

Application Type New Facility Type Industrial Major / Minor Minor

NPDES PERMIT FACT SHEET INDIVIDUAL INDUSTRIAL WASTE (IW) AND IW STORMWATER

 Application No.
 PA0233340

 APS ID
 1079938

 Authorization ID
 1425202

Applicant and Facility Information

Applicant Name	Cooper Township Municipal Authority	Facility Name	Cooper Township Municipal Authority
Applicant Address	PO Box 446	Facility Address	139 Casanova Spur
	Winburne, PA 16879-0446		Munson, PA 16879
Applicant Contact	Randy Killion	Facility Contact	Randy Killion
Applicant Phone	(814) 345-5673	Facility Phone	(814) 345-5673
Client ID	66571	Site ID	261694
SIC Code	4941	Municipality	Rush Township
SIC Description	Trans. & Utilities - Water Supply	County	Clearfield
Date Application Recei	ved	EPA Waived?	Yes
Date Application Accept	ted February 6, 2023	If No, Reason	
Purpose of Application	Cooper Township Muni Auth Water	Treatment Plant back	wash discharge upgrades.

Summary of Review

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

A WQM amendment (WQM1423201) for the construction of a level spreader system will be issued simultaneously with the final NPDES permit.

Note: The Safe Drinking Water program has required the permittee to obtain these permits for this existing facility. The permittee has been discharging without an NPDES permit.

Approve	Deny	Signatures	Date
x		Jonathan P. Peterman / Project Manager	December 14, 2023
			2000111301 1 1, 2020
x		H. Z. M Nicholas W. Hartranft, P.E. / Environmental Engineer Manager	December 14, 2023

Discharge, Receiving	g Waters and Water Supply Inform	nation	
Outfall No. 001		Design Flow (MGD)	0.006
Latitude 40° 5	6' 59.88"	Longitude	-78º 8' 27.18"
Quad Name Ph	illipsburg	Quad Code	1120
Wastewater Descri	ption: <u>IW Process Effluent withou</u>	t ELG	
Receiving Waters	Moshannon Creek (TSF, MF)	Stream Code	25695
NHD Com ID	61830867	RMI	0.6500
Drainage Area	1.48	Yield (cfs/mi ²)	
Q7-10 Flow (cfs)	6.46	Q7-10 Basis	
Elevation (ft)	1383	Slope (ft/ft)	
Watershed No.	<u>8-D</u>	Chapter 93 Class.	TSF, MF
Existing Use		Existing Use Qualifier	
Exceptions to Use		Exceptions to Criteria	
Assessment Status	Impaired		
Cause(s) of Impairr	ment METALS		
Source(s) of Impair	ment ACID MINE DRAINAGE		
TMDL Status	Final	Name Moshannon	Creek Watershed
Nearest Downstrea	m Public Water Supply Intake	PA American Water White De	er
	West Branch of Susquehanna		-
PWS Waters	River	Flow at Intake (cfs)	682
PWS RMI	10.5	Distance from Outfall (mi)	147

Changes Since Last Permit Issuance: N/A. Other Comments: None.

Treatment Facility Summary

Treatment Facility Name: Cooper Township Municipal Authority

- **Treatment System Components:**
 - Filter Backwash
 - 60,000-Gallon Settling Tank
 - Outfall 001

Changes Since Last Permit Issuance: None. Other Comments: None

Chesapeake Bay Requirements

In accordance with the Phase III WIP Chesapeake Bay Strategy this facility has been identified previously by DEP as "insignificant dischargers" by virtue of having gross effluent discharges that do not exceed 75 lbs/day of TN or 25 lbs/day of TP. For these non-significant IW facilities, monitoring and reporting of TN and TP will be required throughout the permit term in renewed or amended permits anytime the facility has the potential to introduce a net TN or TP increase to the load contained within the intake water used in processing. No nutrient monitoring is required for this facility.

TMDL Impairment Discussion

The Department's Geographic Information System (GIS) shows that Moshannon Creek is impaired and a TMDL exists for the stream segment for metals due to acid drainage from abandoned coalmines. The TMDL addresses the three primary metals associated with acid mine drainage (iron, manganese, aluminum) and pH. There is no Waste Load Allocation (WLA) for this facility established in the TMDL. In accordance with 40 CFR §122.44(d)(1)(i), effluent limitations for these parameters will be implemented at §93.7 Specific Water Quality Standards requirements to ensure that this pollutant will not be discharged at a level which will cause, have the reasonable potential to cause, or contribute to an excursion above any State water quality standard.

Development of Effluent Limitations						
Outfall No.	001	Design Flow (MGD)	0.006			
Latitude	40º 56' 59.88"	Longitude	-78º 8' 27.18"			
Wastewater D						

Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Parameter	Limit (mg/l) (Average Monthly)	Limit (mg/l) (Daily Maximum)	Federal Regulation	State Regulation
Iron (Total)	1.5	3.0	-	§93.7
Aluminum (Total)	0.75	1.5	-	§93.7
Manganese (Total)	1.0	2.0	-	§93.7
рН	6-9 at all times	-	§133.102(c)	§95.2
TRC	0.5	-	-	§92a.48

Parameter	Limit (mg/l) (Average Monthly)	Limit (mg/l) (Daily Maximum)	Basis
TSS	30	60	
Iron (Total)	2.0	4.0	These limits are derived from Guidance Document
Aluminum (Total)	4.0	8.0	(392-2183-003) Technology-Based Control
Manganese (Total)	1.0	2.0	Requirements for Water Treatment Plant.
TRC	0.5	1.0	

Comments: None.

Water Quality-Based Limitations

To establish whether or not water-quality based effluent limitations (WQBELs) are required, the Department models instream conditions. In order to determine limitations for toxics, the Department utilizes the PENTOXSD v2.0d model. The use of a WQM7.0 analysis is not required for this discharge type.

Toxics Management Spreadsheet

This model is a single discharge wasteload allocation program for toxics that uses a mass-balance water quality analysis to determine recommended water quality-based effluent limits. The model incorporates consideration for mixing, first-order decay and other factors to computes a Wasteload Allocation (WLA) for each applicable criterion. Finally, the model determines a maximum water quality-based effluent limitation (WQBEL) for each parameter and outputs the more stringent of the WQBEL or the input concentration. The output of which is the recommends average monthly and maximum daily effluent limitations.

Sampling for pollutant Groups was submitted with the application. This sampling information and the receiving stream information was entered into the Toxics Management Spreadsheet. This "Reasonable Potential Analysis" (See Appendix C) determined that there were no parameters that were considered candidates for monitoring or limitations.

Best Professional Judgement (BPJ) Limitations

Comments: None Required.

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit and reflect the most stringent limitations amongst the abovementioned technology, water quality, and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001) and/or BPJ.

Proposed Limits - Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date

	Limitations							
	Mass	(lb/day)		Concen	tration (mg/	Monitoring Requirements		
Discharge Parameter	Monthly Average	Daily Maximum	Minimum	Average Monthly	Daily Max.	Instantaneous Maximum	Minimum Frequency	Sample Type
Flow (MGD)	Report	Report					1/Week	Estimate
pH (Std. Units)			6.0			9.0	1/ Week	Grab
TSS				30	60	75	1/ Month	Grab
Aluminum				0.75	1.5	1.8	1/ Month	Grab
Total Iron				1.5	3.0	3.7	1/ Month	Grab
Total Manganese				1.0	2.0	2.5	1/ Month	Grab
TRC				0.5		1.6	1/ Day	Grab

*The proposed effluent limits for Outfall 001 were based on a design flow of 0.006 MGD.

<u>Flow</u>

The existing monitoring frequency (1/ Week) and sample type (Estimate) for Flow will remain.

рH

CFR Title 40 §133.102(c) and 25 PA Code §95.2(1) provide the basis of effluent limitations for pH.

Total Suspended Solids (TSS)

The technology-based effluent limits have been proposed in accordance with DEP Guidance Document (392-2183-003) Technology-Based Control Requirements for Water Treatment Plants.

Total Aluminum, Total Iron, and Total Manganese

In accordance with 40 CFR §122.44(d)(1)(i), effluent limitations for these parameters will be implemented at §93.7 Specific Water Quality Standards requirements to ensure that these pollutants will not be discharged at a level which will cause, have the reasonable potential to cause, or contribute to an excursion above any State water quality standard. The limit for manganese also corresponds to the technology-based limits (BPT) found in the DEP Guidance Document (392-2183-003) *Technology-Based Control Requirements for Water Treatment Plants*. The abovementioned limits for total iron and aluminum are more stringent than the BPT limits, but it must be implemented to ensure that water quality standards are met. The sampling results provided with the application indicate that the facility is capable of meeting these effluent limits.

Total Residual Chlorine (TRC)

The Guidance Document (392-2183-003) stipulates that the monthly average limit for TRC should be 0.5 mg/L, but it also stipulates that the technology limit for TRC is required by former Section 93.5 of Title 25 of the Departments Regulations. It also refers to Section 93.5 and the Implementation Guidance for Total Residual Chlorine (TRC) Regulation for details on how to impose TRC limitations. The TRC model evaluation was conducted using the existing technology-based limit of 0.5 mg/l and the results indicate that the proposed limit is protective of water quality.

The proposed monitoring frequencies and sample types for the abovementioned parameters are consistent with other water treatment plant wastewater discharges and the *Technical Guidance for the Development and Specification of Effluent Limitations* (362-0400-001) Table 6-3.

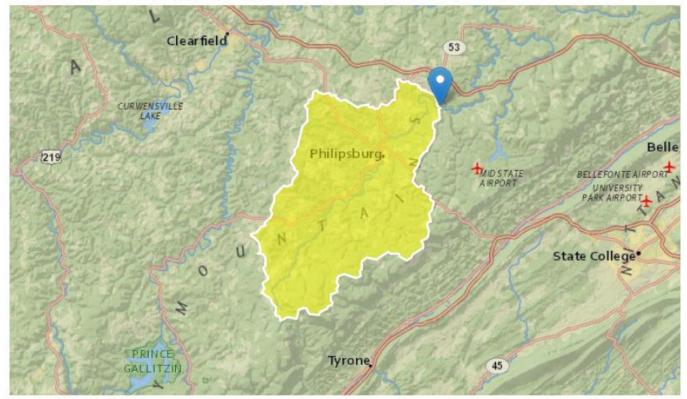
Compliance History

<u>WMS Query Summary</u> -A WMS Query was run at *Reports* - *Violations & Enforcements* – *Open Violations for Client Report* to determine whether there are any unresolved violations associated with the client that will affect issuance of the permit (per CSL Section 609). This query revealed the following unresolved violation. The Safe Drinking Water program is aware of this open violation. This violation will not affect the issuance of this permit.

CLIEN	CLIENT	PF ID	FACILITY	INSP PROGRAM	PROGRAM SPECIFIC ID		VIOLATION ID	VIOLATION DATE	VIOLATION CODE	VIOLATION
6657	COOPER TWP MUNI AUTH CLEARFIELD CNTY		COOPER TWP MUNICIPAL AUTH	Drinking	6170041	3377090	958834	06/09/2022	B6F	CHRONIC FAILURE TO FOLLOW APPROVED METHODS FOR SAMPLING AND ANALYSIS

	Tools and References Used to Develop Permit
	WQM for Windows Model (see Attachment
$\overline{\boxtimes}$	Toxics Management Spreadsheet (see Attachment B)
$\overline{\boxtimes}$	TRC Model Spreadsheet (see Attachment C)
	Temperature Model Spreadsheet (see Attachment)
\square	Water Quality Toxics Management Strategy, 361-0100-003, 4/06.
\square	Technical Guidance for the Development and Specification of Effluent Limitations, 386-0400-001, 10/97.
	Policy for Permitting Surface Water Diversions, 386-2000-019, 3/98.
	Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 386-2000-018, 11/96.
\boxtimes	Technology-Based Control Requirements for Water Treatment Plant Wastes, 386-2183-001, 10/97.
	Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 386-2183-002 12/97.
	Pennsylvania CSO Policy, 386-2000-002, 9/08.
	 Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03. Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 386 2000-008, 4/97.
\square	Determining Water Quality-Based Effluent Limits, 386-2000-004, 12/97.
	Implementation Guidance Design Conditions, 386-2000-007, 9/97.
	Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxyger and Ammonia Nitrogen, Version 1.0, 386-2000-016, 6/2004.
	Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges 386-2000-012, 10/1997.
	Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds and Impoundments, 386-2000-009, 3/99.
\square	Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 386-2000-015, 5/2004.
	Implementation Guidance for Section 93.7 Ammonia Criteria, 386-2000-022, 11/97.
	Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainag Channels and Swales, and Storm Sewers, 386-2000-013, 4/2008.
	Implementation Guidance Total Residual Chlorine (TRC) Regulation, 386-2000-011, 11/1994.
	Implementation Guidance for Temperature Criteria, 386-2000-001, 4/09.
	Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 386-2000-021, 10/97
	Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolver Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 386-2000-020, 10/97.
	Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Desig Hardness, 386-2000-005, 3/99.
	Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determinatio of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 386-2000-010, 3/1999.
\square	Design Stream Flows, 386-2000-003, 9/98.
	Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV and Other Discharge Characteristics, 386-2000-006, 10/98.
	Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 386-3200-001, 6/97.
	Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.
	SOP:
	Other:

APPENDIX A Q7-10 ANALYSIS AND STREAM DATA


StreamStats Report

 Region ID:
 PA

 Workspace ID:
 PA20231128155317977000

 Clicked Point (Latitude, Longitude):
 40.94997, -78.14088

 Time:
 2023-11-28 10:53:40 -0500

Collapse All

> Basin Characteristics

Parameter Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	148	square miles
ELEV	Mean Basin Elevation	1765	feet
PRECIP	Mean Annual Precipitation	39	inches

> Low-Flow Statistics

Low-Flow Statistics Parameters [100.0 Percent (148 square miles) Low Flow Region 3]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	148	square miles	2.33	1720
ELEV	Mean Basin Elevation	1765	feet	898	2700
PRECIP	Mean Annual Precipitation	39	inches	38.7	47.9

Low-Flow Statistics Flow Report [100.0 Percent (148 square miles) Low Flow Region 3]

PIL: Lower 90% Prediction Interval, PIU: Upper 90% Prediction Interval, ASEp: Average Standard Error of Prediction, SE: Standard Error (other -- see report)

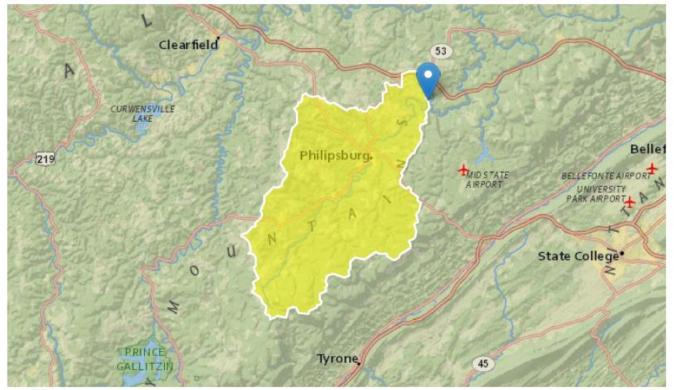
Statistic	Value	Unit	SE	ASEp
7 Day 2 Year Low Flow	14.4	ft^3/s	43	43
30 Day 2 Year Low Flow	18.9	ft^3/s	38	38
7 Day 10 Year Low Flow	6.46	ft^3/s	54	54
30 Day 10 Year Low Flow	8.59	ft^3/s	49	49
90 Day 10 Year Low Flow	12.5	ft^3/s	41	41

Low-Flow Statistics Citations

Stuckey, M.H.,2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p. (http://pubs.usgs.gov/sir/2006/5130/)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the


StreamStats Report

 Region ID:
 PA

 Workspace ID:
 PA20231128155703421000

 Clicked Point (Latitude, Longitude):
 40.95872, -78.13891

 Time:
 2023-11-28 10:57:26 -0500

Collapse All

> Basin Characteristics Parameter Code **Parameter Description** Value Unit DRNAREA Area that drains to a point on a stream 152 square miles ELEV Mean Basin Elevation 1760 feet PRECIP Mean Annual Precipitation 39 inches

> Low-Flow Statistics

Low-Flow Statistics Parameters [100.0 Percent (152 square miles) Low Flow Region 3]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	152	square miles	2.33	1720
ELEV	Mean Basin Elevation	1760	feet	898	2700
PRECIP	Mean Annual Precipitation	39	inches	38.7	47.9

Low-Flow Statistics Flow Report [100.0 Percent (152 square miles) Low Flow Region 3]

PIL: Lower 90% Prediction Interval, PIU: Upper 90% Prediction Interval, ASEp: Average Standard Error of Prediction, SE: Standard Error (other -- see report)

Statistic	Value	Unit	SE	ASEp
7 Day 2 Year Low Flow	14.8	ft^3/s	43	43
30 Day 2 Year Low Flow	19.4	ft^3/s	38	38
7 Day 10 Year Low Flow	6.63	ft^3/s	54	54
30 Day 10 Year Low Flow	8.82	ft^3/s	49	49
90 Day 10 Year Low Flow	12.9	ft^3/s	41	41

Low-Flow Statistics Citations

Stuckey, M.H.,2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p. (http://pubs.usgs.gov/sir/2006/5130/)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the

APPENDIX B TOXICS MANAGEMENT SPREADSHEET

Discharge Information

Toxics Management Spreadsheet Version 1.3, March 2021

Inst	ructions D	ischarge Stream															
Fac	ility: Coo	per Township Muni	icipal Au	itho	rity		N	PD	ES Per	mit No.:	PA	0233	340		Outfall	No.: 001	
Eva	luation Type:	Major Sewage /	Industr	ial V	Vaste	e	W	/as	tewater	Descrip	otion	Filt	er Back	wash			
							-										
						Discha	rge Ch	nar	acterist	tics							
De	sign Flow			Par	tia	l Mix Fa	nctors (PMF	s)		Com	plete Mi	x Times	(min)			
	(MGD)*	Hardness (mg/l)*	pH (SU)	`	AFC	;	C	CFC	TH	H		CRL	Q	7-10	C	h
	0.006	100	1	7													
							0 if	left l	blank	0.5 if l	eft bla	nk	() if left blan	nk	1 if lef	blank
								Т									
	Disch	arge Pollutant	Units	Ма	x Dis Coi	charge nc	Trib Conc		Stream Conc	Daily CV		urly :V	Strea m CV	Fate Coeff	FOS	Criteri a Mod	
	Total Dissolve	ed Solids (PWS)	mg/L			72											
5	Chloride (PW		mg/L			15											
Group	Bromide		mg/L	<		0.4											
້ອ	Sulfate (PWS)	mg/L			9.51											
	Fluoride (PW		mg/L	<	0	.099											
	Total Aluminu		µg/L			322											
	Total Antimor	Ŋ	µg/L	<		10											
	Total Arsenic		µg/L	<		8											
	Total Barium		µg/L		<u> </u>	50.3											
	Total Berylliur	n	µg/L	<		2.5					+						
	Total Boron Total Cadmiu	22	µg/L	<		100 4					-						
	Total Caumiu Total Chromiu		µg/L µg/L	<		4					+						
	Hexavalent C		µg/L	<	<u> </u>	00025					-						
	Total Cobalt		µg/L	<	0.	10					+						
	Total Copper		µg/L	<		12.5											
5	Free Cyanide		µg/L														
Group	Total Cyanide)	µg/L	<		10											
ō	Dissolved Iror	ı	µg/L	<		200											
	Total Iron		µg/L	<		200											
	Total Lead		µg/L	<		8											
	Total Mangan		µg/L	<		20											
	Total Mercury	1	µg/L	<	0.	.0002											
	Total Nickel	(Dhanalias) (DM(0)	µg/L	<		50											
	Total Phenois Total Seleniu	(Phenolics) (PWS)	µg/L µg/L	<		90 20					-						
	Total Seleniur Total Silver		µg/L µg/L	<		4					-						
	Total Thallium	1	µg/L	<		7					-						
	Total Zinc	-	µg/L														
1 1	Total Molybde	enum	µg/L	<		10											
	Acrolein		µg/L														
	Acrylamide		µg/L														
	Acrylonitrile		µg/L														
	Benzene		µg/L														
	Bromoform		µg/L														
	Carbon Tetra	chloride	µg/L														

Toxics Management Spreads

Version 1.3, March 2021

heet

Stream / Surface Water Information

Cooper Township Municipal Authority , NPDES Permit No. PA0233340, Outfall 001

Instructions Discharge Stream

Receiving Surface Water Name: Moshannon Creek

Location	Stream Code*	RMI*	Elevation (ft)*	DA (mi ²)*	Slope (ft/ft)	PWS Withdrawal (MGD)	Apply Fish Criteria*
Point of Discharge	025695	0.65	1383	148			Yes
End of Reach 1	025695	0.01	1375	152			Yes

Statewide Criteria
 Great Lakes Criteria
 ORSANCO Criteria

Q 7-10

Location	RMI	LFY	Flow	(Cfs)	W/D	Width	Depth	Velocit	Time	Tributary		Stream		Analysis	
Location	1 NIVII	(cfs/mi ²)*	Stream	Tributary	Ratio	(ft)	(ft)	y (fps)	(days)	Hardness	pН	Hardness*	pH*	Hardness	pН
Point of Discharge	0.65	0.1	6.46									100	7		
End of Reach 1	0.01	0.1	6.63												

No. Reaches to Model: 1

Q,

Location	RMI	LFY	Flow	(cfs)	W/D	Width	Depth	Velocit	Time	Tributary		Stream		Analysis	
Location	PAIVII	(cfs/mi ²)	Stream	Tributary	Ratio	(ft)	(ft)	y (fps)	(days)	Hardness	pН	Hardness	pН	Hardness	pН
Point of Discharge	0.65														
End of Reach 1	0.01														

Stream / Surface Water Information

12/12/2023

NPDES Permit No. PA0233340

DEPARTMENT OF ENVIRONMENTAL PROTECTION

Toxics Management Spreadsheet Version 1.3, March 2021

Model Results

Cooper Township Municipal Authority , NPDES Permit No. PA0233340, Outfall 001

Instructions Results	RETURN	TO INPU	тз) (з	SAVE AS	PDF	PRINT	r) 🖲 A	\II ⊖ Inputs ⊖ Results ⊖ Limits							
Hydrodynamics															
☑ Wasteload Allocations															
AFC CCT															
Pollutants	Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments							
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A								
Chloride (PWS)	0	0		0	N/A	N/A	N/A								
Sulfate (PWS)	0	0		0	N/A	N/A	N/A								
Fluoride (PWS)	0	0		0	N/A	N/A	N/A								
Total Aluminum	0	0		0	750	750	216,831								
Total Antimony	0	0		0	1,100	1,100	318,019								
Total Arsenic	0	0		0	340	340	98,297	Chem Translator of 1 applied							
Total Barium	0	0		0	21,000	21,000	6,071,268								
Total Boron	0	0		0	8,100	8,100	2,341,775								
Total Cadmium	0	0		0	2.014	2.13	617	Chem Translator of 0.944 applied							
Total Chromium (III)	0	0		0	569.763	1,803	521,276	Chem Translator of 0.316 applied							
Hexavalent Chromium	0	0		0	16	16.3	4,711	Chem Translator of 0.982 applied							
Total Cobalt	0	0		0	95	95.0	27,465								
Total Copper	0	0		0	13.439	14.0	4,047	Chem Translator of 0.96 applied							
Dissolved Iron	0	0		0	N/A	N/A	N/A								
Total Iron	0	0		0	N/A	N/A	N/A								
Total Lead	0	0		0	64.581	81.6	23,604	Chem Translator of 0.791 applied							
Total Manganese	0	0		0	N/A	N/A	N/A								
Total Mercury	0	0		0	1.400	1.65	476	Chem Translator of 0.85 applied							
Total Nickel	0	0		0	468.236	469	135,642	Chem Translator of 0.998 applied							
Total Phenols (Phenolics) (PWS)	0	0		0	N/A	N/A	N/A								
Total Selenium	0	0		0	N/A	N/A	N/A	Chem Translator of 0.922 applied							
Total Silver	0	0		0	3.217	3.78	1,094	Chem Translator of 0.85 applied							
Total Thallium	0	0		0	65	65.0	18,792								
CFC CCT	CFC CCT (min): 87.531 PMF: 1 Analysis Hardness (mg/l): 100 Analysis pH: 7.00														

Model Results

12/12/2023

Page 5

Pollutants	Conc (ug/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Fluoride (PWS)	0	0		0	N/A	N/A	N/A	
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Antimony	0	0		0	220	220	153,334	
Total Arsenic	0	0		0	150	150	104,546	Chem Translator of 1 applied
Total Barium	0	0		0	4,100	4,100	2,857,580	
Total Boron	0	0		0	1,600	1,600	1,115,153	
Total Cadmium	0	0		0	0.246	0.27	189	Chem Translator of 0.909 applied
Total Chromium (III)	0	0		0	74.115	86.2	60,065	Chem Translator of 0.86 applied
Hexavalent Chromium	0	0		0	10	10.4	7,245	Chem Translator of 0.962 applied
Total Cobalt	0	0		0	19	19.0	13,242	
Total Copper	0	0		0	8.956	9.33	6,502	Chem Translator of 0.96 applied
Dissolved Iron	0	0		0	N/A	N/A	N/A	
Total Iron	0	0		0	1,500	1,500	1,045,456	WQC = 30 day average; PMF = 1
Total Lead	0	0		0	2.517	3.18	2,217	Chem Translator of 0.791 applied
Total Manganese	0	0		0	N/A	N/A	N/A	
Total Mercury	0	0		0	0.770	0.91	631	Chem Translator of 0.85 applied
Total Nickel	0	0		0	52.007	52.2	36,356	Chem Translator of 0.997 applied
Total Phenols (Phenolics) (PWS)	0	0		0	N/A	N/A	N/A	
Total Selenium	0	0		0	4.600	4.99	3,477	Chem Translator of 0.922 applied
Total Silver	0	0		0	N/A	N/A	N/A	Chem Translator of 1 applied
Total Thallium	0	0		0	13	13.0	9,061	

☑ ТНН С	CT (min): 87.	531	PMF:	1	Analysis Hardness (mg/l):			N/A Analysis pH: N/A
Pollutants	Conc (ug/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	500,000	500,000	N/A	
Chloride (PWS)	0	0		0	250,000	250,000	N/A	
Sulfate (PWS)	0	0		0	250,000	250,000	N/A	
Fluoride (PWS)	0	0		0	2,000	2,000	N/A	
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Antimony	0	0		0	5.6	5.6	3,903	
Total Arsenic	0	0		0	10	10.0	6,970	
Total Barium	0	0		0	2,400	2,400	1,672,730	
Total Boron	0	0		0	3,100	3,100	2,160,609	
Total Cadmium	0	0		0	N/A	N/A	N/A	
Total Chromium (III)	0	0		0	N/A	N/A	N/A	
Hexavalent Chromium	0	0		0	N/A	N/A	N/A	
Total Cobalt	0	0		0	N/A	N/A	N/A	

1odel Results

12/12/2023

Page 6

Total Copper	0	0		0	N/A	N/A	N/A	
Dissolved Iron	0	0		0	300	300	209,091	
Total Iron	0	0		0	N/A	N/A	N/A	
Total Lead	0	0		0	N/A	N/A	N/A	
Total Manganese	0	0		0	1,000	1,000	696,971	
Total Mercury	0	0		0	0.050	0.05	34.8	
Total Nickel	0	0		0	610	610	425,152	
Total Phenols (Phenolics) (PWS)	0	0		0	5	5.0	N/A	
Total Selenium	0	0		0	N/A	N/A	N/A	
Total Silver	0	0		0	N/A	N/A	N/A	
Total Thallium	0	0		0	0.24	0.24	167	
CRL CC	T (min): 27.	294	PMF:	1	Ana	alysis Hardne	ess (mg/l):	N/A Analysis pH: N/A
Pollutants	Conc (ug/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Fluoride (PWS)	0	0		0	N/A	N/A	N/A	
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Antimony	0	0		0	N/A	N/A	N/A	

Total Anumony	•	•		1000			
Total Arsenic	0	0	0	N/A	N/A	N/A	
Total Barium	0	0	0	N/A	N/A	N/A	
Total Boron	0	0	0	N/A	N/A	N/A	
Total Cadmium	0	0	0	N/A	N/A	N/A	
Total Chromium (III)	0	0	0	N/A	N/A	N/A	
Hexavalent Chromium	0	0	0	N/A	N/A	N/A	
Total Cobalt	0	0	0	N/A	N/A	N/A	
Total Copper	0	0	0	N/A	N/A	N/A	
Dissolved Iron	0	0	0	N/A	N/A	N/A	
Total Iron	0	0	0	N/A	N/A	N/A	
Total Lead	0	0	0	N/A	N/A	N/A	
Total Manganese	0	0	0	N/A	N/A	N/A	
Total Mercury	0	0	0	N/A	N/A	N/A	
Total Nickel	0	0	0	N/A	N/A	N/A	
Total Phenols (Phenolics) (PWS)	0	0	0	N/A	N/A	N/A	
Total Selenium	0	0	0	N/A	N/A	N/A	
Total Silver	0	0	0	N/A	N/A	N/A	
Total Thallium	0	0	0	N/A	N/A	N/A	
Total Thallium	0	0	0	N/A	N/A	N/A	

☑ Recommended WQBELs & Monitoring Requirements

No. Samples/Month: 4

Model Results

12/12/2023

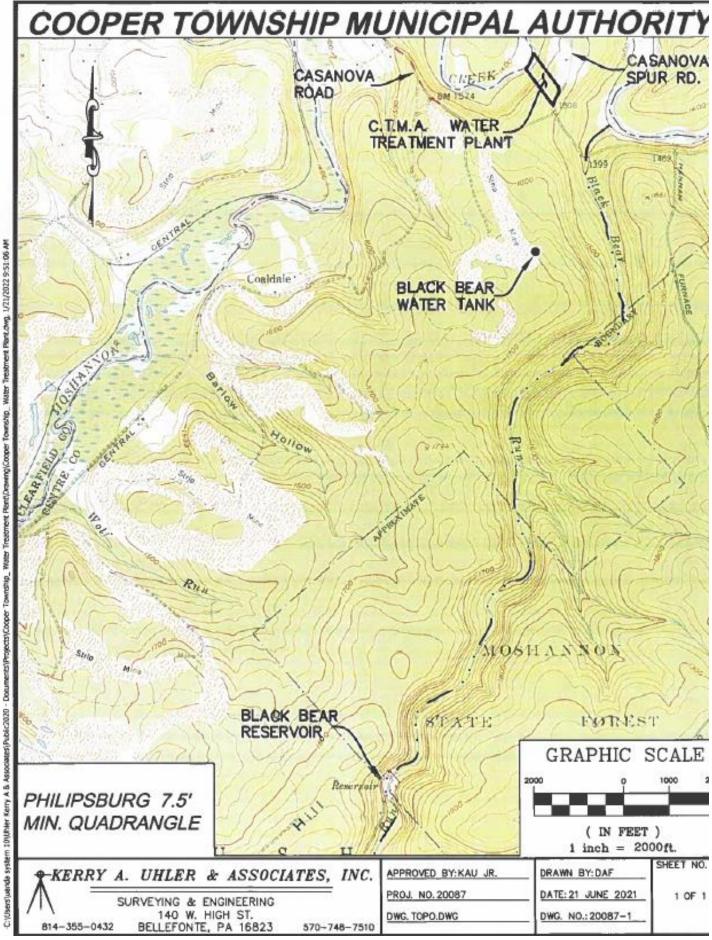
Page 7

	Mass	Limits		Concentra	tion Limits				
Pollutants	AML (Ibs/day)	MDL (lbs/day)	AML	MDL	IMAX	Units	Governing WQBEL	WQBEL Basis	Comments

Other Pollutants without Limits or Monitoring

The following pollutants do not require effluent limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharge concentration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QL).

Pollutants	Governing WQBEL	Units	Comments	
Total Dissolved Solids (PWS)	N/A	N/A	PWS Not Applicable	
Chloride (PWS)	N/A	N/A	PWS Not Applicable	
Bromide	N/A	N/A	No WQS PWS Not Applicable	
Sulfate (PWS)	N/A	N/A		
Fluoride (PWS)	N/A	N/A	Discharge Conc < TQL	
Total Aluminum	138,980	µg/L	Discharge Conc ≤ 10% WQBEL	
Total Antimony	3,903	µg/L	Discharge Conc ≤ 10% WQBEL	
Total Arsenic	6,970	µg/L	Discharge Conc ≤ 10% WQBEL	
Total Barium	1,672,730	µg/L	Discharge Conc ≤ 10% WQBEL	
Total Beryllium	N/A	N/A	No WQS	
Total Boron	1,115,153	µg/L	Discharge Conc < TQL	
Total Cadmium	189	µg/L	Discharge Conc ≤ 10% WQBEL	
Total Chromium (III)	60,065	µg/L	Discharge Conc < TQL	
Hexavalent Chromium	3,019	µg/L	Discharge Conc < TQL	
Total Cobalt	13,242	µg/L	Discharge Conc ≤ 10% WQBEL	
Total Copper	2,594	µg/L	Discharge Conc ≤ 10% WQBEL	
Total Cyanide	N/A	N/A	No WQS	
Dissolved Iron	209,091	µg/L	Discharge Conc ≤ 10% WQBEL	
Total Iron	1,045,456	µg/L	Discharge Conc ≤ 10% WQBEL	
Total Lead	2,217	µg/L	Discharge Conc ≤ 10% WQBEL	
Total Manganese	696,971	µg/L	Discharge Conc ≤ 10% WQBEL	
Total Mercury	34.8	µg/L	Discharge Conc < TQL	
Total Nickel	36,356	µg/L	Discharge Conc ≤ 10% WQBEL	
Total Phenols (Phenolics) (PWS)		µg/L	PWS Not Applicable	
Total Selenium	3,477	µg/L	Discharge Conc ≤ 10% WQBEL	
Total Silver	701	µg/L	Discharge Conc ≤ 10% WQBEL	
Total Thallium	167	µg/L	Discharge Conc ≤ 10% WQBEL	
Total Molybdenum	N/A	N/A	No WQS	


Vodel Results

12/12/2023

1A	В	С	D	Е	F	G		
2					r Twp MA PA0233340			
3		Input appropriate values in B4:B8 and E4:E7						
4		6 = Q stream (= CV Daily			
5		0.006 = Q discharge (MGD)			= CV Hourly			
6	30 = no. samples			= AFC_Partial Mix Factor				
8	0.3 = Chlorine Demand of Stream 0 = Chlorine Demand of Discharge			= CFC_Partial Mix Factor = AFC_Criteria Compliance Time (min)				
9		5 = BAT/BPJ V	~		= CFC_Criteria Compliance Time (min)			
J			of Safety (FOS)					
10	Source	Reference	AFC Calculations		Reference	CFC Calculations		
11	TRC	1.3.2.iii	WLA afc =	222.034	1.3.2.iii	WLA cfc = 216.458		
12	PENTOXSD TRG	5.1a	LTAMULT afc =	0.373	5.1c	LTAMULT cfc = 0.581		
	PENTOXSD TRG	5.1b	LTA_afc=	82.735	5.1d	LTA_cfc = 125.838		
14								
15	Source	E 45		Limit Calo				
16	PENTOXSD TRG 5.1f AML MULT = 1.231							
18	PENTOASDIKG	PENTOXSD TRG 5.1g AVG MON LIMIT (mg/l) = 0.500 BAT/BPJ						
10	INST MAX LIMIT (mg/I) = 1.635							
	WLA afc (.019/e(-k*AFC_tc)) + [(AFC_Yc*Qs*.019/Qd*e(-k*AFC_tc))							
	LTAMULT afc	+ Xd + (AFC_Yc*Qs*Xs/Qd)]*(1-FOS/100)						
	LTA_afc	EXP((0.5*LN(cvh^2+1))-2.326*LN(cvh^2+1)^0.5) wla_afc*LTAMULT_afc						
		wia_arc"LTAMOLT_arc						
	WLA_cfc	(.011/e(-k*CFC_tc) + [(CFC_Yc*Qs*.011/Qd*e(-k*CFC_tc))						
	—	+ Xd + (CFC_Yc*Qs*Xs/Qd)]*(1-FOS/100)						
	LTAMULT_cfc	EXP((0.5*LN(cvd^2/no_samples+1))-2.326*LN(cvd^2/no_samples+1)^0.5)						
	LTA_cfc	wla_cfc*LTAMULT_cfc						
	AMLMULT	EXP(2.326*1	N/(cvd^2/no_samples	+1)^0 5\-0	5*LN(cvdA2/po	samples+1))		
	AML MULT EXP(2.326*LN((cvd^2/no_samples+1)^0.5)-0.5*LN(cvd^2/no_samples+1)) AVG MON LIMIT MIN(BAT_BPJ,MIN(LTA_afc,LTA_cfc)*AML_MULT)							
	INST MAX LIMIT 1.5*((av_mon_limit/AML_MULT)/LTAMULT_afc)							
		((
		((at_inoi			,			

APPENDIX D FACILITY MAP AND SCHEMATIC

