

Application Type	Renewal
Facility Type	Non- Municipal
Major / Minor	Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

Application No.	PA0228966
APS ID	1082966
Authorization ID	1430257

Applicant and Facility Information

Applicant Name	Lake Bonin	Facility Name	Lake Bonin
Applicant Address	1703 Bonin Road	Facility Address	1703 Bonin Road
	Rome, PA 18837-7728		Rome, PA 18837-7728
Applicant Contact	Keith Bonin	Facility Contact	Keith Bonin
Applicant Phone	(570) 247-7987	Facility Phone	(570) 247-7987
Client ID	41641	Site ID	668925
Ch 94 Load Status	Not Overloaded	Municipality	Orwell Township
Connection Status	No Limitations	County	Bradford
Date Application Receiv	ved <u>March 7, 2023</u>	EPA Waived?	Yes
Date Application Accep	ted <u>March 13, 2023</u>	If No, Reason	
Purpose of Application	<u>Renewal of a NPDES Permit for an ex</u>	kisting discharge of tre	ated sewage.

Summary of Review

The subject facility is a sewage treatment plant serving a 292-site campground in Orwell Township, Bradford. A map of the discharge location is attached (see Attachment A).

Sludge use and disposal description and location(s): Septage is pumped as needed and disposed at other WWTPs for further processing.

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Approve	Deny	Signatures	Date
~		Keith C. Allison / Project Manager	August 24, 2023
~		H. Z. M Nicholas W. Hartranft, P.E. / Environmental Engineer Manager	August 24, 2023

Discharge, Receiving Waters and Water Supply Information					
Outfall No. 001		Design Flow (MGD)	0.007		
Latitude 41°	52' 27.50"	Longitude	<u>-76º 16' 20.77"</u>		
Quad Name Ro	ome, PA	Quad Code	0435		
Wastewater Descrip	otion: Sewage Effluent				
	Unnamed Tributary to Jerome		30075 – UNT		
Receiving Waters	Creek (CWF)	Stream Code	30071 – Jerome Creek		
			0.84 – UNT		
NHD Com ID	66394395	RMI	2.61 – Jerome Creek		
Drainage Area	2.44 mi ² @Jerome Creek	Yield (cfs/mi ²)	0.013		
			Gage 1532000, Towanda		
Q ₇₋₁₀ Flow (cfs)	0.031 @Jerome Creek	Q7-10 Basis	Creek near Monroeton, PA		
	1345 - UNT				
Elevation (ft)	1185 – Jerome Creek	Slope (ft/ft)	0.02135 – Jerome Creek		
Watershed No.	4-D	Chapter 93 Class.	CWF		
Existing Use	<u>N/A</u>	Existing Use Qualifier	N/A		
Exceptions to Use	None	Exceptions to Criteria	None		
Assessment Status	Attaining Use(s)				
TMDL Status	Final	Name <u>Johnson Cr</u>	eek Watershed TMDL		
Nearest Downstrea	m Public Water Supply Intake	Danville Municipal Water Auth	nority		
PWS Waters S	Susquehanna River	_ Distance from Outfall (mi)	Approx. 140		
_					

Changes Since Last Permit Issuance: None

Other Comments: Due to the nature of the facility, discharge typically only occurs May through October.

The above-mentioned Johnson Creek Watershed TMDL addresses impairment by siltation in the Johnson Creek Watershed. The causes of impairment were primarily attributed to agriculture and road runoff. This discharge is not a significant contributor to the impairment and has not received a wasteload allocation under the TMDL. The facility has also consistently met its TSS limitations over the past permit term.

The first point of aquatic use was determined in previous reviews to be the discharge into Jerome Creek from the unnamed tributary. Inspections of the facility have not noted any apparent impacts in the receiving unnamed tributary by the discharge.

No downstream public water supply is expected to be affected by this discharge at this time with the monitoring and limitations proposed.

Treatment Facility Summary						
Treatment Facility N	ame: Lake Bonin					
WQM Permit No.	Issuance Date		Permit For			
808401	September 16, 2008	Authorizat	ion of initial treatment plant			
808401 Amendment No. 1	March 2, 2010	Addition of settling tank, dechlorination and aeration system for EQ tank				
	Degree of			Avg Annual		
Waste Type	Treatment	Process Type	Disinfection	Flow (MGD)		
Sewage	Secondary	Septic Tank Sand Filter	Chlorine With Dechlorination	0.007		
		-	1			
Hydraulic Capacity				Biosolids		
(MGD)	(lbs/day)	Load Status	Biosolids Treatment	Use/Disposal		
0.007	4.8	Not Overloaded				

Changes Since Last Permit Issuance: None

Other Comments: Treatment, as approved under WQM Permit No. 0808401 A-1, includes 19 septic tanks (34,000-gallon total volume), collection system with pump station, 14,000-gallon aerated equalization tank, 2,000-gallon settling tank, dual siphon dosing tank, two 1,225 square foot sand filters, erosion chlorinator, 500-gallon contact chlorine tank, erosion dechlorinator, and 500-gallon dechlorination contact tank.

Compliance History

DMR Data for Outfall 001 (from June 1, 2022 to May 31, 2023)

Parameter	MAY-23	APR-23	MAR-23	FEB-23	JAN-23	DEC-22	NOV-22	OCT-22	SEP-22	AUG-22	JUL-22	JUN-22
Flow (MGD)		No	No	No	No	No	No					
Average Monthly	0.0015	Discharge	Discharge	Discharge	Discharge	Discharge	Discharge	0.0009	0.0014	0.0013	0.0016	0.0018
Flow (MGD)												
Daily Maximum	0.0030							0.0025	0.0035	0.0030	0.0035	0.0030
pH (S.U.)												
Instantaneous	7.45							7.45	7.40	7.45		7.00
Minimum	7.45							7.45	7.42	7.45	7.41	7.32
pH (S.U.)												
Instantaneous												
Maximum	7.74							7.62	7.54	7.58	7.51	7.56
DO (mg/L)												
Instantaneous	0.45							0.50	o 15	a (a		
Minimum	6.45							6.56	6.45	6.42	6.41	6.44
TRC (mg/L)												
Average Monthly	0.05							0.03	0.04	0.04	0.05	0.06
TRC (mg/L)												
Instantaneous												
Maximum	0.08							0.08	0.08	0.08	0.08	0.09
CBOD5 (mg/L)												10.15
Average Monthly	32.75							3	3	< 3	34.95	12.15
TSS (mg/L)												
Average Monthly	10.6							2.34	3.4	10.20	20.4	5.4
Fecal Coliform												
(No./100 ml)												
Geometric Mean	123.9							5.06	1.41	3.22	186.8	11.13
Fecal Coliform												
(No./100 ml)												
Instantaneous	100.5										1000.05	(00.0
Maximum	123.9							25.6	2	5.2	4839.20	123.9
Ammonia (mg/L)												
Average Monthly	8.66							2.75	4.32	0.24	32.51	8.64

Compliance History, Cont'd

Effluent Violations for Outfall 001, from: July 1, 2022 To: May 31, 2023

Parameter	Date	SBC	DMR Value	Units	Limit Value	Units
CBOD5	07/31/22	Avg Mo	34.95	mg/L	25	mg/L
Fecal Coliform	07/31/22	IMAX	4839.20	No./100 ml	1000	No./100 ml
Ammonia	07/31/22	Avg Mo	32.51	mg/L	10	mg/L
CBOD5	05/31/23	Avg Mo	32.75	mg/L	25	mg/L

	Compliance History, Cont'd					
Summary of Inspections:	The facility has been inspected periodically by the Department over the past permit term. The most recent inspection on August 2, 2023 noted eDMR effluent violations.					
Other Comments:	There are no open violations in eFACTS for Lake Bonin.					

Existing Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

		Monitoring Re	Monitoring Requirements					
Parameter	Mass Units (Ibs/day) ⁽¹⁾			Concentrat	Minimum ⁽²⁾	Required		
Falametei	Average Monthly	Average Weekly	Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report Daily Max	XXX	XXX	XXX	ххх	1/week	Measured
рН (S.U.)	XXX	XXX	6.0 Inst Min	XXX	XXX	9.0	1/day	Grab
DO	XXX	xxx	3.0 Inst Min	XXX	XXX	xxx	1/day	Grab
TRC	xxx	ХХХ	xxx	0.43	XXX	1.4	1/day	Grab
CBOD5	XXX	ХХХ	XXX	25	XXX	50	2/month	Grab
TSS	XXX	XXX	XXX	30	XXX	60	2/month	Grab
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2000 Geo Mean	XXX	10000	2/month	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	XXX	XXX	200 Geo Mean	XXX	1000	2/month	Grab
Total Nitrogen	xxx	Report Daily Max	XXX	Report Daily Max	XXX	xxx	1/year	Grab
Ammonia Nov 1 - Apr 30	XXX	XXX	XXX	25	XXX	50	2/month	Grab
Ammonia May 1 - Oct 31	XXX	XXX	XXX	10	XXX	20	2/month	Grab
Total Phosphorus	XXX	Report Daily Max	XXX	Report Daily Max	XXX	ХХХ	1/year	Grab

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

Development of Effluent Limitations

Outfall No.	001		Design Flow (MGD)	0.007
Latitude	41º 52' 28.0	0"	Longitude	-76º 16' 23.00"
Wastewater De	escription:	Sewage Effluent	_ 0	

Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
CROD	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD ₅	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
рН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform				
(5/1 – 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform				
(5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform				
(10/1 – 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform				
(10/1 – 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)

Comments: The above limitations are applicable and included in the existing permit except for weekly average TSS and CBOD5 limits which are not necessary for the this small non-POTW and it has a more stringent WQ-based TRC limit.

Water Quality-Based Limitations

DO, CBOD5 and NH3-N

The WQM7.0 model allows the Department to evaluate point source discharges of dissolved oxygen (DO), carbonaceous BOD (CBOD₅), and ammonia-nitrogen (NH₃-N) into free-flowing streams and rivers. To accomplish this, the model simulates two basic processes: the mixing and degradation of NH₃-N in the stream and the mixing and consumption of DO in the stream due to the degradation of CBOD₅ and NH₃-N. WQM7.0 modeling was performed in two reaches for the discharge to the UNT to Jerome Creek and from the UNT to Jerome Creek and showed that no limitations are necessary beyond the technology-based secondary treatment limits listed above and a NH₃-N of 10 mg/L. See Attachment B.

Total Residual Chlorine

The Department uses a modeling spreadsheet to analyze the toxicity of a discharge's TRC in a receiving stream, accounting for available dilution. The attached results of the TRC spreadsheet from the previous review (see Attachment C) show that the existing Water Quality-based limit of 0.43 mg/l is adequate to protect the receiving stream.

Toxics Management

No further "Reasonable Potential Analysis" was performed to determine additional parameters as candidates for limitations or monitoring for this minor WWTP with no industrial influent.

Chesapeake Bay/Nutrient Requirements

According to the Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, this facility is an existing Phase 5 Chesapeake Bay sewage discharger that is not expanding, and as such requires no nutrient loading limits. Annual nutrient monitoring was included in current permit. The average Total Nitrogen concentration over the past permit term was 34.7 mg/L and the Average Phosphorus concentration was 2.8 mg/L. Because the nutrient load has been adequately characterized no additional nutrient monitoring will be required at this time consistent with the Phase III WIP Wastewater Supplement.

NPDES Permit Fact Sheet Lake Bonin

Dry Stream Discharge

Because the discharge is existing and there have been no noted effects on the intermittent unnamed tributary to Jerome Creek directly receiving the discharge the additional discharge requirements from the Department's *Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers* including the Advanced Treatment Requirements will not be required at this time.

Best Professional Judgment (BPJ) Limitations

Comments: None needed beyond the Technology and Water Quality-Based limits noted above.

<u>e. Coli</u>

Annual e. coli monitoring will be required at this time due to recent changes to Chapter 93 of the Departments regulations and Department policy.

Anti-Backsliding

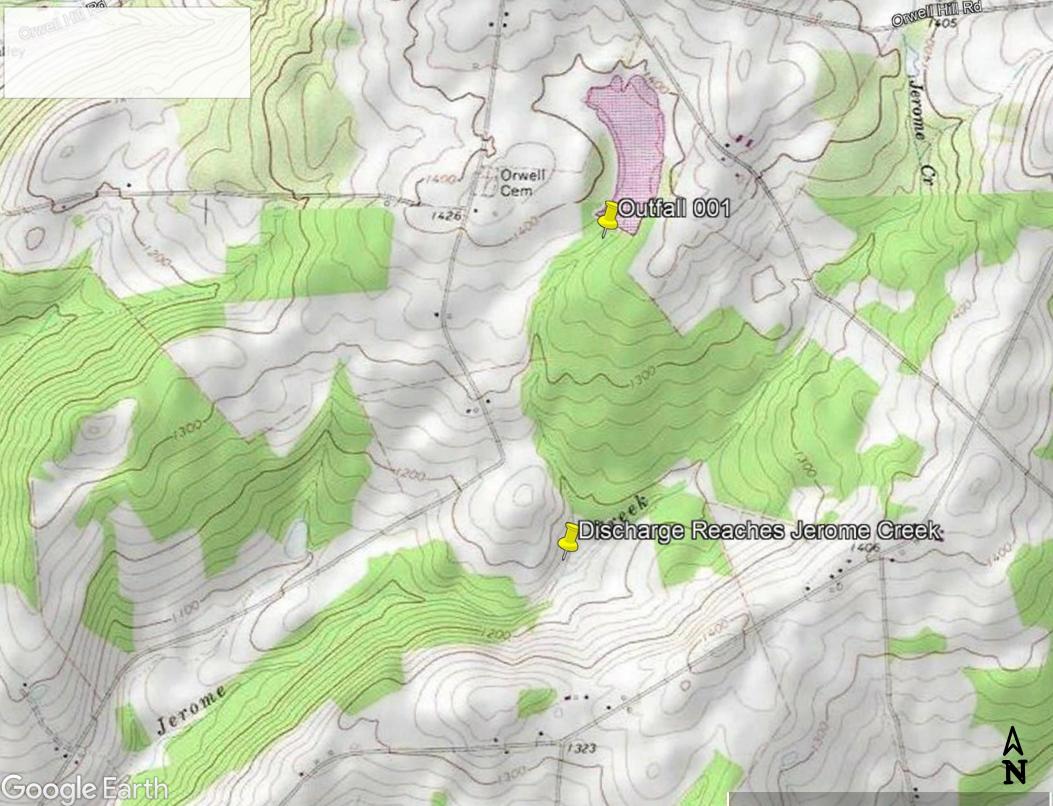
No proposed limitations are less stringent than the existing consistent with anti-backsliding provisions of the Clean Water Act and 40 CFR 122.44(I).

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

			Effluent L	imitations			Monitoring Red	quirements
Parameter	Mass Units	(lbs/day) ⁽¹⁾		Concentrat	ions (mg/L)		Minimum ⁽²⁾	Required
Parameter	Average Monthly	Average Weekly	Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report Daily Max	XXX	XXX	XXX	XXX	1/week	Measured
pH (S.U.)	ххх	ХХХ	6.0 Inst Min	XXX	XXX	9.0	1/day	Grab
DO	XXX	xxx	3.0 Inst Min	XXX	XXX	xxx	1/day	Grab
TRC	ххх	ххх	xxx	0.43	xxx	1.4	1/day	Grab
CBOD5	ххх	ХХХ	xxx	25	XXX	50	2/month	Grab
TSS	XXX	XXX	XXX	30	XXX	60	2/month	Grab
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	ххх	XXX	XXX	2000 Geo Mean	XXX	10000	2/month	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	ххх	XXX	XXX	200 Geo Mean	XXX	1000	2/month	Grab
Ammonia Nov 1 - Apr 30	ххх	ХХХ	XXX	25	XXX	50	2/month	Grab
Ammonia May 1 - Oct 31	ХХХ	ХХХ	XXX	10	XXX	20	2/month	Grab
E. Coli (No./100 ml)	XXX	ХХХ	XXX	XXX	Report Daily Max	XXX	1/Year	Grab


Compliance Sampling Location: Outfall 001

Other Comments: Total Nitrogen and Total Phosphorus monitoring have been removed as mentioned above. E. Coli monitoring is new as also mentioned above.

	Tools and References Used to Develop Permit
\times	WQM for Windows Model (see Attachment B)
	Toxics Management Spreadsheet (see Attachment)
$\overline{\times}$	TRC Model Spreadsheet (see Attachment C)
	Temperature Model Spreadsheet (see Attachment)
$\overline{\times}$	Water Quality Toxics Management Strategy, 361-0100-003, 4/06.
$\overline{\times}$	Technical Guidance for the Development and Specification of Effluent Limitations, 362-0400-001, 10/97.
	Policy for Permitting Surface Water Diversions, 362-2000-003, 3/98.
$\overline{\times}$	Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 362-2000-008, 11/96.
	Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97.
	Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 362-2183-004 12/97.
	Pennsylvania CSO Policy, 385-2000-011, 9/08.
	Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.
	Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 391-2000-002, 4/97.
\times	Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97.
\times	Implementation Guidance Design Conditions, 391-2000-006, 9/97.
	Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004.
	Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges 391-2000-008, 10/1997.
	Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-2000-010, 3/99.
	Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 391-2000-011, 5/2004.
\ge	Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97.
	Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 391-2000-014, 4/2008.
\boxtimes	Implementation Guidance Total Residual Chlorine (TRC) Regulation, 391-2000-015, 11/1994.
	Implementation Guidance for Temperature Criteria, 391-2000-017, 4/09.
	Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/97.
	Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97.
	Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 391-2000-021, 3/99.
	Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/1999.
\times	Design Stream Flows, 391-2000-023, 9/98.
	Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 391-2000-024, 10/98.
	Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97.
\boxtimes	Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.
\times	SOP: Establishing Effluent Limitations for Individual Sewage Permits, rev. 03/24/2021
	Other:

Attachments:

- A. Discharge Location Map B. WQM7.0 Model C. TRC Model

ATT AND A THE AN

	SWF Basi			Stre	eam Name		RMI		vation (ft)	Draina Area (sq m	a –	Wi	PWS thdrawal (mgd)	Apply FC
	04D	300	075 Trib 30)075 to Je	erome Creek		0.84	0 1	1345.00		0.45 0.	00000	0.00	✓
					St	ream Dat	a							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	<u>Tributai</u> p	r <u>v</u> pH	<u>Stre</u> Temp	<u>eam</u> pH	
	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C))		(°C)		
Q7-10 Q1-10 Q30-10	0.013	0.00 0.00 0.00	0.00	0.000 0.000 0.000	0.000	0.0	0.00	0.00	0 20	0.00	7.00	0.00	0.00	
					Di	scharge [Data							
			Name	Per	rmit Number	Disc	Permitte Disc Flow (mgd)	ed Desig Disc Flov (mgo	c Res w Fa	erve ctor	Disc Temp (ºC)	Disc pH		
		Lake	Bonin	PA	0228966-1	0.0070	0.000	0 0.00	000 (0.000	25.0	00 7.00	0	
					Ра	arameter [Data							
				Paramete	r Name	Di: Co		rib S Sonc	Stream Conc	Fate Coef				
				aramete	, nume	(m	g/L) (m	ng/L)	(mg/L)	(1/days	s)			
			CBOD5				25.00	2.00	0.00	1.	50			
			Dissolved	Oxygen			3.00	8.24	0.00	0.	00			
			NH3-N				10.00	0.00	0.00	0.	70			

Input Data WQM 7.0

	SWP Basir	Strea Coo		Stre	eam Name		RMI	Elevat (ft)	A	inage \rea q mi)	Slope (ft/ft)	PWS Withdrawal (mgd)	Apply FC
	04D	300	075 Trib 30)075 to Je	rome Creek		0.00	1 118	85.00	0.80	0.00000	0.00	✓
					St	ream Dat	a						
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	<u>Trib</u> Temp	<u>utary</u> pH	Temp	<u>Stream</u> pH	
	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C)		
Q7-10	0.013	0.00	0.00	0.000	0.000	0.0	0.00	0.00	20.00	7.00) (0.00 0.0)
Q1-10		0.00	0.00	0.000	0.000								
Q30-10		0.00	0.00	0.000	0.000								
					Di	scharge l	Data						
			Name	Per	mit Number	Disc	Permitte Disc Flow (mgd)	ed Design Disc Flow (mgd)	Reserve Factor	Disc Temp (ºC)	o pł	-	
						0.000	0.000	0 0.000	0.00) 25	5.00	7.00	
					Ра	arameter l	Data						
				Paramete	r Nomo					ate oef			
				Paramete	iname								

(mg/L)

25.00

3.00

25.00

(mg/L)

2.00

8.24

0.00

(mg/L) (1/days)

1.50

0.00

0.70

0.00

0.00

0.00

Input Data WQM 7.0

CBOD5

NH3-N

Dissolved Oxygen

<u>SWP Basin</u> <u>St</u> 04D	<u>ream Code</u> 30075		Trib 3	<u>Stream Name</u> 0075 to Jerome C	rook
<u></u>	50075		1115 5		
RMI	Total Discharge	Flow (mgd	<u>) Ana</u>	lysis Temperature (<u>°C) Analysis pH</u>
0.840	0.00	7		23.246	7.000
Reach Width (ft)	Reach De	oth (ft)		Reach WDRatio	Reach Velocity (fps)
2.111	0.26	5		7.963	0.030
Reach CBOD5 (mg/L)	<u>Reach Kc (</u>	<u>1/days)</u>	<u>R</u>	each NH3-N (mg/L) Reach Kn (1/days)
16.93	1.07			6.49	0.899
<u>Reach DO (mg/L)</u>	<u>Reach Kr (</u>			Kr Equation	<u>Reach DO Goal (mg/L)</u>
4.839	25.97	5		Owens	6
Reach Travel Time (days)		Subreach	Results		
1.720	TravTime	CBOD5	NH3-N	D.O.	
	(days)	(mg/L)	(mg/L)	(mg/L)	
	0.172	13.68	5.56	6.68	
	0.344	11.05	4.77	7.02	
	0.516	8.92	4.08	7.29	
	0.688	7.21	3.50	7.52	
	0.860	5.82	3.00	7.71	
	1.032	4.70	2.57	7.77	
	1.204	3.80	2.20	7.77	
	1.376	3.07	1.89	7.77	
	1.548	2.48	1.62	7.77	
	1.720	2.00	1.38	7.77	

WQM 7.0 D.O.Simulation

		Strea Coo		Stre	eam Name		RMI	Elevat (ft)	A	rainage Area (sq mi)	Slope (ft/ft)	PWS Withdrawal (mgd)	Apply FC
		300	071 JERO	ME CREE	К		2.61	118 0	35.00	2.44	0.00000	0.00	✓
					St	ream Dat	a						
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	<u>Tri</u> Temp	i <u>butary</u> pH	Temp	<u>Stream</u> pH	
Conu.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C)		
Q7-10	0.013	0.00	0.00	0.000	0.000	0.0	0.00	0.00	20.0	0 7.0	0 0	.00 0.00	
Q1-10		0.00	0.00	0.000	0.000								
Q30-10		0.00	0.00	0.000	0.000								
					Di	scharge [Data						
			Name	Per	mit Number	Disc	Permitte Disc Flow	ed Design Disc Flow	Reserv Facto		р рН	-	

Input Data WQM 7.0

(mgd) (°C) (mgd) (mgd) Lake Bonin PA0228966 25.00 7.00 0.0070 0.0000 0.0000 0.000 Parameter Data Disc Trib Stream Fate Conc Conc Coef Conc Parameter Name (mg/L) (mg/L) (mg/L) (1/days) CBOD5 2.00 2.00 0.00 1.50 Dissolved Oxygen 7.77 8.24 0.00 0.00 NH3-N 1.38 0.00 0.70 0.00

		Strea Coo		Stre	am Name		RMI		vation (ft)	Drainage Area (sq mi)	Slope (ft/ft)	PWS Withdrawal (mgd)	Apply FC
		300	071 JEROI	ME CREE	K		0.10	00	902.00	5.10	0.00000	0.00) 🗸
					S	tream Da	ta						
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Terr	<u>Tributary</u> np pH	I Ten	<u>Stream</u> np pH	
conu.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)	(°C	;)	
Q7-10	0.013	0.00	0.00	0.000	0.000	0.0	0.00	0.0	0 2	0.00 7	.00	0.00 0.0	0
Q1-10		0.00		0.000	0.000								
Q30-10		0.00	0.00	0.000	0.000								

Input Data WQM 7.0

	Dis	scharge Da	ita						
Name	Permit Number	Existing Disc Flow (mgd)	Permi Dis Flo (mg	SC W	Design Disc Flow (mgd)			Disc Гетр (ºC)	Disc pH
		0.0000	0.0	000	0.0000	(0.000	25.00	7.00
	Pai	rameter Da	ata						
		Disc Cor		Trib Conc	Stre Co		Fate Coef		
	Parameter Name	(mg/	′L)	(mg/L	.) (mg	g/L)	(1/days)		
CBOD5		25	5.00	2.	.00	0.00	1.50)	
Dissolve	d Oxygen	;	3.00	8.	24	0.00	0.00)	
NH3-N		2	5.00	0.	00	0.00	0.70)	

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	✓
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	✓
D.O. Saturation	90.00%	Use Balanced Technology	✓
D.O. Goal	6		

	_	<u>am Code</u> 0071			<u>ream Name</u> OME CREEK			
loc	ation	s						
rg€	Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction	
nin		14.51	2.76	14.51	2.76	0	0	
All	ocatio	ons						
ge N	Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction	
nin		1.77	1.38	1.77	1.38	0	0	
en	Alloca	ations						
en	Alloca		CBOD5	NH3-N	Diasah	ved Oxygen		itical P

RMI	Discharge Name	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Reach	Reduction	
2.61 Lak	ke Bonin	2	2	1.38	1.38	7.77	7.77	0	0	

	SW	P Basin	<u>Strea</u>	<u>m Code</u>				Stream	Name			
		04D	3	0071			JI	EROME	CREEK			
RMI	Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow	Reach Slope	Depth	Width	W/D Ratio	Velocity	Reach Trav Time	Analysis Temp	Analysis pH
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)	
Q7-1	0 Flow											
2.610	0.03	0.00	0.03	.0108	0.02135	.31	4.13	13.33	0.03	4.614	21.27	7.00
Q1-1	0 Flow											
2.610	0.02	0.00	0.02	.0108	0.02135	NA	NA	NA	0.03	5.497	21.74	7.00
Q30-	10 Flow											
2.610	0.04	0.00	0.04	.0108	0.02135	NA	NA	NA	0.04	4.039	21.00	7.00

WQM 7.0 Hydrodynamic Outputs

<u>SWP Basin</u> <u>St</u> 04D	ream Code 30071			<u>Stream Name</u> JEROME CREEK	
<u>RMI</u> 2.610 <u>Reach Width (ft)</u> 4.131 Reach CBOD5 (mg/L)	<u>Total Discharge</u> 0.007 <u>Reach Der</u> 0.310 Reach Kc (1	<u>oth (ft)</u>)		lysis Temperature (º 21.273 <u>Reach WDRatio</u> 13.334 each NH3-N (mg/L)	C) <u>Analysis pH</u> 7.000 <u>Reach Velocity (fps)</u> 0.033 Reach Kn (1/days)
2.00 <u>Reach DO (mg/L)</u> 8.123		0.000 0.35 Kr (1/days) Kr Equation			0.772 Reach DO Goal (mg/L) 6
<u>Reach Travel Time (days)</u> 4.614	TravTime (days)	Subreach CBOD5 (mg/L)	NH3-N (mg/L)	D.O. (mg/L)	
	0.461 0.923 1.384	2.00 2.00 2.00	0.25 0.17 0.12	8.05 8.05 8.05	
	1.846 2.307 2.769	2.00 2.00 2.00	0.08 0.06 0.04	8.05 8.05 8.05	
	3.230 3.691 4.153 4.614	2.00 2.00 2.00 2.00	0.03 0.02 0.01 0.01	8.05 8.05 8.05 8.05	

WQM 7.0 D.O.Simulation

RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
2.610	Lake Bonin	PA0228966	0.007	CBOD5	2		
				NH3-N	1.38	2.76	
				Dissolved Oxygen			7.77

PENTOXSD TRG 5.1b LTA_afc= 0.347 5.1d LTA_cfc = 0.524 Source Effluent Limit Calculations PENTOXSD TRG 5.1f AML MULT = 1.231 PENTOXSD TRG 5.1g AVG MON LIMIT (mg/l) = 0.428 AFC INST MAX LIMIT (mg/l) = 1.398 INST MAX LIMIT (mg/l) = 1.398 AFC WLA afc (.019/e(-k*AFC_tc)) + [(AFC_Yc*Qs*.019/Qd*e(-k*AFC_tc)) + Xd + (AFC_Yc*Qs*Xs/Qd)]*(1-FOS/100) + Xd + (AFC_Yc*Qs*Xs/Qd)]*(1-FOS/100) LTAMULT afc EXP((0.5*LN(cvh^2+1))-2.326*LN(cvh^2+1)^0.5) + Xd + (CFC_tc) + [(CFC_Yc*Qs*.011/Qd*e(-k*CFC_tc)) + Xd + (CFC_tc) + [(CFC_Yc*Qs*.011/Qd*e(-k*CFC_tc)) + Xd + (CFC_Yc*Qs*Xs/Qd)]*(1-FOS/100)	TRC EVALUA	TION						
0.007 = Q discharge (MGD) 0.5 = CV Hourly 30 = no. samples 1 = AFC_Partial Mix Factor 0.3 = Chlorine Demand of Stream 1 = AFC_Partial Mix Factor 0 = Chlorine Demand of Discharge 15 = AFC_Partial Mix Factor 0 = Chlorine Demand of Discharge 15 = AFC_Conteria Compliance Time (min) 0.5 = BAT/BPU Value 720 = CFC_Conteria Compliance Time (min) 0 = % Factor of Safety (FOS) = Decay Coefficient (K) Source Reference AFC Calculations Reference CFC Calculations TRC 1.3.2.iii WLA afc = 0.932 1.3.2.iii WLA cfc = 0.581 PENTOXSD TRG 5.1a LTA_afc = 0.347 5.1d LTA.efc = 0.524 Source Effluent Limit Calculations PENTOXSD TRG 5.1f AVG MON LIMIT (mg/l) = 0.428 AFC NULA afc (.019/e(-k*AFC_tc)) + [(AFC_Yc*Qs*.019/Qd*e(-k*AFC_tc)) + Xd + (AFC_Vc*Qs*Xs/Qd)]*(1-FOS/100) LTA.afc WLA afc (.011/e(-k*CFC_tc) + [(CFC_Yc*Qs*.011/Qd*e(-k*CFC_tc)) + Xd + (CFC_Yc*Qs*Xs/Qd)]*(1-FOS/10	Input appropria	te values in <i>l</i>	A3:A9 and D3:D9					
30 = no. samples 1 = AFC_Partial Mix Factor 0.3 = Chlorine Demand of Stream 1 = CFC_Partial Mix Factor 0.5 = Chlorine Demand of Discharge 15 = AFC_Criteria Compliance Time (min) 0.5 = SAT/BPJ Value 720 = CFC_Criteria Compliance Time (min) 0.5 = SAT/BPJ Value 720 = CFC_Criteria Compliance Time (min) 0.5 = SAT/BPJ Value 720 = CFC_Criteria Compliance Time (min) 0.5 = SAT/BPJ Value 720 = CFC_Criteria Compliance Time (min) 0.5 = SAT/BPJ Value 720 = CFC_Criteria Compliance Time (min) 0.5 = SAT/BPJ Value 720 = CFC_Criteria Compliance Time (min) 0.5 = SAT/BP Value WLA afc = 0.932 1.3.2.iii WLA cfc = 0.901 Source Effluent Limit Calculations FECTOXSD TRG 5.1b LTA_MULT afc = 0.347 Source Effluent Limit Calculations FECTOXSD TRG 5.1g AVG MON LIMIT (mg/l) = 0.428 AFC NEXTOXSD TRG 5.1g AVG MON LIMIT (mg/l) = 0.428 AFC INST MAX LIMIT (mg/l) = 1.398 WLA afc (.019/e(-k*AFC_tc)) + [(AFC_Yc*Qs*0.019/Qd*e	0.031					= CV Daily		
0.3 = Chlorine Demand of Stream 1 = CFC_Partial Mix Factor 0 = Chlorine Demand of Discharge 15 = AFC_Criteria Compliance Time (min) 0.5 = BAT/BP/ Value 720 = CFC_Criteria Compliance Time (min) 0 = % Factor of Safety (FOS) = Decay Coefficient (K) Source Reference AFC Calculations Reference CFC_Calculations TRC 1.3.2.iii WLA afc = 0.932 1.3.2.iii WLA cfc = 0.901 PENTOXSD TRG 5.1a LTAMULT afc = 0.373 5.1c LTAMULT cfc = 0.524 Source Effluent Limit Calculations Effluent Limit Calculations Effluent Limit Calculations PENTOXSD TRG 5.1f AML MULT = 1.231 AVG MON LIMIT (mg/l) = 0.428 AFC NST MAX LIMIT (mg/l) = 1.398 + Xd + (AFC_tc:b)) + [(AFC_Yc*Qs*.019/Qd*e(-k*AFC_tc)) + Xd + (AFC_Yc*Qs*Xs/Qd)]*(1+FOS/100) + Xd + (AFC_tc:c)) + [(AFC_Yc*Qs*.019/Qd*e(-k*AFC_tc)) LTAMULT_afc WLA_cfc (.011/e(-k*CFC_tc) + [(CFC_Yc*Qs*.011/Qd*e(-k*CFC_tc)) + Xd + (CFC_Yc*Qs*Xs/Qd)]*(1+FOS/100) LTAMULT_cfc EXP((0.5*LN(cvd^2/no_samples+1))-2.326*LN(cvd^2/no_samples+1)^0.5) +	0.007	= Q discharg	je (MGD)	0.5	= CV Hourly			
0 = Chlorine Demand of Discharge 15 = AFC_Criteria Compliance Time (min) 0.5 = BAT/BPJ Value 720 = CFC_Criteria Compliance Time (min) 0 = % Factor of Safety (FOS) = Decay Coefficient (K) Source Reference AFC Calculations Reference CFC Calculations TRC 1.3.2.iii WLA afc = 0.932 1.3.2.iii WLA cfc = 0.901 PENTOXSD TRG 5.1a LTAMULT afc = 0.373 5.1c LTAMULT cfc = 0.524 Source Effluent Limit Calculations Effluent Limit Calculations PENTOXSD TRG 5.1f Source Effluent Limit Calculations PENTOXSD TRG 5.1f AVG MON LIMIT (mg/l) = 0.428 AFC NST MAX LIMIT (mg/l) = 0.428 AFC INST MAX LIMIT (mg/l) = 1.398 AFC	30	= no. sample	S	1	= AFC_Partial Mix Factor			
0.5 = BAT/BPJ Value 720 = CFC_Criteria Compliance Time (min) 0 = % Factor of Safety (FOS) = Decay Coefficient (K) Source Reference AFC Calculations Reference CFC Calculations TRC 1.3.2.iii WLA afc = 0.932 1.3.2.iii WLA cfc = 0.901 PENTOXSD TRG 5.1a LTAMULT afc = 0.373 5.1c LTAMULT cfc = 0.524 Source Effluent Limit Calculations Store = 0.524 Store = 0.524 Source Effluent Limit Calculations Effluent Limit Calculations PENTOXSD TRG 5.1f AML MULT = 1.231 Source Effluent Limit Calculations PENTOXSD TRG 5.1g AVG MON LIMIT (mg/l) = 0.428 NST MAX LIMIT (mg/l) = 1.398 AFC WLA afc (.019/e(-k*AFC_tc)) + [(AFC_Yc*Qs*.019/Qd*e(-k*AFC_tc)) + Xd + (AFC_Yc*Ca*Xs/Qd)]*(1-FOS/100) I.TAMULT afc LTAMULT_afc WLA_cfc (.011/e(-k*CFC_to) + [(CFC_Yc*Qs*.011/Qd*e(-k*CFC_to)) + Xd + (CFC_Yc*Qs*Xs/Qd)]*(1-FOS/100) I.TAMULT_cfc LTA_efc wla_cfc*LTAMULT_cfc XML Augt	0.3	= Chlorine D	emand of Stream	1	= CFC_Partial Mix Factor			
0 = % Factor of Safety (FOS) =Decay Coefficient (K) Source Reference AFC Calculations Reference CFC Calculations TRC 1.3.2.iii WLA afc = 0.932 1.3.2.iii WLA cfc = 0.901 PENTOXSD TRG 5.1a LTAMULT afc = 0.373 5.1c LTAMULT cfc = 0.581 PENTOXSD TRG 5.1b LTA_afc= 0.347 5.1d LTA_cfc = 0.524 Source Effluent Limit Calculations Effluent Limit Calculations Effluent Limit Calculations PENTOXSD TRG 5.1f AML MULT = 1.231 Effluent Limit (mg/l) = 0.428 AFC INST MAX LIMIT (mg/l) = 1.398 Source EFfluent Limit Calculations Effluent Limit Calculations WLA afc (.019/e(-k*AFC_tc)) + [(AFC_Yc*Qs*.019/Qd*e(-k*AFC_tc)) +Xd + (AFC_Yc*Qs*Xs/Qd)]*(1-FOS/100) ITAMULT afc LTA_afc wla_afc*LTAMULT_afc WLA_cfc (.011/e(-k*CFC_tc) + [(CFC_Yc*Qs*.011/Qd*e(-k*CFC_tc)) +Xd + (CFC_Yc*Qs*Xs/Qd)]*(1-FOS/100) LTA_ofc wla_cfc*LN(cvd^2/no_samples+1))-2.326*LN(cvd^2/no_samples+1)^0.5) wla_cfc*LTAMULT_cfc AML MULT EXP((0.5*LN(cvd^2/no_samples+1))-2.326*LN(cvd^2/no_samples+1)^0.5) <td< th=""><th>0</th><th>= Chlorine D</th><th>emand of Discharge</th><th>15</th><th colspan="3">= AFC_Criteria Compliance Time (min)</th></td<>	0	= Chlorine D	emand of Discharge	15	= AFC_Criteria Compliance Time (min)			
Source Reference AFC Calculations Reference CFC Calculations TRC 1.3.2.iii WLA afc = 0.932 1.3.2.iii WLA cfc = 0.901 PENTOXSD TRG 5.1a LTAMULT afc = 0.373 5.1c LTAMULT cfc = 0.581 PENTOXSD TRG 5.1b LTA_afc= 0.347 5.1d LTA_cfc = 0.524 Source Effluent Limit Calculations PENTOXSD TRG 5.1f AML MULT = 1.231 PENTOXSD TRG 5.1g AVG MON LIMIT (mg/l) = 0.428 AFC INST MAX LIMIT (mg/l) = 1.398 INST MAX LIMIT (mg/l) = 1.398 AFC WLA afc (.019/a(-k*AFC_tc)) + [(AFC_Yc*Qs*.019/Qd*e(-k*AFC_tc)) + Xd + (AFC_Yc*Qs*Xs/Qd))*(1-FOS/100) LTA_afc wla_afc*LTAMULT_afc XVR (v/a*2+1))-2.326*LN(cvh*2+1)^0.5) + Xd + (CFC_tc) + [(CFC_Yc*Qs*.011/Qd*e(-k*CFC_tc)) + Xd + (CFC_tc) + [(CFC_Yc*Qs*.011/Qd*e(-k*CFC_tc)) + Xd + (CFC_Yc*Qs*Xs/Qd))*(1-FOS/100) + Xd + (CFC_Yc*Qs*Xs/Qd))*(1-FOS/100) LTAMULT_cfc EXP((0.5*LN(cvd*2/no_samples+1)))-2.326*LN(cvd^2/no_samples+1)^0.5) wla_cfc*LTAMULT_cfc AML MULT EXP(2.326*LN((cvd*2/no_samples+1)^0.5)-0.5*LN(cvd^2/no_samples+1)^0.5) + Xd + (CFC_YC*2/no_sa	0.5	= BAT/BPJ V	alue	720	= CFC_Criteria Compliance Time (min)			
TRC 1.3.2.iii WLA afc = 0.932 1.3.2.iii WLA cfc = 0.901 PENTOXSD TRG 5.1a LTAMULT afc = 0.373 5.1c LTAMULT cfc = 0.581 PENTOXSD TRG 5.1b LTA_afc= 0.347 5.1d LTA_cfc = 0.524 Source Effluent Limit Calculations PENTOXSD TRG 5.1f AML MULT = 1.231 PENTOXSD TRG 5.1g AVG MON LIMIT (mg/l) = 0.428 AFC INST MAX LIMIT (mg/l) = 1.398 INST MAX LIMIT (mg/l) = 1.398 AFC	0	= % Factor of	of Safety (FOS)		=Decay Coefficient (K)			
PENTOXSD TRG5.1a 5.1bLTAMULT afc = 0.373 LTA_afc = 0.3475.1c 5.1dLTAMULT cfc = 0.581 LTA_cfc = 0.524SourceEffluent Limit CalculationsPENTOXSD TRG5.1fAML MULT = 1.231 RAVG MON LIMIT (mg/l) = 0.428AFC INST MAX LIMIT (mg/l) = 1.398WLA afc(.019/e(-k*AFC_tc)) + [(AFC_Yc*Qs*0.019/Qd*e(-k*AFC_tc)) + Xd + (AFC_Yc*Qs*Xs/Qd)]*(1-FOS/100)1.398WLA afc(.019/e(-k*AFC_tc)) + [(CFC_Yc*Qs*0.019/Qd*e(-k*AFC_tc)) + Xd + (AFC_Yc*Qs*Xs/Qd)]*(1-FOS/100)1.398WLA_afc(.011/e(-k*CFC_tc) + [(CFC_Yc*Qs*0.011/Qd*e(-k*CFC_tc)) + Xd + (CFC_Yc*Qs*Xs/Qd)]*(1-FOS/100)1.398UTA_afcwla_afc*LTAMULT_afcWLA_cfc(.011/e(-k*CFC_tc) + [(CFC_Yc*Qs*0.011/Qd*e(-k*CFC_tc)) 	Source	Reference	AFC Calculations		Reference	CFC Calculations		
PENTOXSD TRG 5.1b LTA_afc= 0.347 5.1d LTA_cfc = 0.524 Source Effluent Limit Calculations PENTOXSD TRG 5.1f AML MULT = 1.231 PENTOXSD TRG 5.1g AVG MON LIMIT (mg/l) = 0.428 AFC INST MAX LIMIT (mg/l) = 1.398 INST MAX LIMIT (mg/l) = 1.398 AFC WLA afc (.019/e(-k*AFC_tc)) + [(AFC_Yc*Qs*.019/Qd*e(-k*AFC_tc)) +Xd + (AFC_Yc*Qs*Xs/Qd)]*(1-FOS/100) +Xd + (AFC_Yc*Qs*Xs/Qd)]*(1-FOS/100) LTA_afc wla_afc*LTAMULT_afc WLA_cfc (.011/e(-k*CFC_tc) + [(CFC_Yc*Qs*.011/Qd*e(-k*CFC_tc)) +Xd + (CFC_Yc*Qs*Xs/Qd)]*(1-FOS/100) LTA_ufc (.011/e(-k*CFC_tc) + [(CFC_Yc*Qs*.011/Qd*e(-k*CFC_tc)) +Xd + (CFC_Yc*Qs*Xs/Qd)]*(1-FOS/100) +Xd + (CFC_Yc*Qs*Xs/Qd)]*(1-FOS/100) LTAULT_cfc EXP((0.5*LN(cvd^2/no_samples+1))-2.326*LN(cvd^2/no_samples+1)^0.5) +Xd + (CFC_Yc*Qs*Xs/Qd)]*(1-FOS/100) LTA_cfc wla_cfc*LTAMULT_cfc +Xd + (CFC_Yc*Qs*Xs/Qd)]*(1-FOS/100) AML MULT EXP(2.326*LN((cvd^2/no_samples+1)^0.5)-0.5*LN(cvd^2/no_samples+1)^0.5) AVG MON LIMIT MIN(BAT_BPJ,MIN(LTA_afc,LTA_cfc)*AML_MULT)	TRC	1.3.2.iii	WLA afc =	0.932	1.3.2.iii	WLA cfc = 0.901		
Source Effluent Limit Calculations PENTOXSD TRG 5.1f AML MULT = 1.231 PENTOXSD TRG 5.1g AVG MON LIMIT (mg/l) = 0.428 AFC INST MAX LIMIT (mg/l) = 1.398 INST MAX LIMIT (mg/l) = 1.398 AFC	PENTOXSD TRG	5.1a	LTAMULT afc =	0.373	5.1c			
PENTOXSD TRG5.1fAML MULT = 1.231PENTOXSD TRG5.1gAVG MON LIMIT (mg/l) = 0.428AFCINST MAX LIMIT (mg/l) = 1.398INST MAX LIMIT (mg/l) = 1.398AFCWLA afc(.019/e(-k*AFC_tc)) + [(AFC_Yc*Qs*.019/Qd*e(-k*AFC_tc)) +Xd + (AFC_Yc*Qs*Xs/Qd)]*(1-FOS/100)+Xd + (AFC_Yc*Qs*Xs/Qd)]*(1-FOS/100)LTAMULT afcEXP((0.5*LN(cvh^2+1))-2.326*LN(cvh^2+1)^0.5) +Xd + (CFC_tc) + [(CFC_Yc*Qs*.011/Qd*e(-k*CFC_tc)) +Xd + (CFC_Yc*Qs*Xs/Qd)]*(1-FOS/100)LTA_afcwla_afc*LTAMULT_afcWLA_cfc(.011/e(-k*CFC_tc) + [(CFC_Yc*Qs*.011/Qd*e(-k*CFC_tc)) +Xd + (CFC_Yc*Qs*Xs/Qd)]*(1-FOS/100)LTAMULT_cfcEXP((0.5*LN(cvd^2/no_samples+1))-2.326*LN(cvd^2/no_samples+1)^0.5)LTA_cfcwla_cfc*LTAMULT_cfcAML MULTEXP(2.326*LN((cvd^2/no_samples+1)^0.5)-0.5*LN(cvd^2/no_samples+1))AVG MON LIMITMIN(BAT_BPJ,MIN(LTA_afc,LTA_cfc)*AML_MULT)	PENTOXSD TRG	5.1b	LTA_afc=	0.347	5.1d	LTA_cfc = 0.524		
PENTOXSD TRG5.1gAVG MON LIMIT (mg/l) = 0.428 INST MAX LIMIT (mg/l) = 1.398AFCWLA afc $(.019/e(-k*AFC_tc)) + [(AFC_Yc*Qs*.019/Qd*e(-k*AFC_tc))+Xd + (AFC_Yc*Qs*Xs/Qd)]*(1-FOS/100)+Xd + (AFC_Yc*Qs*Xs/Qd)]*(1-FOS/100)LTAMULT afcEXP((0.5*LN(cvh^2+1))-2.326*LN(cvh^2+1)^0.5)+Xd + (AFC_C_tc) + [(CFC_Yc*Qs*.011/Qd*e(-k*CFC_tc))+Xd + (CFC_tc) + [(CFC_Yc*Qs*.011/Qd*e(-k*CFC_tc))+Xd + (CFC_Yc*Qs*Xs/Qd)]*(1-FOS/100)LTAMULT_cfcEXP((0.5*LN(cvd^2/no_samples+1))-2.326*LN(cvd^2/no_samples+1)^0.5)LTAMULT_cfcEXP((0.5*LN(cvd^2/no_samples+1))-2.326*LN(cvd^2/no_samples+1)^0.5)LTA_cfcwla_cfc*LTAMULT_cfcAML MULTEXP(2.326*LN((cvd^2/no_samples+1)^0.5)-0.5*LN(cvd^2/no_samples+1))AVG MON LIMITMIN(BAT_BPJ,MIN(LTA_afc,LTA_cfc)*AML_MULT)$			Efflue	nt Limit Calcul	ations			
$INST MAX LIMIT (mg/l) = 1.398$ $WLA afc \qquad (.019/e(-k*AFC_tc)) + [(AFC_Yc*Qs*.019/Qd*e(-k*AFC_tc)) \\+ Xd + (AFC_Yc*Qs*Xs/Qd)]*(1-FOS/100)$ $LTAMULT afc \qquad EXP((0.5*LN(cvh^2+1))-2.326*LN(cvh^2+1)^{0.5})$ $LTA_afc \qquad wla_afc*LTAMULT_afc$ $WLA_cfc \qquad (.011/e(-k*CFC_tc) + [(CFC_Yc*Qs*.011/Qd*e(-k*CFC_tc)) \\+ Xd + (CFC_Yc*Qs*Xs/Qd)]*(1-FOS/100)$ $LTAMULT_cfc \qquad EXP((0.5*LN(cvd^2/no_samples+1))-2.326*LN(cvd^2/no_samples+1)^{0.5})$ $LTA_cfc \qquad wla_cfc*LTAMULT_cfc$ $AML MULT \qquad EXP(2.326*LN((cvd^2/no_samples+1)^{0.5})-0.5*LN(cvd^2/no_samples+1))$ $AVG MON LIMIT \qquad MIN(BAT_BPJ,MIN(LTA_afc,LTA_cfc)*AML_MULT)$	PENTOXSD TRG			AML MULT =	1.231			
WLA afc (.019/e(-k*AFC_tc)) + [(AFC_Yc*Qs*.019/Qd*e(-k*AFC_tc)) + Xd + (AFC_Yc*Qs*Xs/Qd)]*(1-FOS/100) LTAMULT afc EXP((0.5*LN(cvh^2+1))-2.326*LN(cvh^2+1)^0.5) LTA_afc wla_afc*LTAMULT_afc WLA_cfc (.011/e(-k*CFC_tc) + [(CFC_Yc*Qs*.011/Qd*e(-k*CFC_tc)) + Xd + (CFC_Yc*Qs*Xs/Qd)]*(1-FOS/100) LTAMULT_cfc EXP((0.5*LN(cvd^2/no_samples+1))-2.326*LN(cvd^2/no_samples+1)^0.5) LTA_cfc wla_cfc*LTAMULT_cfc AML MULT EXP(2.326*LN((cvd^2/no_samples+1)^0.5)-0.5*LN(cvd^2/no_samples+1)) AVG MON LIMIT MIN(BAT_BPJ,MIN(LTA_afc,LTA_cfc)*AML_MULT)	PENTOXSD TRG	5.1g				AFC		
+ Xd + (AFC_Yc*Qs*Xs/Qd)]*(1-FOS/100) LTAMULT afc EXP((0.5*LN(cvh^2+1))-2.326*LN(cvh^2+1)^0.5) LTA_afc wla_afc*LTAMULT_afc WLA_cfc (.011/e(-k*CFC_tc) + [(CFC_Yc*Qs*.011/Qd*e(-k*CFC_tc)) + Xd + (CFC_Yc*Qs*Xs/Qd)]*(1-FOS/100) LTAMULT_cfc EXP((0.5*LN(cvd^2/no_samples+1))-2.326*LN(cvd^2/no_samples+1)^0.5) LTA_cfc wla_cfc*LTAMULT_cfc AML MULT EXP(2.326*LN((cvd^2/no_samples+1)^0.5)-0.5*LN(cvd^2/no_samples+1)) AVG MON LIMIT MIN(BAT_BPJ,MIN(LTA_afc,LTA_cfc)*AML_MULT)				LIMII (mg/I) =	1.398			
LTA_afcwla_afc*LTAMULT_afcWLA_cfc(.011/e(-k*CFC_tc) + [(CFC_Yc*Qs*.011/Qd*e(-k*CFC_tc)) + Xd + (CFC_Yc*Qs*Xs/Qd)]*(1-FOS/100)LTAMULT_cfcEXP((0.5*LN(cvd^2/no_samples+1))-2.326*LN(cvd^2/no_samples+1)^0.5)LTA_cfcwla_cfc*LTAMULT_cfcAML MULTEXP(2.326*LN((cvd^2/no_samples+1)^0.5)-0.5*LN(cvd^2/no_samples+1))AVG MON LIMITMIN(BAT_BPJ,MIN(LTA_afc,LTA_cfc)*AML_MULT)								
WLA_cfc (.011/e(-k*CFC_tc) + [(CFC_Yc*Qs*.011/Qd*e(-k*CFC_tc)) + Xd + (CFC_Yc*Qs*Xs/Qd)]*(1-FOS/100) LTAMULT_cfc EXP((0.5*LN(cvd^2/no_samples+1))-2.326*LN(cvd^2/no_samples+1)^0.5) LTA_cfc wla_cfc*LTAMULT_cfc AML MULT EXP(2.326*LN((cvd^2/no_samples+1)^0.5)-0.5*LN(cvd^2/no_samples+1)) AVG MON LIMIT MIN(BAT_BPJ,MIN(LTA_afc,LTA_cfc)*AML_MULT)								
+ Xd + (CFC_Yc*Qs*Xs/Qd)]*(1-FOS/100)LTAMULT_cfcEXP((0.5*LN(cvd^2/no_samples+1))-2.326*LN(cvd^2/no_samples+1)^0.5)LTA_cfcWla_cfc*LTAMULT_cfcAML MULTEXP(2.326*LN((cvd^2/no_samples+1)^0.5)-0.5*LN(cvd^2/no_samples+1))AVG MON LIMITMIN(BAT_BPJ,MIN(LTA_afc,LTA_cfc)*AML_MULT)	LTA_afc	wla_afc*LTAMULT_afc						
LTA_cfcwla_cfc*LTAMULT_cfcAML MULTEXP(2.326*LN((cvd^2/no_samples+1)^0.5)-0.5*LN(cvd^2/no_samples+1))AVG MON LIMITMIN(BAT_BPJ,MIN(LTA_afc,LTA_cfc)*AML_MULT)	WLA_cfc	+ Xd + (CFC_Yc*Qs*Xs/Qd)]*(1-FOS/100)						
AML MULT EXP(2.326*LN((cvd^2/no_samples+1)^0.5)-0.5*LN(cvd^2/no_samples+1)) AVG MON LIMIT MIN(BAT_BPJ,MIN(LTA_afc,LTA_cfc)*AML_MULT)	LTAMULT_cfc							
AVG MON LIMIT MIN(BAT_BPJ,MIN(LTA_afc,LTA_cfc)*AML_MULT)								
	= =							
INST MAA LIMIT 1.3"((av_mon_limit/AML_MULT//LIAMULT_ATC)								
	INST MAX LIMIT	ז.ס^((av_mon	I_IIMIT/AML_MULT)/LTAMULT	_arc)				