Iron, and Total Manganese and the reduction in limitations for Total Suspended Solids.

7. Attachment List:

Attachment 1 - WQ Modeling Printouts

Attachment 2 - TRC_Calc Spreadsheet

(The Attachments above can be found at the end of this document)

Compliance History

DMR Data for Outfall 001 (from February 1, 2022 to January 31, 2023)

Parameter	JAN-23	DEC-22	NOV-22	OCT-22	SEP-22	AUG-22	JUL-22	JUN-22	MAY-22	APR-22	MAR-22	FEB-22
Flow (MGD)												
Average Monthly				0.002	0.003	0.0004	0.004	0.003	0.003			
pH (S.U.)												
Instantaneous Minimum				7.0	6.9	7.0	7.0	7.0	6.9			
pH (S.U.)												
Instantaneous Maximum				7.3	7.3	7.3	7.3	7.3	7.2			
DO (mg/L)												
Instantaneous Minimum				6.03	6.04	6.02	6.02	6.05	6.10			
TRC (mg/L)												
Average Monthly				0.16	0.17	0.17	0.17	0.17	0.18			
TRC (mg/L)												
Instantaneous Maximum				0.20	0.20	0.21	0.20	0.20	0.20			
CBOD5 (mg/L)												
Average Monthly				< 3.0	< 3.0	< 4.9	3.2	< 3.0	< 1.0			
TSS (mg/L)												
Average Monthly				15.5	10.0	23.0	14.5	12.5	< 3.0			
Fecal Coliform (No./100 ml)												
Geometric Mean				22.24	28.30	48.63	25.47	1	< 1			
Fecal Coliform (No./100 ml)												
Instantaneous Maximum				99	89	55	649	1	< 1			
Total Nitrogen (mg/L)												
Average Monthly				54.2	60.3	54.4	39	16.0	18.7			
Ammonia (mg/L)												
Average Monthly				46.85	47.5	48.5	35.3	15.26	15.1			
Total Phosphorus (mg/L)												
Average Monthly				0.67	0.37	0.69	0.29	0.59	3.25			
Total Aluminum (mg/L)												
Average Quarterly		< 0.10			< 0.10			< 0.10				
Total Iron (mg/L)												
Average Quarterly		5.87			11.0			3.17				
Total Manganese (mg/L)												
Average Quarterly		4.42			4.28			2.38				

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

		Monitoring Re	quirements					
Parameter	Mass Units	(lbs/day) (1)		Concentrat	ions (mg/L)		Minimum (2)	Required
Farameter	Average Monthly	Average Weekly	Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	XXX	XXX	XXX	XXX	XXX	1/month	Estimate
pH (S.U.)	XXX	XXX	6.0 Inst Min	XXX	XXX	9.0	1/day	Grab
DO	XXX	XXX	6.0 Inst Min	XXX	XXX	XXX	1/day	Grab
TRC	XXX	XXX	XXX	0.22	XXX	0.72	1/day	Grab
CBOD5	XXX	XXX	XXX	10.0	XXX	20	2/month	8-Hr Composite
TSS	XXX	XXX	XXX	30.0	XXX	60	2/month	8-Hr Composite
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2000 Geo Mean	XXX	10000	2/month	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	XXX	XXX	200 Geo Mean	XXX	1000	2/month	Grab
E. Coli (No./100 ml)	XXX	XXX	XXX	XXX	XXX	Report	1/year	Grab
Total Nitrogen	XXX	XXX	XXX	Report Annl Avg	XXX	XXX	1/year	8-Hr Composite
Ammonia Nov 1 - Apr 30	XXX	XXX	XXX	21.6	XXX	43.2	2/month	8-Hr Composite
Ammonia May 1 - Oct 31	XXX	XXX	XXX	7.2	XXX	14.4	2/month	8-Hr Composite
Total Phosphorus	XXX	XXX	XXX	Report Annl Avg	XXX	XXX	1/year	8-Hr Composite
Total Aluminum	XXX	XXX	XXX	Report Annl Avg	XXX	XXX	1/year	8-Hr Composite

Outfall 001, Continued (from Permit Effective Date through Permit Expiration Date)

			Monitoring Requirements					
Parameter	Mass Units (lbs/day) (1) Con				ions (mg/L)		Minimum ⁽²⁾	Required
Faranietei	Average Monthly	Average Weekly	Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
				Report				8-Hr
Total Iron	XXX	XXX	XXX	Annl Avg	XXX	XXX	1/year	Composite
				Report				8-Hr
Total Manganese	XXX	XXX	XXX	Annl Avg	XXX	XXX	1/year	Composite

Compliance Sampling Location: at Outfall 001, after disinfection.

Flow is monitor only based on Chapter 92a.61. The limits for pH are technology-based on Chapter 93.7. The limits for Dissolved Oxygen and CBOD₅ are technology-based on DEP guidance number 391-2000-014. The Total Residual Chlorine (TRC) limits are water quality-based on Chapter 92a.48. The limits for Total Suspended Solids (TSS) are technology-based on Chapter 92a47. The limits for Ammonia-Nitrogen are water quality-based on Chapter 93.7. Monitoring for Total Nitrogen, Total Phosphorus, Total Aluminum, Total Iron, and Total Manganese is based on Chapter 92a.61

Attachment 1

WQM 7.0 Effluent Limits

	SWP Basin Stream	×11111		<u>Stream Name</u> CALLIHAN RU	_ X		
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
1.870	Kalyumet Camp	PA0223000a	0.015	CBOD5	9.17		
				NH3-N	4.97	9.94	
				Dissolved Oxygen			3

CBOD5 and DO are the same as the Dry Reach inputs, so the Dry Reach limits are protective.

For NH3-N, the limit can be back-calculated using the equation: Ct = (Co)e-(kt), where

 $\label{eq:ct} \begin{array}{l} \text{Ct} = 4.97 \text{ mg/l} \\ \text{k} = 0.7 \text{ days-1} = \text{constant for NH3-N} \\ \text{t} = 0.531 \text{ days} = \text{Dry Reach Model travel time} \end{array}$

Therefore, 6.46 mg/l = (Ct)e-(0.7 days-1)(0.052 days)

Ct = 7.207

NH3-N limit = 7.2 mg/l

WQM 7.0 D.O.Simulation

RMI 1.870 Total Discharge Flow (mgd) 0.015 CALLIHAN RUN Reach Width (ft) 1.870 Reach Depth (ft) 0.0327 Reach WDRatio P.3327 Reach WDRatio P.3188 Reach Velocity (fps) 2.989 0.327 9.138 0.058 Reach CBOD5 (mg/L) 4.93 Reach Kc (1/days) 0.418 2.03 Reach Kn (1/days) 0.819 Reach DO (mg/L) 6.101 Reach Kr (1/days) 26.75 Kr Equation Owens Reach DO Goal (mg/L) (mg/L) (mg/L) Reach Travel Time (days) (days) Subreach Results (mg/L) (mg/L) (mg/L) D.O. (mg/L) 0.197 4.50 1.73 7.94 0.590 3.76 1.25 7.94 0.787 3.44 1.06 7.94 1.180 2.87 0.77 7.94 1.377 2.62 0.66 7.94 1.573 2.40 0.56 7.94 1.573 2.40 0.56 7.94 1.573 2.40 0.56 7.94 1.573 2.40 0.56 7.94 1.575 2.90 0.66	SWP Basin St	ream Code			Stream Name	
Reach Width (ft) Reach Depth (ft) Reach WDRatio Reach Velocity (fps) 2.989 0.32⊤ 9.138 0.058 Reach CBOD5 (mg/L) Reach Kc (1/days) Reach NH3-N (mg/L) Reach Kn (1/days) 4.93 0.418 2.03 Reach DO Goal (mg/L) 6.101 26.75⁻ NH3-N Nowens 6 Reach Travel Time (days) TravTime (days) CBOD5 (mg/L) NH3-N (mg/L) D.O. (mg/L) 1.967 4.50 1.73 7.94 0.590 3.76 1.25 7.94 0.983 3.14 0.91 7.94 0.983 3.14 0.91 7.94 1.180 2.87 0.77 7.94 1.180 2.87 0.77 7.94 1.180 2.87 0.77 7.94 1.180 2.87 0.77 7.94 1.180 2.87 0.77 7.94 1.180 2.87 0.77 7.94 1.180 2.87 0.77 7.94 <td>17B</td> <td>49809</td> <td></td> <td></td> <td>CALLIHAN RUN</td> <td></td>	17B	49809			CALLIHAN RUN	
Reach Width (ft) Reach Depth (ft) Reach WDRatio Reach Velocity (fps) 2.989 0.327 9.138 0.058 Reach CBOD5 (mg/L) Reach Kc (1/days) Reach NH3-N (mg/L) Reach Kn (1/days) 4.93 0.41 s 2.03 0.819 Reach DO (mg/L) Reach Kr (1/days) Kr Equation Reach DO Goal (mg/L) 6.101 26.75 s CBOD5 (mg/L) D.O. (mg/L) 1.967 4.50 s 1.73 s 7.94 0.197 4.50 s 1.25 s 7.94 0.590 3.76 s 1.25 s 7.94 0.787 3.44 s 1.06 s 7.94 1.180 2.87 s 0.77 s 7.94 1.377 2.62 s 0.66 s 7.94 1.573 2.40 s 0.56 s 7.94 1.574 2.50 s 7.94 s	<u>RMI</u>	Total Discharge	Flow (mgd) <u>Ana</u>	lysis Temperature (°C)	Analysis pH
2.989 0.327 9.138 0.058 Reach CBOD5 (mg/L) Reach Kc (1/days) Reach NH3-N (mg/L) Reach CBOD5 (mg/L) Reach Kr (1/days) Reach CBOD5 (mg/L) Reach DO (mg/L) Reach DO Goal (mg/L) 6.101 26.75 - CBOD5 (mg/L) NH3-N (mg/L) D.O. (mg/L) Reach Travel Time (days) 1.967 4.50 1.73 7.94 0.197 4.50 1.73 7.94 0.393 4.12 1.47 7.94 0.590 3.76 1.25 7.94 0.787 3.44 1.06 7.94 0.983 3.14 0.91 7.94 1.180 2.87 0.77 7.94 1.377 2.62 0.66 7.94 1.573 2.40 0.56 7.94 1.573 2.40 0.56 7.94 1.770 2.19 0.48 7.94	1.870	0.01	5		22.043	7.038
Reach CBOD5 (mg/L) 4.93 Reach Kr (1/days) 0.418 2.03 (N F Equation) (N F Each DO Goal (mg/L) (Mg/L) (N F Equation) (N F E E E E E E E E E E E E E E E E E E	Reach Width (ft)	Reach De	oth (ft)		Reach WDRatio	Reach Velocity (fps)
A.93 Reach DO (mg/L) 6.101 Reach Kr (1/days) 26.75 - 2.03 Kr Equation Owens 0.819 Reach DO Goal (mg/L) Reach Travel Time (days) 1.967 TravTime (days) (days) NH3-N (mg/L) D.O. (mg/L) 0.197 4.50 (mg/L) 1.73 (mg/L) 0.393 4.12 (1.47 (7.94)) 0.590 3.76 (1.25 (7.94)) 0.787 3.44 (1.06 (7.94)) 0.983 3.14 (0.91 (7.94)) 1.180 2.87 (0.77 (7.94)) 1.377 2.62 (0.66 (7.94)) 1.573 2.40 (0.56 (7.94)) 1.770 2.19 (0.48 (7.94))	2.989	0.32	7		9.138	0.058
Reach DO (mg/L) Reach Kr (1/days) Kr Equation Reach DO Goal (mg/L) 6.101 26.75 € Owens 6 Reach Travel Time (days) 1.967 Subreach Results CBOD5 (mg/L) D.O. (mg/L) 0.197 4.50 1.73 7.94 0.393 4.12 1.47 7.94 0.590 3.76 1.25 7.94 0.787 3.44 1.06 7.94 0.983 3.14 0.91 7.94 1.180 2.87 0.77 7.94 1.377 2.62 0.66 7.94 1.573 2.40 0.56 7.94 1.573 2.40 0.56 7.94 1.573 2.40 0.56 7.94 1.573 2.40 0.56 7.94 1.574 2.50 0.66 7.94 1.574 2.40 0.56 7.94 1.574 2.50 0.66 7.94 1.575 2.40 0.56 7.94 <td>Reach CBOD5 (mg/L)</td> <td>Reach Kc (</td> <td>1/days)</td> <td><u>R</u></td> <td>each NH3-N (mg/L)</td> <td>Reach Kn (1/days)</td>	Reach CBOD5 (mg/L)	Reach Kc (1/days)	<u>R</u>	each NH3-N (mg/L)	Reach Kn (1/days)
Company Comp	4.93					
NH3-N	Reach DO (mg/L)					S
1.967 TravTime (BOD5 NH3-N D.O. (mg/L) 0.197 4.50 1.73 7.94 0.393 4.12 1.47 7.94 0.590 3.76 1.25 7.94 0.787 3.44 1.06 7.94 0.983 3.14 0.91 7.94 1.180 2.87 0.77 7.94 1.377 2.62 0.66 7.94 1.573 2.40 0.56 7.94 1.770 2.19 0.48 7.94	6.101	26.75	6		Owens	6
1.967 TravTime (CBOD5 (mg/L) (mg/L) D.O. (mg/L) 0.197	Reach Travel Time (days)		Subreach	Results		
0.197 4.50 1.73 7.94 0.393 4.12 1.47 7.94 0.590 3.76 1.25 7.94 0.787 3.44 1.06 7.94 0.983 3.14 0.91 7.94 1.180 2.87 0.77 7.94 1.377 2.62 0.66 7.94 1.573 2.40 0.56 7.94 1.770 2.19 0.48 7.94	1.967	Tra∨Time			D.O.	
0.393 4.12 1.47 7.94 0.590 3.76 1.25 7.94 0.787 3.44 1.06 7.94 0.983 3.14 0.91 7.94 1.180 2.87 0.77 7.94 1.377 2.62 0.66 7.94 1.573 2.40 0.56 7.94 1.770 2.19 0.48 7.94		(days)	(mg/L)	(mg/L)	(mg/L)	
0.590 3.76 1.25 7.94 0.787 3.44 1.06 7.94 0.983 3.14 0.91 7.94 1.180 2.87 0.77 7.94 1.377 2.62 0.66 7.94 1.573 2.40 0.56 7.94 1.770 2.19 0.48 7.94		0.197	4.50	1.73	7.94	
0.787 3.44 1.06 7.94 0.983 3.14 0.91 7.94 1.180 2.87 0.77 7.94 1.377 2.62 0.66 7.94 1.573 2.40 0.56 7.94 1.770 2.19 0.48 7.94		0.393	4.12	1.47	7.94	
0.983 3.14 0.91 7.94 1.180 2.87 0.77 7.94 1.377 2.62 0.66 7.94 1.573 2.40 0.56 7.94 1.770 2.19 0.48 7.94		0.590	3.76	1.25	7.94	
1.180 2.87 0.77 7.94 1.377 2.62 0.66 7.94 1.573 2.40 0.56 7.94 1.770 2.19 0.48 7.94		0.787	3.44	1.06	7.94	
1.377 2.62 0.66 7.94 1.573 2.40 0.56 7.94 1.770 2.19 0.48 7.94		0.983	3.14	0.91	7.94	
1.573 2.40 0.56 7.94 1.770 2.19 0.48 7.94		1.180	2.87	0.77	7.94	
1.770 2.19 0.48 7.94		1.377	2.62	0.66	7.94	
		1.573	2.40	0.56	7.94	
1.967 2.00 0.41 7.94		1.770	2.19	0.48	7.94	
		1.967	2.00	0.41	7.94	

Tuesday, March 21, 2023 Version 1.1 Page 1 of 1

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	✓
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	✓
D.O. Saturation	90.00%	Use Balanced Technology	✓
D.O. Goal	6		

Tuesday, March 21, 2023 Version 1.1 Page 1 of 1

Input Data WQM 7.0

	SWF Basir	NE 100 LEVE		Stre	eam Name		RMI	Ele	evation (ft)	Drainag Area (sq m		ope W	PWS ithdrawal (mgd)	Apply FC
	17B	498	309 CALLI	HAN RUN	١		1.8	70	1441.00	J	0.48 0.0	00000	0.00	✓
					St	ream Dat	ta							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	n Ten	<u>Tributai</u> np	Έ pΗ	<u>Str</u> Temp	<u>ream</u> pH	
	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C	;)		(°C)		
Q7-10 Q1-10 Q30-10	0.070	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000	0.0	0.00	0.	00 2	0.00	7.00	0.00	0.00	00.00
					Di	scharge	Data							
			Name	Per	rmit Number	Disc	Permitt Disc Flow (mgd	Di:	sc Res	serve ictor	Disc Temp (°C)	Disc pH		
		Kalyu	ımet Camp	PA	0223000a	0.015	0.000	00 0.	0000	0.000	25.00	7.1	0	
					Pa	arameter	Data							
			1	^D aramete	r Name	С	onc (Trib Conc	Stream Conc	Fate Coef				
	_					(m	ng/L) (r	ng/L)	(mg/L)	(1/day	s) 			
			CBOD5				9.17	2.00	0.00	1.5	50			
			Dissolved	Oxygen			2.00	8.24	0.00	0.0	00			
			NH3-N				14.47	0.00	0.00	0.3	70			

(inputs from Dry Reach Model)

Input Data WQM 7.0

	SWP Basir			Stre	eam Name		RMI	El	evation (ft)	Drainage Area (sq mi)			PWS ithdrawal (mgd)	Apply FC
	17B	498	309 CALLI	HAN RUI	1		0.0	00	1104.00	1.	.74 0.0	0000	0.00	~
					St	ream Dat	a							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depti		Tributary	<u>/</u> oH	<u>Str</u> Temp	<u>eam</u> pH	
Cona.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C	:)		(°C)		
Q7-10 Q1-10 Q30-10	0.070	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00	0.	.00 2	0.00	7.00	0.00	0.00	00.00
					Di	scharge [Data							
			Name	Per	mit Number	Disc	Permitt Disc Flow (mgd)	Di Fl	sc Res	erve -	Disc Temp (°C)	Disc pH		
		-				0.0000	0.000	0 0.	.0000	0.000	25.00	7.0	00	
					Pa	rameter I	Data							
			,	Paramete	r Name		onc (Trib Conc mg/L)	Stream Conc (mg/L)	Fate Coef (1/days)	i i			
	-		CBOD5				25.00	2.00	0.000					
			Dissolved	Oxygen		,	3.00	8.24						
			NH3-N	Олудоп		,	25.00	0.00						

WQM 7.0 Wasteload Allocations

SWP Basin	Stream Code	Stream Name
17B	49809	CALLIHAN RUN

RMI	Discharge Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
1.87	70 Kalyumet Camp	12.93	24.91	12.93	24.91	0	0
N H3-N RMI	Chronic Allocat Discharge Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction

		CBC	<u>DD5</u>	NH:	<u>3-N</u>	Dissolved	d Oxygen	Critical	Percent
RMI	Discharge Name	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Reach	Reduction
1.87	Kalyumet Camp	9.17	9.17	4.97	4.97	3	3	0	0

WQM 7.0 Hydrodynamic Outputs

	SWP Basin Stream Code 17B 49809					<u>Stream Name</u> CALLIHAN RUN							
RMI	Stream Flow (cfs)	PWS With (cfs)	Net Stream Flow (cfs)	Disc Analysis Flow (cfs)	Reach Slope (ft/ft)	Depth (ft)	Width (ft)	W/D Ratio	Velocity (fps)	Reach Trav Time (days)	Analysis Temp (°C)	Analysis pH	
Q7-1	0 Flow 0.03	0.00	0.03	.0232	0.03413	.327	2.99	9.14	0.06	1.967	22.04	7.04	ë
Q1-1 (1.870	0 Flow 0.02	0.00	0.02	.0232	0.03413	NA	NA	NA	0.05	2.249	22.60	7.05	
Q30-	10 Flow 0.05	0.00	0.05	.0232	0.03413	NA	NA	NA	0.06	1.765	21.68	7.03	

WQM 7.0 D.O.Simulation

RMI 2.200 Total Discharge Flow (mgd) 0.015 Analysis Temperature (°C) 24.994 Analysis pH 7.100 Reach Width (ft) 2.188 Reach Depth (ft) 0.280 Reach WDRatio 7.828 Reach Velocity (fps) 0.038 Reach CBOD5 (mg/L) 24.97 Reach Kc (1/days) 1.500 Reach NH3-N (mg/L) 24.97 Reach Kn (1/days) 1.028 Reach DO (mg/L) 3.998 Reach Kr (1/days) 28.851 Kr Equation Owens Reach DO Goal (mg/L) NA Reach Travel Time (days) 0.531 Subreach (days) Results (mg/L) D.O. (mg/L) 0.053 22.59 23.65 2.00 0.159 18.49 21.20 2.00 0.159 18.49 21.20 2.00 0.212 16.73 20.07 2.00 0.372 12.38 17.04 2.00 0.372 12.38 17.04 2.00 0.478 10.13 15.28 2.00 0.531 9.17 14.47 2.00	SWP Basin St	ream Code			Stream Name	
2.200 0.015 24.994 7.100 Reach Width (ft) Reach Depth (ft) Reach WDRatio Reach Velocity (fps) 2.188 0.280 7.828 0.038 Reach CBOD5 (mg/L) Reach Kc (1/days) Reach NH3-N (mg/L) Reach Kn (1/days) 24.97 1.500 XF Equation Reach DO Goal (mg/L) 3.998 28.851 Owens NA Reach Travel Time (days) TravTime (days) CBOD5 (mg/L) NH3-N (mg/L) D.O. (mg/L) 0.053 22.59 23.65 2.00 0.106 20.44 22.39 2.00 0.159 18.49 21.20 2.00 0.212 16.73 20.07 2.00 0.266 15.13 19.01 2.00 0.372 12.38 17.04 2.00 0.425 11.20 16.13 2.00 0.425 11.20 16.13 2.00 0.478 10.13 15.28 2.00	17B	49809			CALLIHAN RUN	
Reach Width (fft) Reach Depth (ft) Reach WDRatio Reach Velocity (fps) 2.188 0.280 7.828 0.038 Reach CBOD5 (mg/L) Reach Kc (1/days) Reach NH3-N (mg/L) Reach Kn (1/days) 24.97 1.500 24.97 1.028 Reach DO (mg/L) Reach Kr (1/days) Kr Equation Reach DO Goal (mg/L) 3.998 28.851 Owens NA Reach Travel Time (days) TravTime (days) CBOD5 (mg/L) NH3-N (mg/L) D.O. 0.531 22.59 23.65 2.00 0.106 20.44 22.39 2.00 0.159 18.49 21.20 2.00 0.212 16.73 20.07 2.00 0.266 15.13 19.01 2.00 0.319 13.69 18.00 2.00 0.372 12.38 17.04 2.00 0.425 11.20 16.13 2.00 0.425 11.20 16.13 2.00 1	<u>RMI</u>	Total Discharge	Flow (mgd	<u>) Ana</u>	lysis Temperature (°C)	Analysis pH
2.188 Reach CBOD5 (mg/L) Reach Kc (1/days) Reach NH3-N (mg/L) Reach Kn (1/days) 24.97 Reach DO (mg/L) 1.500 S24.97 1.028 Reach DO Goal (mg/L) 3.998 3.998 28.851 Owens NA Reach Travel Time (days) 0.531 TravTime (CBOD5 (mg/L) (mg/L) NH3-N (mg/L) (mg/L) D.O. (mg/L) 0.053 22.59 (days) 0.106 20.44 22.39 2.00 2.00 0.106 20.44 22.39 2.00 2.00 0.159 18.49 21.20 2.00 2.00 0.212 16.73 20.07 2.00 2.00 0.266 15.13 19.01 2.00 2.00 0.319 13.69 18.00 2.00 2.00 0.372 12.38 17.04 2.00 2.00 0.425 11.20 16.13 2.00 2.00 0.478 10.13 15.28 2.00 2.00	2.200	0.01	5		24.994	7.100
Reach CBOD5 (mg/L) Reach Kc (1/days) Reach NH3-N (mg/L) Reach Kn (1/days) Reach Kn (1/days) 24.97 1.028 Reach DO Goal (mg/L) Reach DO Goal (mg/L) XKr Equation Reach DO Goal (mg/L) NA Reach Travel Time (days) 0.531 TravTime (CBOD5 (mg/L) NH3-N (mg/L) D.O. (mg/L) 0.053 22.59 23.65 2.00 0.106 20.44 22.39 2.00 0.159 18.49 21.20 2.00 0.212 16.73 20.07 2.00 0.266 15.13 19.01 2.00 0.319 13.69 18.00 2.00 0.372 12.38 17.04 2.00 0.425 11.20 16.13 2.00 0.478 10.13 15.28 2.00	Reach Width (ft)	Reach De	oth (ft)		Reach WDRatio	Reach Velocity (fps)
24.97 Reach DO (mg/L) Reach Kr (1/days) 24.97 Kr Equation Owens NA	2.188	0.280)		7.828	0.038
Reach DO (mg/L) Reach Kr (1/days) Kr Equation Owens Reach DO Goal (mg/L) 3.998 28.851 Owens NA Reach Travel Time (days) TravTime (days) Subreach Results CBOD5 (mg/L) D.O. (mg/L) 0.531 22.59 23.65 2.00 0.106 20.44 22.39 2.00 0.159 18.49 21.20 2.00 0.212 16.73 20.07 2.00 0.266 15.13 19.01 2.00 0.319 13.69 18.00 2.00 0.372 12.38 17.04 2.00 0.425 11.20 16.13 2.00 0.478 10.13 15.28 2.00	Reach CBOD5 (mg/L)	Reach Kc (<u>1/days)</u>	<u>R</u>	each NH3-N (mg/L)	
Reach Travel Time (days)	24.97		\$3			
Reach Travel Time (days)	Reach DO (mg/L)	St. Contract Contract	-		A CONTRACTOR OF THE PARTY OF TH	
0.531 TravTime (days) (mg/L) (Mg/L) (mg/L) (mg/L) 0.053 22.59 23.65 2.00 0.106 20.44 22.39 2.00 0.159 18.49 21.20 2.00 0.212 16.73 20.07 2.00 0.266 15.13 19.01 2.00 0.319 13.69 18.00 2.00 0.372 12.38 17.04 2.00 0.425 11.20 16.13 2.00 0.478 10.13 15.28 2.00	3.998	28.85	1		Owens	NA
0.531	Reach Travel Time (days)		Subreach	Results		
0.053 22.59 23.65 2.00 0.106 20.44 22.39 2.00 0.159 18.49 21.20 2.00 0.212 16.73 20.07 2.00 0.266 15.13 19.01 2.00 0.319 13.69 18.00 2.00 0.372 12.38 17.04 2.00 0.425 11.20 16.13 2.00 0.478 10.13 15.28 2.00	0.531	TravTime			D.O.	
0.106 20.44 22.39 2.00 0.159 18.49 21.20 2.00 0.212 16.73 20.07 2.00 0.266 15.13 19.01 2.00 0.319 13.69 18.00 2.00 0.372 12.38 17.04 2.00 0.425 11.20 16.13 2.00 0.478 10.13 15.28 2.00		(days)	(mg/L)	(mg/L)	(mg/L)	
0.159 18.49 21.20 2.00 0.212 16.73 20.07 2.00 0.266 15.13 19.01 2.00 0.319 13.69 18.00 2.00 0.372 12.38 17.04 2.00 0.425 11.20 16.13 2.00 0.478 10.13 15.28 2.00		0.053	22.59	23.65	2.00	
0.212 16.73 20.07 2.00 0.266 15.13 19.01 2.00 0.319 13.69 18.00 2.00 0.372 12.38 17.04 2.00 0.425 11.20 16.13 2.00 0.478 10.13 15.28 2.00		0.106	20.44	22.39	2.00	
0.266 15.13 19.01 2.00 0.319 13.69 18.00 2.00 0.372 12.38 17.04 2.00 0.425 11.20 16.13 2.00 0.478 10.13 15.28 2.00		0.159	18.49	21.20	2.00	
0.319 13.69 18.00 2.00 0.372 12.38 17.04 2.00 0.425 11.20 16.13 2.00 0.478 10.13 15.28 2.00		0.212	16.73	20.07	2.00	
0.372 12.38 17.04 2.00 0.425 11.20 16.13 2.00 0.478 10.13 15.28 2.00		0.266	15.13	19.01	2.00	
0.425 11.20 16.13 2.00 0.478 10.13 15.28 2.00		0.319	13.69	18.00	2.00	
0.478 10.13 15.28 2.00		0.372	12.38	17.04	2.00	
		0.425	11.20	16.13	2.00	
0.531 9.17 14.47 2.00		0.478	10.13	15.28	2.00	
		0.531	9.17	14.47	2.00	

(input into perennial model)

Tuesday, March 21, 2023 Version 1.1 Page 1 of 1

WQM 7.0 Modeling Specifications

Parameters	D.O.	Use Inputted Q1-10 and Q30-10 Flows	✓
WLA Method	Simulation	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	✓
D.O. Saturation	90.00%	Use Balanced Technology	✓
D.O. Goal	2		

Tuesday, March 21, 2023 Version 1.1 Page 1 of 1

Input Data WQM 7.0

	SWF Basi	100000000000000000000000000000000000000		Stre	eam Name		RMI		vation (ft)	Drainage Area (sq mi)	120 1000000	With	WS ndrawal ngd)	Apply FC
	17B	498	309 CALLI	HAN RUN	ĺ		2.2		1470.00	2 4 3	26 0.00		0.00	
					St	ream Dat	a							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	<u>Tributary</u> np p	Н	<u>Strea</u> Temp	<u>am</u> pH	
	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C)		
Q7-10 Q1-10 Q30-10	0.000	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00	0.0	0 2	0.00	7.00	0.00	0.00	
					Di	scharge l	Data							
			Name	Per	mit Number	Disc	Permitt Disc Flow (mgd	Dis Flo	c Res w Fa	erve T ctor	Disc 「emp (℃)	Disc pH		
		Dry F	Reach	PA	0223000	0.015	0.000	0.0	000	0.000	25.00	7.10	_	
					Pa	rameter l	Data							
			1	Paramete	r Name			Trib Conc	Stream Conc	Fate Coef				
					e trayernacomismosta (SC	(m	ıg/L) (r	mg/L)	(mg/L)	(1/days)				
			CBOD5				25.00	0.00	0.00	1.50)			
			Dissolved	Oxygen			4.00	2.00	0.00	0.00)			
			NH3-N				25.00	0.00	0.00	0.70)			

Input Data WQM 7.0

	SWF Basii	19710010747		Stre	eam Name		RMI		vation	Drainag Area		Wit	PWS hdrawal	Apply FC
	17B	498	809 CALLI	HAN RUN	ĺ		1.8		(ft) 1441.00	(sq mi) 0	.48 0.00		mgd) 0.00	
					St	ream Dat	a							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem		<u>/</u> oH	<u>Stre</u> Temp	<u>am</u> pH	
	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C)		
Q7-10 Q1-10 Q30-10	0.000	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00	0.0	00 2	0.00	7.00	0.00	0.00	
					Di	scharge l	Data							
			Name	Per	mit Number	Disc	Permitt Disc Flow (mgd)	Dis Flo	c Res	erve ⁻ ctor	Disc Temp (°C)	Disc pH		
		Kalyu	ımet Camp	PA	0223000a	0.015	0.000	0.0	0000	0.000	25.00	7.00	_	
					Pa	rameter l	Data							
			I	Paramete	r Name	С	onc (Conc	Stream Conc	Fate Coef				
						(m	ıg/L) (r	ng/L)	(mg/L)	(1/days))			
			CBOD5				7.27	2.00	0.00	1.5	0			
			Dissolved	Oxygen			2.00	8.24	0.00	0.0	0			
			NH3-N				10.04	0.00	0.00	0.7	0			

WQM 7.0 Hydrodynamic Outputs

	sw	P Basin	Strea	m Code		Stream Name									
		17B	4	9809			c	ALLIHA	N RUN						
RMI	Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow	Reach Slope	Depth	Width	W/D Ratio	Velocity	Reach Trav Time	Analysis Temp	Analysis pH			
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)				
Q7-1	0 Flow														
2.200	0.00	0.00	0.00	NA	0.01664	.28	2.19	7.83	0.04	0.531	24.99	7.10			
Q1-1	0 Flow														
2.200	0.00	0.00	0.00	NA	0.01664	NA	NA	NA	0.00	0.000	0.00	0.00			
Q30-	10 Flow	,													
2.200	0.00	0.00	0.00	NA	0.01664	NA	NA	NA	0.00	0.000	0.00	0.00			

Attachment 2

TRC EVALUA	TION									
Input appropria	te values in	A3:A9 and D3:D9								
0.0336	= Q stream (cfs)	0.5	= CV Daily						
0.015	= Q discharg	e (MGD)	0.5	= CV Hourly						
30	no. sample	s	1	= AFC_Partial Mix Factor						
0.3	= Chlorine D	emand of Stream	1	= CFC_Partial I	Mix Factor					
0 = Chlorine Demand of Discharge 15 = AFC_Criteria Compliance Time (min)										
0.5	Compliance Time (min)									
0	= % Factor o	f Safety (FOS)	0	=Decay Coeffic	eient (K)					
Source	Reference	AFC Calculations		Reference	CFC Calculations					
TRC	1.3.2.iii	WLA afc =	0.481	1.3.2.iii	WLA cfc = 0.461					
PENTOXSD TRG	5.1a	LTAMULT afc =	0.373	5.1c	LTAMULT cfc = 0.581					
PENTOXSD TRG	5.1b	LTA_afc=	0.179	5.1d	LTA_cfc = 0.268					
Source		Effluer	nt Limit Calcu	lations						
PENTOXSD TRG	5.1f		AML MULT =		9797 B					
PENTOXSD TRG	5.1g		_IMIT (mg/l) =		AFC					
		INST MAX L	_IMIT (mg/l) =	0.721						
WLA afc	HOLESCO, CONTRACTOR OF COME AND A	FC_tc)) + [(AFC_Yc*Qs*.019/ C_Yc*Qs*Xs/Qd)]*(1-FOS/10	ALTONO AND SECURITY STATES	_tc))						
LTAMULT afc	Samuel Mediagnos Selections	(cvh^2+1))-2.326*LN(cvh^2-	301 -							
LTA_afc	wla_afc*LTA	Laurence and State of the State	,,							
		=								
WLA_cfc	101	FC_tc) + [(CFC_Yc*Qs*.011/0 C_Yc*Qs*Xs/Qd)]*(1-FOS/100	VIII	tc))						
LTAMULT_cfc	EXP((0.5*LN		6*LN(cvd^2/i	no_samples+1) ⁴	0.5)					
LTA_cfc	wla_cfc*LTA	MULT_cfc								
AML MULT		N((cvd^2/no_samples+1)^0.		d^2/no_samples	+1))					
AVG MON LIMIT	MIN(BAT_BF	J,MIN(LTA_afc,LTA_cfc)*Af	ML_MULT)							
INST MAX LIMIT	1.5*((av_mor	_limit/AML_MULT)/LTAMUL	T_afc)							