

Application Type	Renewal
Facility Type	Non- Municipal
Major / Minor	Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

PA0228869
1042976
1361255

Applicant and Facility Information

Applicant Name	PA DCNR Kettle Creek State Park	Facility Name	Kettle Creek State Park
Applicant Address	97 Kettle Creek Park Lane	Facility Address	97 Kettle Creek Park Lane
	Renovo, PA 17764-9400		Renovo, PA 17764-9400
Applicant Contact	Sarah Lindgren	Facility Contact	Sarah Lindgren
Applicant Phone	(570) 923-6004	Facility Phone	(570) 923-6004
Client ID	51149	Site ID	246345
Ch 94 Load Status	Not Overloaded	Municipality	Leidy Township
Connection Status	No Limitations	County	Clinton
Date Application Receiv	vedJuly 8, 2021	EPA Waived?	Yes
Date Application Accep	ted August 16, 2021	If No, Reason	
Purpose of Application	Renewal of an existing NPDES pern	hit for the discharge of	treated sewage.

Summary of Review

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Approve	Deny	Signatures	Date
x		Jonathan P. Peterman	
~		Jonathan P. Peterman / Project Manager	May 25, 2022
х		Nicholas W. Hartranft	
~		Nicholas W. Hartranft, P.E. / Environmental Engineer Manager	May 31, 2022

Outfall No.001Design Flow (MGD)0.0022Latitude41° 20' 19.64"Longitude-77° 54' 29.28"Quad NameKeatingQuad Code0822Wastewater Description:Sewage Effluent0.002Receiving WatersKettle Creek (TSF)Stream Code23661NHD Com ID61115219RMI6.51Drainage Area229Yield (cfs/mi²)0.03Qr-10 Flow (cfs)8.05Qr-10 BasisGage No. 01545000Elevation (ft)765Slope (ft/ft)0.03Watershed No.9-BChapter 93 Class.TSFExisting UseTSFExisting Use QualifierN/AAssessment StatusImpaired.Exceptions to CriteriaN/ACause(s) of ImpairmentMetals, pH.Source(s) of ImpairmentAbandoned mine drainage.TMDL StatusApprovedName2/7/2007Nearest Downstream Public Water Supply IntakePA American Water White DeerPWS RMI10.5Distance from Outfall (mi)105	Discharge, Receiving Waters and Water Supply Information				
Latitude41° 20' 19.64"Longitude-77° 54' 29.28"Quad NameKeatingQuad Code0822Wastewater Description:Sewage EffluentQuad Code0822Receiving WatersKettle Creek (TSF)Stream Code23661NHD Com ID61115219RMI6.51Drainage Area229Yield (cfs/mi²)0.03Qr.10 Flow (cfs)8.05Q7-10 BasisGage No. 01545000Elevation (ft)765Slope (ft/ft)0.03Watershed No.9-BChapter 93 Class.TSFExisting UseTSFExisting Use QualifierN/AAssessment StatusImpaired.Exceptions to CriteriaN/ACause(s) of ImpairmentMetals, pH.Source(s) of ImpairmentAbandoned mine drainage.TMDL StatusApprovedName2/7/2007Nearest Downstream Public Water Supply IntakePA American Water White DeerPWS WatersWest Branch Susquehanna RiverFlow at Intake (cfs)682	0 ((1)				
Quad NameKeatingQuad Code0822Wastewater Description:Sewage Effluent0822Receiving WatersKettle Creek (TSF)Stream Code23661NHD Com ID61115219RMI6.51Drainage Area229Yield (cfs/mi²)0.03Qr.10 Flow (cfs)8.05Q7.10 BasisGage No. 01545000Elevation (ft)765Slope (ft/ft)0.03Watershed No.9-BChapter 93 Class.TSFExisting UseTSFExisting Use QualifierN/AAssessment StatusImpaired.Exceptions to CriteriaN/ACause(s) of ImpairmentMetals, pH.Source(s) of ImpairmentAbandoned mine drainage.TMDL StatusApprovedName2/7/2007Nearest Downstream Public Water Supply IntakePA American Water White DeerPWS WatersWest Branch Susquehanna RiverFlow at Intake (cfs)682	Outfall No. 001		Design Flow (MGD)	0.0022	
Wastewater Description: Sewage Effluent Receiving Waters Kettle Creek (TSF) Stream Code 23661 NHD Com ID 61115219 RMI 6.51 Drainage Area 229 Yield (cfs/mi²) 0.03 Qr-10 Flow (cfs) 8.05 Qr-10 Basis Gage No. 01545000 Elevation (ft) 765 Slope (ft/ft) 0.03 Watershed No. 9-B Chapter 93 Class. TSF Existing Use TSF Existing Use Qualifier N/A Assessment Status Impaired. Impaired. Cause(s) of Impairment Metals, pH. Source(s) of Impairment Abandoned mine drainage. TMDL Status Approved Name 2/7/2007 Name 2/7/2007 Nearest Downstream Public Water Supply Intake PA American Water White Deer PVS Waters PWS Waters West Branch Susquehanna River Flow at Intake (cfs) 682	Latitude 41º 20' 19.64	4"	Longitude	-77º 54' 29.28"	
Receiving WatersKettle Creek (TSF)Stream Code23661NHD Com ID61115219RMI6.51Drainage Area229Yield (cfs/mi²)0.03Qr-10 Flow (cfs)8.05Qr-10 BasisGage No. 01545000Elevation (ft)765Slope (ft/ft)0.03Watershed No.9-BChapter 93 Class.TSFExisting UseTSFExisting Use QualifierN/AExceptions to UseNoneExceptions to CriteriaN/AAssessment StatusImpaired.Metals, pH.Cause(s) of ImpairmentAbandoned mine drainage.NameTMDL StatusApprovedName2/7/2007Nearest Downstream Public Water Supply IntakePA American Water White DeerPWS WatersWest Branch Susquehanna RiverFlow at Intake (cfs)682	Quad Name Keating		Quad Code	0822	
NHD Com ID61115219RMI6.51Drainage Area229Yield (cfs/mi²)0.03Qr-10 Flow (cfs)8.05Qr-10 BasisGage No. 01545000Elevation (ft)765Slope (ft/ft)0.03Watershed No.9-BChapter 93 Class.TSFExisting UseTSFExisting Use QualifierN/AExceptions to UseNoneExceptions to CriteriaN/AAssessment StatusImpaired.Impaired.Cause(s) of ImpairmentAbandoned mine drainage.NameTMDL StatusApprovedName2/7/2007Nearest Downstream Public Water Supply IntakePA American Water White DeerPWS WatersWest Branch Susquehanna RiverFlow at Intake (cfs)682	Wastewater Description:	Sewage Effluent			
NHD Com ID61115219RMI6.51Drainage Area229Yield (cfs/mi²)0.03Qr-10 Flow (cfs)8.05Qr-10 BasisGage No. 01545000Elevation (ft)765Slope (ft/ft)0.03Watershed No.9-BChapter 93 Class.TSFExisting UseTSFExisting Use QualifierN/AExceptions to UseNoneExceptions to CriteriaN/AAssessment StatusImpaired.Impaired.Cause(s) of ImpairmentAbandoned mine drainage.NameTMDL StatusApprovedName2/7/2007Nearest Downstream Public Water Supply IntakePA American Water White DeerPWS WatersWest Branch Susquehanna RiverFlow at Intake (cfs)682					
Drainage Area229Yield (cfs/mi²)0.03Q7-10 Flow (cfs)8.05Q7-10 BasisGage No. 01545000Elevation (ft)765Slope (ft/ft)0.03Watershed No.9-BChapter 93 Class.TSFExisting UseTSFExisting Use QualifierN/AExceptions to UseNoneExceptions to CriteriaN/AAssessment StatusImpaired.Impaired.Cause(s) of ImpairmentMetals, pH.Source(s) of ImpairmentAbandoned mine drainage.TMDL StatusApprovedNamePWS WatersWest Branch Susquehanna RiverFlow at Intake (cfs)682	Receiving Waters Kettle	e Creek (TSF)	Stream Code	23661	
Q7-10 Flow (cfs)8.05Q7-10 BasisGage No. 01545000Elevation (ft)765Slope (ft/ft)0.03Watershed No.9-BChapter 93 Class.TSFExisting UseTSFExisting Use QualifierN/AExceptions to UseNoneExceptions to CriteriaN/AAssessment StatusImpaired.Impaired.Cause(s) of ImpairmentMetals, pH.Source(s) of ImpairmentAbandoned mine drainage.TMDL StatusApprovedNamePWS WatersWest Branch Susquehanna RiverFlow at Intake (cfs)682	NHD Com ID 61115	5219	RMI	6.51	
Elevation (ft)765Slope (ft/ft)0.03Watershed No.9-BChapter 93 Class.TSFExisting UseTSFExisting Use QualifierN/AExceptions to UseNoneExceptions to CriteriaN/AAssessment StatusImpaired.Impaired.Cause(s) of ImpairmentMetals, pH.Source(s) of ImpairmentAbandoned mine drainage.TMDL StatusApprovedNamePWS WatersWest Branch Susquehanna RiverFlow at Intake (cfs)682	Drainage Area 229		Yield (cfs/mi ²)	0.03	
Watershed No.9-BChapter 93 Class.TSFExisting UseTSFExisting Use QualifierN/AExceptions to UseNoneExceptions to CriteriaN/AAssessment StatusImpaired.Impaired.Cause(s) of ImpairmentMetals, pH.Source(s) of ImpairmentAbandoned mine drainage.TMDL StatusApprovedName2/7/2007Nearest Downstream Public Water Supply IntakePA American Water White DeerPWS WatersWest Branch Susquehanna RiverFlow at Intake (cfs)682	Q ₇₋₁₀ Flow (cfs) 8.05		Q7-10 Basis	Gage No. 01545000	
Existing UseTSFExisting Use QualifierN/AExceptions to UseNoneExceptions to CriteriaN/AAssessment StatusImpaired.Cause(s) of ImpairmentMetals, pH.Source(s) of ImpairmentAbandoned mine drainage.TMDL StatusApprovedNamePWS WatersWest Branch Susquehanna RiverFlow at Intake (cfs)682	Elevation (ft) 765		Slope (ft/ft)	0.03	
Exceptions to Use None Exceptions to Criteria N/A Assessment Status Impaired. Cause(s) of Impairment Metals, pH. Source(s) of Impairment Abandoned mine drainage. TMDL Status Approved Nearest Downstream Public Water Supply Intake PA American Water White Deer PWS Waters West Branch Susquehanna River	Watershed No. 9-B		Chapter 93 Class.	TSF	
Assessment Status Impaired. Cause(s) of Impairment Metals, pH. Source(s) of Impairment Abandoned mine drainage. TMDL Status Approved Name 2/7/2007 Nearest Downstream Public Water Supply Intake PA American Water White Deer PWS Waters West Branch Susquehanna River Flow at Intake (cfs) 682	Existing Use TSF		Existing Use Qualifier	N/A	
Cause(s) of Impairment Metals, pH. Source(s) of Impairment Abandoned mine drainage. TMDL Status Approved Name 2/7/2007 Nearest Downstream Public Water Supply Intake PA American Water White Deer PWS Waters West Branch Susquehanna River Flow at Intake (cfs) 682	Exceptions to Use None		Exceptions to Criteria	N/A	
Source(s) of Impairment Abandoned mine drainage. TMDL Status Approved Name 2/7/2007 Nearest Downstream Public Water Supply Intake PA American Water White Deer PWS Waters West Branch Susquehanna River Flow at Intake (cfs) 682	Assessment Status	Impaired.			
TMDL StatusApprovedName2/7/2007Nearest Downstream Public Water Supply IntakePA American Water White DeerPWS WatersWest Branch Susquehanna RiverFlow at Intake (cfs)682	Cause(s) of Impairment	Metals, pH.			
Nearest Downstream Public Water Supply Intake PA American Water White Deer PWS Waters West Branch Susquehanna River Flow at Intake (cfs) 682	Source(s) of Impairment	Abandoned mine drainage			
PWS Waters West Branch Susquehanna River Flow at Intake (cfs) 682	TMDL Status	Approved	Name <u>2/7/2007</u>		
	Nearest Downstream Publi	ic Water Supply Intake	PA American Water White De	er	
PWS RMI 10.5 Distance from Outfall (mi) 105	PWS Waters West Br	anch Susquehanna River	Flow at Intake (cfs)	682	
	PWS RMI 10.5		Distance from Outfall (mi)	105	

Changes Since Last Permit Issuance: The updated Q_{7-10} data was obtained from the updated stream gage information obtained from *Stuckey, M.H., and Roland, M.A., 2011, Selected Streamflow Statistics for Streamgage Locations In and Near Pennsylvania.* A comparative stream analysis was conducted using a downstream gage (01545000) on Kettle Creek. The Q_{7-10} calculations, which are attached in Appendix A, indicate that the Q_{7-10} is 8.05 cfs. Is identical to what was used in the previous review.

Other Comments: None.

Treatment Facility Summary

Treatment Facility Name: PA DCNR Kettle Creek State Park

WQM Permit No.	Issuance Date		Comments:		
1804402	3/13/2006	Construction of package treatment plant.			
Waste Type	Degree of Treatment	Process Type	Disinfection	Avg Annual Flow (MGD)	
Sewage	Secondary	Extended Aeration	Ultraviolet	0.0022	
Hydraulic Capacity (MGD)	Organic Capacity (Ibs/day)	Load Status	Biosolids Treatment	Biosolids Use/Disposal	
0.0044		Not Overloaded	None	Other WWTP	

Treatment System Components for Outfall 001:

- One (1) Raw sewage lift station.
- One (1) Influent EQ tank.
- One (1) Equalization tank.
- One (1) Aeration tank.
- One (1) Clarifier.
- Two (2) Anthracite filters.
 - Filter backwash.
 - Two (2) backwash pumps.
 - Backwash mudwell.
 - Backwash clearwell.
- One (1) UV disinfection system.
- One (1) Chlorine disinfection system with contact tank.
- One (1) Outfall 001.
- One (1) Aerobic digester.

Changes Since Last Permit Issuance: None. Other Comments: None.

Anti-Backsliding

In accordance with 40 CFR 122.44(I)(1) and (2), this permit does not contain effluent limitations, standards, or conditions that are less stringent than the previous permit.

TMDL Impairment

The Department's Geographic Information System (GIS) shows that Kettle Creek is impaired and a TMDL does exist for the stream segment. All impairments resulted from acid mine drainage. The TMDL addresses the three primary metals associated with acid mine drainage (iron, manganese, aluminum). There is currently no industrial waste being discharged into the treatment plant and this discharge is not expected to contribute to the level of metals in the stream. Given the regulations contained in 40 CFR §122.44(d)(1)(ii)&(iii), it can be determined that the type of effluent from this facility has no "Reasonable potential to cause, or contributes to an in-stream excursion above the allowable ambient concentration of a State numeric criteria within a State water quality standard for an individual pollutant." Therefore, the permit will not be required to contain effluent limits for the pollutant addressed in the TMDL. Previously, the facility was required to monitor for metals (iron, manganese and aluminum) to ensure that they are not contributing to the impairment. The monitoring confirms that this facility is not contributing to the impairment of the stream. The sample results in the compliance history section below indicate that his facility is discharging these metals in concentrations less than Ch. 93 water quality standards (0.750 mg/l for Aluminum, 1.50 mg/l for Iron, and 1.00 mg/L for Manganese). No further monitoring will be required unless it is done for the TMDL and the entire watershed is sampled.

Chesapeake Bay Requirements

Since this facility's hydraulic design capacity is 0.0044 MGD, the permittee previously monitored and reported TN and TP concentrations over a two year term. In accordance with the Phase II WIP Chesapeake Bay Strategy for Phase V facilities (0.002 MGD to 0.2 MGD), yearly monitoring requirements for nutrients is not required if this monitoring has been conducted and documented in the previous fact sheet. The previous the monitoring results at as follows:

Date (MoYr.)	Flow (MGD)	TN (mg/L)	TP (mg/L)
Jun-10	0.004	45.39	7.58
Sep-10	0.001	56.63	14.64
Nov-08	0.0005	28.38	6.62
Sep-08	0.0001	57.94	11.90
Jun-08	0.0046	51.89	10.62
Nov-07	0.0002	27.62	11.75
Sep-07	0.0012	101.29	16.34
Jun-07	0.0006	101.29	12.01

Existing Effluent Limitations and Monitoring Requirements

Existing Limits – Outfall 001

	Effluent Limitations						Monitor Requiren	
Parameter		Units lay) ⁽¹⁾		Concentra	tions (mg/L)		Minimum ⁽²⁾	Required
	Average Monthly	Average Weekly	Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	xxx	xxx	xxx	xxx	ххх	1/week	Measured
pH (S.U.) Oct 1 - Apr 30	xxx	xxx	6.0	xxx	9.0	xxx	3/week	Grab
pH (S.U.) May 1 - Sep 30	xxx	XXX	6.0	xxx	9.0	xxx	1/day	Grab
Dissolved Oxygen Oct 1 - Apr 30	xxx	xxx	Report	xxx	XXX	xxx	3/week	Grab
Dissolved Oxygen	XXX	XXX		XXX	xxx	xxx	1/day	Grab
May 1 - Sep 30 Total Residual Chlorine (TRC)			Report					
Oct 1 - Apr 30 Total Residual Chlorine (TRC) May 1 - Sep 30	xxx	xxx	XXX XXX	1.0	XXX XXX	2.3	3/week 1/day	Grab Grab
Carbonaceous Biochemical Oxygen Demand				1.0		2.3	1/uay	Giab
(CBOD5)	XXX	XXX	XXX	25.0	XXX	50	2/month	Grab
Total Suspended Solids	ххх	ХХХ	xxx	30.0	xxx	60	2/month	Grab

			Effluent	Limitations	;		Monitor Requiren	•
Parameter		Units lay) ⁽¹⁾		Concentra	tions (mg/L))	Minimum ⁽²⁾	Required
	Average Monthly	Average Weekly	Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Fecal Coliform (No./100 ml)				2000 Geo				
Oct 1 - Apr 30	XXX	XXX	XXX	Mean	XXX	10000	2/month	Grab
Fecal Coliform (No./100 ml)				200 Geo				
May 1 - Sep 30	XXX	XXX	XXX	Mean	XXX	1000	2/month	Grab
Ammonia- Nitrogen	ххх	ххх	xxx	Report	xxx	xxx	1/quarter	Grab
Aluminum, Total	xxx	xxx	xxx	Report	xxx	XXX	1/year	Grab
Iron, Total	xxx	xxx	xxx	Report	XXX	XXX	1/year	Grab
Manganese, Total	xxx	ххх	XXX	Report	XXX	xxx	1/year	Grab

*The existing effluent limits for Outfall 001 were based on a design flow of 0.0022 MGD.

Development of Effluent Limitations

Outfall No.	001		Design Flow (MGD)	0.0022
Latitude	41° 21' 19"		Longitude	77° 55' 28"
Wastewater De	escription:	Treated Sewage Effluent		

Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
CBOD ₅	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
рН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform (5/1 – 9/30)	200 / 100 ml	Geo Mean	_	92a.47(a)(4)
Fecal Coliform (5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform (10/1 – 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform (10/1 – 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)

Water Quality-Based Limitations

To establish whether or not water-quality based effluent limitations (WQBELs) are required, the Department models instream conditions. In order to determine limitations for CBOD5, ammonia-N and dissolved oxygen, the Department utilizes the WQM 7.0 v1.0b model and in order to determine limitations for toxics, the Department utilizes the Toxics Management Spreadsheet. This spreadsheet was not utilized for this review.

NPDES Permit Fact Sheet Kettle Creek State Park

WQM 7.0 for Windows, Version 1.0b, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen

The previous model was run using the latest information on Q7-10 stream flow, background water quality, average annual design flow, and other discharge characteristics. There were no changes to the facility or watershed since the previous review. The existing technology based effluent limit for CBOD₅ (25 mg/l) and NH3-N (25 mg/l) were used as inputs for the modeling. The DO minimum daily average criterion from §93.7 (5.0 mg/L for CWF) was used for the in-stream objective for the model. The summary of the output is as follows:

Denemeter	Effluent Limit				
Parameter	30 Day Average	Maximum	Minimum		
CBOD5	25	N/A	N/A		
Ammonia-N	25	50	N/A		
Dissolved Oxygen	N/A	N/A	3		

The model does not recommend water-quality based effluent limitations with regards to CBOD5, ammonia-nitrogen, and dissolved oxygen. Refer to the Appendix for the WQM 7.0 inputs and results.

Best Professional Judgment (BPJ) Limitations

See the Dissolved Oxygen section below. Additional Considerations

None

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst the abovementioned technology, water quality, and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001) and/or BPJ.

Proposed Limits - Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date

			Effluent	Limitations	i		Monitor Requiren	
Parameter		Units ay) ⁽¹⁾		Concentra	tions (mg/L)		Minimum ⁽²⁾	Required
	Average Monthly	Average Weekly	Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	XXX	xxx	xxx	XXX	xxx	1/week	Measured
pH (S.U.) Oct 1 - Apr 30	xxx	xxx	6.0	xxx	9.0	xxx	3/week	Grab
pH (S.U.) May 1 - Sep 30	xxx	XXX	6.0	xxx	9.0	xxx	1/day	Grab
Dissolved		MAA	0.0		0.0		17day	Clab
Oxygen Oct 1 - Apr 30	xxx	XXX	Report	xxx	XXX	xxx	3/week	Grab
Dissolved Oxygen								
May 1 - Sep 30	XXX	XXX	Report	XXX	XXX	XXX	1/day	Grab
Total Residual Chlorine (TRC)	VVV	VVV	VVV	10	VVV	0.0	0/weak	Orah
Oct 1 - Apr 30 Total Residual	XXX	XXX	XXX	1.0	XXX	2.3	3/week	Grab
Chlorine (TRC) May 1 - Sep 30	xxx	XXX	XXX	1.0	xxx	2.3	1/day	Grab
Carbonaceous Biochemical Oxygen Demand								
(CBOD5)	XXX	XXX	XXX	25.0	XXX	50	2/month	Grab

			Effluent	Limitations	;		Monitor Requiren	-
Parameter		Units lay) ⁽¹⁾		Concentra	Minimum ⁽²⁾	Required		
	Average Monthly	Average Weekly	Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Total Suspended Solids	XXX	XXX	xxx	30.0	xxx	60	2/month	Grab
Fecal Coliform (No./100 ml)				2000 Geo				
Oct 1 - Apr 30	XXX	XXX	XXX	Mean	XXX	10000	2/month	Grab
Fecal Coliform (No./100 ml)				200 Geo				
May 1 - Sep 30	XXX	XXX	XXX	Mean	XXX	1000	2/month	Grab
Ammonia- Nitrogen	xxx	xxx	xxx	Report	XXX	XXX	1/quarter	Grab
E. Coli	XXX	XXX	xxx	XXX	XXX	Report	1/year	Grab

*The proposed effluent limits for Outfall 001 were based on a design flow of 0.0022 MGD.

Effluent Limit Determination for Outfall 001

General Information

All effluent limits were then rounded down in accordance with the rounding rules established in the *Technical Guidance for the Development and Specification of Effluent Limitations (362-0400-001)*, Chapter 5 - Specifying Effluent Limitations in NPDES Permits. The existing monitoring frequencies and sample types for these parameters generally correspond with the *Technical Guidance for the Development and Specification of Effluent Limitations* (362-0400-001). Table 6-3 and will remain.

Flow

Reporting of the average monthly flow is consistent with monitoring requirements for other treatment plants and will remain.

Carbonaceous Biochemical Oxygen Demand (CBOD₅)

The results of the WQM 7.0 model show that the previously applied secondary treatment standards (25 PA Code §92a.47 (a) (1&2)) for CBOD₅ are protective of water quality and will remain.

Total Suspended Solids (TSS)

The previously applied technology based secondary treatment standards (25 PA Code §92a.47 (a) (1&2)) for TSS will remain as well.

<u>рН</u>

CFR Title 40 §133.102(c) and 25 PA Code §95.2(1) provide the basis of effluent limitations for pH.

Fecal Coliforms

The existing fecal coliform limits with I-max limits were previously updated from the previous Chapter 92 code to correspond with what is specified in the updated 25 PA Code § 92a.47 (a)(4)&(5). The existing effluent limits will remain.

Ammonia-Nitrogen (NH3-N)

The results of the WQM 7.0 model show that the existing monitoring requirement for ammonia-nitrogen is appropriate and will remain.

Dissolved Oxygen (DO)

25 PA Code §93.7 provides specific water quality criteria for DO and monitoring for this parameter will ensure that the facility is not creating or contributing to an in-stream excursion below these water quality standards. Additionally, the *Technical Guidance for the Development and Specification of Effluent Limitations* (362-0400-001) lists DO under the self-

monitoring requirements for sewage discharges and monitoring of DO is consistent with other discharges of this size and type.

E. Coli

25 PA Code § 92a.61 provide the basis of monitoring requirements for E. Coli. Yearly monitoring will be required going forward.

UV Intensity

This facility currently utilizes UV as primary disinfection method. The operator previously indicated that the disinfection system is not equipped with a meter. Given that there is no existing UV meter, effluent monitoring requirements will not be placed in the final permit. This is consistent with the current permit which does not contain UV monitoring.

Total Residual Chlorine (TRC)

Chlorine is not the primary form of disinfection, but it is introduced into the clearwell when there is a the lack of flow through the system. A site specific BAT limit that was developed based on the use, intermittent discharges, and the distance to the outfall. The attached TRC model indicates that the existing BAT effluent limits of 1.0 mg/L (Average Monthly) and 2.3 mg/L (Instantaneous Maximum) are protective of water quality. Since this is an ancillary disinfection process and the sampling location for TRC is a significant distance from the outfall (approximately 500 ft.) which is a submerged outfall. Given that there are no water quality concerns and it is anticipated that the residual chlorine will be consumed before the discharge, the currently permitted effluent limits for TRC shall remain. The proposed monitoring frequency for TRC (1/ Day for May - Sep. and 3/Week for Oct. – April) is consistent with the DCNR agreement for off-season monitoring and shall be included in this permit renewal.

Compliance History

<u>Summary of Inspections</u> - The last inspection of the facilities was conducted by the Department on 6/10/21 which reveals the facility was operating normally.

<u>WMS Query Summary</u> - A WMS Query was run at *Reports* - *Violations & Enforcements* – *Open Violations for Client Report* to determine whether there are any unresolved violations associated with the client that will affect issuance of the permit (per CSL Section 609). This query revealed that there were no unresolved violations.

DMRs Summary -Upon review of the DMR's, the facility generally appears to be operating within the given concentration limits. Some minor exceedances were noted over the last permit term.

Compliance History

DMR Data for Outfall 001 (from April 1, 2021 to March 31, 2022)

Parameter	MAR-22	FEB-22	JAN-22	DEC-21	NOV-21	OCT-21	SEP-21	AUG-21	JUL-21	JUN-21	MAY-21	APR-21
Flow (MGD)							0.00000	0.00019	0.00102		0.00056	
Average Monthly					0.00005	0.00018	2	7	3	0.00089	2	0.00059
pH (S.U.)												
Minimum					6.1	6.1	6.1	6.0	6.0	6.0	6.1	6.4
pH (S.U.)												
Maximum					6.9	7.0	7.2	7.3	8.1	7.0	7.4	7.4
DO (mg/L)												
Minimum					3.7	3.1	2.0	1.0	0.7	2	1.1	3.2
TRC (mg/L)												
Average Monthly					0.73	0.44	0.5	0.5	0.5	0.58	0.5	0.49
TRC (mg/L)												
Instantaneous												
Maximum					2.1	1.4	1.76	2.1	1.2	1.5	1.6	1.2
CBOD5 (mg/L)												
Average Monthly					0.2	2.16	3.22	0.91	2.7	2.4	6.3	5.7
TSS (mg/L)												
Average Monthly					11.0	< 5.0	< 5.0	5.0	11.0	6.0	8.0	11.0
Fecal Coliform												
(No./100 ml)												
Geometric Mean					1.0	< 1.0	< 3.0	< 1.0	< 1.0	< 1.0	< 1	3.0
Fecal Coliform												
(No./100 ml)												
Instantaneous												
Maximum					1.0	< 1.0	6.3	< 1.0	< 1.0	< 1.0	< 1	8.6
Ammonia (mg/L)												
Average Monthly				16.9			1.12			47.71		
Total Aluminum												
(mg/L)												
Average Monthly				0.5								
Total Iron (mg/L)												
Average Monthly				0.134								
Total Manganese												
(mg/L)												
Average Monthly				0.146								

Tools and References Used to Develop Permit
MONA for Mündeure Medel (see Attack root A)
WQM for Windows Model (see Attachment A)
Toxics Management Spreadsheet (see Attachment)
TRC Model Spreadsheet (see Attachment B)
Temperature Model Spreadsheet (see Attachment)
Water Quality Toxics Management Strategy, 361-0100-003, 4/06.
Technical Guidance for the Development and Specification of Effluent Limitations, 362-0400-001, 10/97.
Policy for Permitting Surface Water Diversions, 362-2000-003, 3/98.
Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 362-2000-008, 11/96.
Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97. Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 362-2183-004, 12/97.
Pennsylvania CSO Policy, 385-2000-011, 9/08.
Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.
Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 391-2000-002, 4/97.
Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97.
Implementation Guidance Design Conditions, 391-2000-006, 9/97.
Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004.
Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 391-2000-008, 10/1997.
Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 391-2000-010, 3/99.
Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 391-2000-011, 5/2004.
Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97.
Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 391-2000-014, 4/2008.
Implementation Guidance Total Residual Chlorine (TRC) Regulation, 391-2000-015, 11/1994.
Implementation Guidance for Temperature Criteria, 391-2000-017, 4/09.
Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/97.
Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97.
Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 391-2000-021, 3/99.
Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/1999.
Design Stream Flows, 391-2000-023, 9/98.
Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 391-2000-024, 10/98.
Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97.
Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.
SOP:
Other:

Table 1 13

Table 1. List of U.S. Geological Survey streamgage locations in and near Pennsylvania with updated streamflow statistics.-Continued

[Latitude and Longitude in decimal degrees; mi2, square miles]

Streamgage number	Streamgage name	Latitude	Longitude	Drainage area (mi²)	Regulated ¹
01541303	West Branch Susquehanna River at Hyde, Pa.	41.005	-78.457	474	Y
01541308	Bradley Run near Ashville, Pa.	40.509	-78.584	6.77	N
01541500	Clearfield Creek at Dimeling, Pa.	40.972	-78.406	371	Y
01542000	Moshannon Creek at Osceola Mills, Pa.	40.850	-78.268	68.8	N
01542500	WB Susquehanna River at Karthaus, Pa.	41.118	-78.109	1,462	Y
01542810	Waldy Run near Emporium, Pa.	41.579	-78.293	5.24	N
01543000	Driftwood Branch Sinnemalioning Creek at Sterling Run, Pa.	41.413	-78.197	272	N
01543500	Sinnemahoning Creek at Sinnemahoning, Pa.	41.317	-78.103	685	N
01544000	First Fork Sinnemahoning Creek near Sinnemahoning, Pa.	41.402	-78.024	245	Υ.
01544500	Kettle Creek at Cross Fork, Pa.	41.476	-77.826		. N
01545000	Kettle Creek near Westport, Pa.	41.320	-77.874	233	Y
01545500	West Branch Susquehanna River at Renovo, Pa.	41.325	-77.751	2,975	Ý
01545600	Young Womans Creek near Renovo, Pa.	41.390	-77.691	46.2	N
01546000	North Bald Eagle Creek at Milesburg, Pa.	40.942	-77.794	119	N
01546400	Spring Creek at Houserville, Pa.	40.834	-77.828	58.5	N
01546500	Spring Creek near Axemann, Pa.	40.890	-77.794	87.2	N
01547100	Spring Creek at Milesburg, Pa.	40.932	-77,786	- 142	N
01547200	Bald Eagle Creek below Spring Creek at Milesburg, Pa.	40.943	-77.786	265	N
01547500	Bald Eagle Creek at Blanchard, Pa	41.052	-77.604	339	Y Y
01547700	Marsh Creek at Blanchard, Pa.	41.060	-77.606	44.1	N
01547800	South Fork Beech Creek near Snow Shoe, Pa.	41.024	-77.904	12.2	N
01547950	Beech Creek at Monument, Pa.	41.112	-77.702	152	N
01548005	Bald Eagle Creek near Beech Creek Station, Pa.	41.081	-77.549	562	Y
01548500	Pine Creek at Cedar Run, Pa.	41.522	-77.447	604	N
01549000	Pine Creek near Waterville, Pa.	41.313	-77.379	750	N
01549500	Blockhouse Creek near English Center, Pa.	41,474	-77.231	37.7	N
01549700	Pine Creek below Little Pine Creek near Waterville, Pa.	41.274	-77.324	944	Y
01550000	Lycoming Creek near Trout Run, Pa.	41,418	-77.033	.173	N
01551500	WB Susquehanna River at Williamsport, Pa.	41,236	-76.997	5,682	Y, , , , , , , , , , , , , , , , , ,
01552000	Loyalsock Creek at Loyalsockville, Pa.	41.325	-76.912	435	'N
01552500	Muncy Creek near Sonestown, Pa.	41.357	-76.535	23.8	N
01553130	Sand Spring Run near White Deer, Pa.	41.059	-77.077	4.93	N
01553500	West Branch Susquehanna River at Lewisburg, Pa.	40.968	-76.876	6,847	Y
01553700	Chillisquaque Creek at Washingtonville, Pa.	41.062	-76.680	51.3	N
01554000	Susquehanna River at Sunbury, Pa.	40.835	-76.827	18,300	Y
01554500	Shamokin Creek near Shamokin, Pa.	40.810	-76.584	54.2	N
01555000	Penns Creek at Penns Creek, Pa.	40.867	-77.048	301	. N
01555500	East Mahantango Creek near Dalmatia, Pa.	40.611	-76.912	162	N
01556000	Frankstown Branch Juniata River at Williamsburg, Pa.	40,463	-78.200	291	N
01557500	Bald Eagle Creek at Tyrone, Pa.	40.684	-78.234	44.1	N
01558000	Little Juniata River at Spruce Creek, Pa.	40.613	-78.141	220	N
01559000	Juniata River at Huntingdon, Pa.	40.485	-78.019	816	LF
01559500	Standing Stone Creek near Huntingdon, Pa.	40.524	-77.971	128	N
01559700	Sulphur Springs Creek near Manns Choice, Pa.	39.978	-78.619	5.28	N
01560000	Dunning Creek at Belden, Pa.	40.072	-78.493	172	N

Table 2 25

Table 2. Selected low-flow statistics for streamgage locations in and near Pennsylvania.---Continued

[ft3/s; cubic feet per second; ---, statistic not computed; <, less than]

Streamgage number	Period of record used in analysis ⁱ	Number of years used in analysis	1-day, 10-year (ft³/s)	7-day, 10-year (ft³/s)	7-day, 2-year (ft³/s)	30-day, 10-year (ft³/s)	30-day, 2-year (ft³/s)	90-day, 10-year (ft³/s)
01530500	1940-2008	69	5.0	6.1	11.0	7.6	13	9.0
01531000	²1981-2008	28	138	147	237	169	296	203
01531000	31905-1979	68	86.3	97.0	175	116	219	161
01531500	² 1981–2008	28	550	592	1,030	733	1,340	952
01531500	³ 1915–1979	65	539	571	990	675	1,230	928
01532000	1915-2008	94	2.2	2.8	9.7	4.6	14,4	9,4
01532850	1967-1979	13		.2	.4	.3	.8	
01533400	²1981–2008	28	602	648	1,110	790	1,430	1,060
01533500	1942	17		.6	1,5	.8	2.0	1.7
01533950	1962-1978	17	.2	.3	1.0	.6	1.4	- 1.0
01534000	1915-2008	94	15.2	17.3	35.9	24.2	51.0	38.7
01534300	1960-2008	49	1.1	1.7	5.1	2.8	7.6	4.8
01534500	21961-2008	48	16.7	18.8	29.2	21.9	35.8	27.6
01534500	³ 1941–1959	19	18.8	23.0	33.3	25.6	39.2	34.9
01536000	21961-2008	48	28.7	32.7	51.7	40.8	68.1	54.3
01536000	³ 1940–1959	20	77.8	93.9	119	105	. 138	124
01536500	² 1981-2008	28	828	872	1,450	1,030	1,830	1,350
01536500	31901-1979	79	778	811	1,350	927	1,640	1,260
01537000	1943-1993	51	1.3	2.0	4.9	3.1	6.4	4.7
01537500	1941-1990	50	.2	.3	1,9	.5	3.1 ,	1.6
01538000	1921-2008	88	3.1	3.6	7.1	5.0	9.3	7.5
01539000	1940-2008	69	15.4	16.8	36.8	21.1	51.1	36.8
01539500	1942-1958	17	.1	.3	1.4	1.0	3.3	2.3
01540200	1965-1981	17	0	0	.3	.1	.3	.1
01540500	² 1981–2008	28	1,080	1,120	1,870	1,320	2,330	1,690
01540500	³ 1906–1979	74	927	978	1,660	1,160	2,050	1,590
01541000	1915-2008		25,3	27.9	50.7	35.3	66.6	49.6
01541200	²1967-2008	40	34,6	45.2	66.0	63.1	100	92.4
01541200	³1957–1965	·	22.9	24.7	44.7	27.7	58.2	36,4
01541303	1980-2008	29	53.4	58,5	94.0	74.4	123	102
01541308	1969-1979	11	1.3	1.3	1.9	1.6	2.4	2.1
01541500	² 1962-2008	47	39.0	41.9	66.5	51.9	86.3	70.6
01541500	³ 1915–1960	46	14.9	21.3	41.9	28.5	55.0	42.9
01542000	1942-1993	52	8.1	9.1	14.8	11.3	17.8	14.6
01542500	²1967-2008	33	216	235	326	285	435	402
01542500	³ 1941–1965	20		131	189	152	243	221
01542810	1966-2008	43	~ 1			.2		.3
01543000	1915-2008	94	2.9	4.2	16.0	9,6	27.4	
01543500	1940-2008	69	10.7	14.5	44.9	26.6	74.9	50.5
01544000	²1957–2008	52	3.3	6.9	19.0	11.2	31.1	19.0
01544500	19422008	67	4.2	4.9	12.5	7.5	17.4	11.7
01545000	²1964-2008	45	6.8	8.2	21.2	12.0	32.7	20.7
01545500	² 1963-2008	46	217	238	446	306	629	428
01545500	31909-1961	53	125	141	278	190	387	296
01545600	1966-2008	43	1.2	1.5	4.4	2.4	6.7	4.2

13

Facilit		NPDES Permit No.: RMI at Outfall:	
Outfa	ll:001	Rmi at Outlan.	
Reference Stre	am Gage Information	Was Ecoflows Used?	No 💌
Stream Name	Kettle Creek	Correlation From Ecoflows	N/A
Reference Gage	1545000	•	
Station Name	Kettle Creek near Westport, PA		Dilution Ratio
3age Drainage Area (sq. ml.)	233	Discharge at Outfall (wf) (mgd)	0.022 sf (cfs) wf (cfs
D ₇₋₁₀ at gage (cfs)	8.2		sf (cfs) wf (cfs 8,0592 0.034039
rield Ratio (cfs/ml²)	0.0352	Dilution Ratio = sfiwf Dilution Ratio =	
		Dilution Ratio	230,7042028 10 1
Q,,	o at Outfall	Q ₇₋₁₀ at Down	nstream Reach #1
Drainage Area at site (sq. ml.)	229	Drainage Area at Reach (sq. ml.)	231
Q _{7.10} at discharge site (cfs)	8.0592	RMI	5.24
Q _{7.10} at discharge site (cis) Q _{7.10} at discharge site (mgd)	5.2088	Q _{7-i0} at reach (cfs)	8.1296
Low Flow Yield Ratio of 0.1	cfs/mi ² (For Approx. Comparison Only)	Q ₇₋₁₀ at reach (mgd)	5.2543
Q _{7.10} at discharge site (cfs)	22,9000		Elev. 751
Q _{7.19} at discharge site (mgd)	14.8007		
O at Dou	vnstream Reach #2	Q ₇₋₁₀ at Dow	nstream Reach #3
	[Drainage Area @ Reach #2]	Drainage Area at Reach (sq. ml.)	[Drainage Area @ Reach #3]
Drainage Area at Reach (sq. ml.) RMI	[RMI @ Reach #2]	RMI	[RMI @ Reach #3]
NINI (ARE) CONCERNING STREET AND CONTRACT AND A		Q _{7.10} at reach (cfs)	#VALUEI
O at reach (cfs)		U7.10 at reach (CIS) and second entropy	
Q _{7:10} at reach (mgd)	#VALUEI #VALUEI cs Report at [Site // Reach] 50:13 AM GMT-4	Q _{7.10} at reach (mgd)	ap at Outfall
Q ₇₋₁₆ at reach (mgd) Basin Characteristi Date: Thurs Mar 24, 2016 8: Study Area: Pennsylvania NAD 1983 Latitude: 41.33	#VALUEI cs Report at [Site // Reach] 50:13 AM GMT-4 92 (41 20 21)	Q _{7.10} at reach (mgd)	#VALUEI
Q ₇₋₁₆ at reach (mgd) Basin Characteristi Date: Thurs Mar 24, 2016 8: Study Area: Pennsylvania NAD 1983 Latitude: 41.33 NAD 1983 Longitude: -77.90	#VALUEI cs Report at [Site // Reach] 50:13 AM GMT-4 92 (41 20 21) 82 (-77 54 30)	Q _{7.10} at reach (mgd)	#VALUEI
Q ₇₋₁₀ at reach (mgd) Basin Characteristi Date: Thurs Mar 24, 2016 8: Study Area: Pennsylvania NAD 1983 Latitude: 41.33 NAD 1983 Longitude: -77.90 DRHAREA	#VALUEI cs Report at [Site // Reach] 50:13 AM GMT-4 92 (41 20 21)	Q _{7.10} at reach (mgd)	#VALUEI
Q ₇₋₁₀ at reach (mgd) Basin Characteristi Date: Thurs Mar 24, 2016 8: Study Area: Pennsylvania NAD 1983 Latitude: 41.33 NAD 1983 Longitude: -77.90 DRHAREA STRMTOT	#VALUEI cs Report at [Site // Reach] 50:13 AM GMT-4 92 (41 20 21) 82 (-77 54 30) 229	Q _{7.10} at reach (mgd)	#VALUEI
Q ₇₋₁₀ at reach (mgd) Basin Characteristi Date: Thurs Mar 24, 2016 8: Study Area: Pennsylvania NAD 1983 Latitude: 41.33 NAD 1983 Longitude: -77.90 DRNAREA STRMTOT STRDEN	#VALUEI cs Report at [Site // Reach] 50:13 AM GMT-4 92 (41 20 21) 82 (-77 54 30) 229 405.95	Q _{7.10} at reach (mgd)	#VALUEI
Date: Thurs Mar 24, 2016 8: Study Area: Pennsylvania NAD 1983 Latitude: 41.33 NAD 1983 Longitude: -77.90 DRNAREA STRMTOT	#VALUEI cs Report at [Site // Reach] 50:13 AM GMT-4 92 (41 20 21) 82 (-77 54 30) 229 405.95 1.77 1.4.6 17159.9	Q _{7.10} at reach (mgd)	#VALUEI
Qr 10 at reach (mgd) Basin Characteristi Date: Thurs Mar 24, 2016 8: Study Area: Pennsylvania NAD 1983 Latitude: 41.33 NAD 1983 Longitude: -77.90 DRNAREA STRMTOT STRDEN BSLOPD	#VALUEI CS Report at [Site // Reach] 50:13 AM GMT-4 92 (41 20 21) 82 (-77 54 30) 229 405.95 1.77 14.6 17159.9 281632.9	Q _{7.10} at reach (mgd)	#VALUEI
Qr ₁₀ at reach (mgd) Basin Characteristi Date: Thurs Mar 24, 2016 8: Study Area: Pennsylvania NAD 1983 Latitude: 41.33' NAD 1983 Longitude: -77.90 DRIAREA STRATOT STRDEN BSLOPD CENTROIDX CENTROIDX CENTROIDY OUTLETX	#VALUEI cs Report at [Site // Reach] 50:13 AM GMT-4 92 (41 20 21) 82 (-77 54 30) 229 405.95 1.77 1.4.6 17159.9 281632.9 7675	Q _{7.10} at reach (mgd)	#VALUEI
Qr ₁₀ at reach (mgd) Basin Characteristi Date: Thurs Mar 24, 2016 8: Study Area: Pennsylvania NAD 1983 Latitude: 41.33' NAD 1983 Longitude: -77.90 DRIAREA STRMTOT STRDEN BSLOPD CENTROIDX CENTROIDX CENTROIDX OUTLETX OUTLETY	#VALUEI cs Report at [Site // Reach] 50:13 AM GMT-4 92 (41 20 21) 82 (-77 54 30) 229 405.95 1.77 1.4.6 17159.9 281632.9 7675 259735	Q _{7.10} at reach (mgd)	#VALUEI
Qr-16 at reach (mgd) Basin Characteristi Date: Thurs Mar 24, 2016 8: Study Area: Pennsylvania NAD 1983 Latitude: 41.33' NAD 1983 Longitude: -77.90 DRIAREA STRAITOT STRDEN BSLOPD CENTROIDX CENTROIDX CENTROIDY OUTLETX OUTLETY LONG_OUT	#VALUEI cs Report at [Site // Reach] 50:13 AM GMT-4 92 (41 20 21) 82 (-77 54 30) 229 405.95 1.77 1.4.6 17159.9 281632.9 7675 259735 -77.90829	Q _{7.10} at reach (mgd)	#VALUEI
Qrie at reach (mgd) Basin Characteristi Date: Thurs Mar 24, 2016 8: Study Area: Pennsylvania NAD 1983 Latitude: 41.33 NAD 1983 Longitude: -77.90 DRIAREA STRAITOT STRDEN BSLOPD CENTROIDX CENTROIDX CENTROIDY OUTLETX OUTLETX OUTLETY LONG_OUT BSLOPDRAW	#VALUEI cs Report at [Site // Reach] 50:13 AM GMT-4 92 (41 20 21) 82 (-77 54 30) 229 405.95 1.77 1.4.6 17159.9 281632.9 7675 259735	Qr.ce at reach (mgd) Basin M	#VALUEI
Qrie at reach (mgd) Basin Characteristi Date: Thurs Mar 24, 2016 8: Study Area: Pennsylvania NAD 1983 Latitude: 41.33' NAD 1983 Longitude: -77.90 DRIAREA STRATOT STRDEN BSLOPD CENTROIDX CENTROIDX CENTROIDY OUTLETX LONG_OUT BSLOPDRAW FOREST	#VALUEI cs Report at [Site // Reach] 50:13 AM GMT-4 92 (41 20 21) 82 (-77 54 30) 229 405.95 1.77 1.77 1.4.6 17159.9 281632.9 77592 259735 -77.90829 14.89	Q _{7.10} at reach (mgd)	#VALUEI
Qrate at reach (mgd) Basin Characteristi Date: Thurs Mar 24, 2016 8: Study Area: Pennsylvania NAD 1983 Latitude: 41.33' NAD 1983 Longitude: -77.90 DRIAREA STRATOT STRDEN BSLOPD CENTROIDX CENTROIDX CENTROIDY OUTLETX LONG_OUT BSLOPDRAW FOREST PRECIP	#VALUEI cs Report at [Site // Reach] 50;13 AM GMT-4 92 (41 20 21) 82 (-77 54 30) 229 405.95 1.77 281632.9 281632.9 281632.9 7675 259735 -77.90829 14.89 96	Qr.ce at reach (mgd) Basin M	#VALUEI
Qrie at reach (mgd) Basin Characteristi Date: Thurs Mar 24, 2016 8: Study Area: Pennsylvania NAD 1983 Latitude: 41.33' NAD 1983 Longitude: -77.90 DRIAREA STRATOT STRDEN BSLOPD CENTROIDX CENTROIDX CENTROIDY OUTLETX LONG_OUT BSLOPDRAW FOREST	#VALUEI cs Report at [Site // Reach] 50:13 AM GMT-4 92 (41 20 21) 82 (-77 54 30) 229 405.95 1.77 14.6 17159.9 281632.9 7675 259735 .77.90829 14.89 96	Qr.ce at reach (mgd) Basin M	#VALUEI
Qrate at reach (mgd) Basin Characteristi Date: Thurs Mar 24, 2016 8: Study Area: Pennsylvania NAD 1983 Latitude: 41.33' NAD 1983 Longitude: -77.90 DRIAREA STRATOT STRDEN BSLOPD CENTROIDX CENTROIDX CENTROIDX CENTROIDX CENTROIDY OUTLETY LONG_OUT BSLOPDRAW FOREST PRECIP URBAN	#VALUEI cs Report at [Site // Reach] 50:13 AM GMT-4 92 (41 20 21) 82 (-77 54 30) 229 405.95 1.77 14.6 17159.9 281632.9 7675 259735 .77.90829 14.89 .0 40 .0 .0 .0 .0 .0 .0 .0 .0 .0	Qr.ce at reach (mgd) Basin M	#VALUEI
Qrie at reach (mgd) Basin Characteristi Date: Thurs Mar 24, 2016 8: Study Area: Pennsylvania NAD 1983 Latitude: 41.33' NAD 1983 Longitude: -77.90 DRHARA STRDEN BSLOPD CENTROIDX CENTROIDX CENTROIDX CENTROIDY OUTLETX OUTLETX OUTLETX OUTLETY LONG_OUT BSLOPDRAW FOREST PRECIP URBAN GLACIATED	#VALUEI cs Report at [Site // Reach] 50:13 AM GMT-4 92 (41 20 21) 82 (-77 54 30) 229 405.95 1.77 1.4.6 17159.9 281632.9 7675 259735 -77.90829 1.4.89 96 411 0 0 4.5 0	Qr.ce at reach (mgd) Basin M	#VALUEI
Qrie at reach (mgd) Basin Characteristi Date: Thurs Mar 24, 2016 8: Study Area: Pennsylvania NAD 1983 Latitude: 41.33' NAD 1983 Longitude: -77.90 DRIAREA STRAITOT STRDEN BSLOPD CENTROIDX CENTROIDX CENTROIDX CENTROIDY OUTLETX OUTLETY LONG_OUT BSLOPDRAW FOREST PRECIP URBAN GLACIATED ROCKDEP CARBON STORAGE	#VALUEI cs Report at [Site // Reach] 50:13 AM GMT-4 92 (41 20 21) 82 (-77 54 30) 229 405.95 1.77 14.6 77159.9 281632.9 7675 259735 .77.90829 14.89 96 41 0 0 45 0 0 0 0 0 0 0 0	Qr.ce at reach (mgd) Basin M	#VALUEI
Qrie at reach (mgd) Basin Characteristi Date: Thurs Mar 24, 2016 8: Study Area: Pennsylvania NAD 1983 Latitude: 41.33' NAD 1983 Longitude: -77.90 DRIAREA STRATOT STRDEN BSLOPD CENTROIDX CENTROIDX CENTROIDX CENTROIDX CENTROIDY OUTLETX OUTLETY LONG_OUT BSLOPDRAW FOREST PRECIP URBAN GLACIATED ROCKOEP CARBON STORAGE ELEV	#VALUE! cs Report at [Site // Reach] 50:13 AM GMT-4 92 (41 20 21) 82 (-77 54 30) 229 405.95 1.77 14.6 17159.9 281632.9 7675 259735 -77.90829 14.89 96 41 0 0 14.89 92 14.89 96 41 0 0 0 0 14.89	Qr.ce at reach (mgd) Basin M	#VALUEI
Qrie at reach (mgd) Basin Characteristi Date: Thurs Mar 24, 2016 8: Study Area: Pennsylvania NAD 1983 Latitude: 41.33' NAD 1983 Longitude: -77.90 DRIAREA STRATOT STRDEN BSLOPD CENTROIDX CENTROIDX CENTROIDX CENTROIDX CENTROIDX CENTROIDX CENTROIDX CENTROIDX GUTLETX OUTLETY LONG_OUT BSLOPDRAW FOREST PRECIP URBAN GLACIATED ROCKOEP CARBON STORAGE ELEV MAXTEMP	#VALUE! cs Report at [Site // Reach] 50:13 AM GMT-4 92 (41 20 21) 82 (-77 54 30) 229 405.95 1.77 14.6 17159.9 281632.9 7675 259735 -77.90829 14.89 96 411 0 0 0 0 0 0 0 0 0 0 0	Qr.ce at reach (mgd) Basin M	#VALUEI
Qris at reach (mgd) Basin Characteristi Date: Thurs Mar 24, 2016 8: Study Area: Pennsylvania NAD 1983 Longitude: 41.33' NAD 1983 Longitude: -77.90 DRIAREA STRATOT STRDEN BSLOPD CENTROIDX CENTROIDY OUTLETX OUTLETY LONG_OUT BSLOPDRAW FOREST PRECIP URBAN GLACIATED ROCKOEP CARBON STORAGE ELEV NAXTEMP DRN	#VALUE! cs Report at [Site // Reach] 50:13 AM GMT-4 92 (41 20 21) 82 (-77 54 30) 229 405.95 1.77 14.6 17159.9 281632.9 7675 259735 -77.90829 14.89 96 41 0 0 14.89 96 41 0 14.5 0 14.89 96 14.89 96 14.89 96 14.89 0 0 0 0 160	Qr.ce at reach (mgd) Basin M	#VALUEI
Qrae at reach (mgd) Basin Characteristi Date: Thurs Mar 24, 2016 8: Study Area: Pennsylvania NAD 1983 Latitude: 41.33' NAD 1983 Longitude: -77.90 DRIAREA STRATOT STRDEN BSLOPD CENTROIDX CENTROIDY OUTLETX OUTLETY LONG_OUT BSLOPDRAW FOREST PRECIP URBAN GLACIATED ROCKDEP CARBON STORAGE ELEV MAXTEMP DRN MPHILC001	#VALUE! cs Report at [Site // Reach] 50:13 AM GMT-4 92 (41 20 21) 82 (-77 54 30) 229 405.95 1.77 14.6 17159.9 281632.9 7675 259735 -77.90829 14.89 96 411 0 0 0 0 0 0 0 3.3	Qr.ce at reach (mgd) Basin M	#VALUEI
Qris at reach (mgd) Basin Characteristi Date: Thurs Mar 24, 2016 8: Study Area: Pennsylvania NAD 1983 Longitude: 41.33' NAD 1983 Longitude: -77.90 DRIAREA STRATOT STRDEN BSLOPD CENTROIDX CENTROIDY OUTLETX OUTLETY LONG_OUT BSLOPDRAW FOREST PRECIP URBAN GLACIATED ROCKOEP CARBON STORAGE ELEV NAXTEMP DRN	#VALUE! cs Report at [Site // Reach] 50:13 AM GMT-4 92 (41 20 21) 82 (-77 54 30) 229 405.95 1.77 14.6 17159.9 281632.9 7675 259735 -77.90829 14.89 96 411 0 0 0 0 0 0 0 3.3	Qr.ce at reach (mgd) Basin M	#VALUEI

NPDES Permit No. PA0228869

Input	Data	WQM 7	.0	

	SWP Basin	Strea Cod		Stre	am Name		RMI		vation (ft)	Draina Area (sq m	i	Slope (ft/ft)	PW Withd (mi	Irawal	Apply FC
	09B	236	61 KETTL	E CREEI	к		6.5	10	765.00	229	9.00 0	.00000		0.00	
					St	ream Dat	a								
Design	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Ten	<u>Tributa</u> 1p	t <u>y</u> pH	Ter	<u>Strear</u> np	n pH	
Cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C	;)		(°C)		
Q7-10 Q1-10 Q30-10	0.100	0.00 0.00 0.00	8.05 0.00 0.00	0.000 0.000 0.000	0.000	0.0	0.00	0.0	00 2	0.00	7.00		0.00	0.00	
				<i></i>	D	ischarge	Data	_ .		<u>v</u>]	
			Name	Pe	rmit Numbe	Disc) Permiti Disc Flow (mgd	: Dis / Fic	sc Re	serve actor	Disc Temp (°C)		bisc pH		
		Kettl	e Creek SP	PA	0228869	0.000	0.00	44 0.	0000	0.000	25.	00	7.00	-	
					P	arameter									
				Paramete	ar Nomo			Trib Conc	Stream Conc	Fate Coe					
				ratamete	a name	(r	ng/L) (mg/L)	(mg/L)	(1/day	/s)		-		
			CBOD5				25.00	2.00	0.00) 1.	.50				
			Dissolved	Oxygen			3.00	8.24	0.0	0 0	.00				
			NH3-N				25.00	0.00	0.0	0 0.	.70				

Input Data WQM 7.0

	SWP Basin	Strea Cod		Stre	eam Name		RMI		vation (ft)	Drainag Area (sq mi	,	lope ft/ft)	PWS Withdra (mgd	awal	Apply FC
	09B	236	61 KETTI	E CREE	к		5.24	40	751.00	231	i.00 0.	00000		0.00	
				<u>-</u>	St	ream Dat	ิล								
Design	LFY	Trib Flow	Stream Flow	Rch Trav	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Ten	<u>Tributar</u> np	¥ pH	Ten	<u>Stream</u> np	pН	
Cond.	(cfsm)	(cfs)	(cfs)	Time (days)	(fps)		(ft)	(ft)	(ଂ୦	;)		(°C	;)		
Q7-10 Q1-10 Q30-10	0.100	0.00 0.00 0.00	0.00	0.000 0.000 0.000	0.000	0.0	0.00	0.0)0 2	20.00	7.00		0.00	0.00	
	Γ	Discharge Data													
			Name	Pe	rmit Numbe	Disc) Permiti Disc Flow (mgd	: Dis / Flo	sc Re ow Fa	serve actor	Disc Temp (°C)		isc pH		
			• • • • • • • • • • • • • • • • • • • •			0.000	00.00	00 0.	0000	0.000	25.0	00	7.00		
					P	arameter	Data								
				Paramete				Trib Conc	Stream Conc	Fate Coel					
	ĺ			Paramete	erivaine	(r	ng/L) (mg/L)	(mg/L)	(1/day	rs)		-		
			CBOD5	~~~			25.00	2.00	0.0	01.	.50				
			Dissolved	l Oxygen			3.00	8.24	0.0	0 0.	.00				
			NH3-N				25.00	0.00	0.0	0 0.	.70				

		<u>P Basin</u> 09B		<u>m Code</u> 3661				<u>Stream</u> ETTLE (
RMI	Stream Flow (cfs)	PWS With (cfs)	Net Stream Flow (cfs)	Disc Analysis Flow (cfs)	Reach Slope (ft/ft)	Depth (ft)	Width (ft)	W/D Ratio	Velocity (fps)	Reach Trav Time (days)	Analysis Temp (°C)	Analysis pH		
Q7-1 6.510	0 Flow 8.05	0.00	8.05	.0068	0.00209	.806	52.56	65.23	0.19	0.408	20.00	7.00		
Q1-1 6.510	0 Flow 6.67	0.00	6.67	.0068	0.00209	NA	NA	NA	0.17	0.453	20.01	7.00		
Q30- 6.510	10 Flow 11.75	/ 0.00	11.75	.0068	0.00209	NA	NA	NA	0.24	0.330	20.00	7.00		

WQM 7.0 Hydrodynamic Outputs

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.829	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.46	Temperature Adjust Kr	
D.O. Saturation	90.00%	Use Balanced Technology	\checkmark
D.O. Goal	5		
· · · · · · · · · · · · · · · · · · ·			

ž		a <u>m Code</u> 23661			<u>eam Name</u> TLE CREEK		
NH3-N A		IS					
RMI	Discharge Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
6.51	0 Kettle Creek SP	9.67	50	9.67	50	0	0
NH3-N (Chronic Allocat	ions					
RMI	Discharge Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multipie WLA (mg/L)	Critical Reach	Percent Reduction
6.51	0 Kettle Creek SP	1.92	25	1.92	25	0	0
)issolve	ed Oxygen Allo	cations					

RMI	Discharge Name	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Reach	Reduction	
6.51	Kettle Creek SP	25	25	25	25	. 3	3	0	0	

WQM 7.0 Wasteload Allocations

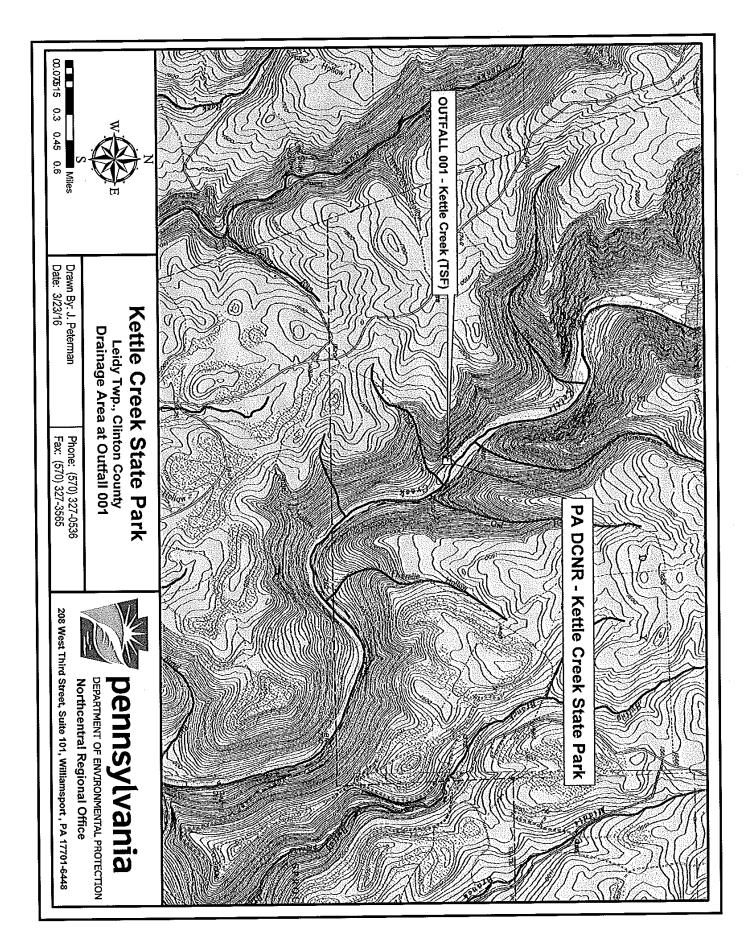
.

<u>SWP Basin</u> <u>St</u> 09B	ream Code 23661		ł	<u>Stream Name</u> (ETTLE CREEK		
<u>RMI</u> 6.510 <u>Reach Width (ft)</u> 52.563 <u>Reach CBOD5 (mg/L)</u> 2.02	Total Discharge 0.004 <u>Reach Der</u> 0.806 <u>Reach Kc (1</u> 0.012 Reach Kr (1	b <u>th (ft)</u> } 1 <u>/days)</u> 2		ysis Temperature (°C) 20.004 <u>Reach WDRatio</u> 65.226 each <u>NH3-N (mg/L)</u> 0.02 <u>Kr Equation</u>	<u>Analysis pH</u> 7.000 <u>Reach Velocity (fps)</u> 0.190 <u>Reach Kn (1/days)</u> 0.700 <u>Reach DO Goal (mg/L)</u>	
<u>Reach DO (mg/L)</u> 8.239 <u>Reach Travel Time (days)</u> 0.408	3.774 TravTime (days)		Results NH3-N (mg/L)	Tsivoglou D.O. (mg/L)	5	
	0.041	2.02	0.02 0.02 0.02	8.24 8.24 8.24		
	0.122 0.163 0.204	2.02 2.02 2.01	0.02 0.02	8.24 8.24		
	0.245 0.286 0.326	2.01 2.01 2.01	0.02 0.02 0.02	8.24 8.24 8.24		
	0.367 0.408	2.01 2.01	0.02	8.24 8.24	<u></u>	

WQM 7.0 D.O.Simulation

	<u>SWP Basin</u> <u>S</u> 09B	<u>tream Code</u> 23661		<u>Stream Name</u> KETTLE CREE	-		
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl, Limit Minimum (mg/L)
	Kettle Creek SI	P PA0228869	0.000	CBOD5	25		
4				NH3-N	25	50	
				Dissolved Oxygen			3

WQM 7.0 Effluent Limits


NPDES Permit No. PA0228869

1A	В	С	D	Е	F	G				
2	TRC EVALUATION			Kettle Creek State Park PA0228869						
3	Input appropri	ate values in	B4:B8 and E4:E7							
4					= CV Daily					
5					= CV Hourly					
6		4 = no. sample			= AFC_Partial Mix Factor					
7					= CFC_Partial Mix Factor					
8 9	č				5 = AFC_Criteria Compliance Time (min)					
ອ			of Safety (FOS)		= CFC_Criteria Compliance Time (min) =Decay Coefficient (K)					
10	Source	Reference	AFC Calculations		CFC Calculations					
11	TRC	1.3.2.iii	WLA afc =	754.544	Reference 1.3.2.iii	WLA cfc = 735.614				
12	PENTOXSD TRO	5.1a	LTAMULT afc =	0.373	5.1c	LTAMULT cfc = 0.581				
	PENTOXSD TRO	5.1b	LTA_afc=	281.161	5.1d	LTA_cfc = 427.651				
14										
15					t Limit Calculations					
					1.720					
17 18	PENTOXSD TRG	5 5.1g	AVG MON LIMI INST MAX LIMI			BAT/BPJ				
10				(iiig/i) =	2.040					
	WLA afc		⁻ C_tc)) + [(AFC_Yc*Qs		*e(-k*AFC_tc))					
		•	C_Yc*Qs*Xs/Qd)]*(1-F		0.5)					
	LTAMULT afc LTA_afc	wla_afc*LTA	(cvh^2+1))-2.326*LN(c MULT_afc	wn^2+1)^	0.5)					
	WLA_cfc	(.011/e(-k*Cl		*.011/Qd*	e(-k*CFC_tc))					
		+ Xd + (CF	C_Yc*Qs*Xs/Qd)]*(1-F	OS/100)						
	LTAMULT_cfc		(cvd^2/no_samples+1))-2.326*L	N(cvd^2/no_san	nples+1)^0.5)				
	LTA_cfc	LTA_cfc wla_cfc*LTAMULT_cfc								
	AML MULT	FXP(2 326*1	N((cvd^2/no_samples·	+1)^0 5)-0	5*I N(cvd^2/po	samples+1))				
			J,MIN(LTA_afc,LTA_c							
	INST MAX LIMIT		n_limit/AML_MULT)/LT							
			_ ·							

NPDES Permit No. PA0228869

APPENDIX D FACILITY MAP AND SCHEMATIC

