

Northcentral Regional Office CLEAN WATER PROGRAM

| Application Type | Renewal   |
|------------------|-----------|
| Facility Type    | Municipal |
| Major / Minor    | Minor     |

## NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

 Application No.
 PA0228915

 APS ID
 1013760

 Authorization ID
 1309574

#### **Applicant and Facility Information**

| Applicant Name                    | ORD S          | sewer Authority           | Facility Name    | Osceola Mills Region WWTP    |
|-----------------------------------|----------------|---------------------------|------------------|------------------------------|
| Applicant Address                 | 235 Skips Lane |                           | Facility Address | 235 Skips Lane               |
|                                   | Osceo          | a Mills, PA 16666-1753    |                  | Osceola Mills, PA 16666-1753 |
| Applicant Contact                 | Jeffrey        | Mann, Chairman            | Facility Contact | Dennis Knepp, Chief Operator |
| Applicant Phone                   | (814) 3        | 39-6504                   | Facility Phone   | (814) 339-6504               |
| Client ID                         | 240916         | 6                         | Site ID          | 654916                       |
| Ch 94 Load Status                 | Not Overloaded |                           | Municipality     | Decatur Township             |
| Connection Status                 | No Lin         | itations                  | County           | Clearfield                   |
| Date Application Recei            | ved            | March 24, 2020            | EPA Waived?      | No                           |
| Date Application Accepted April 6 |                | April 6, 2020             | If No, Reason    | Significant CB Discharge     |
| Purpose of Application            |                | Renewal of a NPDES Permit |                  |                              |

#### Summary of Review

The subject facility is a municipal sewage treatment plant serving Osceola Borough, Decatur Township, and Rush Township in Clearfield County.

#### Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

| Approve | Deny | Signatures                                                                            | Date            |
|---------|------|---------------------------------------------------------------------------------------|-----------------|
| Х       |      | Keith C. Allison<br>Keith C. Allison / Project Manager                                | August 24, 2020 |
| Х       |      | Nicholas W. Hartranft<br>Nicholas W. Hartranft, P.E. / Environmental Engineer Manager | August 25, 2020 |

| Discharge, Receivin          | ng Water  | s and Water Supply Inform | nation                       |                                          |
|------------------------------|-----------|---------------------------|------------------------------|------------------------------------------|
|                              |           |                           |                              |                                          |
| Outfall No. 001              |           |                           | Design Flow (MGD)            | 0.4                                      |
| Latitude 40°                 | 51' 16.81 | "                         | Longitude                    | -78º 15' 36.31"                          |
| Quad Name H                  | outzdale  | PA                        | Quad Code                    | 1219                                     |
| Wastewater Desci             | ription:  | Sewage Effluent           |                              |                                          |
|                              |           |                           |                              |                                          |
| <b>Receiving Waters</b>      | Mosh      | annon Creek (TSF)         | Stream Code                  | 25695                                    |
| NHD Com ID                   | 61832     | 2681                      | RMI                          | 41.67                                    |
| Drainage Area                | 70.8 r    | ni²                       | Yield (cfs/mi <sup>2</sup> ) | 0.132                                    |
|                              |           |                           |                              | Gage 01542000,<br>Moshannon Ck @ Osceola |
| Q <sub>7-10</sub> Flow (cfs) | 9.36      |                           | Q7-10 Basis                  | Mills (1942-1993)                        |
| Elevation (ft)               | 1468      |                           | Slope (ft/ft)                | 0.00341                                  |
| Watershed No.                | 8-D       |                           | Chapter 93 Class.            | TSF                                      |
| Existing Use                 | N/A       |                           | Existing Use Qualifier       | N/A                                      |
| Exceptions to Use            | None      |                           | Exceptions to Criteria       | None                                     |
| Assessment Statu             | IS        | Impaired                  |                              |                                          |
| Cause(s) of Impair           | rment     | METALS                    |                              |                                          |
| Source(s) of Impa            | irment    | ACID MINE DRAINAGE        |                              |                                          |
| TMDL Status                  |           | Final                     | Name Moshannon               | Creek Watershed                          |
|                              |           |                           |                              |                                          |
| Nearest Downstre             | am Publi  | c Water Supply Intake     | PA-American Water Company    | / @ Milton, PA                           |
| PWS Waters                   | West Br   | anch Susquehanna River    | _ Flow at Intake (cfs)       | 8,500,000                                |
| PWS RMI                      | 10.8      |                           | Distance from Outfall (mi)   | 166                                      |
|                              |           |                           |                              |                                          |

Changes Since Last Permit Issuance: The above stream and drainage characteristics were determined for the previous review in 2015 and remain adequate.

#### Other Comments:

The discharge is not expected to be a significant contributor to the impairment to Moshannon Creek. However, while it is not a specific discharger to have received a wasteload allocation in the TMDL it is recommended that monitoring be included in the NPDES permit for the metals typically associated with AMD – Aluminum, Iron, and Manganese. Annual monitoring for these three parameters will be included in the draft NPDES permit to provide data of actual contributions of these metals into the watershed from the discharge.

No downstream water supply is expected to be affected by this discharge with the limitations and monitoring proposed.

#### **Treatment Facility Summary**

| Treatment Facility Na | me: ORD Sewer Authority | STP              |                            |              |
|-----------------------|-------------------------|------------------|----------------------------|--------------|
| WQM Permit No.        | Issuance Date           |                  |                            |              |
| 1705407               | 12/5/05                 |                  |                            |              |
|                       |                         |                  |                            |              |
| · · · · ·             | Degree of               |                  |                            | Avg Annual   |
| waste Type            | Ireatment               | Process Type     | Disinfection               | Flow (MGD)   |
|                       |                         | Sequencing Batch |                            |              |
| Sewage                | Secondary               | Reactor          | Ultraviolet                | 0.4          |
|                       |                         |                  |                            |              |
|                       |                         |                  |                            |              |
| Hydraulic Capacity    | Organic Capacity        |                  |                            | Biosolids    |
| (MGD)                 | (lbs/day)               | Load Status      | <b>Biosolids Treatment</b> | Use/Disposal |
| 0.4                   | 800                     | Not Overloaded   | Centrifugation             |              |

#### Changes Since Last Permit Issuance: None

Other Comments: The treatment plant as approved by WQM Permit No. 1705407 consists of grinder, two sequencing batch reactors, ultraviolet light disinfection, sludge holding, and centrifuge. Chlorination and Dechlorination are kept as a backup.

#### Sludge/Biosolids Disposal

The facility's dewatered sludge is disposed by landfill. Per the application, approximately 28.67 dry tons of sludge were disposed in the past year.

#### Hauled in Waste

Per the application, the permittee has received no hauled-in wastes over the past three years and does not anticipate receiving any over the next permit term.

## **Compliance History**

## DMR Data for Outfall 001 (from July 1, 2019 to June 30, 2020)

| Parameter           | JUN-20 | MAY-20 | APR-20 | MAR-20 | FEB-20 | JAN-20 | DEC-19 | NOV-19 | OCT-19 | SEP-19 | AUG-19 | JUL-19 |
|---------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| Flow (MGD)          |        |        |        |        |        |        |        |        |        |        |        |        |
| Average Monthly     | 0.104  | 0.139  | 0.153  | 0.155  | 0.162  | 0.121  | 0.122  | 0.096  | 0.099  | 0.095  | 0.095  | 0.105  |
| Flow (MGD)          |        |        |        |        |        |        |        |        |        |        |        |        |
| Daily Maximum       | 0.172  | 0.289  | 0.22   | 0.405  | 0.271  | 0.178  | 0.180  | 0.175  | 0.165  | 0.191  | 0.159  | 0.178  |
| pH (S.U.)           |        |        |        |        |        |        |        |        |        |        |        |        |
| Minimum             | 6.4    | 6.4    | 6.4    | 6.2    | 6.3    | 6.5    | 6.5    | 6.8    | 6.7    | 6.5    | 6.5    | 6.6    |
| pH (S.U.)           |        |        |        |        |        |        |        |        |        |        |        |        |
| Maximum             | 7.5    | 7.3    | 7.3    | 7.7    | 7.6    | 7.7    | 7.6    | 7.7    | 7.5    | 7.5    | 7.4    | 7.4    |
| DO (mg/L)           |        |        |        |        |        |        |        |        |        |        |        |        |
| Minimum             | 4.6    | 1.9    | 2.4    | 2.8    | 4.0    | 5.1    | 4.0    | 4.1    | 4.3    | 4.1    | 4.05   | 4.7    |
| TRC (mg/L)          |        |        |        |        |        |        |        |        |        |        |        |        |
| Average Monthly     | GG     |
| TRC (mg/L)          |        |        |        |        |        |        |        |        |        |        |        |        |
| Instantaneous       |        |        |        |        |        |        |        |        |        |        |        |        |
| Maximum             | GG     |
| CBOD5 (lbs/day)     |        |        |        |        |        |        |        |        |        |        |        |        |
| Average Monthly     | 3      | 2      | 3      | 2      | < 3    | 2      | 3      | 1      | 2      | 2      | 2      | 2      |
| CBOD5 (lbs/day)     |        |        |        |        |        |        |        |        |        |        |        |        |
| Weekly Average      | 3      | 2      | 4      | 2      | 5      | 2      | 4      | 2      | 3      | 2      | 2      | 2      |
| CBOD5 (mg/L)        |        |        |        |        |        |        |        |        |        |        |        |        |
| Average Monthly     | 4      | 2      | 4      | 2      | < 2    | 2      | 3      | 2      | 3      | 2      | 2      | 2      |
| CBOD5 (mg/L)        |        | _      | _      |        | _      | _      |        |        |        | _      |        |        |
| Weekly Average      | 4      | 2      | 7      | 2      | 3      | 2      | 4      | 2      | 3      | 2      | 2.4    | 2      |
| BOD5 (lbs/day)      |        |        |        |        |        |        |        |        |        |        |        |        |
| Raw Sewage Influent |        |        |        |        |        |        |        |        |        |        |        |        |
| Average Monthly     | 248    | 260    | 220    | 250    | 303    | 270    | 277    | 251    | 244    | 391    | 222    | 248    |
| BOD5 (lbs/day)      |        |        |        |        |        |        |        |        |        |        |        |        |
| Raw Sewage Influent |        |        |        |        |        |        |        |        |        |        |        |        |
| Daily Maximum       | 316    | 328    | 335    | 297    | 391    | 293    | 379    | 290    | 277    | 791    | 267    | 357    |
| BOD5 (mg/L)         |        |        |        |        |        |        |        |        |        |        |        |        |
| Raw Sewage Influent |        | 007    | 450    | 101    | 040    | 004    |        |        | 070    | 400    | 004    | 004    |
| Average Monthly     | 288    | 237    | 153    | 194    | 219    | 231    | 222    | 303    | 278    | 468    | 224    | 234    |
| ISS (lbs/day)       | 0      | 0      | -      | 0      | •      | 0      | -      | 0      | 0      | •      | 0      |        |
| Average Monthly     | 3      | < 3    | 5      | 3      | < 3    | 3      | 5      | 3      | 3      | < 3    | 2      | 2      |
| ISS (lbs/day)       |        |        |        |        |        |        |        |        |        |        |        |        |
| Raw Sewage Influent |        | 040    |        | 050    | 070    | 007    |        | 004    | 0.40   | 007    |        |        |
| Average Monthly     | 229    | 316    | 233    | 252    | 279    | 297    | 293    | 284    | 249    | 287    | 300    | 262    |

## NPDES Permit No. PA0228915

| TSS (lbs/day)                      |      |      |      |        |      |      |       |      |      |           |      |      |
|------------------------------------|------|------|------|--------|------|------|-------|------|------|-----------|------|------|
| Raw Sewage Influent                |      |      |      |        |      |      |       |      |      |           |      |      |
| Daily Maximum                      | 286  | 514  | 332  | 289    | 343  | 362  | 475   | 427  | 300  | 402       | 503  | 399  |
| TSS (lbs/day)                      |      |      |      |        |      |      |       |      |      |           |      |      |
| Weekly Average                     | 5    | 7    | 12   | 4      | 4    | 6    | 8     | 5    | 5    | 4         | 2    | 2    |
| TSS (mg/L)                         |      |      |      |        |      |      |       |      |      |           |      |      |
| Average Monthly                    | < 4  | < 3  | 7    | 3      | < 3  | < 3  | 4     | 5    | 4    | 2         | < 3  | 2    |
| TSS (mg/L)                         |      |      |      |        |      |      |       |      |      |           |      |      |
| Raw Sewage Influent                |      |      |      |        |      |      |       |      |      |           |      |      |
| Average Monthly                    | 266  | 276  | 156  | 193    | 203  | 252  | 229   | 345  | 287  | 341       | 283  | 246  |
| TSS (mg/L)                         |      |      |      |        |      |      |       |      |      |           |      |      |
| Weekly Average                     | 8    | 6    | 20   | 4      | 4    | 5    | 6     | 7    | 3    | 3         | 4    | 3    |
| Fecal Coliform                     |      |      |      |        |      |      |       |      |      |           |      |      |
| (CFU/100 ml)                       |      |      |      |        |      |      |       |      |      |           |      |      |
| Geometric Mean                     | < 4  | < 1  | < 3  | > 27   | 39   | 9    | 3     | 11   | 3    | 10        | 32   | 7    |
| Fecal Coliform                     |      |      |      |        |      |      |       |      |      |           |      |      |
| (CFU/100 ml)                       |      |      |      |        |      |      |       |      |      |           |      |      |
| Instantaneous                      |      |      |      |        |      |      |       |      |      |           |      |      |
| Maximum                            | 26.2 | < 1  | 24.3 | 2419.8 | 187  | 23.3 | 12.0  | 51   | 15.8 | 24.3      | 165  | 24.8 |
| UV Intensity (µw/cm <sup>2</sup> ) |      |      |      |        |      |      |       |      |      |           |      |      |
| Minimum                            | 1100 | 1200 | 1300 | 1200   | 1200 | 1100 | 1600  | 1400 | 1700 | 2700      | 2700 | 2700 |
| Nitrate-Nitrite (mg/L)             |      |      |      |        |      |      |       |      |      |           |      |      |
| Average Monthly                    | 2.93 | 2.93 | 2.59 | 1.1    | 1.23 | 1.76 | 0.87  | 0.55 | 0.78 | 2.4       | 3.78 | 3.45 |
| Nitrate-Nitrite (lbs)              |      |      |      |        | . –  |      |       |      |      |           |      |      |
| Total Monthly                      | 68   | 83   | 98   | 29     | 45   | 49   | 28    | 11   | 19   | 49        | 76   | 80   |
| Total Nitrogen (mg/L)              |      |      | /    |        |      |      |       |      |      |           |      |      |
| Average Monthly                    | 6.01 | 5.52 | 5.31 | 8.73   | 8.79 | 4.59 | 2.69  | 2.58 | 4.45 | 4.96      | 6.33 | 5.35 |
| Total Nitrogen (lbs)               |      |      |      |        |      |      |       |      |      |           |      |      |
| Effluent Net Total                 | 100  | 101  | 100  |        |      | 107  |       |      | 100  | 100       | 100  | 107  |
| Monthly                            | 139  | 161  | 198  | 230    | 280  | 127  | < 84  | 52   | 122  | 100       | 130  | 125  |
| Total Nitrogen (lbs)               | 1.0  | 101  | 400  | 000    | 000  | 407  | 0.1   | 50   | 100  | 400       | 400  | 405  |
|                                    | 1.9  | 161  | 198  | 230    | 280  | 127  | < 84  | 52   | 122  | 100       | 130  | 125  |
| Ammonia (mg/L)                     | 0.95 | 0.72 | 0.69 | F 01   | 6.00 | 0.01 | 0.45  | 0.00 | 2.40 | 0.04      | 0.10 | 0.15 |
| Average Monthly                    | 0.85 | 0.73 | 0.68 | 5.31   | 6.08 | 0.81 | 0.45  | 0.33 | 2.19 | 0.24      | 0.18 | 0.15 |
| Ammonia (IDS)                      | 20   | . 00 | 24   | 140    | 100  | 22   | 10    | 7    | 74   | F         | 4    | 2    |
|                                    | 20   | < 22 | 24   | 149    | 180  | 22   | 13    | /    | 71   | 5         | 4    | 3    |
| INN (MG/L)                         | 2.09 | 2.6  | 0.70 | 7.62   | 7 56 | 2 92 | 1 0 0 | 2.02 | 2.67 | 2.52      | 2 55 | 1.0  |
|                                    | 3.08 | 2.0  | 2.12 | 1.03   | 06.1 | 2.03 | 1.02  | 2.03 | 3.07 | 2.32      | 2.00 | 1.9  |
| Total Manthly                      | 71   | 70   | 100  | 201    | 225  | 70   | FC    | 44   | 104  | <b>F1</b> | 50   | 45   |
|                                    | / 1  | 10   | 100  | 201    | 230  | 19   | 00    | 41   | 104  | 51        | 53   | 40   |
|                                    |      |      |      |        |      |      |       |      |      |           |      |      |
| (IIIg/L)                           | 2.26 | 2.49 | 0.66 | 1.06   | 1 70 | 2.20 | 1 01  | 2    | 2.26 | 2.22      | 4.07 | 27   |
| Average monthly                    | 3.30 | ∠.4ŏ | 0.00 | 1.06   | 1.72 | ۲.۷۵ | 1.91  | 2    | 2.20 | J.ZJ      | 4.27 | ۷.۱  |

## NPDES Permit No. PA0228915

| Total Phosphorus (lbs) |    |    |    |    |    |    |    |    |    |    |    |    |
|------------------------|----|----|----|----|----|----|----|----|----|----|----|----|
| Effluent Net Total     |    |    |    |    |    |    |    |    |    |    |    |    |
| Monthly                | 78 | 69 | 23 | 24 | 55 | 63 | 61 | 41 | 60 | 64 | 88 | 62 |
| Total Phosphorus (lbs) |    |    |    |    |    |    |    |    |    |    |    |    |
| Total Monthly          | 78 | 69 | 23 | 24 | 55 | 63 | 61 | 41 | 60 | 64 | 88 | 62 |

| Compliance History, Cont'd |                                                                                                                                                                                                                 |  |  |  |  |  |  |  |  |
|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
|                            |                                                                                                                                                                                                                 |  |  |  |  |  |  |  |  |
| Summary of Inspections     | The facility has been inspected at least annually by the Department over the past term. The most recent full inspection of the facility on October 30, 2019 identified no violations at the time of inspection. |  |  |  |  |  |  |  |  |
| Other Comments:            | A query in WMS found no open violations in eFACTS for ORD Sewer Authority.                                                                                                                                      |  |  |  |  |  |  |  |  |

|                                               |                                     |                   |         | Monitoring Re      | quirements             |                     |                          |                   |  |  |
|-----------------------------------------------|-------------------------------------|-------------------|---------|--------------------|------------------------|---------------------|--------------------------|-------------------|--|--|
| Paramotor                                     | Mass Units (Ibs/day) <sup>(1)</sup> |                   |         | Concentrati        | Minimum <sup>(2)</sup> | Required            |                          |                   |  |  |
| Farameter                                     | Average<br>Monthly                  | Weekly<br>Average | Minimum | Average<br>Monthly | Weekly<br>Average      | Instant.<br>Maximum | Measurement<br>Frequency | Sample<br>Type    |  |  |
| Flow (MGD)                                    | Report                              | Report            | XXX     | XXX                | XXX                    | XXX                 | Continuous               | Metered           |  |  |
| pH (S.U.)                                     | ххх                                 | XXX               | 6.0     | ххх                | XXX                    | 9.0                 | 1/day                    | Grab              |  |  |
| Dissolved Oxygen                              | XXX                                 | XXX               | Report  | xxx                | XXX                    | ХХХ                 | 1/day                    | Grab              |  |  |
| Total Residual Chlorine                       | ххх                                 | XXX               | XXX     | 0.5                | XXX                    | 1.6                 | 1/day                    | Grab              |  |  |
| CBOD5                                         | 83                                  | 133<br>Wkly Avg   | xxx     | 25                 | 40                     | 50                  | 1/week                   | 8-Hr<br>Composite |  |  |
| BOD5<br>Raw Sewage Influent                   | Report                              | Report            | xxx     | Report             | XXX                    | xxx                 | 1/week                   | 8-Hr<br>Composite |  |  |
| Total Suspended Solids                        | 100                                 | 150<br>Wkly Avg   | XXX     | 30                 | 45                     | 60                  | 1/week                   | 8-Hr<br>Composite |  |  |
| Total Suspended Solids<br>Raw Sewage Influent | Report                              | Report            | XXX     | Report             | XXX                    | xxx                 | 1/week                   | 8-Hr<br>Composite |  |  |
| Fecal Coliform (CFU/100 ml)<br>May 1 - Sep 30 | XXX                                 | XXX               | xxx     | 200<br>Geo Mean    | XXX                    | 1,000               | 1/week                   | Grab              |  |  |
| Flow (MGD)                                    | Report                              | Report            | XXX     | XXX                | XXX                    | ХХХ                 | Continuous               | Metered           |  |  |
| pH (S.U.)                                     | xxx                                 | xxx               | 6.0     | xxx                | XXX                    | 9.0                 | 1/day                    | Grab              |  |  |
| Dissolved Oxygen                              | xxx                                 | xxx               | Report  | xxx                | XXX                    | xxx                 | 1/day                    | Grab              |  |  |
| Total Residual Chlorine                       | XXX                                 | XXX               | XXX     | 0.5                | XXX                    | 1.6                 | 1/day                    | Grab              |  |  |

## **Existing Effluent Limitations and Monitoring Requirements**

| Existing Effluent Limitations and Monitoring Requirements – Chesapeake Bay Requirements |            |                          |                         |            |              |          |                        |             |  |  |
|-----------------------------------------------------------------------------------------|------------|--------------------------|-------------------------|------------|--------------|----------|------------------------|-------------|--|--|
|                                                                                         |            |                          | Monitoring Requirements |            |              |          |                        |             |  |  |
| Parameter                                                                               | Mass Units | (lbs/day) <sup>(1)</sup> |                         | Concentrat | tions (mg/L) |          | Minimum <sup>(2)</sup> | Required    |  |  |
| Faiametei                                                                               |            |                          |                         | Monthly    |              | Instant. | Measurement            | Sample      |  |  |
|                                                                                         | Monthly    | Annual                   | Monthly                 | Average    | Maximum      | Maximum  | Frequency              | Туре        |  |  |
|                                                                                         |            |                          |                         |            |              |          |                        | 8-Hr        |  |  |
| AmmoniaN                                                                                | Report     | Report                   | XXX                     | Report     | XXX          | XXX      | 2/week                 | Composite   |  |  |
|                                                                                         |            |                          |                         |            |              |          |                        | 8-Hr        |  |  |
| KjeldahlN                                                                               | Report     | XXX                      | XXX                     | Report     | XXX          | XXX      | 2/week                 | Composite   |  |  |
|                                                                                         |            |                          |                         |            |              |          |                        | 8-Hr        |  |  |
| Nitrate-Nitrite as N                                                                    | Report     | XXX                      | XXX                     | Report     | XXX          | XXX      | 2/week                 | Composite   |  |  |
|                                                                                         |            |                          |                         |            |              |          |                        |             |  |  |
| Total Nitrogen                                                                          | Report     | Report                   | XXX                     | Report     | XXX          | XXX      | 1/month                | Calculation |  |  |
|                                                                                         |            |                          |                         |            |              |          |                        | 8-Hr        |  |  |
| Total Phosphorus                                                                        | Report     | Report                   | XXX                     | Report     | XXX          | XXX      | 2/week                 | Composite   |  |  |
|                                                                                         |            |                          |                         |            |              |          |                        |             |  |  |
| Net Total Nitrogen                                                                      | Report     | 9,748                    | XXX                     | XXX        | XX           | XXX      | 1/month                | Calculation |  |  |
| Net Total Phosphorus                                                                    | Report     | 1,218                    | XXX                     | XXX        | XXX          | XXX      | 1/month                | Calculation |  |  |

#### **Development of Effluent Limitations**

| Outfall No.   | 001           |                 | Design Flow (MGD) | 0.4             |
|---------------|---------------|-----------------|-------------------|-----------------|
| Latitude      | 40° 51' 17.80 | 1               | Longitude         | -78º 15' 36.50" |
| Wastewater De | scription:    | Sewage Effluent |                   |                 |

#### **Technology-Based Limitations**

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

| Pollutant               | Limit (mg/l)    | SBC             | Federal Regulation | State Regulation |
|-------------------------|-----------------|-----------------|--------------------|------------------|
|                         | 25              | Average Monthly | 133.102(a)(4)(i)   | 92a.47(a)(1)     |
| CBOD5                   | 40              | Average Weekly  | 133.102(a)(4)(ii)  | 92a.47(a)(2)     |
|                         | 30              | Average Monthly | 133.102(b)(1)      | 92a.47(a)(1)     |
| Total Suspended Solids  | 45              | Average Weekly  | 133.102(b)(2)      | 92a.47(a)(2)     |
| рН                      | 6.0 – 9.0 S.U.  | Min – Max       | 133.102(c)         | 95.2(1)          |
| Fecal Coliform          |                 |                 |                    |                  |
| (5/1 – 9/30)            | 200 / 100 ml    | Geo Mean        | -                  | 92a.47(a)(4)     |
| Fecal Coliform          |                 |                 |                    |                  |
| (5/1 – 9/30)            | 1,000 / 100 ml  | IMAX            | -                  | 92a.47(a)(4)     |
| Fecal Coliform          |                 |                 |                    |                  |
| (10/1 – 4/30)           | 2,000 / 100 ml  | Geo Mean        | -                  | 92a.47(a)(5)     |
| Fecal Coliform          |                 |                 |                    |                  |
| (10/1 – 4/30)           | 10,000 / 100 ml | IMAX            | -                  | 92a.47(a)(5)     |
| Total Residual Chlorine | 0.5             | Average Monthly | -                  | 92a.48(b)(2)     |

Comments: The above limits are applicable and already included in the existing permit.

#### Water Quality-Based Limitations

#### DO, CBOD5 and NH3-N

The Department uses the WQM7.0 model to evaluate point source discharges of dissolved oxygen (DO), carbonaceous BOD (CBOD<sub>5</sub>), and ammonia-nitrogen (NH<sub>3</sub>-N) into free-flowing streams and rivers. To accomplish this, the model simulates two basic processes: the mixing and degradation of NH<sub>3</sub>-N in the stream and the mixing and consumption of DO in the stream due to the degradation of CBOD<sub>5</sub> and NH<sub>3</sub>-N. WQM7.0 modeling was performed for the previous review (see Attachment C) of the discharge to Moshannon Creek and showed that no limitations are necessary beyond the technology-based secondary treatment limits listed above. Due to occasional levels of DO below the typical assumed value of 3.0 mg/L as seen in the data on page 4 an effluent DO of 2.0 mg/L was used in the attached modeling run for verification of instream protection.

#### **Total Residual Chlorine**

Although the facility typically uses ultraviolet light disinfection, the permittee also keeps chlorine as a backup. Therefore, the existing permit contains TRC monitoring with the BAT limit of 0.5. The attached modeling shows that the existing limit is adequate to protect the receiving stream.

#### Water Quality Toxics Management

No additional "Reasonable Potential Analysis" was performed to determine additional toxic parameters as potential candidates for limitations or monitoring for the minor wastewater treatment plant discharge with no significant industrial users.

#### Chesapeake Bay/Nutrient Requirements

A portion of the Chesapeake Bay and many of its tidal tributaries have been listed as impaired under Section 303(d) of the Water Pollution Control Act, 33 U.S.C. §1313(d). Total Nitrogen and Total Phosphorus cap loads have been established for significant dischargers in Pennsylvania in order to reduce the total nutrient load to the Bay and meet State of Maryland Water Quality Standards. As a 0.4 MGD facility, ORD Sewer Authority treatment facility is considered a Phase 3, Significant Chesapeake Bay discharger. Nutrient cap loadings have previously been established for this facility consistent with the Phase III Watershed Implementation Plan.

The discharge's cap loadings as well as the actual Total Nitrogen and Total Phosphorus loadings for the past two cycle years are listed in the table below.

| Nutrient                         | Total Nitrogen | Total Phosphorus |
|----------------------------------|----------------|------------------|
| Nutrient Cap Loads for PA0114821 | 9,748          | 1,218            |
| 10/1/18 – 9/30/19 Total Loadings | <2,205         | 825              |
| 10/1/17 – 9/30/18 Total Loadings | 2,752          | 976              |

## Moshannon Creek TMDL

As mentioned above, due to the impairment in Moshannon Creek the discharge will receive monitoring for Total Aluminum, Total Iron, and Total Manganese to determine actual loading from the discharge to the Moshannon Creek Watershed. Annual monitoring will be adequate.

## Anti-Backsliding

No proposed limitations were made less stringent consistent with the anti-degradation requirements of the Clean Water Act and 40 CFR 122.44(I).

### **Proposed Effluent Limitations and Monitoring Requirements**

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

|                               |            |                            | Effluent L | imitations |              |          | Monitoring Re          | quirements |
|-------------------------------|------------|----------------------------|------------|------------|--------------|----------|------------------------|------------|
| Desemptor                     | Mass Units | s (lbs/day) <sup>(1)</sup> |            | Concentrat | tions (mg/L) |          | Minimum <sup>(2)</sup> | Required   |
| Parameter                     | Average    | Weekly                     |            | Average    | Weekly       | Instant. | Measurement            | Sample     |
|                               | Monthly    | Average                    | Minimum    | Monthly    | Average      | Maximum  | Frequency              | Туре       |
|                               |            | Report                     |            |            |              |          |                        |            |
| Flow (MGD)                    | Report     | Daily Max                  | XXX        | XXX        | XXX          | XXX      | Continuous             | Metered    |
|                               |            |                            |            |            | 9.0          |          |                        |            |
| pH (S.U.)                     | XXX        | XXX                        | 6.0        | XXX        | Max          | XXX      | 1/day                  | Grab       |
| Dissolved Oxygen              | XXX        | XXX                        | Report     | XXX        | XXX          | XXX      | 1/day                  | Grab       |
| Total Residual Chlorine (TRC) | XXX        | xxx                        | XXX        | 0.5        | xxx          | 16       | 1/day                  | Grab       |
| Carbonaceous Biochemical      | 7000       | 7007                       | 7000       | 0.0        | 7007         | 1.0      | 17 day                 | 8-Hr       |
| Oxygen Demand (CBOD5)         | 83         | 133                        | XXX        | 25         | 40           | 50       | 1/week                 | Composite  |
| Biochemical Oxygen Demand     |            |                            |            |            |              |          |                        |            |
| (BOD5)                        |            | Report                     |            |            |              |          |                        | 8-Hr       |
| Raw Sewage Influent           | Report     | Daily Max                  | XXX        | Report     | XXX          | XXX      | 1/week                 | Composite  |
|                               |            |                            |            |            |              |          |                        | 8-Hr       |
| Total Suspended Solids        | 100        | 150                        | XXX        | 30         | 45           | 60       | 1/week                 | Composite  |
| Total Suspended Solids        |            | Report                     |            |            |              |          |                        | 8-Hr       |
| Raw Sewage Influent           | Report     | Daily Max                  | XXX        | Report     | XXX          | XXX      | 1/week                 | Composite  |
| Fecal Coliform (CFU/100 ml)   |            |                            |            | 2000       |              |          |                        |            |
| Oct 1 - Apr 30                | XXX        | XXX                        | XXX        | Geo Mean   | XXX          | 10000    | 1/week                 | Grab       |
| Fecal Coliform (CFU/100 ml)   |            |                            |            | 200        |              |          |                        |            |
| May 1 - Sep 30                | XXX        | XXX                        | XXX        | Geo Mean   | XXX          | 1000     | 1/week                 | Grab       |
| Ultraviolet light intensity   |            |                            |            |            |              |          |                        |            |
| (µw/cm²)                      | XXX        | XXX                        | Report     | XXX        | XXX          | XXX      | 1/day                  | Metered    |
|                               |            |                            |            |            |              |          |                        | 8-Hr       |
| Ammonia-Nitrogen              | XXX        | XXX                        | XXX        | Report     | XXX          | XXX      | 2/week                 | Composite  |
|                               |            | Report                     |            |            | Report       |          |                        | 8-Hr       |
| Total Aluminum                | XXX        | Daily Max                  | XXX        | XXX        | Daily Max    | XXX      | 1/year                 | Composite  |
|                               |            | Report                     |            |            | Report       |          |                        | 8-Hr       |
| I otal Iron                   | XXX        | Daily Max                  | XXX        | XXX        | Daily Max    | XXX      | 1/year                 | Composite  |
|                               |            | Report                     |            |            | Report       |          |                        | 8-Hr       |
| Total Manganese               | XXX        | Daily Max                  | XXX        | XXX        | Daily Max    | XXX      | 1/year                 | Composite  |

## Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

## NPDES Permit No. PA0228915

Compliance Sampling Location: Outfall 001

Other Comments: The above limitations and monitoring are unchanged from the existing permit except for the addition of annual Aluminum, Iron, and Manganese monitoring as mentioned above.

#### **Proposed Effluent Limitations and Monitoring Requirements**

The limitations and monitoring requirements specified below are proposed for the draft permit, to comply with Pennsylvania's Chesapeake Bay Tributary Strategy.

## Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

|                      |            |                          | Effluent L | imitations         |              |                     | Monitoring Re            | quirements     |
|----------------------|------------|--------------------------|------------|--------------------|--------------|---------------------|--------------------------|----------------|
| Baramotor            | Mass Units | (lbs/day) <sup>(1)</sup> |            | Concentrat         | tions (mg/L) |                     | Minimum <sup>(2)</sup>   | Required       |
| Farameter            | Monthly    | Annual                   | Monthly    | Monthly<br>Average | Maximum      | Instant.<br>Maximum | Measurement<br>Frequency | Sample<br>Type |
|                      |            |                          |            |                    |              |                     |                          | 8-Hr           |
| AmmoniaN             | Report     | Report                   | XXX        | Report             | XXX          | XXX                 | 2/week                   | Composite      |
|                      |            |                          |            |                    |              |                     |                          | 8-Hr           |
| KjeldahlN            | Report     | XXX                      | XXX        | Report             | XXX          | XXX                 | 2/week                   | Composite      |
|                      |            |                          |            |                    |              |                     |                          | 8-Hr           |
| Nitrate-Nitrite as N | Report     | XXX                      | XXX        | Report             | XXX          | XXX                 | 2/week                   | Composite      |
| Total Nitrogen       | Report     | Report                   | xxx        | Report             | xxx          | xxx                 | 1/month                  | Calculation    |
|                      |            |                          | 7000       |                    | 7001         | 7000                | .,                       | 8-Hr           |
| Total Phosphorus     | Report     | Report                   | XXX        | Report             | XXX          | XXX                 | 2/week                   | Composite      |
| Net Total Nitrogen   | XXX        | 9748                     | xxx        | xxx                | xxx          | xxx                 | 1/year                   | Calculation    |
| Net Total Phosphorus | XXX        | 1218                     | xxx        | xxx                | xxx          | xxx                 | 1/year                   | Calculation    |

Compliance Sampling Location: Outfall 001

These requirements are unchanged from the existing permit except for the removal of monthly net Total Nitrogen and net Total Phosphorus consistent with current Chesapeake Bay monitoring requirements and the Phase III WIP.

|             | Tools and References Used to Develop Permit                                                                                                                                                                        |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\square$   | WQM for Windows Model (see Attachment <b>B</b> )                                                                                                                                                                   |
|             | PENTOXSD for Windows Model (see Attachment                                                                                                                                                                         |
| $\boxtimes$ | TRC Model Spreadsheet (see Attachment C)                                                                                                                                                                           |
|             | Temperature Model Spreadsheet (see Attachment                                                                                                                                                                      |
|             | Toxics Screening Analysis Spreadsheet (see Attachment )                                                                                                                                                            |
|             | Water Quality Toxics Management Strategy, 361-0100-003, 4/06.                                                                                                                                                      |
|             | Technical Guidance for the Development and Specification of Effluent Limitations, 362-0400-001, 10/97.                                                                                                             |
|             | Policy for Permitting Surface Water Diversions, 362-2000-003, 3/98.                                                                                                                                                |
|             | Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 362-2000-008, 11/96.                                                                                                                  |
|             | Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97.                                                                                                                       |
|             | Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 362-2183-004, 12/97.                                                                                                      |
|             | Pennsylvania CSO Policy, 385-2000-011, 9/08.                                                                                                                                                                       |
|             | Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.                                                                                                                                        |
|             | Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 391-2000-<br>002, 4/97.                                                                                       |
|             | Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97.                                                                                                                                              |
| $\square$   | Implementation Guidance Design Conditions, 391-2000-006, 9/97.                                                                                                                                                     |
| $\boxtimes$ | Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004.                                                    |
|             | Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 391-2000-008, 10/1997.                                                                             |
|             | Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 391-2000-010, 3/99.                                                                   |
|             | Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 391-2000-011, 5/2004.                                                              |
| $\boxtimes$ | Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97.                                                                                                                                    |
|             | Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 391-2000-014, 4/2008.                                             |
| $\square$   | Implementation Guidance Total Residual Chlorine (TRC) Regulation, 391-2000-015, 11/1994.                                                                                                                           |
|             | Implementation Guidance for Temperature Criteria, 391-2000-017, 4/09.                                                                                                                                              |
|             | Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/97.                                                                                                       |
|             | Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97.       |
|             | Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 391-2000-021, 3/99.                                                                               |
|             | Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/1999. |
| $\square$   | Design Stream Flows, 391-2000-023, 9/98.                                                                                                                                                                           |
|             | Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 391-2000-024, 10/98.                                     |
|             | Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97.                                                                                                                         |
|             | Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.                                                                                                                   |
|             | SOP: Establishing Effluent Limitations for Individual Sewage Permits, rev. 8/23/13                                                                                                                                 |
|             | Other:                                                                                                                                                                                                             |

Attachments:

A. Discharge Location MapB. WQM7.0 Model

C. TRC Model





## Input Data WQM 7.0

|                          | SWI<br>Basi | P Strea<br>in Cod    | m<br>e               | Stre                    | am Name                 |                                     | RMI                               | Ele                          | vation<br>(ft)               | Drainage<br>Area<br>(sq mi) | e Sko<br>(ft         | ope<br>V/ft)     | PWS<br>Vithdrawal<br>(mgd) | Apply<br>FC |
|--------------------------|-------------|----------------------|----------------------|-------------------------|-------------------------|-------------------------------------|-----------------------------------|------------------------------|------------------------------|-----------------------------|----------------------|------------------|----------------------------|-------------|
|                          | 08D         | 256                  | 95 MOSH              | ANNON (                 | CREEK                   |                                     | 41.67                             | 70                           | 1468.00                      | 70.                         | 80 0.0               | 0000             | 0.00                       | ✓           |
|                          |             |                      |                      |                         | St                      | ream Dat                            | a                                 |                              |                              |                             |                      |                  |                            |             |
| Design                   | LFY         | Trib<br>Flow         | Stream<br>Flow       | Rch<br>Trav<br>Time     | Rch<br>Velocity         | WD<br>Ratio                         | Rch<br>Width                      | Rch<br>Depth                 | Tem                          | Tributary                   | Н                    | <u>S</u><br>Temp | tream<br>pH                |             |
| Cond.                    | (cfsm)      | (cfs)                | (cfs)                | (days)                  | (fps)                   |                                     | (ft)                              | (ft)                         | (°C                          | )                           |                      | (°C)             |                            |             |
| Q7-10<br>Q1-10<br>Q30-10 | 0.132       | 0.00<br>0.00<br>0.00 | 0.00<br>0.00<br>0.00 | 0.000<br>0.000<br>0.000 | 0.000<br>0.000<br>0.000 | 0.0                                 | 0.00                              | 0.0                          | 00 2                         | 0.00                        | 7.00                 | 0.0              | 0.00                       | )           |
|                          |             |                      |                      |                         | D                       | ischarge                            | Data                              |                              |                              |                             |                      |                  |                            |             |
|                          |             |                      | Name                 | Per                     | mit Numbe               | Existing<br>Disc<br>r Flow<br>(mgd) | Permitte<br>Disc<br>Flow<br>(mgd) | ed Desi<br>Dis<br>Flo<br>(mg | ign<br>ic Res<br>w Fa<br>gd) | erve 1<br>ctor              | Disc<br>Temp<br>(°C) | Disc<br>pH       |                            |             |
|                          |             | ORD                  | Sewer Aut            | n PAO                   | 228915                  | 0.400                               | 0 0.000                           | 0.0 0.0                      | 0000                         | 0.000                       | 25.00                | ) 7.             | .00                        |             |
|                          |             |                      |                      |                         | P                       | arameter                            | Data                              |                              |                              |                             |                      |                  |                            |             |
|                          |             |                      | F                    | arameter                | r Name                  | Di<br>C                             | isc 1<br>onc C                    | Trib<br>Conc                 | Stream<br>Conc               | Fate<br>Coef                |                      |                  |                            |             |
|                          |             |                      |                      |                         |                         | (m                                  | )g/L) (n                          | ng/L)                        | (mg/L)                       | (1/days)                    |                      |                  |                            |             |
|                          |             |                      | CBOD5                |                         |                         |                                     | 25.00                             | 2.00                         | 0.00                         | 1.50                        | 0                    |                  |                            |             |
|                          |             |                      | Dissolved            | Oxygen                  |                         |                                     | 2.00                              | 8.24                         | 0.00                         | 0.00                        | 0                    |                  |                            |             |
|                          |             |                      | NH3-N                |                         |                         |                                     | 25.00                             | 0.00                         | 0.00                         | 0.70                        | )                    |                  |                            |             |

| Innut | Data | MOM    | 70  |
|-------|------|--------|-----|
| mput  | Dala | AA COM | 1.0 |

|                          | SWP<br>Basir | o Strea<br>n Cod     | im<br>le             | Stre                    | am Name                 |                                     | RMI                              | Ele                  | evation<br>(ft)               | Drainage<br>Area<br>(sq mi) | Slop<br>(ft/ft) | e Pl<br>With<br>) (n | WS<br>drawal<br>1gd) | Apply<br>FC |
|--------------------------|--------------|----------------------|----------------------|-------------------------|-------------------------|-------------------------------------|----------------------------------|----------------------|-------------------------------|-----------------------------|-----------------|----------------------|----------------------|-------------|
|                          | 08D          | 256                  | 95 MOSH              | ANNON                   | CREEK                   |                                     | 40.6                             | 70                   | 1450.00                       | 73.0                        | 0.000           | 000                  | 0.00                 | ~           |
|                          |              |                      |                      |                         | St                      | ream Dat                            | ta                               |                      |                               |                             |                 |                      |                      |             |
| Design                   | LFY          | Trib<br>Flow         | Stream<br>Flow       | Rch<br>Trav<br>Time     | Rch<br>Velocity         | WD<br>Ratio                         | Rch<br>Width                     | Rch<br>Depth         | Tem                           | <u>Tributary</u><br>1p pH   | 1               | <u>Strea</u><br>Temp | m<br>pH              |             |
| Cond.                    | (cfsm)       | (cfs)                | (cfs)                | (days)                  | (fps)                   |                                     | (ft)                             | (ft)                 | (°C                           | )                           |                 | (°C)                 |                      |             |
| Q7-10<br>Q1-10<br>Q30-10 | 0.132        | 0.00<br>0.00<br>0.00 | 0.00<br>0.00<br>0.00 | 0.000<br>0.000<br>0.000 | 0.000<br>0.000<br>0.000 | 0.0                                 | 0.00                             | 0.0                  | 00 2                          | 0.00 7                      | .00             | 0.00                 | 0.00                 |             |
|                          |              |                      |                      |                         | D                       | ischarge                            | Data                             |                      |                               |                             |                 |                      | 7                    |             |
|                          |              |                      | Name                 | Per                     | mit Numbe               | Existing<br>Disc<br>r Flow<br>(mgd) | Permitt<br>Disc<br>Flow<br>(mgd) | ed Des<br>Dis<br>Flo | ign<br>sc Res<br>ow Fa<br>gd) | D<br>erve Te<br>ctor<br>(°  | isc<br>mp<br>C) | Disc<br>pH           |                      |             |
|                          |              |                      |                      |                         |                         | 0.000                               | 0 0.000                          | 0.0 0.0              | 0000                          | 0.000                       | 25.00           | 7.00                 |                      |             |
|                          |              |                      |                      |                         | P                       | arameter                            | Data                             |                      |                               |                             |                 |                      |                      |             |
|                          |              |                      | ,                    | Paramete                | r Name                  | D                                   | isc 1<br>onc 0                   | Trib<br>Conc         | Stream<br>Conc                | Fate<br>Coef                |                 |                      |                      |             |
|                          |              |                      |                      |                         |                         | (m                                  | ng/L) (n                         | ng/L)                | (mg/L)                        | (1/days)                    |                 |                      |                      |             |
|                          |              |                      | CBOD5                |                         |                         |                                     | 25.00                            | 2.00                 | 0.00                          | 1.50                        |                 |                      |                      |             |
|                          |              |                      | Dissolved            | Oxygen                  |                         |                                     | 3.00                             | 8.24                 | 0.00                          | 0.00                        |                 |                      |                      |             |
|                          |              |                      | NH3-N                |                         |                         |                                     | 25.00                            | 0.00                 | 0.00                          | 0.70                        |                 |                      |                      |             |

# WQM 7.0 Modeling Specifications

| Parameters         | Both   | Use Inputted Q1-10 and Q30-10 Flows | ~        |
|--------------------|--------|-------------------------------------|----------|
| WLA Method         | EMPR   | Use Inputted W/D Ratio              |          |
| Q1-10/Q7-10 Ratio  | 0.64   | Use Inputted Reach Travel Times     |          |
| Q30-10/Q7-10 Ratio | 1.36   | Temperature Adjust Kr               | <b>v</b> |
| D.O. Saturation    | 90.00% | Use Balanced Technology             | <b>v</b> |
| D.O. Goal          | 6      |                                     |          |

|        |                |             | WQI           | VI 7.0                   | Hydr           | odyn  | amic  | Out          | outs     |                       |                  |                |
|--------|----------------|-------------|---------------|--------------------------|----------------|-------|-------|--------------|----------|-----------------------|------------------|----------------|
|        | SW             | P Basin     | Strea         | am Code                  |                |       |       | Stream       | Name     |                       |                  |                |
|        |                | 08D         | 2             | 5695                     |                |       | MOS   | HANNO        | N CREEK  | C                     |                  |                |
| RMI    | Stream<br>Flow | PWS<br>With | Net<br>Stream | Disc<br>Analysis<br>Elow | Reach<br>Slope | Depth | Width | W/D<br>Ratio | Velocity | Reach<br>Trav<br>Time | Analysis<br>Temp | Analysis<br>pH |
|        | (cfs)          | (cfs)       | (cfs)         | (cfs)                    | (ft/ft)        | (ft)  | (ft)  |              | (fps)    | (days)                | (°C)             |                |
| Q7-1   | ) Flow         |             |               |                          |                |       |       |              |          |                       |                  |                |
| 41.670 | 9.35           | 0.00        | 9.35          | .6188                    | 0.00341        | .752  | 45.84 | 60.91        | 0.29     | 0.212                 | 20.31            | 7.00           |
| Q1-1   | ) Flow         |             |               |                          |                |       |       |              |          |                       |                  |                |
| 41.670 | 5.98           | 0.00        | 5.98          | .6188                    | 0.00341        | NA    | NA    | NA           | 0.23     | 0.266                 | 20.47            | 7.00           |
| Q30-1  | 10 Flow        | ,           |               |                          |                |       |       |              |          |                       |                  |                |
| 41.670 | 12.71          | 0.00        | 12.71         | .6188                    | 0.00341        | NA    | NA    | NA           | 0.34     | 0.180                 | 20.23            | 7.00           |

#### MOM 7.0 Hydrody

| <u>SWP Basin</u><br>08D          | Stream Code<br>25695     |                             | мо              | Stream Name<br>SHANNON CR | EEK      |                      |
|----------------------------------|--------------------------|-----------------------------|-----------------|---------------------------|----------|----------------------|
| RMI<br>41.670                    | Total Discharge<br>0.40  | Flow (mgd                   | ) Ana           | lysis Temperatu<br>20.311 | ire (°C) | Analysis pH<br>7.000 |
| Reach Width (ft)                 | Reach De                 | epth (ft)                   |                 | Reach WDRat               | io       | Reach Velocity (fps) |
| 45.837                           | 0.75                     | 2                           |                 | 60.914                    | _        | 0.289                |
| Reach CBOD5 (mg/L)               | Reach Kc                 | (1/days)                    | R               | each NH3-N (m             | g/L)     | Reach Kn (1/days)    |
| 3.43                             | 0.62                     | 0                           |                 | 1.55                      |          | 0.717                |
| Reach DO (mg/L)                  | Reach Kr (               | 1/days)                     |                 | Kr Equation               |          | Reach DO Goal (mg/L) |
| 7.855                            | 9.42                     | 7                           |                 | Tsivoglou                 |          | 6                    |
| Reach Travel Time (days<br>0.212 | i)<br>TravTime<br>(days) | Subreach<br>CBOD5<br>(mg/L) | NH3-N<br>(mg/L) | D.O.<br>(mg/L)            |          |                      |
|                                  | 0.021                    | 3.38                        | 1.53            | 7.92                      |          |                      |
|                                  | 0.042                    | 3.34                        | 1.51            | 7.98                      |          |                      |
|                                  | 0.063                    | 3.29                        | 1.48            | 8.03                      |          |                      |
|                                  | 0.085                    | 3.25                        | 1.46            | 8.07                      |          |                      |
|                                  | 0.106                    | 3.21                        | 1.44            | 8.11                      |          |                      |
|                                  | 0.127                    | 3.17                        | 1.42            | 8.14                      |          |                      |
|                                  | 0.148                    | 3.12                        | 1.40            | 8.17                      |          |                      |
|                                  | 0.169                    | 3.08                        | 1.38            | 8.20                      |          |                      |
|                                  | 0.190                    | 3.04                        | 1.35            | 8.20                      |          |                      |
|                                  | 0.212                    | 3.00                        | 1.33            | 8.20                      |          |                      |

## WQM 7.0 D.O.Simulation

|                        | 08D                                       | Strea<br>2            | am Code<br>5695                                |                                 | St<br>MOSH                              | ream Name<br>ANNON CREE         | EK                     |                           |
|------------------------|-------------------------------------------|-----------------------|------------------------------------------------|---------------------------------|-----------------------------------------|---------------------------------|------------------------|---------------------------|
| H3-N /                 | Acute Alloc                               | ation                 | s                                              |                                 |                                         |                                 |                        |                           |
| RMI                    | Discharge                                 | Name                  | Baseline<br>Criterion<br>(mg/L)                | Baseline<br>WLA<br>(mg/L)       | Multiple<br>Criterion<br>(mg/L)         | Multiple<br>WLA<br>(mg/L)       | Critical<br>Reach      | Percent<br>Reduction      |
|                        |                                           |                       | 0.00                                           |                                 |                                         |                                 |                        |                           |
| 41.67                  | 0 ORD Sewer                               | Auth                  | 9.35                                           | 50                              | 9.35                                    | 50                              | 0                      | 0                         |
| 41.67<br>H3-N (<br>RMI | 0 ORD Sewer<br>Chronic All<br>Discharge N | Auth<br>ocatio<br>ame | 9.35<br>ons<br>Baseline<br>Criterion<br>(mg/L) | 50<br>Baseline<br>WLA<br>(mg/L) | 9.35<br>Multiple<br>Criterion<br>(mg/L) | 50<br>Multiple<br>WLA<br>(mg/L) | 0<br>Critical<br>Reach | 0<br>Percent<br>Reduction |

## WQM 7.0 Wasteload Allocations

 RMI
 Discharge Name
 Baseline (mg/L)
 Multiple (mg/L)
 Multiple (mg/L)
 Baseline (mg/L)
 Multiple (mg/L)
 Baseline (mg/L)
 Multiple (mg

|        | <u>SWP Basin</u> Stream<br>08D 250 | Stream Code<br>25695 |                       | Stream Name<br>MOSHANNON CREEK |                                      |                                  |                                  |
|--------|------------------------------------|----------------------|-----------------------|--------------------------------|--------------------------------------|----------------------------------|----------------------------------|
| RMI    | Name                               | Permit<br>Number     | Disc<br>Flow<br>(mgd) | Parameter                      | Effl. Limit<br>30-day Ave.<br>(mg/L) | Effl. Limit<br>Maximum<br>(mg/L) | Effl. Limit<br>Minimum<br>(mg/L) |
| 41.670 | ORD Sewer Auth                     | PA0228915            | 0.400                 | CBOD5                          | 25                                   |                                  |                                  |
|        |                                    |                      |                       | NH3-N                          | 25                                   | 50                               |                                  |
|        |                                    |                      |                       | Dissolved Oxygen               |                                      |                                  | 2                                |

## WQM 7.0 Effluent Limits

| TRC EVALUATION                                           |                                                                         |                      |                   |                                      |                 |       |  |  |  |  |  |  |
|----------------------------------------------------------|-------------------------------------------------------------------------|----------------------|-------------------|--------------------------------------|-----------------|-------|--|--|--|--|--|--|
| Client                                                   | Client                                                                  |                      |                   |                                      |                 |       |  |  |  |  |  |  |
| 9.36                                                     | = Q stream (cfs                                                         | s)                   | 0.5               | = CV Daily                           |                 |       |  |  |  |  |  |  |
| 0.4                                                      | = Q discharge                                                           | (MGD)                | 0.5               | = CV Hourly                          |                 |       |  |  |  |  |  |  |
| 30                                                       | = no. samples                                                           |                      | 0.972             | = AFC_Partial Mix Factor             |                 |       |  |  |  |  |  |  |
| 0.3 = Chlorine D                                         |                                                                         | mand of Stream       | 1                 | = CFC_Partial Mix Factor             |                 |       |  |  |  |  |  |  |
| 0 = Chlorine Demand of Discha                            |                                                                         |                      | 15                | = AFC_Criteria Compliance Time (min) |                 |       |  |  |  |  |  |  |
| 0.5 = BAT/BPJ Value                                      |                                                                         |                      | 720               | = CFC_Criteria Compliance Time (min) |                 |       |  |  |  |  |  |  |
|                                                          | = % Factor of                                                           | Safety (FOS)         | 0                 | =Decay Coefficient (K)               |                 |       |  |  |  |  |  |  |
| Source                                                   | Reference                                                               | AFC Calculations     |                   | Reference                            | CFC Calculation | S     |  |  |  |  |  |  |
| TRC                                                      | 1.3.2.iii                                                               | WLA afc =            | 4.709             | 1.3.2.iii                            | WLA cfc =       | 4.715 |  |  |  |  |  |  |
| PENTOXSD TRG                                             | 5.1a                                                                    | LTAMULT afc =        | 0.373             | 5.1c                                 | LTAMULT cfc =   | 0.581 |  |  |  |  |  |  |
| PENTOXSD TRG                                             | 5.1b                                                                    | LTA_afc=             | 1.755             | 5.1d                                 | LTA_cfc =       | 2.741 |  |  |  |  |  |  |
|                                                          |                                                                         | WQBEL_afc=           | 2.160             |                                      | WQBEL_cfc=      | 3.374 |  |  |  |  |  |  |
| Source                                                   |                                                                         |                      | Effluent Limit Ca | alculations                          |                 |       |  |  |  |  |  |  |
| PENTOXSD TRG 5.1f                                        |                                                                         | AML MULT             |                   | 1.231                                |                 |       |  |  |  |  |  |  |
| PENTOXSD TRG                                             | 5.1g                                                                    | AVG MO               | N LIMIT (mg/l) =  | 0.500                                | BAT/BPJ         |       |  |  |  |  |  |  |
|                                                          |                                                                         | INST MA              | X LIMIT (mg/l) =  | 1.635                                |                 |       |  |  |  |  |  |  |
|                                                          |                                                                         |                      |                   |                                      |                 |       |  |  |  |  |  |  |
|                                                          |                                                                         |                      |                   |                                      |                 |       |  |  |  |  |  |  |
|                                                          |                                                                         |                      |                   |                                      |                 |       |  |  |  |  |  |  |
| WLA afc                                                  | NLA afc         (.019/e(-k*AFC_tc)) + [(AFC_Yc*Qs*.019/Qd*e(-k*AFC_tc)) |                      |                   |                                      |                 |       |  |  |  |  |  |  |
|                                                          | + Xd + (AFC_Yc*Qs*Xs/Qd)]*(1-FOS/100)                                   |                      |                   |                                      |                 |       |  |  |  |  |  |  |
| LTAMULT afc                                              | EXP((0.5*LN(cvh^2+1))-2.326*LN(cvh^2+1)^0.5)                            |                      |                   |                                      |                 |       |  |  |  |  |  |  |
| LTA_afc                                                  | wla_afc*LTAMULT_afc                                                     |                      |                   |                                      |                 |       |  |  |  |  |  |  |
|                                                          |                                                                         |                      |                   |                                      |                 |       |  |  |  |  |  |  |
| WLA_cfc                                                  | (.011/e(-k*CFC_                                                         | _tc) + [(CFC_Yc*Qs*. | 011/Qd*e(-k*CF    | C_tc) )                              |                 |       |  |  |  |  |  |  |
| + Xd + (CFC_Yc*Qs*Xs/Qd)]*(1-FOS/100)                    |                                                                         |                      |                   |                                      |                 |       |  |  |  |  |  |  |
| LTAMULT_cfc                                              | EXP((0.5*LN(cvd^2/no_samples+1))-2.326*LN(cvd^2/no_samples+1)^0.5)      |                      |                   |                                      |                 |       |  |  |  |  |  |  |
| LTA_cfc wla_cfc*LTAMULT_cfc                              |                                                                         |                      |                   |                                      |                 |       |  |  |  |  |  |  |
|                                                          |                                                                         |                      |                   |                                      |                 |       |  |  |  |  |  |  |
| AML MULT                                                 | EXP(2.326*LN((cvd^2/no_samples+1)^0.5)-0.5*LN(cvd^2/no_samples+1))      |                      |                   |                                      |                 |       |  |  |  |  |  |  |
| AVG MON LIMIT MIN(BAT_BPJ,MIN(LTA_afc,LTA_cfc)*AML_MULT) |                                                                         |                      |                   |                                      |                 |       |  |  |  |  |  |  |
| INST MAX LIMIT                                           | NST MAX LIMIT 1.5*((av_mon_limit/AML_MULT)/LTAMULT_afc)                 |                      |                   |                                      |                 |       |  |  |  |  |  |  |
|                                                          |                                                                         |                      |                   |                                      |                 |       |  |  |  |  |  |  |