

 Application Type
 Renewal

 Facility Type
 Industrial

 Major / Minor
 Minor

NPDES PERMIT FACT SHEET INDIVIDUAL INDUSTRIAL WASTE (IW) AND IW STORMWATER

Application No.PA0228133APS ID999049Authorization ID1283265

Applicant and Facility Information

Applicant Name	PA DOT Engineering District 2-0	Facility Name	PA DOT Cameron County Maintenance Building
Applicant Address	70 Penndot Drive	Facility Address	21013 CCC Memorial Highway
	Clearfield, PA 16830-6051 Stephen Kardohely,		Emporium, PA 15834-5921
Applicant Contact	Maintenance Environmental Coordinator	Facility Contact	Karen May, Clerical Supervisor
Applicant Phone	(814) 765-0450	Facility Phone	(814) 486-3727
Client ID	62168	Site ID	522771
SIC Code	7542	Municipality	Lumber Township
SIC Description	Services - Car Washes	County	Cameron
Date Application Recei	vedJuly 31, 2019	EPA Waived?	Yes
Date Application Accept	oted August 14, 2019	If No, Reason	

Summary of Review

The subject facility is a PennDOT regional repair facility with a discharge resulting from a truck wash.

A map of the discharge location is attached.

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Approve	Deny	Signatures	Date
x		Keith C. Allison / Project Manager	February 4, 2020
		Nicholas W. Hartranft, P.E. / Environmental Engineer Manager	

Discharge, Receiving	Waters and Water Supply Informa	tion	
Outfall No. 001		Design Flow (MGD)	0.0005
Latitude 41º 26	6' 49.60"	Longitude	-78º 10' 21.40"
Quad Name Car	neron, PA	Quad Code	0720
Wastewater Descrip	tion: IW Process Effluent without I	ELG	
	Driftwood Branch Sinnemahoning		
Receiving Waters	Creek (TSF)	Stream Code	24963
NHD Com ID	61429210	RMI	13.8
Drainage Area	263 mi ²	_ Yield (cfs/mi ²)	0.0345
Q ₇₋₁₀ Flow (cfs)	9.07	Q7-10 Basis	USGS StreamStats
Elevation (ft)	939	Slope (ft/ft)	0.00166
Watershed No.	8-A	Chapter 93 Class.	TSF
Existing Use	EV	Existing Use Qualifier	Antidegradation
Exceptions to Use	None	Exceptions to Criteria	None
Assessment Status	Attaining Use(s)		
Nearest Downstrear	m Public Water Supply Intake	PA-American Water Company	@ Milton, PA
PWS Waters V	Vest Branch Susquehanna River	Flow at Intake (cfs)	8,500,000
PWS RMI 1	0.8	Distance from Outfall (mi)	Approx. 144

Changes Since Last Permit Issuance: The above stream and drainage characteristics are from the previous review and remain adequate except for the RMI which has been corrected.

Other Comments: The receiving stream attained the Exceptional Value designation with this discharge is place.

No downstream water supply is expected to be affected by the discharge with the limitations and monitoring proposed.

Treatment Facility Summary

Treatment consists of four-compartment oil/water separator, two cartridge particle filters, and two 55-gallon carbon filters.

Compliance History

DMR Data for Outfall 001 (from January 1, 2019 to December 31, 2019)

Parameter	DEC-19	SEP-19	JUN-19	MAR-19	DEC-19	SEP-19	JUN-19**	MAR-19
Flow (MGD)								
Average Monthly*	0.00085	0.000273	0.000163	0.001947	0.000907	0.000273		0.003573
Flow (MGD)								
Daily Maximum	0.000440	0.000290	0.000250	0.000550	0.000330	0.000110		0.000760
pH (S.U.)								
Minimum	7.06	7.14	7.7	7.6	7.5	7.9		6.7
pH (S.U.)								
Instantaneous								
Maximum	7.06	7.14	7.7	7.6	7.5	7.9		6.7
TSS (mg/L)								
Average Monthly	3.0	4	3.0	< 2.0	< 2.0	< 2.0		3.0
TSS (mg/L)								
Instantaneous								
Maximum	2	4	3.0	< 2.0	< 2.0	< 2.0		3.0
Oil and Grease (mg/L)	-	_	5.0		5.0	5.0		
Average Monthly	< 5	< 5	< 5.0	< 5.0	< 5.0	< 5.0		< 5.0
Oil and Grease (mg/L)								
Instantaneous	1.00							
Maximum	1.28	< 5	< 5.0	< 5.0	< 5.0	< 5.0		< 5.0
Parameter	2019				2018			
Total Dissolved Solids								
(mg/L) Daily Maximum	9270				2024			
Ethylbenzene (µg/L)								
Daily Maximum	< 2.0				< 2.0			
Benzene (µg/L) Daily								
Maximum	< 2.0				< 2.0			
Chloride(mg/L) Daily								
Maximum	4,919				1015			
Toluene (µg/L) Daily								
Maximum	< 2.0				< 2.0			
Total Xylenes (µg/L)								
Daily Maximum	< 6.0				< 2.0			

* - It appears that the values reported on DMRs for average monthly flow are the average number of gallons per month over the three months of the quarter rather than gallons per day.

** - The DMR for the Second Quarter of 2019 could not be found in the Department's files.

	Compliance History
Summary of Inspections:	The facility has been inspected annually by the Department over the past permit term. The most recent inspection by Clarissa Alcorn, WQS, was on August 15, 2019. All inspections over the past permit term have identified no violations.
Comments:	A WMS query found the open violations in the attached table for PA DOT District 2-0 all for an I-80 rest stop.

Existing Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Pe	ermit Effective Date through Permit Expiration Date.

			Effluent L	imitations			Monitoring Red	quirements
Parameter	Mass Units	(lbs/day) ⁽¹⁾		Concentrat	tions (mg/L)		Minimum ⁽²⁾	Required
Farameter	Average Monthly	Average Weekly	Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report Daily Max	xxx	xxx	xxx	xxx	1/quarter	Metered
pH (S.U.)	XXX	xxx	6.0	ххх	ХХХ	9.0	1/quarter	Grab
TSS	XXX	xxx	xxx	30.0	ХХХ	60.0	1/quarter	Grab
Total Dissolved Solids	XXX	xxx	XXX	xxx	Report	ххх	1/year	Grab
Oil and Grease	XXX	xxx	xxx	15.0	ХХХ	30.0	1/quarter	Grab
Ethylbenzene	XXX	xxx	XXX	ххх	Report	ххх	1/year	Grab
Benzene	XXX	xxx	xxx	XXX	Report	ХХХ	1/year	Grab
Chloride	XXX	xxx	xxx	XXX	Report	XXX	1/year	Grab
Toluene	XXX	xxx	xxx	xxx	Report	ххх	1/year	Grab
Total Xylenes	xxx	XXX	XXX	XXX	Report	XXX	1/year	Grab

Development of Effluent Limitations

Outfall No.	001		
Latitude	41º 26' 50.00)"	
Wastewater D	escription:	IW Process Effluent with	out ELG

Design Flow (MGD) 0.0005 Longitude

-78° 10' 24.00'

Technology-Based Limitations

The following technology-based limitations apply, subject to water guality analysis and BPJ where applicable:

Parameter	Limit (mg/l)	SBC	Federal Regulation	State Regulation
Oil and Grease	15	Average Monthly	-	
Oli and Grease	30	Daily Maximum	-	95.2(2)(ii)
рН	6.0 – 9.0 S.U.	Min – Max	-	95.2(1)

Water Quality-Based Limitations

A "Reasonable Potential Analysis" (Attachment B) determined that no additional parameters were candidates for limitations or monitoring. The existing monitoring for Benzene, Toluene, Ethylbenzene, and Xylene will remain for these parameters that are indicators for the presence of petroleum products in the discharge.

Emerging Pollutants (Total Dissolved Solids (TDS), Sulfate, Chloride, Bromide, 1,4-Dioxane)

As a result of direction from the Environmental Quality Board and EPA, the Department has begun increased monitoring for the emerging pollutants of TDS, Sulfate, Chloride, Bromide, and 1,4-Dioxane. As a vehicle wash wastewater discharge it is expected to contain TDS and chlorides. Therefore, the monitoring for these two parameters will remain. The other parameters (Sulfate, Bromide, and 1.4-Dioxane) are not expected to be present in significant levels. The PENTOXSD modeling produced no limitations for these parameters because their criteria are applicable to a downstream water supply and no near downstream water supply is present on the receiving stream to enter into the model.

Best Professional Judgment (BPJ) Limitations

Comments: The existing limitation for TSS was established pursuant to BPJ. No additional BPJ limitations are necessary at this time.

Antidegradation

This discharge predates the Exceptional Value existing use of Driftwood Branch Sinnemahoning Creek. Therefore, no additional limitations are necessary pursuant to the Antidegradation requirements of 25 PA Code §§93.4a and 93.4c.

Anti-Backsliding

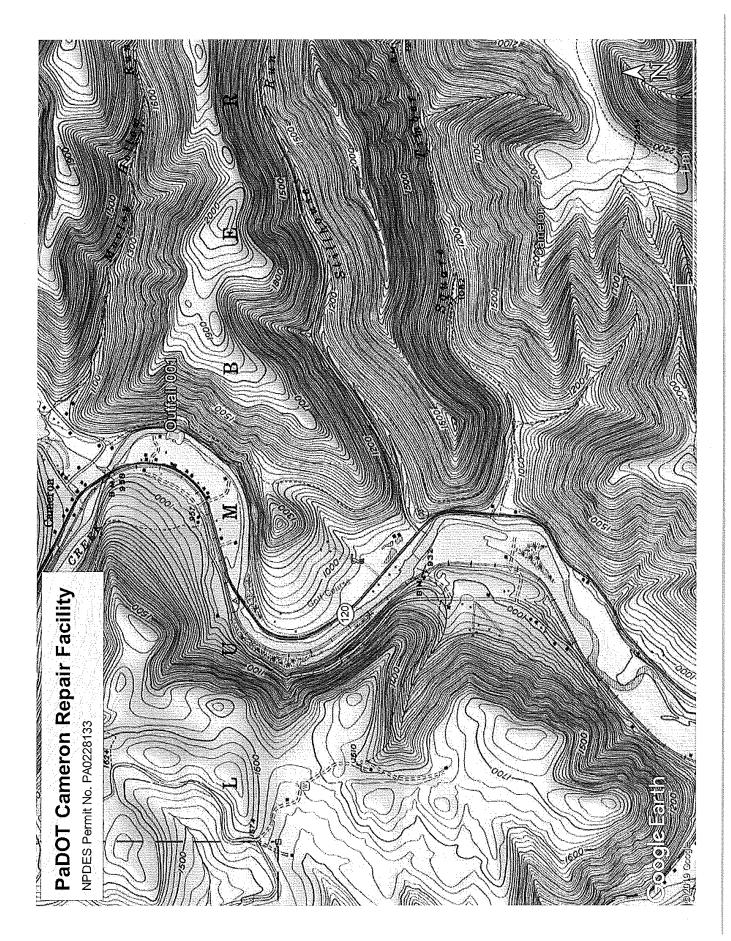
No limitations were made less stringent consistent with the anti-degradation requirements of the Clean Water Act and 40 CFR §122.44(I).

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

			Effluent L	imitations			Monitoring Re	quirements
Parameter	Mass Units	(lbs/day) ⁽¹⁾		Concentrat	tions (mg/L)		Minimum ⁽²⁾	Required
Farameter	Average Monthly	Average Weekly	Instant. Minimum	Average Quarterly	Daily Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report Avg Qrtly	Report Daily Max	xxx	xxx	xxx	xxx	1/quarter	Metered
pH (S.U.)	XXX	xxx	6.0	xxx	ххх	9.0	1/quarter	Grab
TSS	XXX	xxx	xxx	30.0	ХХХ	60.0	1/quarter	Grab
Total Dissolved Solids	XXX	xxx	xxx	xxx	Report	ххх	1/year	Grab
Oil and Grease	XXX	xxx	xxx	15.0	ХХХ	30.0	1/quarter	Grab
Ethylbenzene (µg/L)	XXX	xxx	xxx	xxx	Report	ххх	1/year	Grab
Benzene (µg/L)	XXX	xxx	xxx	xxx	Report	ххх	1/year	Grab
Chloride	XXX	xxx	xxx	xxx	Report	ххх	1/year	Grab
Toluene (µg/L)	XXX	ххх	xxx	xxx	Report	ххх	1/year	Grab
Total Xylenes (µg/L)	xxx	ххх	XXX	XXX	Report	ххх	1/year	Grab

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.


Compliance Sampling Location: Outfall 001

Other Comments: Monthly averages limitations and monitoring for Flow, TSS, and Oil and Grease have been modified from to quarterly averages to quarterly averages consistent with the monitoring frequency. Also, the monitoring for Benzene, Toluene, Ethylbenzene, and Xylene will be explicitly listed as µg/L which corresponds to the monitoring for these parameters. No other changes are proposed from the existing monitoring requirements and limitations.

	Tools and References Used to Develop Permit
	WQM for Windows Model (see Attachment
	PENTOXSD for Windows Model (see Attachment D)
	TRC Model Spreadsheet (see Attachment)
	Temperature Model Spreadsheet (see Attachment)
	Toxics Screening Analysis Spreadsheet (see Attachment C)
	Water Quality Toxics Management Strategy, 361-0100-003, 4/06.
\square	Technical Guidance for the Development and Specification of Effluent Limitations, 362-0400-001, 10/97.
	Policy for Permitting Surface Water Diversions, 362-2000-003, 3/98.
	Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 362-2000-008, 11/96.
	Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97. Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 362-2183-004, 12/97.
	Pennsylvania CSO Policy, 385-2000-011, 9/08.
\square	Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.
	Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 391-2000-002, 4/97.
	Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97.
	Implementation Guidance Design Conditions, 391-2000-006, 9/97.
	Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004.
	Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 391-2000-008, 10/1997.
	Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 391-2000-010, 3/99.
	Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 391-2000-011, 5/2004.
	Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97.
	Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 391-2000-014, 4/2008.
	Implementation Guidance Total Residual Chlorine (TRC) Regulation, 391-2000-015, 11/1994.
	Implementation Guidance for Temperature Criteria, 391-2000-017, 4/09.
	 Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/97. Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97.
	Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 391-2000-021, 3/99.
	Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/1999.
	Design Stream Flows, 391-2000-023, 9/98.
	Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 391-2000-024, 10/98.
	Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97.
	Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.
	SOP: Establishing Effluent Limitations for Individual Industrial Permits, 9/10/13;
	Other:

Attachments:

- A. Discharge Location Map
 B. List of Open Violations for District 2-0
 C. Reasonable Potential Analysis a/k/a Toxics Screening Analysis
 D. PENTOXSD Modeling

Client: PA DOT ENG DIST 2 0

Open Violations: 14

CLIENT ID	CLENT	PFID	FACILITY	INSP PROGRAM	PROGRAM SPECIFIC ID	VIOLATION ID	VIOLATION DATE	VIOLATION CODE	NOLATION	PF INSPECTOR	INSP REGION
	PA DOT ENG DIST 2 0	266565 P	PA DOT ENG DIST 2 0 266565 PA DEPT OF TRANSPORTATION	Safe Drinking Water	4180832	853763	06/26/2019	C1A	FAILURE TO MEET DESIGN AND CONSTRUCTION STANDARDS	CHAMBERS, ROBERT	NCRO
1	PA DOT ENG DIST 20	266565 P	PA DOT ENG DIST 2 0 266565 PA DEPT OF TRANSPORTATION	Safe Drinking 4180832 Water	4180832	853764	06/26/2019	C1A	FAILURE TO MEET DESIGN AND CONSTRUCTION STANDARDS	CHAMBERS, ROBERT	NCRO
62168	PA DOT ENG DIST 20	266566 P	266566 PA DEPT OF TRANSPORTATION	Safe Drinking 4180833 Water	4180833	854857	06/26/2019	C1A	FAILURE TO MEET DESIGN AND CONSTRUCTION STANDARDS	CHAMBERS, ROBERT	NCRO
62168	PA DOT ENG DIST 2 0	266566 266566	PA DOT ENG DIST 2 0 266566 PA DEPT OF TRANSPORTATION	Safe Drinking 4180833 Water	4180833	854858	06/26/2019	B3B	FAILURE TO PROVIDE NOTIFICATION TO DEP WITHIN 1- HOUR OF DETERMINING THAT A PRIORITY VIOLATION EXISTS	CHAMBERS, ROBERT	NCRO
62168	PA DOT ENG DIST 2.0	266566 P	266566 PA DEPT OF TRANSPORTATION	Safe Drinking 4180833 Water	4180833	854859	06/26/2019	A3	FAILURE TO PROVIDE 1-HOUR NOTIFICATION TO DEP DURING AN IMMINENT THREAT SITUATION	CHAMBERS, ROBERT	NCRO
62168	PA DOT ENG DIST 20	266566 P	PA DOT ENG DIST 2 0 266566 PA DEPT OF TRANSPORTATION	Safe Drinking 4180833 Water	4180833	854860	06/26/2019	C4A	FAILURE TO OPERATE AND MAINTAIN THE WATER SYSTEM	CHAMBERS, ROBERT	NCRO
62168	PA DOT ENG DIST 2 0	266566 P	PA DOT ENG DIST 2.0 266566 PA DEPT OF TRANSPORTATION	Safe Drinking 4180833 Water	4180833	854861	06/26/2019	A1	CIRCUMSTANCES EXIST WHICH ADVERSELY EFFECT THE QUANTITY OR QUANTITY OF WATER	CHAMBERS, ROBERT	NCRO
	PA DOT ENG DIST 2 0		266566 PA DEPT OF TRANSPORTATION	Safe Drinking 4180833 Water	4180833	854862	06/26/2019	B6A	OTHER VIOLATIONS DEEMED TO BE SIGNIFICANT DEFICIENCIES	CHAMBERS, ROBERT	NCRO
	PA DOT ENG DIST 2 0	266566 P	266566 PA DEPT OF TRANSPORTATION	Safe Drinking 4180833 Water	4180833	854863	06/26/2019	B3B	FAILURE TO PROVIDE NOTIFICATION TO DEP WITHIN 1- HOUR OF DETERMINING THAT A PRIORITY VIOLATION EXISTS	CHAMBERS, ROBERT	NCRO
	PA DOT ENG DIST 2 0	266566 P	PA DOT ENG DIST 2 0 266566 PA DEPT OF TRANSPORTATION	Safe Drinking 4180833 Water	4180833	854864	06/26/2019	B6A	OTHER VIOLATIONS DEEMED TO BE SIGNIFICANT DEFICIENCIES	CHAMBERS, ROBERT	NCRO
62168	PA DOT ENG DIST 2 0	266566 P	PA DOT ENG DIST 2.0 266566 PA DEPT OF TRANSPORTATION	Safe Drinking 4180833 Water	4180833	854865	06/26/2019	A3	FAILURE TO PROVIDE 1-HOUR NOTIFICATION TO DEP DURING AN IMMINENT THREAT SITUATION	CHAMBERS, ROBERT	NCRO
62168	PA DOT ENG DIST 20		266566 PA DEPT OF TRANSPORTATION	Safe Drinking 4180833 Water	4180833	854866	06/26/2019	AZA	FAILURE OR SIGNIFICANT INTERRUPTION IN KEY WATER TREATMENT PROCESSES	CHAMBERS, ROBERT	NCRO
62168	PA DOT ENG DIST 2 0	266566 P	266566 PA DEPT OF TRANSPORTATION	Safe Drinking 4180833 Water	4180833	854867	06/26/2019	B3B	FAILURE TO PROVIDE NOTIFICATION TO DEP WITHIN 1- HOUR OF DETERMINING THAT A PRIORITY VIOLATION EXISTS	CHAMBERS, ROBERT	NCRO
68	PA DOT ENG DIST 2 0	266566 P	62168 PA DOT ENG DIST 2 0 266566 PA DEPT OF TRANSPORTATION	Safe Drinking 4180833 Water	4180833	854868	06/26/2019	B6A	OTHER VIOLATIONS DEEMED TO BE SIGNIFICANT DEFICIENCIES	CHAMBERS, ROBERT	NCRO

SSRS_WMS_516 Ver 1.1 Page 1 of 1

NPDES Permit Fact Sheet PA DOT Cameron County Maintenance Bldg

.

	Facility: PADOT - 2018 results			NPDES Permit N	o.: PA0228	133	Outfall: 001
	Analysis Hardness (mg/L): 100 Stream Flow, Q ₇₋₁₀ (cfs): 9.07			Discharge Flow (i	MGD): 0.001	Ana	lysis pH (SU): 7
	Parameter		Maximum Concentration in pplication or DMRs (µg/L)	Most Stringent Criterion (µg/L)	Candidate for PENTOXSD Modeling?	Most Stringent WQBEL (µg/L)	Screening Recommendation
	Total Dissolved Solids		2024000	500000	Yes		
à.	Chloride	<u> </u>	1015000	250000	Yes		
45010	Bromide Sulfate			N/A 250000			
Ί	Fluoride			2000			
	Total Aluminum			750			
	Total Antimony		45	5.6		1170115	13 . 17. 17. 11. 1. 1
	Total Arsenic Total Barium		15 550	10 2400	Yes No	117314.5	No Limits/Monitorin
	Total Beryllium		000	N/A	110		
	Tolal Boron			1600			
	Total Cadmium	<	2	0.271	Yes	3174	No Limits/Monitorin
	Total Chromium	<	5	N/A 10.4	No		
	Hexavalent Chromium Total Cobalt	+		10.4			
١Ì	Total Copper			9.3			
	Total Cyanide			N/A			
;	Total Iron Dissolved Iron	$\left \right $		1500 300			
ł	Total Lead	<	5	3.2	Yes	37324	No Limits/Monitorin
	Total Manganese			1000			
	Total Mercury	<	0.2	0.05	No (Value < QL)		
	Total Molybdenum Total Nickel	\vdash		N/A 52,2			
ł	Total Phenolis (Phenolics)			5			
	Total Selenium		30	5.0	Yes	58529	No Limits/Monitorin
	Total Silver	<	5	3.8	Yes	9709	No Limits/Monitorin
	Total Thallium Total Zinc	\vdash		0,24			
	Acrolein	<		3			
	Acrylamide	<		0.07			
	Acrylonitrile Benzene	< <	2	0.051	Yes	79215	No Limits/Monitorin
	Benzene Bromoform	<	۷	4.3	100	19210	NO LINING/MOUNOFILI
l	Carbon Tetrachloride	<	20	0.23	Yes	15183	No Limits/Monitorin
- H	Chlorobenzene	 	20	130	No		
- H	Chlorodibromomethane Chloroethane	< <		0.4 N/A			
	2-Chloroethyl Vinyl Ether	~		3500			
Ì	Chloroform	<	20	5.7	Yes	376274	No Limits/Monitorin
	Dichlorobromomethane	<		0.55			-
ŀ	1,1-Dichloroethane 1,2-Dichloroethane	۷ V	20	N/A 0.38	Yes	25084	No Limits/Monitorin
	1,1-Dichloroethylene	<	20	33	No		
	1,2-Dichloropropane	<		2200			
	1,3-Dichtoropropylene	< <	2	0.34 530	No	6210000	
	Ethylbenzene Methyl Bromide	<	ــــــــــــــــــــــــــــــــــــــ	47	0/1	0210000	
t	Methyl Chloride	<		5500			
	Methylene Chloride	<		4.6			
	1,1,2,2-Tetrachloroethane Tetrachloroethylene	< <	20	0.17 0.69	Yes	45549	No Limits/Monitorin
	Toluene	<	20	330	No	40043	NO LITINS/WORKOF#1
Ĺ	1,2-trans-Dichloroethylene	<		140			
	1,1,1-Trichloroethane	<		610			
	1,1,2-Trichloroethane Trichloroethylene	< <	20	0.59 2.5	Yes	165032	No Limits/Monitorin
	Vinyl Chloride	<	20	0.025	Yes	1650	No Limits/Monitorin
T	2-Chlorophenol	<		81			
	2,4-Dichlorophenol	<		77			
	2,4-Dimethylphenol 4,6-Dinitro-o-Cresol	< <		130 13			
h	4,6-Dinitro-o-Cresol 2,4-Dinitrophenol	<		69			
	2-Nitrophenol	<		1600			
	4-Nitrophenol	<		470			
	p-Chloro-m-Cresol	< <		30			
	Pentachlorophenol Phenol	<		0.27			
		1 1		1 10400	1		

Toxics Screening Analysis Spreadsheet (v 2.6).xlsm, 2/4/2020

PENTOXSD

							Mod	leling In	put Data	1					
Stream Code	RMI	Elevatio (ft)	ļ	linage Area q mi)	, ;	Slope	PWS V (mg				oply FC				
24963	13.80	938	.00	263.0	0 0	0.00000		0.00		[~	-			
								Stream Da	nta			and 1975 197			
	LFY	Trib Flow	Stream Flow	WI Rat		Rch Width	Rch Depth	Rch Velocity	Rch Trav Time	<u>Tributaı</u> Hard	У pH	<u>Strean</u> Hard	<u>n</u> pH	<u>Analysi</u> Hard	<u>s</u> pH
	(cfsm)	(cfs)	(cfs)			(ft)	(ft)	(fps)		(mg/L)		(mg/L)		(mg/L)	
Q7-10	0.0345	0	0		0	0	0	0	0	100	7	0	0	0	0
Qh		0	0	l	0	0	0	0	0	100	7	0	0	0	0
				7A9			D	ischarge E	Data						
N	lame	Permi Numb	er D	sting lisc low	E	mitted Disc Iow	Design Disc Flow	Reserve Factor	AFC PMF	CFC PMF	thh PMF	CRL PMF	Disc Hard	Disc pH	
			(m	ngd)	(m	ngd)	(mgd)						(mg/L)		
PaDOT	Cameron	PA0228	133 0.0	0005		0	0	0	. 0	0	0	0	100	7	_
							Pa	arameter D	ata						
F	Parameter N	lame		Dise Con		Trib Conc	Disc Daily CV	Hourl			Fate Coe		Crit Mod	Max Disc Conc	
				(µg/l	_)	(µg/L)			(µg/L	_)				(µg/L)	
1,2-DICHL	OROETHA	NE		20)	0	0.8			0	0	0	1	0	
ARSENIC				15		0	0.8			0	0	0	1	0	
BENZENE				2		0	0.8			0	0	0	1	0	
CADMIUN				2		0	0.8			0	0	0	1 1	0	
	TETRACH	LORIDE		20	-	0	0.8 0.8			0	0 . 0	· 0	י 1	0	
CHLORID	• •			1015 20		0 0	0.5		-	0	· 0	0	1	0	
ETHYLBE				2		0	0.8			0	0	0	1	õ	
LEAD	▖▖▖			5		0	0.8			0	0	0	1	ů 0	
SELENIU	м			30		0 0	0.8		-	0	ō	0	1	0	
				5		0	0.8			0	0	0	1	0	
SILVER						0	0.5	5 0.5	0	0	0	0	1	0	
	ILOROETH	YLENE		20)	•									
TETRACH	ILOROETH		PWS)	20 2024	-	Ő	0.8	5 0.5	0	0	0	0	1	0	
TETRACH		SOLIDS (PWS)		000					0 0	0 0	0 0	1 1	0 0	
TETRACH	ISSOLVED ROETHYLE	SOLIDS (PWS)	2024	- 000 0	0	0.8	5 0.5	0	-					

Tuesday, February 4, 2020

Version 2.0d

Stre Co		RMI	Elevation (ft)	A	inage .rea (mi)	Slope	PWS V (mg				oply FC				
24	963	12.08	920.0	<u> </u>	· /	0.00000	I	0.00			✓.				
								Stream Da	ata						
			Trib S	tream	WD	Rch	Rch	Rch	Rch	<u>Tributa</u>		Stream	<u>m</u>	Analys	is
		LFY	Flow	Flow	Ratio	> Width	Depth	Velocity	Trav Time	Hard	рН	Hard	pН	Hard	pН
	(4	cfsm)	(cfs)	(cfs)		(ft)	(ft)	(fps)		(mg/L)		(mg/L.)		(mg/L)	
Q7-10	C	0.0345	0	0		0 0	0	0	0	100	7	0	0	0	0
Qh			0	0		0 0	0	0	0	100	7	0	0	0	0
							D	ischarge E	Data		•				
	Nam	ıe	Permit Numbe	D	sting F isc Iow	Permitted Disc Flow	Design Disc Flow	Reserve Factor	AFC PMF	CFC PMF	thh PMF	CRL PMF	Disc Hard	Disc pH	
				(m	igd)	(mgd)	(mgd)						(mg/L)		
					0	0	0	0	0	0	0	0	100	7	_
							Pa	arameter D	ata						
	Par	ameter N	lame		Disc Conc	Trib Conc	Disc Daily CV	Hour			Fate Coel		Crit Mod	Max Disc Conc	
					(µg/L)	(µg/L)		(µg/l	_)				(µg/L)	
1,2-D	ICHLO	ROETHA	NE		0	0	0.5	5 0.5	0	0	0	0	1	0	
ARSE					0	0	0.9			0	0	0	1	0	
BENZ					0	0	0.9			O	0	0	1	0	
CADI					0	0	0.9			0	0	0	1	0	
		TRACHI	LORIDE		0	0	0.5			0	0	0	1	0	
	DRIDE (• •			0	0	0.			0	0	0	1	0	
	ROFO				0	0	0.9			0	0 0	0 0	1 1	0 0	
LEAD	LBENZ	LENE			0 0	0	0.4 0.4			0 0	0	0	1	0	
SELE					0	0	0.			0	0	0	1	0	
SILVE					0	0	0.4			0	0	0	1	0	
		DROETH			0	0	0.4			0	0	0	1	o	
			SOLIDS (F	WS)	Ő	0 0	0.4			õ	0	0	1	ů 0	
		DETHYLE	•	,	0	ŏ	0.4		-	ů 0	ů 0	0 0	1	0	
					0	0	0.			0	0	0	1	0	
XYLE					0	0	0.	5 0.5	i 0	0	0	0	1	0	

Tuesday, February 4, 2020

Version 2.0d

Page 2 of 2

			-
- HV/	hrod	ynar	nice
	aivu	ynai	1103
		•	

S	WP Basir	1	Strear	n Code:	Stream Name:							
	08A		24	963	DRI	NG CR.						
RMI	Stream Flow (cfs)	PWS With (cfs)	Net Stream Flow (cfs)	Disc Analysis Flow (cfs)	Reach Slope	Depth (ft)	Width (ft)	WD Ratio	Velocity (fps)	Reach Trav Time (days)	CMT (min)	
					Q7	-10 Hyd	Irodyna	mics				
13.800	9.0735	C	9.0735	0.00077	0.002	0.8250	56.014	67.892	0.1964	0.5353	128.877	
12.080	9.66	C	9.66	NA	0	0	0	0	0	0	NA	
					Q	h Hydr	odynan	nics				
13.800	51.060	C	51.060	0.00077	0.002	1.7644	56.014	31.747	0.5167	0.2034	41.214	
12.080	53.934	C	53.934	NA	0	0	0	0	0	0	NA	

Tuesday, February 4, 2020

Version 2.0d

Wasteload Allocations

RMI	Name	Permit N	umber						
13.80	PaDOT Cameron	PA0228	3133						
					AFC		· ·		
Q7-	10: CCT (mi	in) 15	PMF	0.341	Analysis	рН 3	7 Analysis I	lardness	100
	Parameter		Stream Conc (µg/L)	Stream CV	n Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)
	ARSENIC		0 Dianahund	0	0 Chemical tra	0	340 f.1 applied	340	1360000
	CADMIUM	I	O O	WQC. 0	Onemical ua O		2.014	2.133	8539.035
	e, entretti			-			f 0.944 applied.		
	LEAD		0	0	0	ò	64.581	81.645	326821.3
			Dissolved	WQC.	Chemical tra	anslator o	f 0.791 applied.		
	SELENIUM		0	0	0	0	NA	NA	NA
	SILVER		0	0	0	0	3.217	3.784	15148.85
							f 0.85 applied.		
	BENZENE		0	0	0	0	640	640	2560000
CAR	BON TETRACHLO	RIDE	0	0	0	0	2800	2800	1.12E+07
	CHLOROFORM		0	0	0	0	1900	1900	760000
1,2	2-DICHLOROETHA	NE	0	0	0	0	15000	15000	6.004E+07
	ETHYLBENZENE		0	0	. 0	0	2900	2900	1.16E+07
TET	RACHLOROETHYI	ENE	0	0	0	0	700	700	2800000
TR	RICHLOROETHYLE	NE	0	0	0	0	2300	2300	9200000
	VINYL CHLORIDE	1	0	0	0	0	NA	NA	NA
	CHLORIDE (PWS)	}	0	0	0	0	NA	NA	NA
	XYLENE		0	0	0	0	1100	1100	4400000
TOTAL [DISSOLVED SOLIE	os (PWS)	0	0	0	0	NA	NA	NA

	CFC										
	Q7-10:	CCT (min)	128.877	PMF	1	Analysis	pH 7	Analysis	Hardness	100	
		Parameter	Stream Conc. (µg/L)		Stream CV	Trib Conc. (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	
• .		ARSENIC		0	0	0	0	150	150	1750000	
			Dis	solved \	NQC. CH	nemical tra	nslator of	1 applied.			

Tuesday, February 4, 2020

Version 2.0d

А

PENTOXSD Analysis Results

Wasteload Allocations

RMI	Name	Permit Number						
13.80	PaDOT Cameron	PA0228133						
	CADMIUM	0	0	0	0	0.246	0.271	3174.796
		Dissolved	WQC.	Chemical tra	anslator of	0.909 applied.		
	LEAD	0	0	0	0	2.517	3.182	37324.67
						0.791 applied.		
	SELENIUM	0	0	0	0	4.6	4.989	58529.98
						0.922 applied.		
	SILVER	0	0	0	0	NA	NA	NA
	BENZENE	0	0	0	0	130	130	1520000
CAR	BON TETRACHLOF	RIDE 0	0	0	0	560	560	6560000
	CHLOROFORM	0	0	0	0	390	390	4570000
1,2	2-DICHLOROETHAN	NE O	0	0	0	3100	3100	3.636E+07
	ETHYLBENZENE	0	0	0	0	580	580	6800000
TETI	RACHLOROETHYL	ENE 0	0	0	0	140	140	1640000
TR	ICHLOROETHYLE	NE O	0	0	0	450	450	5270000
	VINYL CHLORIDE	0	0	0	0	NA	NA	NA
	CHLORIDE (PWS)	0	0	0	0	NA	NA	NA
	XYLENE	0	0	0	0	210	210	2460000
TOTAL E	DISSOLVED SOLID	S (PWS) 0	0	0	0	NA	NA	NA

тнн

Q7-10:	CCT (min)	128.877 P I	MF 1	Analysi	spH NA	Analysi	s Hardness	NA
	Parameter	Stream Cone (µg/L	c CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)
	ARSENIC	0	0	0	0	10	10	117314.5
	CADMIUM	0	0	0	0	NA	NA	NA
	LEAD	0	0	0	0	NA	NA	NA
	SELENIUM	0	0	0	0	NA	NA	NA
	SILVER	0	0	0	0	NA	NA	NA

Tuesday, February 4, 2020

Version 2.0d

Page 2 of 5

Wasteload Allocations

RMI Name	Permit Nurr	ber						
13.80 PaDOT Cameron	PA022813	33						
BENZENE	_	0	0	0	0	NA	NA	NA
CARBON TETRACHLO	RIDE	0	0	0	0	NA	NA	NA
CHLOROFORM		0	0	0	0	NA	NA	NA
1,2-DICHLOROETHA	NE	0	0	0	0	NA	NA	NA
ETHYLBENZENE		0	0	0	0	530	530	6210000
TETRACHLOROETHY	LENE	0	0	0	0	NA	NA	NA
TRICHLOROETHYLE	ENE	0	0	0	0	NA	NA	NA
VINYL CHLORIDE	ł	0	0	0	0	NA	NA	NA.
CHLORIDE (PWS))	0	0	0	0	250000	250000	NA
XYLENE		0	0	0	0	70000	70000	8.212E+08
TOTAL DISSOLVED SOLIE	DS (PWS)	0	0	0	0	500000	500000	NA

CRL

Qh:	CCT (min)	1.214 PMF	1					
	Parameter	Stream Conc (µg/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)
	ARSENIC	0	0	0	0	NA	NA	NA
	CADMIUM	0	. 0	0	0	NA	NA	NA
	LEAD	0	0	0	0	NA	NA	NA
	SELENIUM	0	0	0	0	NA	NA	NA
	SILVER	0	0	0	0	NA	NA	NA
	BENZENE	0	0	0	0	1.2	1.2	79215.75
(CARBON TETRACHLORIDE	0	0	0	0	0.23	0.23	15183.02
	CHLOROFORM	0	0	0	0	5.7	5.7	376274.8

Tuesday, February 4, 2020

Version 2.0d

Page 3 of 5

Wasteload Allocations

RMI	Name	Permit Num	ber							
13.80 F	aDOT Cameron	PA022813	3							
1,2-	DICHLOROETHA	NE	0	0	0	0	0.38	0.38	25084.99	,
I	ETHYLBENZENE		0	0	0	0	NA	NA	NA	
TETR	ACHLOROETHY	LENE	0	0	0	0	0.69	0.69	45549.05	
TRI	CHLOROETHYLE	ENE	0	0	0	0	2.5	2.5	165032.8	
N	INYL CHLORID	-	0	0	0	0	0.025	0.025	1650.328	
c	HLORIDE (PWS)	0	0	0	0	NA	NA	NA	
	XYLENE		0	0	0	0	NA	NA	NA	
TOTAL DI	SSOLVED SOLII	ds (PWS)	0	0	0	0	NA	NA	NA	

Tuesday, February 4, 2020

Version 2.0d

Page 4 of 5

- 4

PENTOXSD Analysis Results

Wasteload Allocations

RMI	Name	Permit Number		
13.80	PaDOT Cameron	PA0228133		

Tuesday, February 4, 2020

Version 2.0d

Page 5 of 5

Recommended Effluent Limitations

<u>SWP Basin</u> 08A	<u>Stream Code:</u> 24963	Stream Name: DRIFTWOOD BRANCH SINNEMAHONING CR.			
RMI	Name	Permit Number	Disc Flow (mgd)		
13.80	PaDOT Cameron	PA0228133	0.0005	_	
	E	ffluent		Max.	Most Stringent

-	Limit		Max. Daily	wost Stringent	
Parameter	(µg/L)	Governing Criterion	Limit (µg/L)	WQBEL (µg/L)	WQBEL Criterion
1,2-DICHLOROETHANE	20	INPUT	31.203	25084.99	CRL
ARSENIC	15	INPUT	23.402	117314.5	ТНН
BENZENE	2	INPUT	3.12	79215.75	CRL
CADMIUM	2	INPUT	3.12	3174.796	CFC
CARBON TETRACHLORIDE	20	INPUT	31.203	15183.02	CRL
CHLORIDE (PWS)	1010000	INPUT	1580000	NA	NA
CHLOROFORM	20	INPUT	31.203	376274.8	CRL
ETHYLBENZENE	2	INPUT	3.12	6210000	THH
LEAD	5	INPUT	7.801	37324.67	CFC
SELENIUM	30	INPUT	46.805	58529.98	CFC
SILVER	5	INPUT	7.801	9709.801	AFC
TETRACHLOROETHYLENE	20	INPUT	31.203	45549.05	CRL
TOTAL DISSOLVED SOLIDS (PWS	2020000	INPUT	3150000	NA	NA
TRICHLOROETHYLENE	20	INPUT	31.203	165032.8	CRL
VINYL CHLORIDE	20	INPUT	31.203	1650.328	CRL
XYLENE	2	INPUT	3.12	2460000	CFC

Tuesday, February 4, 2020

Version 2.0d