

Northcentral Regional Office CLEAN WATER PROGRAM

Application Type Renewal
Facility Type Industrial
Major / Minor Minor

NPDES PERMIT FACT SHEET INDIVIDUAL INDUSTRIAL WASTE (IW) AND IW STORMWATER

Application No. PA0232815

APS ID 1068377

Authorization ID 1404833

Applicant Name	Sunbury City Municipal Authority Northumberland County	Facility Name	Sunbury Municipal Authority Water System
Applicant Address	462 S 4th Street	Facility Address	1600 Market Street
	Sunbury, PA 17801-3134	<u> </u>	Sunbury, PA 17801
Applicant Contact	Scott Debo	Facility Contact	Scott Debo
Applicant Phone	(570) 988-1760	Facility Phone	(570) 988-1760
Client ID	41774	Site ID	1211
SIC Code	_4941	Municipality	Sunbury City
SIC Description	Trans. & Utilities - Water Supply	County	Northumberland
Date Application Rec	eived <u>July 28, 2022</u>	EPA Waived?	Yes
Date Application Acc	epted August 9, 2022	If No, Reason	

Summary of Review

This is an existing public water supply in the City of Sunbury, Northumberland County. A map indicating the discharge location is attached (Attachment A).

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Approve	Deny	Signatures	Date
Х		<i>Keith C. Allison</i> Keith C. Allison / Project Manager	May 18, 2023
Х		Nicholas W. Hartranft Nicholas W. Hartranft, P.E. / Environmental Engineer Manager	May 22, 2023

Discharge, Receiving	Waters and Water Supply Information	on	
Outfall No. 001		Design Flow (MGD)	0.063
Latitude 40° 5	51' 39.38"	Longitude	-76° 46' 24.91"
Quad Name Su	unbury, PA	Quad Code	
Wastewater Descrip	otion: IW Process Effluent without EL	.G	
Receiving Waters	Little Shamokin Creek (CWF, MF)	Stream Code	18490
NHD Com ID	54961599	RMI	0.14
Drainage Area	29.1 mi ²	Yield (cfs/mi ²)	0.0258
Q ₇₋₁₀ Flow (cfs)	0.75	Q ₇₋₁₀ Basis	USGS StreamStats
Elevation (ft)	440	Slope (ft/ft)	0.0406
Watershed No.	6-B	Chapter 93 Class.	CWF, MF
Existing Use	N/A	Existing Use Qualifier	N/A
Exceptions to Use	None	Exceptions to Criteria	None
Assessment Status	<u>Impaired</u>		
Cause(s) of Impairm	nent <u>PATHOGENS</u>		
Source(s) of Impairr	ment SOURCE UNKNOWN		
TMDL Status	_Final	Name Shamokin C	reek Watershed
Nearest Downstream	m Public Water Supply Intake Su	uez Water Pennsylvania nea	ar Dauphin, PA
PWS Waters S	Susquehanna River	Distance from Outfall (mi)	Approx. 48

Changes Since Last Permit Issuance: None

Other Comments:

The discharge is not expected to have any impact on the impairment by pathogens noted above. It is also not expected to have an impact on the existing impairment to Shamokin Creek from AMD.

In addition to the wastewater discharges associated with filter backwash and clarifier sludge, Lagoons #4 and #5 typically receive flow from Little Shamokin Creek or the Susquehanna River to keep the water in them "fresh". During the months of May through August River water is used. The average daily discharge from the lagoons during this time is 2.8849 MGD.

The Department notes that the discharge is to a portion of Little Shamokin Creek which is artificially channelized below the dam for Reservoir #1 approximately 800 feet above its confluence with Shamokin Creek. The Chapter 93 designation of the entire reach of Little Shamokin Creek, including this section, is Cold Water Fishery. The definition of "Designated Use" from Chapter 93 is listed below.

Designated Uses - Those uses specified in § § 93.4(a) and 93.9a—93.9z for each water body or segment whether or not they are being attained.

The Department designated a suboutfall, Internal Monitoring Point (IMP) 101 for the discharge from Sludge Lagoon #2 into Reservoir #5 for monitoring of the filter backwash water.

Stormwater influence on the discharges should be minimal given that no significant additional area drains into lagoons #2-#5 besides that which falls in directly during precipitation.

NPDES Permit Fact Sheet Sunbury Municipal Authority Water System

The discharge is not expected to affect any downstream public water supply at this time with the monitoring and limitations proposed.

Treatment Facility Summary

The treatment of the wastewater discharges of filter backwash and clarifier blowdown (sludge) is effectively treated through settling in Sludge Lagoons #3 and #2.

Stormwater Discharges from Industrial Activities

As a SIC Code 4941 Water Supply facility it is not subject to the requirements for discharges of stormwater from industrial activities at 40 CFR 122.26(b)(14).

Compliance History

DMR Data for Outfall 001 (from April 1, 2022 to March 31, 2023)

Parameter	MAR-23	FEB-23	JAN-23	DEC-22	NOV-22	OCT-22	SEP-22	AUG-22	JUL-22	JUN-22	MAY-22	APR-22
Temperature (°F) Average Monthly	43	39	39	36	47	56	73	80	83	75	66	52
Temperature (°F) Instream Monitoring Average Monthly	41	38	39	35	44	54	66	75	72	67	59	48
Temperature (°F) Daily Maximum	48	43	41	38	58	58	78	84	81.3	78	75	58
Temperature (°F) Instream Monitoring Daily Maximum	46	43	41	36	54	57	70	70	72	70	70	58

DMR Data for Outfall 101 (from April 1, 2022 to March 31, 2023)

Parameter	MAR-23	FEB-23	JAN-23	DEC-22	NOV-22	OCT-22	SEP-22	AUG-22	JUL-22	JUN-22	MAY-22	APR-22
Flow (MGD) Internal Monitoring Point Average Monthly	0.1145	0.0901	0.0862	0.0768	0.0718	0.1075	0.1192	0.0963	0.1069	0.0889	0.0877	0.1015
Flow (MGD) Internal Monitoring Point Daily Maximum	0.1174	0.1001	0.1049	0.1011	0.0906	0.1237	0.1441	0.1364	0.1222	0.0895	0.0896	0.1074
pH (S.U.) Internal Monitoring Point Minimum	7.38	7.19	7.33	7.42	7.26	7.58	7.94	8.71	8.78	8.26	7.55	7.43
pH (S.U.) Internal Monitoring Point Maximum	7.40	7.36	7.37	7.54	7.53	7.98	8.20	8.84	8.84	8.41	7.85	7.63
TRC (mg/L) Internal Monitoring Point Average Monthly	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	0.025	< 0.02	< 0.02	< 0.02
TRC (mg/L) Internal Monitoring Point Instantaneous Maximum	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	0.02	< 0.02	< 0.02	0.03	< 0.02	< 0.02	< 0.02
TSS (mg/L) Internal Monitoring Point Average Monthly	< 4.00	< 4.0	< 4.00	< 4.0	10.5	9.50	4.5	< 4.00	< 4.0	5.5	4.00	< 4.0
Form Average Monthly	< 4.00	< 4.0	< 4.00	< 4.0	10.5	9.50	4.5	< 4.00	< 4.0	5.5	4.00	< 4.0

NPDES Permit Fact Sheet Sunbury Municipal Authority Water System

NPDES Permit No. PA0232815

TSS (mg/L) Internal Monitoring Point Instantaneous												
Maximum	< 4.00	< 4.0	< 4.00	< 4.0	17.0	15.0	5.0	< 4.00	< 4.0	7.0	4.00	< 4.00
Total Aluminum (mg/L) Internal Monitoring Point Average Monthly	0.14	0.060	0.09	0.054	0.146	0.088	0.19	0.38	0.32	0.205	0.15	0.072
Total Aluminum (mg/L) Internal Monitoring Point Instantaneous Maximum	0.19	0.061	0.13	0.059	0.23	0.11	0.24	0.44	0.42	0.21	0.17	0.075
Total Iron (mg/L) Internal Monitoring Point Average Monthly	0.09	< 0.05	< 0.05	< 0.05	0.072	0.072	< 0.05	< 0.05	< 0.05	0.057	0.053	< 0.05
Total Iron (mg/L) Internal Monitoring Point Instantaneous Maximum	0.13	< 0.05	< 0.05	< 0.05	0.095	0.094	< 0.05	< 0.05	< 0.05	0.065	0.057	< 0.05
Total Manganese (mg/L) Internal Monitoring Point Average Monthly	0.13	0.19	0.165	0.098	0.20	0.115	0.18	0.135	0.24	0.17	0.245	0.28
Total Manganese (mg/L) Internal Monitoring Point Instantaneous Maximum	0.14	0.22	0.19	0.11	0.30	0.12	0.24	0.14	0.31	0.17	0.25	0.36

Compliance History, Cont'd							
Summary of Inspections:	The facility has been inspected approximately annually by the Department over the past permit term. The most recent inspection on October 25, 2022 identified no violations at the time of inspection.						
Other Comments:	A query in WMS found no open violations in eFACTS for Sunbury Municipal Authority.						

Existing Effluent Limitations and Monitoring Requirements – Outfall 001

			Effluent L	imitations.	Monitoring Requirements			
Parameter	Mass Units	s (lbs/day) ⁽¹⁾		Concentra	Minimum ⁽²⁾	Required		
Parameter	Average Monthly	Average Weekly	Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
					Report			
Temperature (deg F)	XXX	XXX	XXX	Report	Daily Max	XXX	1/week	I-S
Temperature (deg F)					Report			
Instream Monitoring	XXX	XXX	XXX	Report	Daily Max	XXX	1/week	I-S

Compliance Sampling Location: Outfall 001. Instream temperature monitoring is to be taken approximately 100 feet upstream from the 001 discharge.

Existing Effluent Limitations and Monitoring Requirements – Suboutfall 101

		Monitoring Requirements						
Parameter	Mass Units (lbs/day) (1)			Concentrat	Minimum ⁽²⁾	Required		
raianietei	Average Monthly	Average Weekly	Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report Daily Max	XXX	XXX	XXX	XXX	2/month	Estimated
pH (S.U.)	XXX	XXX	6.0	XXX	9.0	XXX	2/month	Grab
Total Residual Chlorine (TRC)	XXX	XXX	XXX	0.5	XXX	1.0	2/month	Grab
Total Suspended Solids	XXX	XXX	XXX	30.0	XXX	60.0	2/month	Grab
Aluminum, Total	XXX	XXX	XXX	4.0	XXX	8.0	2/month	Grab
Iron, Total	XXX	XXX	XXX	2.0	XXX	4.0	2/month	Grab
Manganese, Total	XXX	XXX	XXX	1.0	XXX	2.0	2/month	Grab

	Development of Effluent Limitations								
Outfall No.	001	Design Flow (MGD)	0.063						
Latitude	40° 51' 40.00"	Longitude	-76° 46' 25.00"						
Wastewater D	escription: IW Process Effluent without ELG	_							

Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Parameter	Limit (mg/l)	SBC
Total Suspended	30	Average Monthly
Solids	60	Daily Max
	2	Average Monthly
Total Iron	4	Daily Max
	4	Average Monthly
Total Aluminum	8	Daily Max
	1	Average Monthly
Total Manganese	2	Daily Max
TRC	0.5	Average Monthly
рН	6.0 – 9.0 S.U.	Min – Max

Comments: The above limits have been determined by the Department to be applicable to filter backwash, waste sludges and other related water treatment plant wastes as listed in the Department's *Technology-Based Control Requirements for Water Treatment Plant Wastes* guidance document (*Doc. ID 362-2183-003*). The guidance recommends these limits to apply to discharges to surface Waters of the Commonwealth and as such the Department will apply these limitations at the discharge from Lagoon 2 into Lagoon 5 because Lagoon 5 receives flow-through from Little Shamokin Creek and is not being considered treatment. This point will be designated as Internal Monitoring Point (IMP) 101 in the permit and the eDMR system.

Water Quality-Based Limitations

A "Reasonable Potential Analysis" was performed to determine additional parameters with the potential to violate water quality standards (see the Toxics Management Spreadsheet in Attachment B). The Toxics Management Spreadsheet (TMS) is a mass-balance water quality analysis model that includes consideration for mixing and other factors to determine recommended water quality-based effluent limits. The model incorporates the water quality criteria in 25 Pa. Code §93.

Because the discharge from 001 includes dilution from Little Shamokin Creek and the River returning to Little Shamokin Creek, modeling and the reasonable potential analysis was performed considering the effective discharge of the backwash and sludge as represented by IMP 101. These loadings are being assumed to effectively accumulate in the lagoons and discharge to Little Shamokin as a long-term average. Effluent limits are recommended for results greater than 50% of the WQBEL and monitoring is recommended for results greater than 10% of the WQBEL for conservative pollutants.

The parameters listed below were determined by the TMS to be candidates for limitations or monitoring in the NPDES permit. The analysis recommended effluent limits for Cadmium and Selenium and monitoring for Arsenic because the monitoring was at reporting limits greater than the Department's Target Quantitation Limits listed in the application instructions. Also, monitoring for Total Aluminum and Total Zinc were recommended because these were detected in the effluent in at least one sample at a sufficient level to warrant monitoring. The table below shows the permittee's initial sample results, the WQ-based monthly average limitation, the Target Quantitation Limits, and the Toxics Management Spreadsheet recommendation for the relevant parameters.

The Department has established the Target QLs as achievable minimum detection levels that guarantee that NPDES sampling gives the Department the best information for making permitting decisions. This policy is consistent with EPA's Sufficiently Sensitive Methods Rule.

Pollutant	Sample Results (µg/L)	WQBEL (µg/L)	Target Quantitation Limit (µg/L)	TMS Recommendation
Total Aluminum	1,100	4,184	n/a	Report
Total Arsenic	<10	87	3	Report
Total Cadmium	<4	2.27	0.2	Limitation
Total Selenium	<200	43.4	5	Limitation
Total Zinc	82.7	640	n/a	Report

The applicant will be given the option of conducting an additional sampling event for Total Arsenic, Total Cadmium, and Total Selenium. If the additional samples meet their respective Target Quantitation Limits and are still not-detect then the Department will reevaluate the results to consider removing the monitoring requirements for these three parameters from the final permit.

Temperature

Typical water plant discharges are not expected to have any thermal effect on the receiving stream, but the Authority seasonally receives source water from the Susquehanna River. Susquehanna River (WWF) water would typically be warmer than Little Shamokin Creek (CWF) water. This flow-through of water used to keep the water in the lagoons fresh would cause potential impacts to the designated use of Little Shamokin Creek at the point of discharge. In addition, these discharges typically occur when Little Shamokin Creek is at lower levels resulting in a higher probability of impact.

To address the thermal impacts to Little Shamokin Creek during the period of May through August, when Susquehanna River water is used in the system, instream temperature modeling was used. The Department uses a modeling spreadsheet to model thermal impacts to receiving streams using the criteria of 25 Pa. Code 93.7. The resulting discharge rate of 2.8849 MGD for this period was used. The Thermal Discharge Limit analysis spreadsheets are attached (see Attachment C).

Below are listed the limitations for May through August with the average and max temperatures seen in the discharge for those months compiled from eDMR data.

Date Range	Daily Ave Limitation (°F)	Max Daily Temperature (2019-2022) (°F)	Max Mo. Ave (2019-2022) (°F)	Overall Mo. Ave. (2019-2022) (°F)
May 1-15	56.9	75	66	63.5
May 16-30	60.9	75	66	63.5
Jun 1-15	64.5	84	75	74
Jun 16-30	68.5	84	75	74
Jul 1-31	72.3	84	83	81.45
Aug 1-15	71.2	84	81	79.5
Aug 16-31	71.2	84	81	79.5

Because the limitations are not expected to be achievable based on the existing data a compliance schedule will be included in the permit to allow time for the permittee to make the changes necessary to meet the final limitations. The proposed schedule is below. During the current permit period the permittee had evaluated potential alternatives to address potential thermal limitations. The most cost-effective alternative was determined to be moving the discharge from Reservoir 4 to Little Shamokin Creek to a new discharge from Reservoir 5 to Shamokin Creek (Warm Water Fishery impaired by metals from Abandoned Mine Drainage).

Proposed Schedule of Compliance

A. The permittee shall achieve compliance with final effluent limitations or terminate this discharge in accordance with the following schedule:

1.	Feasibility study completion	One Year after Permit Effective Date
2.	Final plan completion	Two Years after Permit Effective Date
3.	Submit necessary permit applications	Three Years after Permit Effective Date
4.	Start construction	Forty-Two Months after Permit Effective Dat
5.	End construction	Four Years after Permit Effective Date
6.	Compliance with effluent limitations	59 Months after Permit Effective Date

- B. No later than 14 calendar days following a date identified in the above schedule of compliance, the permittee shall submit to DEP a written notice of compliance or non-compliance with the specific schedule requirement. Each notice of non-compliance shall include the following information:
 - 1. A short description of the non-compliance.
 - 2. A description of any actions taken or proposed by the permittee to comply with the elapsed schedule requirement.
 - 3. A description of any factors which tend to explain or mitigate the non-compliance.
 - 4. An estimate of the date that compliance with the elapsed schedule requirement will be achieved and an assessment of the probability that the next scheduled requirement will be met on time.

Should Sunbury Municipal Authority move the discharge point to Shamokin Creek adjacent to Reservoir 5 the Department would no longer require any final temperature limitations.

Chesapeake Bay/Nutrient Requirements

Because measurable levels of TN and TP are present in the discharge and consistent with Department policy and the Phase III Wastewater Supplement annual monitoring for TN and TP will be included in the permit.

Best Professional Judgment (BPJ) Limitations

Comments: No additional limitations are necessary at this time beyond the technology and water quality-based limits noted above.

Anti-Backsliding

Consistent with the anti-backsliding requirements of the Clean Water Act and 40 CFR 122.44(I) no proposed limitations have been made less stringent.

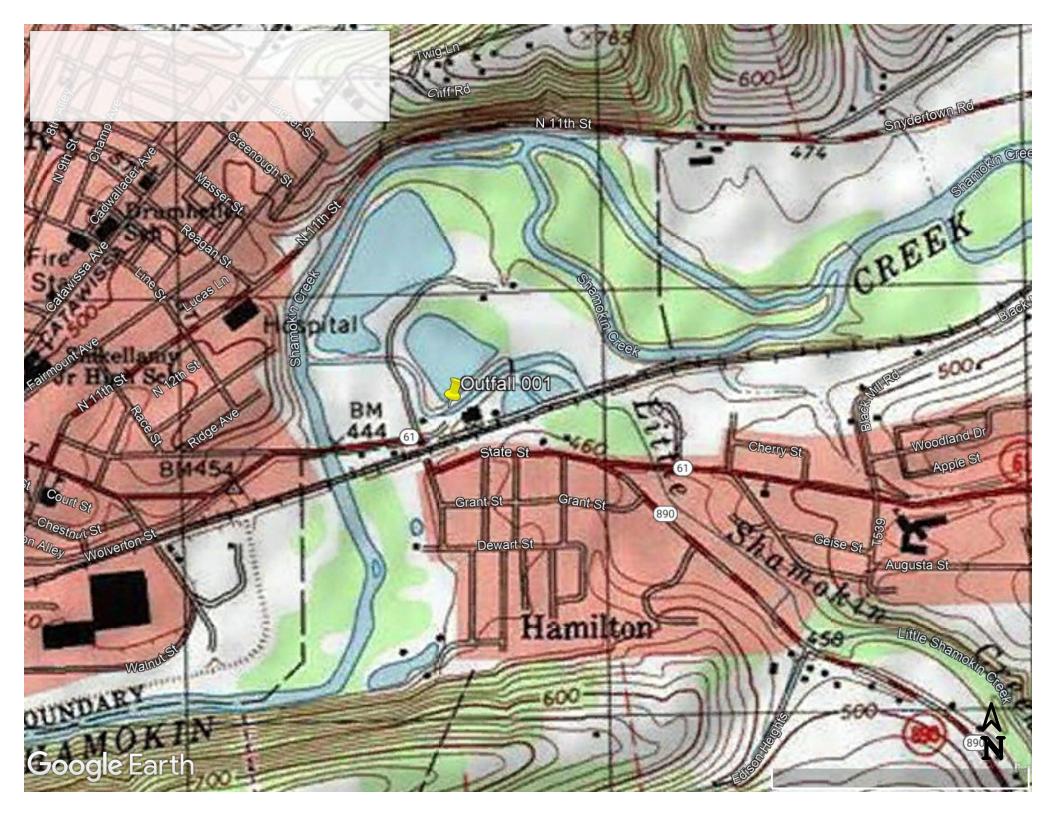
Proposed Effluent Limitations and Monitoring Requirements - Outfall 001

			Effluent L	imitations			Monitoring Red	uirements	
Parameter	Mass Units	s (lbs/day) ⁽¹⁾		Concentra	tions (mg/L)		Minimum (2)	Required	
raiametei	Average Monthly	Average Weekly	Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type	
Temperature deg F) - Interim	XXX	XXX	XXX	XXX	Report Daily Max	XXX	1/week	I-S	
Temperature (May – August) (deg F) - Final	XXX	XXX	XXX	XXX	Report Daily Max	XXX	1/week	I-S	
Temperature (deg F) May 1-15 Final	XXX	XXX	XXX	XXX	56.9 Daily Max	XXX	1/week	I-S	
Temperature (deg F) May 16-30 - Final	XXX	XXX	XXX	XXX	60.9 Daily Max	XXX	1/week	I-S	
Temperature (deg F) Jun 1-15 - Final	XXX	XXX	XXX	XXX	64.5 Daily Max	XXX	1/week	I-S	
Temperature (deg F) Jun 16-30 - Final	XXX	XXX	XXX	XXX	68.5 Daily Max	XXX	1/week	I-S	
Temperature (deg F) Jul 1-31 - Final	XXX	XXX	XXX	XXX	72.3 Daily Max	XXX	1/week	I-S	
Temperature (deg F) Aug - Final	XXX	XXX	XXX	XXX	71.2 Daily Max	XXX	1/week	I-S	
Nitrogen, Total	XXX	Report Daily Max	XXX	XXX	Report Daily Max	XXX	1/year	Grab	
Phosphorus, Total	XXX	Report Daily Max	XXX	XXX	Report Daily Max	XXX	1/year	Grab	

Compliance Sampling Location: Outfall 001. Instream temperature monitoring has been removed. New Final limitations are included for May-August as mentioned above. Because the Limitations are Daily Maxima monthly average reporting has been removed. Monitoring for Total Nitrogen and Total Phosphorus are also included as mentioned above.

Proposed Effluent Limitations and Monitoring Requirements - Suboutfall 101

			Effluent L	imitations			Monitoring Red	quirements	
Parameter	Mass Units	(lbs/day) ⁽¹⁾		Concentrat	tions (mg/L)		Minimum ⁽²⁾	Required	
Farameter	Average Monthly	Average Weekly	Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type	
Flow (MGD)	Report	Report Daily Max	XXX	XXX	XXX	XXX	2/month	Estimated	
pH (S.U.)	XXX	XXX	6.0	XXX	9.0	XXX	2/month	Grab	
Total Residual Chlorine (TRC)	XXX	XXX	XXX	0.5	XXX	1.0	2/month	Grab	
Total Suspended Solids	XXX	XXX	XXX	30.0	XXX	60.0	2/month	Grab	
Aluminum, Total	XXX	XXX	XXX	4.0	XXX	8.0	2/month	Grab	
Arsenic, Total	XXX	XXX	XXX	Report	Report	XXX	2/month	Grab	
Cadmium, Total (µg/L)	0.001	0.002 Daily Max	XXX	2.27	3.54 Daily Max	5.67	2/month	Grab	
Iron, Total	XXX	XXX	XXX	2.0	XXX	4.0	2/month	Grab	
Manganese, Total	XXX	XXX	XXX	1.0	XXX	2.0	2/month	Grab	
Selenium, Total	0.023	0.036 Daily Max	XXX	0.043	0.0677	0.109	2/month	Grab	
Zinc, Total	XXX	XXX	XXX	Report	Report Daily Max	XXX	2/month	Grab	


Compliance Sampling Location: Suboutfall 101.

Comments: Limits and/or monitoring for Arsenic, Cadmium, Selenium, and Zinc are new as mentioned above.

			Tools and References Used to Develop Permit
	_		
			dows Model (see Attachment)
X		Toxics Manag	ement Spreadsheet (see Attachment B)
		TRC Model Sp	preadsheet (see Attachment)
\times		Temperature N	Model Spreadsheet (see Attachment C)
\times		Water Quality	Toxics Management Strategy, 361-0100-003, 4/06.
		Technical Guid	dance for the Development and Specification of Effluent Limitations, 362-0400-001, 10/97.
		Policy for Pern	nitting Surface Water Diversions, 362-2000-003, 3/98.
		Policy for Con-	ducting Technical Reviews of Minor NPDES Renewal Applications, 362-2000-008, 11/96.
\times		Technology-Ba	ased Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97.
		Technical Gui 12/97.	dance for Development of NPDES Permit Requirements Steam Electric Industry, 362-2183-004,
		Pennsylvania	CSO Policy, 385-2000-011, 9/08.
		Water Quality	Antidegradation Implementation Guidance, 391-0300-002, 11/03.
		Implementatio 2000-002, 4/9	n Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 391-7.
\times		Determining W	Vater Quality-Based Effluent Limits, 391-2000-003, 12/97.
			n Guidance Design Conditions, 391-2000-006, 9/97.
		and Ammonia	erence Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen Nitrogen, Version 1.0, 391-2000-007, 6/2004.
		Interim Method 391-2000-008	d for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, , 10/1997.
		and Impoundn	in Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, nents, 391-2000-010, 3/99.
\boxtimes			erence Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program rsion 2.0, 391-2000-011, 5/2004.
		Implementatio	n Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97.
			ocedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Swales, and Storm Sewers, 391-2000-014, 4/2008.
		Implementatio	n Guidance Total Residual Chlorine (TRC) Regulation, 391-2000-015, 11/1994.
\times		Implementatio	n Guidance for Temperature Criteria, 391-2000-017, 4/09.
		Implementation	n Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/97.
			n Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97.
			ollection and Evaluation Protocol for Determining Stream and Point Source Discharge Design 1-2000-021, 3/99.
			in Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/1999.
\times		Design Stream	n Flows, 391-2000-023, 9/98.
			lection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) charge Characteristics, 391-2000-024, 10/98.
			Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97.
\times			s Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.
		SOP:	
		Other:	

Attachments:

- A. Discharge Location Map
- B. Toxics Management Spreadsheet
- C. Thermal Discharge Analysis Spreadsheet

Discharge Information

Instructions Discharge Stream

Facility: Sunbury Municipal Authority - Water Plant NPDES Permit No.: PA0232815 Outfall No.: 001

Evaluation Type Major Sewage / Industrial Waste Wastewater Description: Filter backwash

	Discharge Characteristics											
Design Flow	Hardrass (ma/l)*	pH (SU)*	Partial Mix Factors (PMFs) Complete Mix Times (n					x Times (min)				
(MGD)*	MGD)* Hardness (mg/l)* pH		AFC	CFC	THH	CRL	Q ₇₋₁₀	Qh				
0.063	55.8	7.8										

					0 if lef	t blank	0.5 if le	eft blank	() if left blan	k	1 if lef	t blank
	Discharge Pollutant	Units	Ма	x Discharge Conc	Trib Conc	Stream Conc	Daily CV	Hourly CV	Strea m CV	Fate Coeff	FOS	Criteri a Mod	Chem Transl
	Total Dissolved Solids (PWS)	mg/L		90									
0 1	Chloride (PWS)	mg/L		23.3									
	Bromide	mg/L	<	0.2									
	Sulfate (PWS)	mg/L		31.1									
	Fluoride (PWS)	mg/L	<	1									
	Total Aluminum	μg/L		1110									
	Total Antimony	μg/L	<	4									
	Total Arsenic	μg/L	<	10									
	Total Barium	μg/L		24									
	Total Beryllium	μg/L	<	2									
	Total Boron	μg/L	<	50									
	Total Cadmium	μg/L	<	4									
	Total Chromium (III)	μg/L	<	5									
	Hexavalent Chromium	μg/L	<	0.25									
	Total Cobalt	μg/L	<	1									
	Total Copper	μg/L	<	2									
0	Free Cyanide	μg/L											
Group	Total Cyanide	μg/L	<	10									
Gro	Dissolved Iron	μg/L	<	40									
	Total Iron	μg/L		57.6									
	Total Lead	μg/L	<	1									
	Total Manganese	μg/L		19									
	Total Mercury	μg/L	<	0.2									
	Total Nickel	μg/L	<	1									
	Total Phenols (Phenolics) (PWS)	μg/L	<	20									
	Total Selenium	μg/L	<	200									
	Total Silver	μg/L	<	1									
	Total Thallium	μg/L	<	0.4									
	Total Zinc	μg/L		82.7									
	Total Molybdenum	μg/L											
	Acrolein	μg/L	<										
	Acrylamide	μg/L	<										
	Acrylonitrile	μg/L	<										
	Benzene	μg/L	<										
	Bromoform	μg/L	<										
	Carbon Tetrachloride	μg/L	<										

Chlorobenzene µg/L Chlorodibromomethane µg/L Chloroethane µg/L 2-Chloroethyl Vinyl Ether µg/L Chloroform µg/L Dichlorobromomethane µg/L 1,1-Dichloroethane µg/L 1,2-Dichloroethylene µg/L 1,2-Dichloropropoulene µg/L 1,3-Dichloropropoulene µg/L		
Chloroethane		
2-Chloroethyl Vinyl Ether		
Chloroform		
Dichlorobromomethane		
1,1-Dichloroethane		
1,2-Dichloroethane µg/L <		
1,2-Dichloroethane μg/L < 1,1-Dichloroethylene μg/L < 1,2-Dichloropropane μα/L <		
1,1-Dichloroethylene		
2 1,2-Dichloropropane µa/L <		
1,3-Dichloropropylene µg/L <		
1,4-Dioxane µg/L <		
Ethylbenzene µg/L <	000000	
Methyl Bromide µg/L <		
Methyl Chloride µg/L <		

1,1,2,2-Tetrachloroethane µg/L <		
Tetrachloroethylene µg/L <		
Toluene µg/L <		
1,2-trans-Dichloroethylene µg/L <		
1,1,1-Trichloroethane µg/L <		
1,1,2-Trichloroethane µg/L <		
Trichloroethylene µg/L <		
Vinyl Chloride µg/L <		
2-Chlorophenol µg/L <		
2,4-Dichlorophenol µg/L <		
2,4-Dimethylphenol µg/L <		
4,6-Dinitro-o-Cresol µg/L <	90000	

2,4-Dinitrophenol µg/L <		
2-Nitrophenol		
p-Chloro-m-Cresol µg/L <		
Pentachlorophenol µg/L <		
Phenol µg/L <		
2,4,6-Trichlorophenol µg/L <		
Acenaphthene µg/L <		
Acenaphthylene µg/L <	***	
Anthracene µg/L <		
Benzidine µg/L <		
Benzo(a)Anthracene µg/L <	****	
Benzo(a)Pyrene µg/L <		
3,4-Benzofluoranthene µg/L <		
Benzo(k)Fluoranthene µg/L <		
Bis(2-Chloroethoxy)Methane µg/L <		
Bis(2-Chloroethyl)Ether µg/L <		
Bis(2-Chloroisopropyl)Ether µg/L <		
Bis(2-Ethylhexyl)Phthalate μg/L <		
4-Bromophenyl Phenyl Ether µg/L <		
Butyl Benzyl Phthalate µg/L <		
2-Chloronaphthalene µg/L <		
4-Chlorophenyl Phenyl Ether µg/L <		
Chrysene µg/L <		
Dibenzo(a,h)Anthrancene µg/L <		
1,2-Dichlorobenzene µg/L <		
1,3-Dichlorobenzene µg/L <		
1.4 Dichlerohopzono		
Diethyl Phthalate µg/L <		
Difficulty i i itilialate pg L		
Di-n-Butyl Phthalate µg/L <		
2,4-Dinitrotoluene µg/L <		
2,6-Dinitrotoluene µg/L <		

Di-n-Octyl Phthalate μg/L < 1,2-Diphenylhydrazine μg/L < Fluoranthene μg/L < Fluorene μg/L < Hexachlorobenzene μg/L < Hexachlorobutadiene μg/L <	
Fluoranthene µg/L Fluorene µg/L Hexachlorobenzene µg/L Hexachlorobutadiene µg/L	
Fluorene	
Hexachlorobenzene	
Hexachlorobutadiene µg/L <	
Hexachlorocyclopentadiene µg/L <	
Hexachloroethane µg/L <	
Indeno(1,2,3-cd)Pyrene µg/L <	
Isophorone µg/L <	
Naphthalene µg/L <	
Nitrobenzene µg/L <	
n-Nitrosodimethylamine µg/L <	
n-Nitrosodi-n-Propylamine µg/L <	
n-Nitrosodiphenylamine µg/L <	
T G	
Pyrene µg/L <	
1,2,4-Trichlorobenzene µg/L <	
Aldrin µg/L <	
alpha-BHC µg/L <	
beta-BHC µg/L <	
gamma-BHC µg/L <	
delta BHC µg/L <	
Chlordane µg/L <	
4,4-DDT	
4,4-DDE	
Dieldrin µg/L <	
alpha-Endosulfan µg/L <	
beta-Endosulfan µg/L <	
Endosulfan Sulfate µg/L <	
Endosulan Sullate	
Endrin Aldehyde µg/L <	
Heptachlor µg/L <	
Heptachlor Epoxide µg/L <	
PCB-1016 µg/L <	
PCB-1221	
PCB-1248	
PCB-1254	
PCB-1260	
PCBs, Total µg/L <	
Toxaphene µg/L <	
2,3,7,8-TCDD	
Gross Alpha pCi/L	
Total Poto	
Total Strontium	
Radium 226/228 pCi/L	
Total Oraniam	
Osmotic Pressure mOs/kg	

Stream / Surface Water Information

Sunbury Municipal Authority - Water Plant, NPDES Permit No. PA0232815, Outfall 001

Location Stream Code* RMI* Elevation (ft)* DA (mi²)* Slope (ft/ft) PWS Withdrawal (MGD) Apply Fish Criteria* Point of Discharge 018490 0.14 436 29.1 Yes End of Reach 1 018490 0.001 433 29.5 Yes	
Point of Discharge 018490 0.14 436 29.1 Yes	
End of Reach 1 018490 0.001 433 29.5 Yes	
Q 7-10 Location RMI LFY Flow (cfs) W/D Width Depth Velocit Time (cfs/mi²)* Stream Tributary Ratio (ft) (ft) (ft) y (fps) Hardness pH Hardness* pH*	Analysis Hardness pH
	naiuriess pri
Point of Discharge	
\mathbf{Q}_h	
Location RMI LFY Flow (cfs) W/D Width Depth Velocit Time Tributary Stream	Analysis
Control (cfs/mi²) Stream Tributary Ratio (ft) (ft) y (fps) Hardness pH Hardness pH	Hardness pH

Chem Translator of 0.982 applied

Chem Translator of 0.96 applied

Hexavalent Chromium

Total Cobalt

Total Copper

0

0

0

0

Model Results

Sunbury Municipal Authority - Water Plant, NPDES Permit No. PA0232815, Outfall 001

Instructions	Results		RETURN	I TO INPU	TS		SAVE AS F	PDF		PRINT) (1)	All O Inputs	Results	Limits	
☑ Hydrody	/namics														
Q ₇₋₁₀															
RMI	Stream Flow (cfs)	PWS Without (cfs)		Net Strear Flow (cfs		Flo	ge Analys w (cfs)	Slope (Í	Depth			Velocity (fps)	Time (days) 0.095	Complete Mix Time (min)
0.14	0.75			0.75		(0.097	0.00	4	0.532	2 17.75	33.365	0.09	0.095	13.64
0.001	0.76			0.761											
Q_h															
RMI	Stream Flow (cfs)	PWS Without (cfs)		Net Strear Flow (cfs			ge Analys w (cfs)	Slope (ft/ft)	Depth	(ft) Width	(ft) W/D Ratio	Velocity (fps)	Time (days)	Complete Mix Time (min)
0.14	5.78			5.78		C	0.097	0.00	4	1.248	3 17.75	14.233	0.265	(days) 0.032	4.691
0.001	5.853			5.85											
✓ Wastelo ✓ AFC	ad Allocatio		Γ (min): 13		PM	L	1				s (mg/l):	94.922	Analysis pH:	7.04	
	Pollutants		Conc (µg/L)	Stream CV	Trib (µg		Fate Coef	WQC (µg/L)	(μ	g/L)	WLA (µg/L)		C	omments	
	ssoivea Soila Chloride (PWS		0	0			0	N/A N/A		V/A V/A	N/A N/A				
		,	_	0											
	Sulfate (PWS Tuoride (PWS		0	0			0	N/A N/A		√A √A	N/A N/A				
	•	,	0				0								
	otal Aluminu		0	0			0	750		750	6,528				
	otal Antimon Total Arsenio		0	0			0	1,100		100	9,574		Cham Tran	alotor of 1 am	anliad
	Total Barium		0	0			0	340		,000	2,959 182,771		Chem fran	slator of 1 ap	plieu
	Total Boron		0	0			0	21,000 8,100		100	70,497				
	otal Cadmiu	m	0	0			0	1.914		2.02	17.6		Chem Transl	ator of 0.046	applied
	al Chromium		0	0			0	545.954		728	15,037		Chem Transl		•
I Ota	ai Chromium	(III)	U	U			U	545.954	j 1,	128	15,037	ĺ	Chem Transl	ator of 0.316	applied

16.3

95.0

13.3

142

827

116

16

95

12.795

0

0

Dissolved Iron	0	0	0	N/A	N/A	N/A	
Total Iron	0	0	0	N/A	N/A	N/A	
Total Lead	0	0	0	61.016	76.4	665	Chem Translator of 0.799 applied
Total Manganese	0	0	0	N/A	N/A	N/A	
Total Mercury	0	0	0	1.400	1.65	14.3	Chem Translator of 0.85 applied
Total Nickel	0	0	0	448.038	449	3,907	Chem Translator of 0.998 applied
Total Phenols (Phenolics) (PWS)	0	0	0	N/A	N/A	N/A	
Total Selenium	0	0	0	N/A	N/A	N/A	Chem Translator of 0.922 applied
Total Silver	0	0	0	2.941	3.46	30.1	Chem Translator of 0.85 applied
Total Thallium	0	0	0	65	65.0	566	
Total Zinc	0	0	0	112.118	115	998	Chem Translator of 0.978 applied

☑ CFC	CCT (min): 13.640	PMF: 1	Analysis Hardness (mg/l):	94.922 Analysis pH:	7.04
	Stream	- : 0	14/00		

Pollutants	Conc (µg/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Fluoride (PWS)	0	0		0	N/A	N/A	N/A	
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Antimony	0	0		0	220	220	1,915	
Total Arsenic	0	0		0	150	150	1,306	Chem Translator of 1 applied
Total Barium	0	0		0	4,100	4,100	35,684	
Total Boron	0	0		0	1,600	1,600	13,925	
Total Cadmium	0	0		0	0.237	0.26	2.27	Chem Translator of 0.911 applied
Total Chromium (III)	0	0		0	71.017	82.6	719	Chem Translator of 0.86 applied
Hexavalent Chromium	0	0		0	10	10.4	90.5	Chem Translator of 0.962 applied
Total Cobalt	0	0		0	19	19.0	165	
Total Copper	0	0		0	8.566	8.92	77.7	Chem Translator of 0.96 applied
Dissolved Iron	0	0		0	N/A	N/A	N/A	
Total Iron	0	0		0	1,500	1,500	13,055	WQC = 30 day average; PMF = 1
Total Lead	0	0		0	2.378	2.98	25.9	Chem Translator of 0.799 applied
Total Manganese	0	0		0	N/A	N/A	N/A	
Total Mercury	0	0		0	0.770	0.91	7.88	Chem Translator of 0.85 applied
Total Nickel	0	0		0	49.763	49.9	434	Chem Translator of 0.997 applied
Total Phenols (Phenolics) (PWS)	0	0		0	N/A	N/A	N/A	
Total Selenium	0	0		0	4.600	4.99	43.4	Chem Translator of 0.922 applied
Total Silver	0	0		0	N/A	N/A	N/A	Chem Translator of 1 applied
Total Thallium	0	0		0	13	13.0	113	
Total Zinc	0	0		0	113.035	115	998	Chem Translator of 0.986 applied

☑ THH	CCT (min): 13.640	PMF: 1	Analysis Hardness (mg/l):	N/A	Analysis pH:	N/A
--------------	-------------------	--------	---------------------------	-----	--------------	-----

Pollutants	Stream Conc (µg/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	Ü	0		0	500,000	500,000	N/A	
Chloride (PWS)	0	0		0	250,000	250,000	N/A	
Sulfate (PWS)	0	0		0	250,000	250,000	N/A	
Fluoride (PWS)	0	0		0	2,000	2,000	N/A	
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Antimony	0	0		0	5.6	5.6	48.7	
Total Arsenic	0	0		0	10	10.0	87.0	
Total Barium	0	0		0	2,400	2,400	20,888	
Total Boron	0	0		0	3,100	3,100	26,981	
Total Cadmium	0	0		0	N/A	N/A	N/A	
Total Chromium (III)	0	0		0	N/A	N/A	N/A	
Hexavalent Chromium	0	0		0	N/A	N/A	N/A	
Total Cobalt	0	0		0	N/A	N/A	N/A	
Total Copper	0	0		0	N/A	N/A	N/A	
Dissolved Iron	0	0		0	300	300	2,611	
Total Iron	0	0		0	N/A	N/A	N/A	
Total Lead	0	0		0	N/A	N/A	N/A	
Total Manganese	0	0		0	1,000	1,000	8,703	
Total Mercury	0	0		0	0.050	0.05	0.44	
Total Nickel	0	0		0	610	610	5,309	
Total Phenols (Phenolics) (PWS)	0	0		0	5	5.0	N/A	
Total Selenium	0	0		0	N/A	N/A	N/A	
Total Silver	0	0		0	N/A	N/A	N/A	
Total Thallium	0	0		0	0.24	0.24	2.09	
Total Zinc	0	0		0	N/A	N/A	N/A	

Pollutants	Conc (µg/L)	Stream CV	Trib Conc (μg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	U		U	N/A	N/A	N/A	
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Fluoride (PWS)	0	0		0	N/A	N/A	N/A	
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Antimony	0	0		0	N/A	N/A	N/A	
Total Arsenic	0	0		0	N/A	N/A	N/A	
Total Barium	0	0		0	N/A	N/A	N/A	
Total Boron	0	0		0	N/A	N/A	N/A	
Total Cadmium	0	0		0	N/A	N/A	N/A	
Total Chromium (III)	0	0		0	N/A	N/A	N/A	
Hexavalent Chromium	0	0		0	N/A	N/A	N/A	

Analysis Hardness (mg/l):

N/A

Analysis pH:

N/A

✓ CRL

CCT (min): 4.691

PMF:

Total Cobalt	0	0	0	N/A	N/A	N/A	
Total Copper	0	0	0	N/A	N/A	N/A	
Dissolved Iron	0	0	0	N/A	N/A	N/A	
Total Iron	0	0	0	N/A	N/A	N/A	
Total Lead	0	0	0	N/A	N/A	N/A	
Total Manganese	0	0	0	N/A	N/A	N/A	
Total Mercury	0	0	0	N/A	N/A	N/A	
Total Nickel	0	0	0	N/A	N/A	N/A	
Total Phenols (Phenolics) (PWS)	0	0	0	N/A	N/A	N/A	
Total Selenium	0	0	0	N/A	N/A	N/A	
Total Silver	0	0	0	N/A	N/A	N/A	
Total Thallium	0	0	0	N/A	N/A	N/A	
Total Zinc	0	0	0	N/A	N/A	N/A	

☑ Recommended WQBELs & Monitoring Requirements

No. Samples/Month: 4

\ML								
s/day)	MDL (lbs/day)	AML	MDL	IMAX	Units	Governing WQBEL	WQBEL Basis	Comments
eport	Report	Report	Report	Report	μg/L	4,184	AFC	Discharge Conc > 10% WQBEL (no RP)
eport	Report	Report	Report	Report	μg/L	87.0	THH	Discharge Conc > 10% WQBEL (no RP)
.001	0.002	2.27	3.54	5.67	μg/L	2.27	CFC	Discharge Conc ≥ 50% WQBEL (RP)
.023	0.036	43.4	67.7	109	μg/L	43.4	CFC	Discharge Conc ≥ 50% WQBEL (RP)
eport	Report	Report	Report	Report	μg/L	640	AFC	Discharge Conc > 10% WQBEL (no RP)
(eport eport .001 .023	eport Report eport Report .001 0.002 .023 0.036	eport Report Report eport Report Report 001 0.002 2.27 023 0.036 43.4	eport Report Rep	S/day (lbs/day) Report Report	s/day) (lbs/day) eport Report Report Report µg/L eport Report Report Report µg/L .001 0.002 2.27 3.54 5.67 µg/L .023 0.036 43.4 67.7 109 µg/L	WQBEL WQBEL WQBEL Peport Report Repo	WQBEL Basis WQBEL Basis Basi

Other Pollutants without Limits or Monitoring

Facility: Sunbury Water Authority

Permit Number: PA0232815

Stream Name: Little Shamokin Creek

Analyst/Engineer: K. Allison Stream Q7-10 (cfs): 0.75

		Facilit	y Flows¹		Stream	Flows
	Stream (Intake)	External (Intake)	Consumptive (Loss)	Discharge	Adj. Q7-10 Stream Flow	Downstream ² Stream Flow
	(MGD)	(MGD)	(MGD)	(MGD)	(cfs)	(cfs)
Jan 1-31	0	0.063	0	0.063	2.4	2.5
Feb 1-29	0	0.063	0	0.063	2.6	2.7
Mar 1-31	0	0.063	0	0.063	5.3	5.3
Apr 1-15	0	0.063	0	0.063	7.0	7.1
Apr 16-30	0	0.063	0	0.063	7.0	7.1
May 1-15	0	2.8849	0	2.8849	3.8	8.3
May 16-30	0	2.8849	0	2.8849	3.8	8.3
Jun 1-15	0	2.8849	0	2.8849	2.3	6.7
Jun 16-30	0	2.8849	0	2.8849	2.3	6.7
Jul 1-31	0	2.8849	0	2.8849	1.3	5.7
Aug 1-15	0	2.8849	0	2.8849	1.1	5.5
Aug 16-31	0	2.8849	0	2.8849	1.1	5.5
Sep 1-15	0	0.063	0	0.063	0.8	0.9
Sep 16-30	0	0.063	0	0.063	0.8	0.9
Oct 1-15	0	0.063	0	0.063	0.9	1.0
Oct 16-31	0	0.063	0	0.063	0.9	1.0
Nov 1-15	0	0.063	0	0.063	1.2	1.3
Nov 16-30	0	0.063	0	0.063	1.2	1.3
Dec 1-31	0	0.063	0	0.063	1.8	1.9

¹ Facility flows are not required (and will not affect the permit limits) if all intake flow is from the receiving stream (Case 1), consumptive losses are small, and permit limits will be expressed as Million BTUs/day.

Please forward all comments to Tom Starosta at 717-787-4317, tstarosta@state.pa.us.

Version 1.0 -- 08/01/2004 Reference: Implementation Guidance for Temperature Criteria, DEP-ID: 391-2000-017

NOTE: The user can only edit fields that are blue.

NOTE: MGD x 1.547 = cfs.

² Downstream Stream Flow includes the discharge flow.

Facility: Sunbury Water Authority

Permit Number: PA0232815

Stream: Little Shamokin Creek

	WWF Criteria	CWF Criteria	TSF Criteria	316 Criteria	Q7-10 Multipliers	Q7-10 Multipliers
	(°F)	(°F)	(°F)	(°F)	(Used in Analysis)	(Default - Info Only)
Jan 1-31	40	38	40	0	3.2	3.2
Feb 1-29	40	38	40	0	3.5	3.5
Mar 1-31	46	42	46	0	7	7
Apr 1-15	52	48	52	0	9.3	9.3
Apr 16-30	58	52	58	0	9.3	9.3
May 1-15	64	54	64	0	5.1	5.1
May 16-30	72	58	68	0	5.1	5.1
Jun 1-15	80	60	70	0	3	3
Jun 16-30	84	64	72	0	3	3
Jul 1-31	87	66	74	0	1.7	1.7
Aug 1-15	87	66	80	0	1.4	1.4
Aug 16-31	87	66	87	0	1.4	1.4
Sep 1-15	84	64	84	0	1.1	1.1
Sep 16-30	78	60	78	0	1.1	1.1
Oct 1-15	72	54	72	0	1.2	1.2
Oct 16-31	66	50	66	0	1.2	1.2
Nov 1-15	58	46	58	0	1.6	1.6
Nov 16-30	50	42	50	0	1.6	1.6
Dec 1-31	42	40	42	0	2.4	2.4

NOTES:

WWF= Warm water fishes CWF= Cold water fishes TSF= Trout stocking Facility: Sunbury Water Authority

Permit Number: PA0232815

Stream: Little Shamokin Creek

	CWF			CWF	CWF	
	Ambient Stream	Ambient Stream	Target Maximum	Daily	Daily	
	Temperature (°F)	Temperature (°F)	Stream Temp.1	WLA^2	WLA^3	at Discharge
	(Default)	(Site-specific data)	(°F)	(Million BTUs/day)	(°F)	Flow (MGD)
Jan 1-31	34	0	38	N/A Case 2	110.0	0.063
Feb 1-29	35	0	38	N/A Case 2	110.0	0.063
Mar 1-31	39	0	42	N/A Case 2	110.0	0.063
Apr 1-15	46	0	48	N/A Case 2	110.0	0.063
Apr 16-30	52	0	53	N/A Case 2	110.0	0.063
May 1-15	55	0	56	N/A Case 2	56.9	2.8849
May 16-30	59	0	60	N/A Case 2	60.9	2.8849
Jun 1-15	63	0	64	N/A Case 2	64.5	2.8849
Jun 16-30	67	0	68	N/A Case 2	68.5	2.8849
Jul 1-31	71	0	72	N/A Case 2	72.3	2.8849
Aug 1-15	70	0	71	N/A Case 2	71.2	2.8849
Aug 16-31	70	0	71	N/A Case 2	71.2	2.8849
Sep 1-15	66	0	67	N/A Case 2	75.5	0.063
Sep 16-30	60	0	61	N/A Case 2	69.5	0.063
Oct 1-15	55	0	56	N/A Case 2	65.2	0.063
Oct 16-31	51	0	52	N/A Case 2	61.2	0.063
Nov 1-15	46	0	47	N/A Case 2	59.3	0.063
Nov 16-30	40	0	42	N/A Case 2	66.6	0.063
Dec 1-31	35	0	40	N/A Case 2	110.0	0.063

¹ This is the maximum of the CWF WQ criterion or the ambient temperature. The ambient temperature may be either the design (median) temperature for CWF, or the ambient stream temperature based on site-specific data entered by the user. A minimum of 1°F above ambient stream temperature is allocated.

² The WLA expressed in Million BTUs/day is valid for Case 1 scenarios, and disabled for Case 2 scenarios.

³ The WLA expressed in ^oF is valid only if the limit is tied to a daily discharge flow limit (may be used for Case 1 or Case 2). WLAs greater than 110°F are displayed as 110°F.