

Northcentral Regional Office CLEAN WATER PROGRAM

Application Type Renewal
Facility Type Municipal
Major / Minor
Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

Application No. PA0232971

APS ID 1079799

Authorization ID 1424964

Applicant and Facility Information

Applicant Name	Franklin Township	Facility Name	Lairdsville WWTP
Applicant Address	PO Box 85	Facility Address	61 School Lane
	Lairdsville, PA 17742-0085		Lairdsville, PA 17742
Applicant Contact	Raine Ohnmeiss	Facility Contact	Raine Ohnmeiss
Applicant Phone	(570) 584-3240	Facility Phone	(570) 584-3240
Client ID	114816	Site ID	828287
Ch 94 Load Status	Not Overloaded	Municipality	Franklin Township
Connection Status	No Limitations	County	Lycoming
Date Application Rec	eived <u>January 20, 2023</u>	EPA Waived?	No
Date Application Acc	epted <u>February 2, 2023</u>	If No, Reason	Chesapeake Bay
Purpose of Application	n Renewal of an existing NPDES pe	ermit for the discharg	ge of treated sewage.

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Approve	Deny	Signatures	Date
Х		Derek S. Garner / Project Manager	3/12/2024
X		M. Z. Micholas W. Hartranft, P.E. / Environmental Engineer Manager	3/12/2024

Discharge, Receiving Water	rs and Water Supply Informat	tion
Outfall No. 001 Latitude 41° 13' 48.39" Quad Name Lairdsville Wastewater Description: Sewage Effluent	Design Flow (MGD) Longitude Quad Code	0.018 -76° 36' 33.59" 0933
Receiving Waters Little Muncy Creek NHD Com ID 66913971 Drainage Area 38.7 Q ₇₋₁₀ Flow (cfs) 1.95 Elevation (ft) 732 Watershed No. 10-D Existing Use n/a Exceptions to Use Attaining Use(s)	Stream Code RMI Yield (cfs/mi²) Q ₇₋₁₀ Basis Slope (ft/ft) Chapter 93 Class. Existing Use Qualifier Exceptions to Criteria	19431 14.10 0.05 Streamgage No. 01552500 0.00008 CWF, MF n/a n/a
Cause(s) of Impairment	Name <u>n/a</u>	
Nearest Downstream Public Water Supply Intake PWS Waters West Branch Susquehanna River PWS RMI 10.64	Pennsylvania-American Wate Flow at Intake (cfs) Distance from Outfall (mi)	er Company 688 35.24

Treatment Facility Summary

The Lairdsville Wastewater Treatment Plant ("LWWTP") is a recently constructed sequencing batch reactor ("SBR") facility. eDMR submissions indicate that the facility became operational September 2023. Treatment at the facility consists of:

- Equalization
 - o One (1) 8.844-gallon surge tank
- Biological treatment
 - o Two (2) 15,150-gallon SBRs
- Disinfection
 - Ultraviolet Light
- Sludge Processing
 - o One (1) 9,936-gallon sludge holding tank

Disinfected effluent is discharged to Little Muncy Creek via Outfall 001.

	Degree of			Avg Annual
Waste Type	Treatment	Process Type	Disinfection	Flow (MGD)
Sewage	Secondary	Sequencing Batch Reactor	Ultraviolet	0.019
Hydraulic Capacity	Organic Capacity			Biosolids
(MGD)	(lbs/day)	Load Status	Biosolids Treatment	Use/Disposal
0.025	50.04	Not Overloaded	Holding Tank	Landfill

Compliance History

The facility was most recently inspected March 13, 2023. The facility was still under construction at the time of the inspection.

There are no eDMR violations associated with the facility.

There are no open violations associated with the permittee.

	Development of Effluent Limitations										
Outfall No. Latitude Wastewater D	001 41° 13' 48.41" escription: Sewage Effluent	Design Flow (MGD) 0.018 Longitude -76° 36′ 34.31″									

Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
CROD	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD₅	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
pН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform				
(5/1 - 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform (5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform	.,0007.100			0_0.11 (0)(1)
(10/1 – 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform	40,000 /400	INAAN		00- 47(-)(5)
(10/1 - 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)

Water Quality-Based Limitations

DEP models in-stream conditions to determine if WQBELs are appropriate. The water quality model WQM 7.0 v1.1 was used to determine if WQBELs for dissolved oxygen, CBOD5 and ammonia-n (NH3-N) are necessary to protect the receiving surface water. The model assumes complete and instantaneous mixing with the receiving surface water. The reach chosen to model the in-stream characteristics is appropriate as a recovery in dissolved oxygen levels is demonstrated. The modeling output is as follows:

Doromotor	Discharge	Effluent	Limits (mg/L))
Parameter	Conc. (mg/L)	Monthly Average	Maximum	Minimum
CBOD5	25	25		
Ammonia-N	25	25	50	
Dissolved Oxygen	3			3

The discharge concentration for CBOD5 is the secondary treatment standard for sewage discharges. The discharge concentrations for ammonia-n and dissolved oxygen are expected concentrations in sewage effluent. Based on the model output, no WQBELs are recommended for CBOD5, ammonia-n, or dissolved oxygen.

Best Professional Judgment (BPJ) Limitations

The ultraviolet light disinfection system monitors bulb life using dosage. DEP recommends the existing dosage reporting requirement remains in the permit.

NPDES Permit Fact Sheet Lairdsville WWTP

DEP recommends that the existing dissolved oxygen and ammonia-n reporting requirements remain in the permit to help characterize the wastewater.

DEP recommends that the existing influent monitoring requirements for BOD5 and TSS remain in the permit to help with Chapter 94 reporting.

Annual E. Coli reporting requirements have been proposed per the 2017 Triennial Review of Water Quality Standards, published in the PA Bulletin on July 11, 2020.

Chesapeake Bay

The LWWTP is a new Phase 5 facility per the Phase 3 Watershed Implementation Plan (WIP) Wastewater Supplement (rev. July 29, 2022). New facilities are generally assigned cap loads of zero pounds of total nitrogen and total phosphorus unless previously permitted facilities are connected to the public sewer system. When existing facilities are connected to the system their cap loads may be transferred to the new treatment plant, or if no existing cap loads are in place a load can be calculated assuming raw wastewater characteristics of 25 mg/l total nitrogen and 4 mg/l total phosphorus. The Lairdsville Sewer Project connected two single residence sewage treatment plants (SRSTPs), PAG045037 and PAG045164, both with design flows of 400 GPD. Accordingly, per the Wastewater Supplement, the previous permit issuance assigned the LWWTP the following cap loads:

Total Nitrogen = (25 mg/l x 0.0004 MGD x 8.34 x 365 days) x 2 = 60 lbsTotal Phosphorus = (8 mg/l x 0.0004 MGD x 8.34 x 365 days) x 2 = 9.7 lbs

Franklin Township has requested additional phosphorus loading added to the cap load in a letter dated December 20, 2023. The letter states that the East Lycoming School District Renn Elementary School has connected to the sewer system. However, it does not appear that the facility was ever assigned an NPDES permit or directly discharge to a surface water. Accordingly, DEP is unable to accommodate this request for additional phosphorus loading.

In addition to cap loads, the LWWTP is eligible for total nitrogen offsets. Offsets of 25 lbs/yr of total nitrogen per EDU may be included in the permit when on-lot septic systems that existed prior to January 1, 2003 are connected to the public sewer system. Franklin Township previously provided DEP with a list of on-lot septic systems in existence prior to January 1, 2003 which validates the inclusion of 71.4 EDUs. As a supplement to this most recent renewal application, Franklin Township provided documentation for an additional 74.0 EDUs. Accordingly, per the Wastewater Supplement, the LWWTP will be assigned the following offsets:

145.4 EDUs x 25 lbs/yr TN = 3,635 lbs/yr TN

The most recent offset documentation also includes an additional three EDU property that is proposed to be hooked up to the system by Spring 2024. Since it does not appear that the connection has occurred yet, it will not be included in the draft permit. If the connection is completed before permit issuance, DEP will include the additional 3 EDUs. If not, Franklin Township will be required to request the additional offsets separately.

Anti-Backsliding

No limits were relaxed because of this review. Anti-backsliding regulations are not applicable.

Existing Effluent Limitations and Monitoring Requirements

The existing effluent limitations and monitoring requirements are as follows:

			Monitoring Red	quirements				
Parameter	Mass Units (lbs/day) Concentrations (mg/L)					Minimum	Required	
Parameter	Average Monthly	Weekly Average	Daily Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report Daily Max	XXX	XXX	XXX	XXX	Continuous	Measured
pH (S.U.)	XXX	XXX	6.0 Inst Min	XXX	XXX	9.0	1/day	Grab
Dissolved Oxygen	XXX	XXX	Report	XXX	XXX	XXX	1/day	Grab
Carbonaceous Biochemical Oxygen Demand (CBOD5)	3.5	6.0	XXX	25.0	40.0	50	2/month	Grab
Biochemical Oxygen Demand (BOD5) Raw Sewage Influent	Report	Report Daily Max	XXX	Report	XXX	XXX	2/month	Grab
Total Suspended Solids	4.5	6.5	XXX	30.0	45.0	60	2/month	Grab
Total Suspended Solids Raw Sewage Influent	Report	Report Daily Max	XXX	Report	XXX	XXX	2/month	Grab
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2000 Geo Mean	XXX	10000	2/month	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	XXX	XXX	200 Geo Mean	XXX	1000	2/month	Grab
Ammonia-Nitrogen	Report	Report	XXX	Report	Report	XXX	2/week	Grab
Ultraviolet light dosage (mjoules/cm²)	XXX	XXX	Report	XXX	XXX	XXX	1/day	Measured

Compliance Sampling Location: Outfall 001

		Effluent Limitations						
Parameter	Mass Units	(lbs/day) (1)		Concentrations (mg/L)				Required
raidilletei	Monthly	Annual	Monthly	Monthly Average	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
AmmoniaN	Report	Report	XXX	Report	XXX	XXX	2/week	Grab
KjeldahlN	Report	XXX	XXX	Report	XXX	XXX	2/week	Grab
Nitrate-Nitrite as N	Report	XXX	XXX	Report	XXX	XXX	2/week	Grab
Total Nitrogen	Report	Report	XXX	Report	XXX	XXX	1/month	Calculation
Total Phosphorus	Report	Report	XXX	Report	XXX	XXX	2/week	Grab
Net Total Nitrogen	Report	60 ⁽³⁾	XXX	XXX	XXX	XXX	1/month	Calculation
Net Total Phosphorus	Report	9.7	XXX	XXX	XXX	XXX	1/month	Calculation

Samples taken in compliance with the monitoring requirements specified above shall be taken at the following location(s): Outfall 001

Footnotes:

- (1) See Part C for Chesapeake Bay Requirements.
- (2) This is the minimum number of sampling events required. Permittees are encouraged, and it may be advantageous in demonstrating compliance, to perform more than the minimum number of sampling events required.
- (3) The permittee is authorized to use 1,785 lbs/year as Total Nitrogen (TN) Offsets toward compliance with the Annual Net TN mass load limitation (Cap Load), in accordance with Part C. These offsets may be applied through the Compliance Year or during the Truing Period. The application of Offsets must be reported to DEP as described in Part C. The offsets are authorized for the following pollutant load reduction activities.
 - Connection of 71.4 EDUs to the public sewer system after January 1, 2003, in which 25 lbs/year of TN offsets are granted per EDU

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (386-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

	Effluent Limitations						Monitoring Requirements	
Dorometer	Mass Unit	ts (lbs/day)		Concentrations (mg/L)				Required
Parameter	Average Monthly	Weekly Average	Daily Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report Daily Max	XXX	XXX	XXX	XXX	Continuous	Measured
pH (S.U.)	XXX	XXX	6.0 Inst Min	XXX	XXX	9.0	1/day	Grab
Dissolved Oxygen	XXX	XXX	Report	XXX	XXX	XXX	1/day	Grab
Carbonaceous Biochemical Oxygen Demand (CBOD5)	3.5	6.0	XXX	25.0	40.0	50	2/month	Grab
Biochemical Oxygen Demand (BOD5) Raw Sewage Influent	Report	Report Daily Max	XXX	Report	XXX	XXX	2/month	Grab
Total Suspended Solids	4.5	6.5	XXX	30.0	45.0	60	2/month	Grab
Total Suspended Solids Raw Sewage Influent	Report	Report Daily Max	XXX	Report	XXX	XXX	2/month	Grab
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2000 Geo Mean	XXX	10000	2/month	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	XXX	XXX	200 Geo Mean	XXX	1000	2/month	Grab
E. Coli (No./100 ml)	XXX	XXX	XXX	XXX	XXX	Report	1/year	Grab
Ammonia-Nitrogen	Report	Report	XXX	Report	Report	XXX	2/week	Grab
Total Phosphorus	Report	XXX	XXX	Report	XXX	XXX	2/week	Grab
Ultraviolet light dosage (mjoules/cm²)	XXX	XXX	Report	XXX	XXX	XXX	1/day	Measured

Compliance Sampling Location: Outfall 001

The limitations and monitoring requirements specified below are proposed for the draft permit, to comply with Pennsylvania's Chesapeake Bay Tributary Strategy.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

		Effluent Limitations						
Parameter	Mass Units	(lbs/day) (1)		Concentrat	tions (mg/L)		Minimum ⁽²⁾	Required
raidilletei	Monthly	Annual	Monthly	Monthly Average	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
AmmoniaN	Report	Report	XXX	Report	XXX	XXX	2/week	Grab
KjeldahlN	Report	XXX	XXX	Report	XXX	XXX	2/week	Grab
Nitrate-Nitrite as N	Report	XXX	XXX	Report	XXX	XXX	2/week	Grab
Total Nitrogen	Report	Report	XXX	Report	XXX	XXX	1/month	Calculation
Total Phosphorus	Report	Report	XXX	Report	XXX	XXX	2/week	Grab
Net Total Nitrogen	XXX	60 ⁽³⁾	XXX	XXX	XXX	XXX	1/year	Calculation
Net Total Phosphorus	xxx	9.7	XXX	XXX	XXX	XXX	1/year	Calculation

Samples taken in compliance with the monitoring requirements specified above shall be taken at the following location(s): Outfall 001

Footnotes:

- (1) See Part C for Chesapeake Bay Requirements.
- (2) This is the minimum number of sampling events required. Permittees are encouraged, and it may be advantageous in demonstrating compliance, to perform more than the minimum number of sampling events required.
- (3) The permittee is authorized to use 3,635 lbs/year as Total Nitrogen (TN) Offsets toward compliance with the Annual Net TN mass load limitation (Cap Load), in accordance with Part C. These offsets may be applied through the Compliance Year or during the Truing Period. The application of Offsets must be reported to DEP as described in Part C. The offsets are authorized for the following pollutant load reduction activities.
 - Connection of 145.4 EDUs to the public sewer system after January 1, 2003, in which 25 lbs/year of TN offsets are granted per EDU

Prepared in cooperation with the Pennsylvania Department of Environmental Protection

Selected Streamflow Statistics for Streamgage Locations in and near Pennsylvania

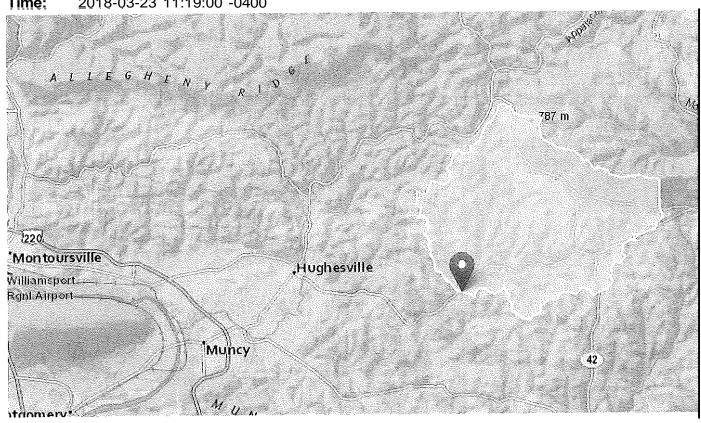
Open-File Report 2011-1070

 $Table \ 1. \quad List \ of \ U.S. \ Geological \ Survey \ streamgage \ locations \ in \ and \ near \ Pennsylvania \ with \ updated \ streamflow \ statistics, -Continued \ lLatitude \ and \ Longitude \ in \ decimal \ degrees; \ mi^2. \ square \ miles]$

Streamgage number	Streamgage name	Latitude	Longitude	Drainage area (mi')	Regulated ¹
01541303	West Branch Susquehanna River at Hyde, Pa.	41.005	-78.457	474	у
01541308	Bradley Run near Ashville, Pa.	40.509	-78.584	6.77	N
01541500	Clearfield Creek at Dimeling, Pa.	40.972	-78.406	371	у
01542000	Moshannon Creek at Osceola Mills, Pa.	40.850	-78.268	68.8	N
01542500	WB Susquehanna River at Karthaus, Pa,	41.118	-78.109	1,462	у
01542810	Waldy Run near Emporium, Pa.	41.579	-78,293	5.24	N
01543000	Driftwood Branch Sinnemahoning Creek at Sterling R.un, Pa.	41.413	-78.197	272	N
01543500	Sinnemahoning Creek at Sinnemahoning, Pa.	41.317	-78.103	685	N
01544000	First ForkSinnemahoning Creek near Sinnemahoning, Pa.	41.402	-78.024	245	у
01544500	Kettle Creek at Cross Fork, Pa.	41.476	-77.826	136	N
01545000	Kettle Creek near Westport, Pa.	41.320	-77.874	233	У
01545500	West Branch Susquehanna River at Renovo, Pa.	41.325	-77.751	2,975	у
01545600	Young Womans Creek near Renovo, Pa.	41.390	-77.691	46.2	N
01546000	North Bald Eagle Creek at Milesburg, Pa.	40.942	-77.794	119	N
01546400	Spring Creek at Houserville, Pa.	40.834	-77.828	58.5	N
01546500	Spring Creek near Axemann, Pa,_	40.890	-77.794	87,2	N
01547100	Spring Creek at Milesburg, Pa.	40.932	-77.786	142	N
01547200	Bald Eagle Creek below Spr_ing Creek at Milesburg, PU.	40.943	-77.786	265	N
01547500	Bald Eagle Creek at Blanchard, Pa.	41.052	-77.604	339	у
01547700	Marsh Creek at Blanchard, Pa.	41.060	.77.606	44.1	Ν
01547800	South Fork Beech Creek near Snow Shoe, Pa.	41.024	-77.904	12.2	N
01547950	Beech Creek at Monument, Pa.	41.112	-77.702	152	N
01548005	Bald Eagle Creek near Beech Creek Station, Pa.	41.081	-77.549	562	у
01548500	Pine Creek al Cedar Run, Pa.	41.522	-77.447	604	N
01549000	Pine Creek near Waterville, Pa.	41.313	-77.379	750	N
01549500	Blockhouse Creek near-English Center, Pa.	41.474	-77.231	37.7	Ν
01549700	Pinc,Creek below Little Pine'Creek near Waterville, Pa.	41.274	-77.324	944	у
01550000	Lycoming Creek near Trout Run, Pa.	41.418	-77.033	173	N
01551500	WB Susquehanna River af Williamsporl, Pa',	41.236	-76.99.7	5,682	У
01552000	Loyalsock Creek at Loyalsockville, Pa.	41,325	-76.912	435	N
01552500	Muncy Creek near Sonestown, Pa,	41.357	-76.535	23.8	N
01553130	Sand Spring Run near White Deer, Pa.	41.059	-77.077	4.93	N
01553500	West Branch Susquehanna River at Lewisburg, Pa.	40.968	-76.876	6,847	у
01553700	Chillisquaque Creek at Washingtonville, Pa.	41.062	-76.680	51.3	N
01554000	Susquehanna River at Sunbury, Pa.	40.835	-76.827	18,300	У
01554500	Shamokin Creek near Shamokin, Pa,	.40.810	-76.584	54.2	N
01555000	Penns Creek at Penns Creek,- Pa.	40,867	-77.048	301	N
01555500	East Mabantango Creek near Dalmalia, Pa.	40.611	-76.912	162	Ν
01556000	Frankstown Branch Juniata River at Williamsburg, Pa.	40.463	-78.200	291	N
01557500	Bald Eagle Creek at Tyrone, Pa.	40.684	-78.234	44.1	N
01558000	Little Juniata River at Spruce Creek, Pa.	40.613	-78.141	220	N
01559000	Juniata River at Huntingdon, Pa.	40.485	-78.019	816	LF
01559500	Standing Stone Creek near Huntingdon, Pa.	40.524	-77.971	128	N
01559700	Sulphur Springs Creek near Manns Choice, Pa,	39.978	-78.619	5.28	N
01560000	Dunning Creek at Belden, Pa.	40.072	-78.493	172	N

Table 2. Selected low-flow statistics for streamgage locations in and near Pennsylvania.-Continued [iris; cubic feet per second;-, statistic not computed;<, less than]

Streamgage number	Period of reco used in analysis ¹	rd Number of years used in analysis	1-day, 10-year (ft'/s)	7-day, 10-year (ft'/s)	7-day, 2-year (ft'/s)	30-day, 10-year (ft'/s)	30-day, 2-year (ft'/s)	90-day, 10-year (11'/s)
01546000	1912-1934	17	1.8	2.2	6.8	3.7	12.1	11.2
01546400	1986-2008	23	13.5	14.0	19.6	15.4	22.3	18.7
01546500	1942-2008	67	26.8	29.0	41.3	31.2	44.2	33.7
01547100	1969-2008	40	102	105	128	111	133	117
01547200	1957-2008	52	99.4	IOI	132	106	142	115
01547500	'1971-2008	38	28.2	109	151	131	172	153
01547500	'1956-1969	14	90.0	94.9	123	98.1	131	105
01547700	1957-2008	52	.5	.6	2.7	I.I	3.9	2.2
01547800	1971-1981	II	1.6	1.8	2.4	2.1	2.9	3.5
01547950	1970-2008	39	12.1	13.6	28.2	17.3	36.4	23.8
01548005	'1971-2000	25	142	151	206	178	241	223
01548005	'1912-1969	58	105	114	147	125	165	140
01548500	1920-20.08	89	21.2	24.2	50,1	33.6	68.6	49.3
01549000	1910-1920	II	26.0	32.9	78.0	46.4	106	89.8
01549500	1942-2008	67	.6	,8	2.5	1.4	3,9	2.6
01549700	1959-2008	SO	33.3	37.2	83.8	S 1.2	117	78.4
01550000	1915-2008	94	6.6	7.6	16.8	11.2	24.6	18.6
01551500	'1963-2008	46	520	578	1,020	678	1,330	919
01551500	'1901-1961	61	400	439	742	523	943	752
01552000	1927-2008	80	20.S	22.2	49.S	29.2	69.8	49.6
01552500	1942-2008	67	.9	1.2	3.1	1.7	4.4	3.3
0155313.0	1969-1981	13	1.0	LI	1.5	1.3	LS	1.7
.01553500	'1968-2008	41	760	838	1,440	1,000	1,850	1,470
01553500	'1941-1966	26	562	619	880	690	1,090	881
01553700	1981-2008	28	9.1	10.9	15.0	12.6	17,1	15.2
01554000	'1981-2008	28	1,830	1,990	3,270	2,320	4,210	3,160
01554000	'1939-1979	41	1,560	1,630	2,870	1,880	3,620	2.570
01554500	1941-1993	53	16.2	22.0	31.2	25.9	35.7	31.4
01555000	1931-2008	78	33.S	37.6	58.8	43.4	69.6	54.6
01555500	1931-2008	78	4.9	6.5	18.0	9.4	24.3	16.6
01556000	1918-2008	91	43.3	47.8	66.0	55.]	75.0	63.7
01557500	1946-2008	63	2.8	3.2	6.3	4,2	8,1	5,8
01558000	1940-2008	69	56.3	59.0	79.8	65,7	86.2	73.7
01559000	1943-2008	66	104	177	249	198	279	227
01559500	1931-1958	28	9.3	10,S	15,0	12.4	17,8	15.8
01559700	1963-1978	16	.l	.1	.2	.1	.3	.2
01560000	1941-2008	68	8.5	9.4	15.6	12.0	20.2	16.2
01561000	1932-1958	27	.4	.S	1.6	.8	2.5	1.7
01562000	1913-2008	96	64.1	67.1	106	77.4	122	94.S
01562500	1931-1957	27	I.I	1.6	3.8	2.3	5.4	3.7
01563200	'1974-2008	35				112	266	129
01563200	'1948,,1972	25	I0.3	28,2	86,1	64.5	113	95.5
01563500	'1974-2008	35	384	415	519	441	580	493
01563500	'1939-1972	34	153	242	343	278	399	333
01.564500	1940-2008	69	3.6	4.2	J0.0	6.2	14.4	10.6


Franklin Township Wastewater Treatment Plant

Region ID: PΑ

Workspace ID: PA20180323151855728000

Clicked Point (Latitude, Longitude): 41.23014, -76.60934

Time: 2018-03-23 11:19:00 -0400

Outfall 001Drainage Area

Basin Characteristics

Parameter			
Code	Parameter Description	Value	Unit
·BSLOPD	Mean basin slope measured in degrees	9.5	degrees
BSLOPDRA\	W Unadjusted basin slope, in degrees	9:72	
CARBON	Percentage of area of carbonate rock	0	percent
CENTROXA	83 X coordinate of the centroid, in NAO_1983_Albers, meters	120581.5	

Parameter	Development Description	Value	Unit
Code	Parameter Description		Offic
CENTROYA83	Basin centroid horizontal (y) location in NAD 1983 Albers	252887.5	
DRN	Drainage quality index from STATSGO	3.4	
DRNAREA	Area that drains to a point on a stream	38.7	square miles
ELEV	Mean Basin Elevation	1254.9	feet
FOREST	Percentage of area covered by forest	71	percent
GLACIATED	Percentage of basin area that was historically covered by glaciers	15	percent
IMPNLCD01	Percentage of impervious area determined from NLCD 2001 impervious dataset	0	percent
LC01DEV	Percentage of land-use from NLCD 2001 classes 21-24	5	percent
LC11DEV	Percentage of developed (urban) land from NLCD 2011 classes 21-24	5.34	percent
LC11IMP	Average percentage cit impervious area determined from NLCD 2011 impervious dataset	0.46	percent
LONG_OUT	Longitude of Basin Outlet	-76.60933	degrees
MAXTEMP	Mean annual maximum air temperature over basin area from PRISM 1971-2000 800-m grid	56	degrees F
OUTLETXA83	X coordinate of the outlet, in NAD_1983_Albers,meters	116575	
OUTLETYA83	Y coordinate of the outlet, in NAD_1983_Albers, meters	248545	
PRECIP	Mean Annual Precipitation	42	inches
ROCKDEP	Depth to rock	4	feet
STORAGE	Percentage of area of storage (lakes ponds reservoirs wetlands)	1	percent
STRDEN	Stream Density total length of streams divided by drainage area	2.03	miles per square mile
STRMTOT	total length of all mapped streams (1:24,000-scale) in the basin	78.57	miles
URBAN	Percentage of basin with urban development	0	percent

https://streamstats.usgs.gov/ss/

Low-Flow $(0_{7\cdot10})$ Calculation Facility: Lairdsville Wastewater Treatment Plant NPDES Permit No. PA0232971 **Outfall Information Gage Information** Drainage Area: mi^2 Drainage Area: **23.8** mi2 01.10: **1.95** cfs 01.10: **1.2** els LFY: <u>0.05</u> cfsm **Downstream Locations** RMI: <u>13.68</u> RMI: __ 39.3 mi² Drainage Area: Drainage Area: 01.10: cfs 01.10: **1.982** cfs RMI: RMI: Drainage Area: _ Drainage Area: ____ 07.10: __ cfs 01.10: ___ els RMI: RMI: Drainage Area: Drainage Area: _____ mi² 07.10:____cfs 01.10: ____ cfs RMI: RMI: Drainage Area: Drainage Area: _____ mi² 01.10: cfs 01.10: ____ **cfs**

Input Data WQM 7.0

		Strea Coo		Stre	eam Name		RMI	Eleva		rainage Area (sq mi)	Slope (ft/ft)	PWS Withdrav (mgd)		Apply FC
		194	431 LITTLE	E MUNCY	CREEK		14.10	0 7	32.00	38.70	0.00000		0.00	✓
					St	ream Dat	ta							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	<u>Tı</u> Temp	<u>ributary</u> pH	Tem	Stream p	рН	
Cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C))		
Q7-10 Q1-10 Q30-10	0.050	0.00 0.00 0.00	0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00	0.00	20.0	00 6.50) (0.00	0.00	
					Di	scharge l	Data							
			Name	Per	mit Number	Disc	Permitted Disc Flow (mgd)	d Design Disc Flow (mgd)	Reser Facto		р р	sc H		
		Lairds	svilleWWTF	PAC	232971	0.018	0.0180	0.018	30 0.0	000 25	5.00	7.00		
					Pa	rameter	Data							
			ı	Parameter	· Name	С	onc Co	onc C	ream Conc ng/L) (Fate Coef 1/days)				
	-		CBOD5				25.00	2.00	0.00	1.50				
			Dissolved	Ovygen			3.00	8.24	0.00	0.00				
			DISSUIVEU	Oxygen			0.00	0.27	0.00	0.00				

Input Data WQM 7.0

		Strea Coo		Stre	eam Name		RMI		vation (ft)	Drainage Area (sq mi)	Slo (ft/	Withd	rawal	Apply FC
		194	431 LITTLE	E MUNCY	CREEK		13.68	80	721.00	39.3	00.0	0000	0.00	✓
					St	ream Da	a							
Design	LFY	Trib Flow	Stream Flow	Rch Trav	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	Tributary np pl	4	Stream Temp	<u>n</u> pH	
Cond.	(cfsm)	(cfs)	(cfs)	Time (days)	(fps)		(ft)	(ft)	(°C)		(°C)		
Q7-10 Q1-10 Q30-10	0.050	0.00 0.00 0.00	0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00	0.0	0 2	0.00	6.50	0.00	0.00	
					Di	scharge								
			Name	Per	mit Number	Disc	Permitte Disc Flow (mgd)	ed Desig Disc Flow (mg	c Res w Fa	erve Te	0isc emp °C)	Disc pH		
						0.000	0.000	0.0	000	0.000	25.00	7.00		
					Pa	arameter	Data							
			r	Parameter	Nomo			rib	Stream Conc	Fate Coef				
			ŀ	-arametei	ivame	(m	ıg/L) (m	ng/L)	(mg/L)	(1/days)				
	-		CBOD5				25.00	2.00	0.00	1.50				
			Dissolved	Oxygen			3.00	8.24	0.00	0.00				
			NH3-N				25.00	0.00	0.00	0.70				

WQM 7.0 Hydrodynamic Outputs

<u>sw</u>						,					
	10D	19	9431			LITTI	LE MUNC	CY CREE!	K		
Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow	Reach Slope	Depth	Width	W/D Ratio	Velocity	Reach Trav Time	Analysis Temp	Analysis pH
(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)	
0 Flow											
1.94	0.00	1.94	.0278	0.00496	.6	23.86	39.75	0.14	0.187	20.07	6.50
0 Flow											
1.84	0.00	1.84	.0278	0.00496	NA	NA	NA	0.13	0.193	20.07	6.50
10 Flow	1										
2.42	0.00	2.42	.0278	0.00496	NA	NA	NA	0.16	0.166	20.06	6.50
	Stream Flow (cfs) O Flow 1.94 O Flow 1.84	Flow With (cfs) (cfs) D Flow 1.94 0.00 D Flow 1.84 0.00 10 Flow	Stream PWS Net Stream Flow (cfs) (cfs) (cfs)	Stream Flow PWS With Stream Flow Net Stream Flow Disc Analysis Flow (cfs) (cfs) (cfs) (cfs) 0.00 0.0278 0 Flow 1.84 0.00 1.84 0.0278 10 Flow 1.84 0.00 1.84 0.0278	Stream Flow PWS With Stream Flow (cfs) Net Stream Flow (cfs) Disc Flow Flow (cfs) Reach Slope Flow (cfs) 0 Flow 1.94 0.00 1.94 0.0278 0.00496 0 Flow 1.84 0.00 1.84 0.0278 0.00496 10 Flow 1.84 0.00 1.84 0.0278 0.00496	Stream PWS Net Stream Flow Cfs Cfs	Stream Flow PWS Flow Net Stream Flow Disc Flow Flow Flow Reach Flow Flow Flow Depth Width Width Flow Flow Flow (cfs) (cfs) (cfs) (cfs) (ft/ft) (ft) (ft) 0 Flow 1.94 0.00 1.94 .0278 0.00496 .6 23.86 0 Flow 1.84 0.00 1.84 .0278 0.00496 NA NA 10 Flow	Stream Flow (cfs) PWS Flow (cfs) Net Stream Flow (cfs) Disc Flow Flow (cfs) Reach Flow (ft/ft) Depth Width Midth Flow (ft) Width Ratio (ft) 0 Flow 1.94 0.00 1.94 .0278 0.00496 .6 23.86 39.75 0 Flow 1.84 0.00 1.84 .0278 0.00496 NA NA NA 10 Flow 10	Stream Flow (cfs) PWS Stream Flow (cfs) Net Stream Flow (cfs) Disc Flow (cfs) Reach Slope Flow (ft/ft) Depth (ft) Width (ft) W/D Ratio (fps) Velocity Ratio (fps) 0 Flow 1.94 0.00 1.94 0.0278 0.00496 .6 23.86 39.75 0.14 0 Flow 1.84 0.00 1.84 0.0278 0.00496 NA NA NA NA 0.13 10 Flow 1.84 0.00 1.84 0.0278 0.00496 NA NA NA 0.13	Stream PWS Net Stream Flow (cfs) (cfs) (cfs) (cfs) (1.94 0.00 1.94 0.0278 0.00496 0.6 23.86 39.75 0.14 0.13 0.193 10 Flow 1.84 0.00 1.84 0.0278 0.00496 NA NA NA NA 0.13 0.193 10 Flow 1.84 0.00 1.84 0.0278 0.00496 NA NA NA NA 0.13 0.193 10 Flow 0.00496 NA NA NA NA 0.13 0.193 10 Flow 0.00496 NA NA NA NA 0.13 0.193 10 Flow 0.00496 NA NA NA 0.13 0.193 10 Flow 0.00496 0.00	Stream PWS Net Stream Flow (cfs) (cfs) (cfs) (cfs) (cfs) (Net Net

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	✓
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.95	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.25	Temperature Adjust Kr	✓
D.O. Saturation	90.00%	Use Balanced Technology	✓
D.O. Goal	5		

Tuesday, March 12, 2024 Version 1.1 Page 1 of 1

WQM 7.0 Wasteload Allocations

 SWP Basin
 Stream Code
 Stream Name

 10D
 19431
 LITTLE MUNCY CREEK

RMI	Discharge Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
14.10) LairdsvilleWWTP	22.5	50	22.5	50	0	0
IH3-N C	Chronic Allocation	ons					
Н3-N (RMI	Chronic Allocation	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction

Dissolved Oxygen Allocations

			CBC	<u>DD5</u>	NH:	<u>3-N</u>	Dissolved	d Oxygen	Critical	Percent
	RMI	Discharge Name	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)				Reach	Reduction
	14.10 Lair	dsvilleWWTP	25	25	25	25	3	3	0	0

WQM 7.0 D.O.Simulation

SWP Basin Str	ream Code 19431		LITT	Stream Name	K
RMI 14.100 Reach Width (ft) 23.860 Reach CBOD5 (mg/L) 2.33 Reach DO (mg/L)	Total Discharge 0.018 Reach De 0.600 Reach Kc (0.200 Reach Kr (B pth (ft) O (1/days) 3		lysis Temperature (20.071 Reach WDRatio 39.745 Reach NH3-N (mg/L 0.35 Kr Equation	6.504 Reach Velocity (fps) 0.137
8.169 Reach Travel Time (days)	6.470			Tsivoglou	5
0.187	TravTime (days)	Subreach CBOD5 (mg/L)	NH3-N (mg/L)	D.O. (mg/L)	
	0.019	2.32	0.35	8.23	
	0.037 0.056	2.31 2.30	0.35 0.34	8.23 8.23	
	0.075	2.29	0.34	8.23	
	0.094	2.28	0.33	8.23	
	0.112 0.131	2.27 2.26	0.33 0.32	8.23 8.23	
	0.150	2.26	0.32	8.23	
	0.169 0.187	2.25 2.24	0.31 0.31	8.23 8.23	

WQM 7.0 Effluent Limits

SWP Basin	Stream Code	Stream Name
10D	19431	LITTLE MUNCY CREEK

RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
14.100	LairdsvilleWWTP	PA0232971	0.018	CBOD5	25		
				NH3-N	25	50	
				Dissolved Oxygen			3