

Southwest Regional Office CLEAN WATER PROGRAM

Application Type

Facility Type

Major / Minor

Minor

NPDES PERMIT FACT SHEET INDIVIDUAL INDUSTRIAL WASTE (IW) AND IW STORMWATER

Application No. PA0235555

APS ID 824547

Authorization ID 1253693

Applicant Name	Home	er City Generation LP	_ Facility Name	Dixon Run Central Treatment Facility
Applicant Address	1750	Power Plant Road	Facility Address	1054 Allen Bridge Road
	Home	er City, PA 15748-8009	_	Indiana, PA 15701
Applicant Contact	Gary	Cline	_ Facility Contact	Adam Ritts
Applicant Phone	(724)	479-6255	_ Facility Phone	(724) 479-6123
Client ID	29840	06	_ Site ID	618057
SIC Code	1222	(NAICS 212112)	Municipality	Cherryhill Township
SIC Description	Bitum	inous Coal Underground Mining	County	Indiana
Date Application Rece	eived	November 29, 2018	_ EPA Waived?	Yes
Date Application Acce	epted	December 13, 2018	If No, Reason	

Summary of Review

Homer City Generation LP ("HCG") submitted an application to renew NPDES Permit PA0235555 for the Dixon Run Central Treatment Facility. The Dixon Run Central Treatment Facility, which treats acid mine drainage from the Dixon Run Mine No. 3, is transitioning from oversight by the Bureau of Mining to the Bureau of Clean Water. Under a June 1, 2006 Consent Order and Agreement, HCG (then EME Homer City Generation LP) assumed responsibility for the Dixon Run Central Treatment Facility following the bankruptcy and liquidation of Stanford Mining, which previously engaged in coal mining activities at three mines in that area: Dixon Run No. 3 Mine, Penn Hills No. 2 Mine, and the Chestnut Ridge Mine. Stanford Mining also operated the Central Treatment Facility to treat discharges from those mines.

HCG was originally issued a "Post-Mining Activity Permit" (32031701), which was a non-standard permit type created to authorize post-mining activities. HCG never conducted any mining activities associated with the Stanford mines, but HCG is a landowner in areas where discharges from the Dixon Run No. 3 Mine occur and where pumping activities historically were conducted. HCG also has an interest in maintaining good water quality in the Two Lick Reservoir, which is owned by HCG and ensures a consistent water supply for the Homer City Generating Station located downstream on Two Lick Creek.

Sometime after issuance of the Post-Mining Activity Permit, the Office of Surface Mining ("OSM") requested that HCG obtain a Coal Mining Activity Permit ("CMAP"), which HCG obtained (CMAP 32131301) on March 30, 2009. CMAP 32131301 and its associated NPDES Permit (PA0235555) issued by the Bureau of Mining authorize the treatment and discharge of mine drainage to surface waters and the injection of treatment plant sludge into the Dixon Run No. 3 mine via a borehole.

Recently, HCG went through a bankruptcy that caused OSM to review HCG's activities under OSM's purview. OSM found that HCG wasn't bonded and didn't have a treatment trust for the Central Treatment Facility. OSM then issued a 10-day notice to the Department to require bonding or a treatment trust. The Department asked HCG for information to calculate the bond and Homer City appealed. HCG did not want to post bond or pursue a treatment trust given that it voluntarily assumed responsibility for the Central Treatment Facility. Therefore, with OSM's concurrence, CMAP 32131301 will be terminated once the site is permitted by the Clean Water Program. Bonding or a treatment trust will not be required.

Approve	Deny	Signatures	Date
		Ryan C. Decker, P.E. / Environmental Engineer	10/24/19
		Michael E. Fifth, P.E. / Environmental Engineer Manager	10/29/19

Summary of Review

Operation of the Dixon Run Central Treatment Facility was previously approved by the CMAP. Since that permit will be terminated, operation of the existing treatment facility was re-authorized by Water Quality Management ("WQM") Permit No. 3218200 issued by the Clean Water Program on August 7, 2018. That WQM permit was amended on July 17, 2019 to reauthorize the use of sludge disposal boreholes into the mine workings to dispose of sludge from the treatment facility pursuant to 25 Pa. Code § 89.60(3)(iv).

NPDES Permit Renewal

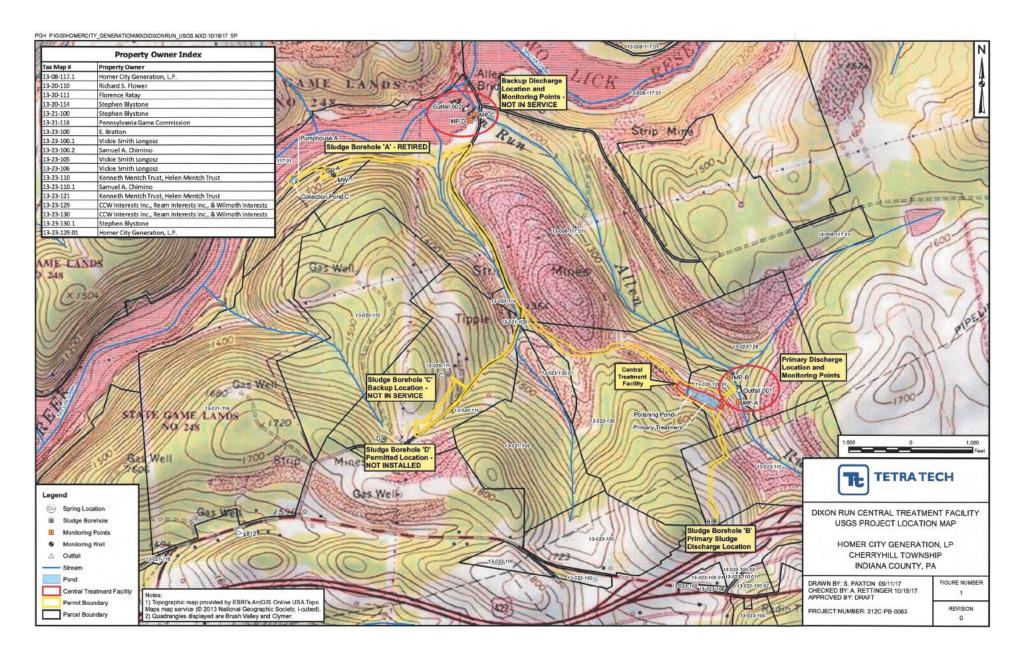
The Dixon Run Central Treatment Facility is currently permitted with two outfall locations: Outfall 001 to Allen Run, a small stream located near the treatment facility; and Outfall 002, a proposed, but presently unused alternative discharge location from the treatment facility to the Two Lick Reservoir.

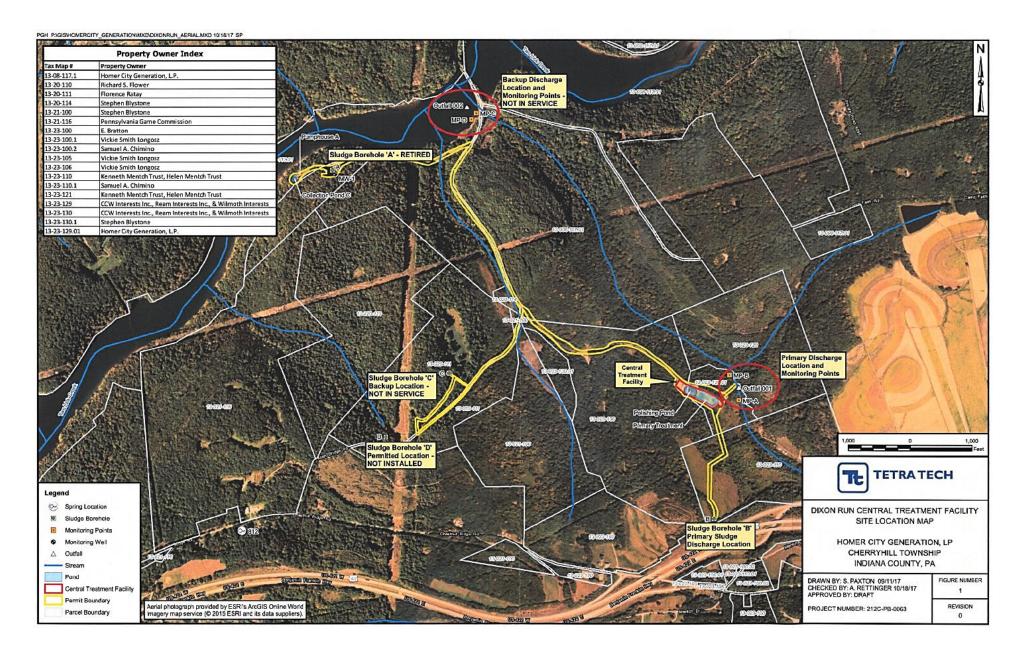
This NPDES permit renewal will maintain most of the effluent limits and monitoring requirements imposed in the previous NPDES permit including effluent limits and monitoring requirements for pollutants characteristic of mine drainage based, in part, on 25 Pa. Code Chapter 89 and the Total Maximum Daily Load for the Kiskiminetas-Conemaugh River Watershed; stream monitoring upstream and downstream of the discharge location(s); and monitoring of the Dixon Run mine pool elevation. New water quality-based effluent limits are also included for mercury and thallium at Outfall 001 consistent with the results of a reasonable potential analysis.

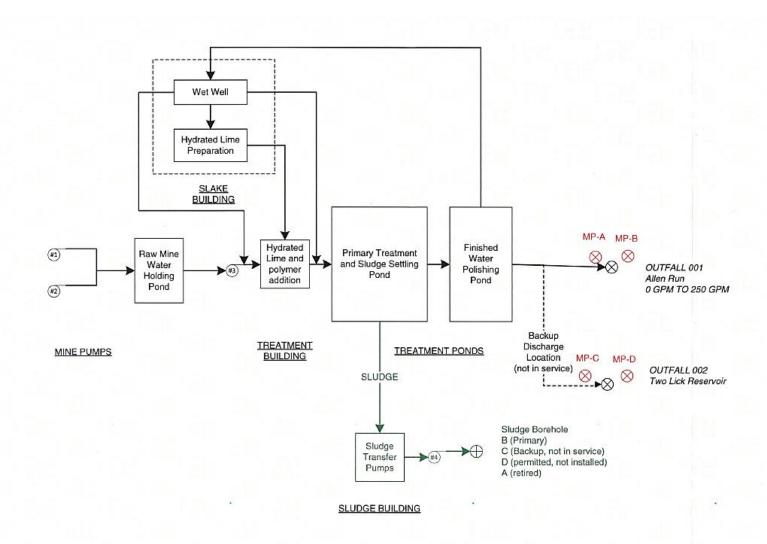
Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Outfall No. 001 bits with value of the part of the part of the process	Dis	scharge, Receiving Waters	and Water Supply Informa	tion
Quad Name Brush Valley Quad Code 1413 Wastewater Description: Treated acid mine drainage from an underground deep mine Receiving Waters Allen Run (CWF) Stream Code 44273 NHD Com ID 123716147 RMI 1.21 Drainage Area 0.7 sq. mi. Yield (cfs/mi²) USGS StreamStats Elevation (ft) 1,415 Slope (ft/ft) 0.04 Watershed No. 18-D Chapter 93 Class. CWF Existing Use Exceptions to Use Exceptions to Criteria Assessment Status Cause(s) of Impairment Metals Source(s) of Impairment Metals Source(s) of Impairment TMDL Status Final Name Kiskiminetas-Conemaugh River Watersheds TMDL Watersheds TMDL Background/Ambient Data Data Source Laboratory pH (S.U.) 6.8 CMAP 32131301 quarterly stream samples (2/2017-2/2019) Field pH (S.U.) 8.2 " Acidity (mg/L) 0.09 " Acidity (mg/L) 0.09 " Al	Outfall No. 001		Design Flow (MGD)	0.044 (avg.); 0.72 (max)
Natewater Description: Treated acid mine drainage from an underground deep mine	Latitude 40° 36' 53.31"		Longitude	-79° 2' 35.48"
Receiving Waters	Quad Name Brush Valley	1	Quad Code	1413
NHD Com ID	Wastewater Description:	Treated acid mine drainage	from an underground deep m	ine
NHD Com ID	Descriving Waters Allen De	un (CIME)	Straam Cada	44070
Drainage Area 0.7 sq. mi. Yield (cfs/mi²) Qr₁o Flow (cfs) 0.04 Qr₁o Basis USGS StreamStats Elevation (ft) 1,415 Slope (ft/ft) 0.04 Watershed No. 18-D Chapter 93 Class. CWF Existing Use Exceptions to Use Exceptions to Criteria Assessment Status Impaired Exceptions to Criteria Cause(s) of Impairment Metals Acid Mine Drainage TMDL Status Final Name Kiskiminetas-Conemaugh River Watersheds TMDL Data Source Laboratory pH (S.U.) 6.8 CMAP 32131301 quarterly stream samples (2/2017-2/2019) Field pH (S.U.) 8.2 " Aklalinity (mg/L) -60.04 " Iron (mg/L) 0.09 " Aluminum (mg/L) 0.09 " Aluminum (mg/L) 0.09 " Suspended Solids (mg/L) 6.0 " Dissolved Solids (mg/L) 6.1.22 " Nearest Downstream Public Water Supply Intake Flow at Intake (cfs)			_	
Qr₁0 Flow (cfs) 0.04 Qr₁0 Basis USGS StreamStats Elevation (ft) 1,415 Slope (ft/ft) 0.04 Watershed No. 18-D Chapter 93 Class. CWF Existing Use Existing Use Qualifier Exceptions to Criteria Assessment Status Impaired Cause(s) of Impairment Metals Source(s) of Impairment Acid Mine Drainage Watersheds TMDL TMDL Status Final Name Watersheds TMDL Background/Ambient Data Data Source Laboratory pH (S.U.) 6.8 CMAP 32131301 quarterly stream samples (2/2017-2/2019) Field pH (S.U.) 8.2 " Alkalinity (mg/L) 33.9 " Acidity (mg/L) -60.04 " Iron (mg/L) 0.09 " Aluminum (mg/L) 0.09 " Sulfates (mg/L) 53.73 " Suspended Solids (mg/L) 202.33 " Osmotic Pressure (mOs/kg) 6.43 " Ornotice (mg/L) 61.22 " Flow at Intake (cfs			_	1.21
Slope (ft/ft)		IIII.	_ ` ′	LICCS StroomState
Watershed No.	, ,		_	
Existing Use	` '			
Exceptions to Use			-	CVVF
Impaired Metals Acid Mine Drainage Metals Acid Mine Drainage Materials Mater			_	
Cause(s) of Impairment Source(s) of Impairment Source(s) of Impairment Metals Acid Mine Drainage Kiskiminetas-Conemaugh River Watersheds TMDL TMDL Status Final Name Kiskiminetas-Conemaugh River Watersheds TMDL Background/Ambient Data Data Source Laboratory pH (S.U.) 6.8 CMAP 32131301 quarterly stream samples (2/2017-2/2019) Field pH (S.U.) 8.2 " Alkalinity (mg/L) 33.9 " Acidity (mg/L) -60.04 " Iron (mg/L) 0.11 " Manganese (mg/L) 0.09 " Aluminum (mg/L) 53.73 " Suspended Solids (mg/L) 6.0 " Dissolved Solids (mg/L) 202.33 " Osmotic Pressure (mOs/kg) 6.43 " Chlorides (mg/L) 61.22 " Nearest Downstream Public Water Supply Intake Flow at Intake (cfs)	· · · · · · · · · · · · · · · · · · ·		_ Exceptions to Criteria	
Source(s) of Impairment Acid Mine Drainage Kiskiminetas-Conemaugh River Watersheds TMDL Background/Ambient Data Data Source Laboratory pH (S.U.) 6.8 CMAP 32131301 quarterly stream samples (2/2017-2/2019) Field pH (S.U.) 8.2 " Alkalinity (mg/L) 33.9 " Acidity (mg/L) -60.04 " Iron (mg/L) 0.11 " Manganese (mg/L) 0.09 " Aluminum (mg/L) 53.73 " Suspended Solids (mg/L) 6.0 " Dissolved Solids (mg/L) 202.33 " Osmotic Pressure (mOs/kg) 6.43 " Chlorides (mg/L) 61.22 " Nearest Downstream Public Water Supply Intake Flow at Intake (cfs)	-			
TMDL Status Final Name Kiskiminetas-Conemaugh River Watersheds TMDL Background/Ambient Data Data Source Laboratory pH (S.U.) 6.8 CMAP 32131301 quarterly stream samples (2/2017-2/2019) Field pH (S.U.) 8.2 " Alkalinity (mg/L) 33.9 " Acidity (mg/L) -60.04 " Iron (mg/L) 0.11 " Manganese (mg/L) 0.09 " Sulfates (mg/L) 53.73 " Suspended Solids (mg/L) 6.0 " Dissolved Solids (mg/L) 202.33 " Osmotic Pressure (mOs/kg) 6.43 " Chlorides (mg/L) 61.22 " Nearest Downstream Public Water Supply Intake Flow at Intake (cfs)				
TMDL Status Final Name Watersheds TMDL Background/Ambient Data Data Source Laboratory pH (S.U.) 6.8 CMAP 32131301 quarterly stream samples (2/2017-2/2019) Field pH (S.U.) 8.2 " Alkalinity (mg/L) 33.9 " Acidity (mg/L) -60.04 " Iron (mg/L) 0.11 " Manganese (mg/L) 0.09 " Aluminum (mg/L) 0.09 " Sulfates (mg/L) 53.73 " Suspended Solids (mg/L) 6.0 " Dissolved Solids (mg/L) 202.33 " Osmotic Pressure (mOs/kg) 6.43 " Chlorides (mg/L) 61.22 " Nearest Downstream Public Water Supply Intake Flow at Intake (cfs)	Source(s) of Impairment	Acid Mine Drainage	Vickiminotor	Conomough Pivor
Background/Ambient Data Data Source Laboratory pH (S.U.) 6.8 CMAP 32131301 quarterly stream samples (2/2017-2/2019) Field pH (S.U.) 8.2 " Alkalinity (mg/L) 33.9 " Acidity (mg/L) -60.04 " Iron (mg/L) 0.11 " Manganese (mg/L) 0.09 " Aluminum (mg/L) 0.09 " Sulfates (mg/L) 53.73 " Suspended Solids (mg/L) 6.0 " Dissolved Solids (mg/L) 202.33 " Osmotic Pressure (mOs/kg) 6.43 " Chlorides (mg/L) 61.22 " Nearest Downstream Public Water Supply Intake Flow at Intake (cfs)	TMDL Status	Final		
Field pH (S.U.) 8.2 " Alkalinity (mg/L) 33.9 " Acidity (mg/L) -60.04 " Iron (mg/L) 0.11 " Manganese (mg/L) 0.09 " Aluminum (mg/L) 0.09 " Sulfates (mg/L) 53.73 " Suspended Solids (mg/L) 6.0 " Dissolved Solids (mg/L) 202.33 " Osmotic Pressure (mOs/kg) 6.43 " Chlorides (mg/L) 61.22 " Nearest Downstream Public Water Supply Intake Flow at Intake (cfs)	-			ream samples (2/2017-2/2019)
Alkalinity (mg/L) 33.9 " Acidity (mg/L) -60.04 " Iron (mg/L) 0.11 " Manganese (mg/L) 0.09 " Aluminum (mg/L) 0.09 " Sulfates (mg/L) 53.73 " Suspended Solids (mg/L) 6.0 " Dissolved Solids (mg/L) 202.33 " Osmotic Pressure (mOs/kg) 6.43 " Chlorides (mg/L) 61.22 " Nearest Downstream Public Water Supply Intake Flow at Intake (cfs)	- · · · · · · · · · · · · · · · · · · ·			earri sarripies (2/2017-2/2019)
Acidity (mg/L) -60.04 " Iron (mg/L) 0.11 " Manganese (mg/L) 0.09 " Aluminum (mg/L) 53.73 " Sulfates (mg/L) 53.73 " Suspended Solids (mg/L) 6.0 " Dissolved Solids (mg/L) 202.33 " Osmotic Pressure (mOs/kg) 6.43 " Chlorides (mg/L) 61.22 " Nearest Downstream Public Water Supply Intake Flow at Intake (cfs)			4	
Iron (mg/L) 0.11 " Manganese (mg/L) 0.09 " Aluminum (mg/L) 0.09 " Sulfates (mg/L) 53.73 " Suspended Solids (mg/L) 6.0 " Dissolved Solids (mg/L) 202.33 " Osmotic Pressure (mOs/kg) 6.43 " Chlorides (mg/L) 61.22 " Nearest Downstream Public Water Supply Intake Flow at Intake (cfs)	, , , ,		4	
Manganese (mg/L) 0.09 " Aluminum (mg/L) 0.09 " Sulfates (mg/L) 53.73 " Suspended Solids (mg/L) 6.0 " Dissolved Solids (mg/L) 202.33 " Osmotic Pressure (mOs/kg) 6.43 " Chlorides (mg/L) 61.22 " Nearest Downstream Public Water Supply Intake Flow at Intake (cfs)	• • • /		4	
Aluminum (mg/L) 0.09 " Sulfates (mg/L) 53.73 " Suspended Solids (mg/L) 6.0 " Dissolved Solids (mg/L) 202.33 " Osmotic Pressure (mOs/kg) 6.43 " Chlorides (mg/L) 61.22 " Nearest Downstream Public Water Supply Intake Flow at Intake (cfs)	, -,		4	
Sulfates (mg/L) 53.73 " Suspended Solids (mg/L) 6.0 " Dissolved Solids (mg/L) 202.33 " Osmotic Pressure (mOs/kg) 6.43 " Chlorides (mg/L) 61.22 " Nearest Downstream Public Water Supply Intake PWS Waters Flow at Intake (cfs)			4	
Suspended Solids (mg/L) 6.0 " Dissolved Solids (mg/L) 202.33 " Osmotic Pressure (mOs/kg) 6.43 " Chlorides (mg/L) 61.22 " Nearest Downstream Public Water Supply Intake PWS Waters Flow at Intake (cfs)	, σ,		4	
Dissolved Solids (mg/L) 202.33 " Osmotic Pressure (mOs/kg) 6.43 " Chlorides (mg/L) 61.22 " Nearest Downstream Public Water Supply Intake PWS Waters Flow at Intake (cfs)			4	
Osmotic Pressure (mOs/kg) 6.43 " Chlorides (mg/L) 61.22 " Nearest Downstream Public Water Supply Intake PWS Waters Flow at Intake (cfs)			4	
Chlorides (mg/L) 61.22 " Nearest Downstream Public Water Supply Intake PWS Waters Flow at Intake (cfs)	• = •		4	
Nearest Downstream Public Water Supply Intake PWS Waters Flow at Intake (cfs)	· =-		4	
PWS Waters Flow at Intake (cfs)	Chlorides (Hig/L)	01.22		
PWS Waters Flow at Intake (cfs)	Nearest Downstream Public	Water Supply Intake		
			Flow at Intake (cfs)	
	PWS RMI		Distance from Outfall (mi)	


Changes Since Last Permit Issuance:


Other Comments:


	Discharge, Receiving Wa	ters and Water Supply Infor	mation
Outfall No. 002		Design Flow (M	IGD) 0.044 (avg.); 0.72 (max)
Latitude 40° 37' 39.	77"	 Longitude	-79° 3' 37.32"
Quad Name Clymer		Quad Code	1313
Wastewater Description:	Treated acid mine drain	— nage from an underground de	ep mine
Receiving Waters Tw	o Lick Creek	Stream Code	44073
NHD Com ID 12	3716938	RMI	18.22
Drainage Area 66	.7 sq. mi.	Yield (cfs/mi ²)	0.5982
			USGS Gage 03042500-
			Daily Discharge data (1994 – 2019) analyzed
Q ₇₋₁₀ Flow (cfs) 39	.9	Q ₇₋₁₀ Basis	with USGS DFLOW Tool
` '	79	Slope (ft/ft)	0.001
Watershed No. 18	-D	Chapter 93 Class.	TSF
Existing Use		Existing Use Qualifier	
Exceptions to Use		Exceptions to Criteria	
Assessment Status	Impaired		
Cause(s) of Impairment	Metals		
Source(s) of Impairment	Acid Mine Drainage		
TMDL Out	E' a d		as-Conemaugh River
TMDL Status	Final	Name Watershed	S IMDL
Daal	4-	Data Carres	
Background/Ambient Da	ta .	Data Source	
pH (SU)			
Temperature (°F) Hardness (mg/L)			
Other:	 -		
Other.			
Nearest Downstream Pu	hlic Water Supply Intake	Pennsylvania American Wate	er Company - Indiana
	ick Creek	Pumping Capacity (MGD)	
PWS RMI 13.34	ION OTGGN	Distance from Outfall (mi)	
1 VV O IXIVII 15.54		Distance nom Outlan (IIII)	4.00

Changes Since Last Permit Issuance:

Other Comments:

PUMP

MONITORING POINT (MP)

OUTFALL

→ SLUDGE BOREHOLE

DIXON RUN CENTRAL TREATMENT FACILITY PROCESS FLOW DIAGRAM HOMER CITY GENERATION LP NPDES PERMIT APPLICATION

Treatment Facility Summary									
Treatment Facility:	Treatment Facility: Dixon Run Central Treatment Facility								
WQM Permit No.	Issuance Date	Purpo	ose						
3218200	August 7, 2018	Authorization for existing treatment famining program.	Authorization for existing treatment facilities previously permitted by the mining program.						
3218200 A-1	July 17, 2019	Sludge disposal boreholes	Sludge disposal boreholes						
· · · ·	Degree of		5 1.1.6.41	Avg Annual					
Waste Type	Treatment	Process Type	Disinfection	Flow (MGD)					
		Flow Equalization, Chemical							
		Precipitation, Coagulation/Flocculation,							
Industrial (Mining)	Primary	Sedimentation	N/A	0.044					

Changes Since Last Permit Issuance: WQM 3218200 was a new permit issued by the Clean Water Program for existing treatment facilities as part of the oversight transition.

Development of Effluent Limitations							
Outfall No.	001	Design Flow (MGD)	0.044 (avg.); 0.72 (max)				
Latitude	40° 36' 53.00"	Longitude	-79° 2' 35.00"				
Wastewater Description: Treated acid mine drainage from an underground deep mine							

001.A. Technology-Based Effluent Limitations (TBELs)

There are no Federal Effluent Limitations Guidelines applicable to Outfall 001. The Coal Mining Point Source Category effluent limitations at 40 CFR Part 434 apply to discharges from active coal mines and coal preparation plants and associated areas. The Dixon Run No. 3 mine is not an active mine. Therefore, Part 434 limits do not apply.

The post-closure mine pool maintenance activities assumed by HCG under the June 1, 2006 Consent Order and Agreement are classified as "underground mining activities" pursuant to the definitions in 25 Pa. Code § 89.5(a):

Underground mining activities—Includes the following:

- (i) Surface operations incident to underground extraction of coal or in situ processing, such as construction, use, maintenance and reclamation of roads, aboveground repair areas, storage areas, processing areas, shipping areas, areas upon which are sited support facilities, including hoist and ventilating ducts, areas used for the disposal and storage of waste and areas on which materials incident to underground mining operations are placed.
- (ii) Underground operations such as underground construction, operation and reclamation of shafts, adits, support facilities located underground, in situ processing and underground mining, hauling, storage and blasting.
- (iii) Operation of a mine including preparatory work in connection with the opening and reopening of a mine, backfilling, sealing, and other closing procedures, <u>postclosure mine pool maintenance</u> and any other work done on land or water in connection with a mine.

Discharges from Outfall 001 are subject to the Group A effluent limits in 25 Pa. Code § 89.52(c) pursuant to § 89.52(f)(2), which states:

- (f) Postmining pollutional discharges. [...]
 - (2) If the discharge continues to exist, after implementation of the abatement measures required under paragraph (1), the discharger shall make provisions for sound future treatment of the discharge to achieve the Group A effluent requirements in subsection (c), including modifications authorized or required under subsection (e) or (h). [...]

Table 1. TBELs for Postmining Pollutional Discharges

Parameter	30-day Average (mg/L)	Daily Maximum (mg/L)	Inst. Maximum (mg/L)			
Total Suspended Solids	35	70	90			
Iron	3.0	6.0	7.0			
Manganese	2.0	4.0	5.0			
pH not less than 6.0 nor greater than 9.0 standard units						
Alkalinity greater than acidity	at all times					

25 Pa. Code Chapter 89 - Surface Water and Groundwater Monitoring Requirements

Section 89.59 requires minimum surface water and groundwater monitoring for underground mining activities. The current NPDES permit issued as part of CMAP 32131301 included surface water and groundwater monitoring requirements that will be maintained in the renewed permit with a few changes. The existing requirements include quarterly upstream and downstream monitoring on Allen Run and Two Lick Creek (upstream and downstream of Outfalls 001 and 002) for flow, pH, alkalinity, acidity, iron, manganese, aluminum, sulfates, suspended solids, dissolved solids, osmotic pressure, and chlorides. There is also a requirement to monitoring the water elevation of the Dixon Run mine pool in monitoring well "MW-1". Mercury and thallium monitoring will be added to the surface water sampling locations associated with Outfall 001 (see Section 001.B, below). The requirements are summarized in the following table.

Table 2. Surface Water and Groundwater Monitoring Program for Dixon Run

Monitoring Point No.	001 Upstream ("MP-A")	001 Downstream ("MP-B")	002 Upstream ("MP-C")†	002 Downstream ("MP-D")†	MW-1
Quad Map ID	Brush Valley	Brush Valley	Clymer	Clymer	Brush Valley
Latitude (dd mm ss)	40° 36' 51"	40° 36' 55"	40° 37′ 36″	40° 37' 35"	40° 37' 43"
Longitude (dd mm ss)	79° 02' 35"	79° 02' 37"	79° 03′ 31″	79° 03′ 32″	79° 04' 01"
Surface Elevation (ft)	±1425	±1395	±1180	±1180	±1280
Location Description	Allen Run US	Allen Run DS	Two Lick Dam US	Two Lick Dam DS	Dixon Run Mine Pool
Flow (cfs/gpm)	Report	Report	Report	Report	_
Water Elevation (ft)	_	_	_	_	Report
pН	Report	Report	Report	Report	_
Alkalinity (mg/L)	Report	Report	Report	Report	_
Acidity (mg/L)	Report	Report	Report	Report	_
Iron (mg/L)	Report	Report	Report	Report	_
Manganese (mg/L)	Report	Report	Report	Report	_
Aluminum (mg/L)	Report	Report	Report	Report	_
Sulfate (mg/L)	Report	Report	Report	Report	_
Suspend Solids (mg/L)	Report	Report	Report	Report	_
Dissolved Solids (mg/L)	Report	Report	Report	Report	_
Osmotic Pressure (mOs/kg)	Report	Report	Report	Report	_
Chlorides (mg/l)	Report	Report	Report	Report	_
Mercury (mg/L)	Report	Report	_	_	_
Thallium (mg/L)	Report	Report	_	_	_
Sampling Frequency	Quarterly	Quarterly	Quarterly	Quarterly	Quarterly
•					

[†] Sampling at MP-C and MP-D only applies if/when Homer City Generation activates Outfall 002, which is not currently in use.

001.B. Water Quality-Based Effluent Limitations (WQBELs)

Water quality-based effluent limits are evaluated pursuant to 25 Pa. Code §§ 89.52(f)(2) and 89.52(h) regarding additional requirements necessary to comply with Chapters 91, 92a, 93, and 95 of Title 25.

Toxics Screening Analysis - Procedures for Evaluating Reasonable Potential and Developing WQBELs

The procedures for evaluating reasonable potential are as follows:

- 1. For industrial waste discharges, the design flow to use in modeling is the average flow during production or operation unless another flow value is more appropriate.
- 2. Perform a Toxics Screening Analysis to identify toxic pollutants of concern. All toxic pollutants whose maximum concentrations, as reported in the permit application or on DMRs, are greater than the most stringent applicable water quality criterion are pollutants of concern. [This includes pollutants reported as "Not Detectable" or as "<QL" where the quantitation limit for the analytical method used by the applicant is greater than DEP's target quantitation limit]. List all toxic pollutants of concern in a Toxics Screening Analysis section of the fact sheet (see Attachment A).
- 3. For any outfall with an applicable design flow, perform PENTOXSD modeling for all pollutants of concern. Use the maximum reported value from the application form or from DMRs as the input concentration for the PENTOXSD model run.
- 4. Compare the actual WQBEL from PENTOXSD with the maximum concentration reported on DMRs or the permit application. Use WQN data or another source to establish the existing or background concentration for naturally occurring pollutants, but generally assume zero background concentration for non-naturally occurring pollutants.

- Establish limits in the draft permit where the maximum reported concentration equals or exceeds 50% of the WQBEL. Use the average monthly and maximum daily limits for the permit as recommended by PENTOXSD. Establish an IMAX limit at 2.5 times the average monthly limit.
- For non-conservative pollutants, establish monitoring requirements where the maximum reported concentration is between 25% 50% of the WQBEL.
- For conservative pollutants, establish monitoring requirements where the maximum reported concentration is between 10% - 50% of the WQBEL.

The information described above including the maximum reported discharge concentrations, the most stringent water quality criteria, the pollutant-of-concern (reasonable potential) determinations, the calculated WQBELs, and the WQBEL/monitoring recommendations is collected on a spreadsheet titled "Toxics Screening Analysis." (Attachment A).

PENTOXSD Water Quality Modeling Program

PENTOXSD Version 2.0 for Windows is a single discharge, mass-balance water quality modeling program that includes consideration for mixing, first-order decay and other factors to determine recommended WQBELs for toxic substances and several non-toxic substances. Required input data including stream code, river mile index, elevation, drainage area, discharge name, NPDES permit number, and discharge flow rate are entered in PENTOXSD to establish site-specific discharge conditions. Other data such as low flow yield, reach dimensions, and partial mix factors also may be entered to further characterize the conditions of the discharge and receiving water. Pollutants are then selected for analysis based on those present or likely to be present in a discharge at levels that may cause, have the reasonable potential to cause, or contribute to excursions above state water quality standards (i.e., a reasonable potential analysis). Discharge concentrations for the selected pollutants are generally chosen to represent the "worst case" quality of the discharge (i.e., maximum reported discharge concentrations). PENTOXSD then evaluates each pollutant by computing a Waste Load Allocation for each applicable criterion, determining a recommended maximum WQBEL and comparing that recommended WQBEL with the input discharge concentration to determine which is more stringent. Based on this evaluation, PENTOXSD recommends average monthly and maximum daily WQBELs.

Reasonable Potential Analysis and WQBEL Development for Outfall 001

Table 3. 001 PENTOXSD Inputs

Parameter	Value
River Mile Index	1.21
Discharge Flow (MGD)	0.044
Basin/Stream Characteris	tics
Parameter	Value
Drainage Area (sq. mi.)	0.7
Q ₇₋₁₀ (cfs)	0.04
Low-flow yield (cfs/mi ²)	0.057
Elevation (ft)	1,415
Slope	0.04

The PENTOXSD model is run for Outfall 001 with the modeled discharge and receiving stream characteristics shown in Table 3. The pollutants selected for analysis are those identified as candidates for modeling by the Toxics Screening Analysis. Pollutants for which water quality criteria have not been promulgated (e.g., TSS, oil and grease, etc.) are excluded from the PENTOXSD modeling.

DEP's initial PENTOXSD modeling for Outfall 001 indicated that WQBELs are required for cadmium, mercury, selenium, and thallium and that reporting is required for arsenic. The requirements for arsenic, cadmium, and selenium arise from HCG's contracted laboratory's use of insufficiently sensitive analytical methods that did not achieve DEP's target quantitation limits. That is, the permit application reported that the concentrations of those pollutants are less than Environmental Service Laboratory's analytical reporting limits, but those reporting limits are too high to rule out the possibility that discharges will result in

excursions above Pennsylvania's water quality standards. In these situations, DEP allows dischargers to collect additional samples and analyze them using lower quantitation limits—preferably the target quantitation limits specified in DEP's most recent Application for Permit to Discharge Industrial Wastewater.

By letter dated May 16, 2019, DEP notified HCG of the potential for new WQBELs. The letter included a survey giving HCG an opportunity to resample its effluent and/or to explain whether it would be able to comply with the WQBELs and, if not, how long it would take to comply. HCG did not resample its effluent, but it did forward to DEP additional analytical data that were collected and sent to DEP's Mining Program as part of the 2014 CMAP/NPDES permit renewal. HCG's contracted lab did achieve lower reporting limits for those results. Based on the additional data, water quality-based requirements for arsenic, cadmium, and selenium will not be imposed. However, WQBELs for mercury and thallium will be imposed. Even though the 2014 data included non-detect results for mercury, the older non-detect result for mercury at a quantitation limit of $0.025~\mu g/L$ does not invalidate two newer detected results at $0.04~\mu g/L$. In either case, HCG can comply with the proposed mercury WQBELs.

Thallium was detected in the 2014 results at a value of 0.2 μ g/L, which is less than the proposed thallium WQBELs. Nevertheless, pursuant to DEP's guidance, the 0.2 μ g/L value exhibits a reasonable potential to cause or contribute to an excursion above the thallium WQBELs of 0.381 μ g/L (average monthly) and 0.594 μ g/L (maximum daily), so the thallium WQBELs will be imposed at Outfall 001. DEP also cannot ignore the more recent thallium result of 2.2 μ g/L.

The mercury and thallium WQBELs are less than DEP's target quantitation limits for those pollutants (0.2 μ g/L and 2.0 μ g/L), which, at the time of this writing, are the quantitation limits that DEP has determined will comply with EPA's 2014 Sufficiently Sensitive Methods rule. In these situations, the WQBELs are imposed in the permit, but the permittee demonstrates compliance with those limits by reporting 'less than' values at the level of the target quantitation limit (e.g., "<0.2 μ g/L"). The handling of WQBELs at values below target quantitation limits will be described in the permit using the following conditions:

A. The parameter(s) listed below are subject to water quality-based effluent limits (WQBELs) in Part A of this permit that are necessary to comply with state water quality standards, but may be less than quantitation limits (QLs), as defined in 25 Pa. Code § 252.1, that are generally achievable by conventional analytical technology. The permittee shall analyze the parameter(s) using methods that will achieve the QL(s) as listed below. For the purpose of compliance, a statistical value reported on the DMR that is less than the QL(s) (i.e., "non-detect") will be considered to be in compliance.

Parameter Name	Quantitation Limit
Mercury, Total	0.2 μg/L
Thallium, Total	2.0 μg/L

- B. The permittee shall, where determined to be feasible by the permittee, achieve a QL less than the QL identified above to improve the level of confidence that state water quality standards are being met in the receiving waters.
- C. The permittee shall manage non-detect values and report statistical results to DEP in accordance with published DMR guidance (3800-BK-DEP3047 and 3800-FS-DEP4262). Where a mixed data set exists containing non-detect results and "detected" values (i.e., results greater than or equal to the QL), the QL shall be used for non-detect results to compute average statistical results.

HCG expects that it will comply with the proposed mercury and thallium WQBELs pursuant to the above conditions. Therefore, no schedule of compliance will be included in the permit for the new WQBELs.

Table 4. WQBELs for Outfall 001

Parameter Concentration Limit (μg/L) 2018 NPDES Appl. 2014 CMAP/ NPDES Target Avg Mo. Max Daily IMAX Result (μg/L) Appl. Result QL (μg/L)

Proposed water quality-based requirements that will not be imposed due to the receipt of additional information as part of the pre-draft survey Arsenic, Total Report Report <5 3.42 < 0.2 0.2 Cadmium, Total 1.36 2.13 <1.6 7.91 12.34 19.78 Selenium, Total <6.6 <2 5 Proposed water quality-based requirements that will be imposed Mercury, Total 0.079 0.197 0.04 <0.025 0.124 0.2 Thallium, Total 0.381 0.594 0.952 2.2 0.2 2.0

Other Monitoring Requirements

Discharges from Outfall 001 are currently subject to average monthly and maximum daily limits of 50.0 mOs/kg for osmotic pressure. Those limits are equivalent to the most stringent water quality criterion for osmotic pressure.¹ DEP's reasonable potential analysis indicates that the osmotic pressure of Outfall 001's discharges (maximum of 9 mOs/kg) does not exhibit a reasonable potential to cause or contribute to an excursion above the osmotic pressure water quality criterion. Therefore, pursuant to the exception to anti-backsliding in 40 CFR § 122.44(I)(2)(i)(B)(1) regarding new information that justifies the application of less stringent limits (effluent data in this case), Outfall 001's osmotic pressure WQBELs will be removed from the permit.

Osmotic pressure is identified in 25 Pa. Code § 93.7(a) of DEP's regulations in units representing osmolality (milliosmoles per kilogram). Implementation of the osmotic pressure criterion in NPDES permits is consistent with these units.

Pursuant to 25 Pa. Code §§ 92a.61(b) and 89.59(a)(3), monitoring for osmotic pressure, sulfates, total dissolved solids, and chlorides will remain in the permit. Section 89.59(a)(3) requires surface water and discharge monitoring to "measure and record the water quantity and quality of discharges from the permit area and the effect of the discharges on the receiving waters". Monitoring of the discharge and monitoring of the receiving stream both upstream and downstream of the discharge (see Table 2) for the same parameters will allow DEP to evaluate the impacts of the Dixon Run discharges on waters of the Commonwealth.

Mercury and thallium will be added to the quarterly stream monitoring program on Allen Run to establish in-stream concentrations for those pollutants and whether Outfall 001's discharges have an adverse impact on those in-stream concentrations.

Kiskiminetas-Conemaugh River Watershed TMDL

A TMDL for the Kiskiminetas-Conemaugh River Watershed ("Kiski-Conemaugh TMDL")—of which the Allen Run is a part—was completed on January 29, 2010 for the control of acid mine drainage pollutants: aluminum, iron, manganese, sediment and pH. In accordance with 40 CFR § 122.44(d)(1)(vii)(B), when developing WQBELs, the permitting authority shall ensure that effluent limits developed to protect a narrative water quality criterion, a numeric water quality criterion, or both, are consistent with the assumptions and requirements of any available wasteload allocation (WLA) for the discharge prepared by the State and approved by EPA pursuant to 40 CFR § 130.7. The Dixon Run Central Treatment Facility was assigned wasteload allocations (WLAs) for aluminum, iron, and manganese by the Kiski-Conemaugh TMDL. Therefore, pursuant to § 122.44(d)(1)(vii)(B), WQBELs will be imposed at Outfall 001. Only aluminum, iron, and manganese WQBELs are imposed because the TMDL does not establish wasteload allocations for sediment or pH. The TMDL used a surrogate approach for both of those constituents by which reductions of in-stream concentrations of aluminum, iron, and manganese would result in acceptable reductions of sediment and mitigation of acidic pH.

The TMDL's allocated concentrations for aluminum, iron, and manganese are equivalent to the most stringent water quality criteria for those pollutants and those criteria will be imposed as end-of-pipe limits at Outfall 001. The methods used to implement water quality criteria are described in 25 Pa. Code §§ 96.3 and 96.4. Also, DEP's *Water Quality Toxics Management Strategy* (Doc. No. 361-2000-003) addresses design conditions in detail (Table 1 in that document), including the appropriate durations to assign to water quality criteria. The design duration for Criteria Maximum Concentration (CMC) criteria is 1 hour (acute). The design duration for Criteria Continuous Concentration (CCC) criteria is 4 days (chronic). The design duration for Threshold Human Health (THH) criteria is 30 days (chronic). The design duration for Cancer Risk Level (CRL) criteria is 70 years (chronic).

The 750 μg/L aluminum criterion in 25 Pa. Code § 93.8c is a CMC (acute) criterion. Therefore, 750 μg/L is imposed as a maximum daily limit. There is no CCC criterion for aluminum necessitating the imposition of a more stringent average monthly limit. Imposing 750 μg/L as both a maximum daily and average monthly limit is protective of water quality uses.

The 1.5 mg/L iron criterion is given as a 30-day average in 25 Pa. Code § 93.7(a). Therefore, 1.5 mg/L is imposed as an average monthly limit and the maximum daily effluent limit is calculated using a multiplier of two times the average monthly limit based on DEP's *Technical Guidance for the Development and Specification of Effluent Limitations and Other Permit Conditions in NPDES Permits* (Doc. No. 362-0400-001, Chapter 3, pp. 15 – 16).

The 1 mg/L potable water supply criterion for manganese in 25 Pa. Code § 93.7(a) is a human health criterion (chronic). Per Table 1 of the *Water Quality Toxics Management Strategy*, the duration for a THH criterion is 30 days. Therefore, an average monthly effluent limit of 1 mg/L is imposed and the maximum daily effluent limit is calculated using a multiplier of two times the average monthly limit consistent with the technical guidance cited above for iron.

Since the allocated concentrations are equivalent to water quality criteria, HCG's compliance with concentration limits for aluminum, iron, and manganese will not result in excursions above water quality criteria and the permit will be consistent with the TMDL's WLAs. Consequently, the TMDL's load limits are not required. The TMDL's wasteload allocations and the applicable WQBELs are summarized in the table below.

Table 5. TMDL Effluent Limits for Outfall 001

Pollutant	Average Monthly (mg/L)	Maximum Daily (mg/L)	
Aluminum, Total	0.75	0.75	
Iron, Total	1.5	3.0	
Manganese, Total	1.0	2.0	

The TMDL WQBELs in Table 5 are imposed in the current permit for Dixon Run, so HCG's compliance with those limits is expected.

001.C. Effluent Limitations and Monitoring Requirements for Outfall 001

Effluent limits applicable at Outfall 001 are the more stringent of TBELs, WQBELs, regulatory effluent standards, and monitoring requirements as summarized in the table below.

Table 6. Effluent Limits and Monitoring Requirements for Outfall 001

	Mass (pounds)	s) Concentration (mg/L)			
Parameter	Average Monthly	Daily Maximum	Average Monthly	Daily Maximum	Instant Maximum	Basis
Flow (MGD)	Report	Report	_			25 Pa. Code § 92a.61(d)(1)
Total Suspended Solids			35	70	90	25 Pa. Code § 89.52(f)(2)
Aluminum, Total	_		0.75	0.75	0.75	TMDL WQBELs
Iron, Total			1.5	3.0	3.75	TMDL WQBELs
Manganese, Total	_		1.0	2.0	2.0	TMDL WQBELs
Mercury, Total	1	1	0.079	0.124	0.197	Reasonable Potential; § 92a.61(b)
Thallium, Total			0.381	0.594	0.952	Reasonable Potential; § 92a.61(b)
Alkalinity			Report	Report		25 Pa. Code § 89.52(f)(2)
Acidity	_		Report	Report	_	25 Pa. Code § 89.52(f)(2)
Net Alkalinity [†]	-	-	0.0 (Minimum)	-	-	25 Pa. Code § 89.52(f)(2)
Osmotic Pressure (mOs/kg)		1	Report	Report	1	25 Pa. Code §§ 89.59(a)(3) & 92a.61(b)
Sulfates	1	1	Report	Report	1	25 Pa. Code §§ 89.59(a)(3) & 92a.61(b)
Total Dissolved Solids			Report	Report		25 Pa. Code §§ 89.59(a)(3) & 92a.61(b)
Chlorides	1		Report	Report		25 Pa. Code §§ 89.59(a)(3) & 92a.61(b)
pH (s.u.)	-	within	the range of 6	.0 to 9.0		25 Pa. Code § 95.2(1)

[†]Net Alkalinity is the sum of alkalinity (+) and acidity (-). A minimum limit of zero for net alkalinity will require alkalinity to always be greater than acidity as required by Chapter 89's Group A limits.

Monitoring frequencies and sample types are imposed based on those given in the existing permit and on Chapter 6, Table 6-4 of DEP's *Technical Guidance for the Development and Specification of Effluent Limitations and Other Permit Conditions in NPDES Permits*. Flow must be measured 2/month. Aluminum, iron, manganese, mercury, thallium, alkalinity, acidity, osmotic pressure, sulfates, total dissolved solids, chlorides must be sampled 2/month using grab samples. Less frequent monitoring and less intensive sampling methods than those identified in the *Technical Guidance* are imposed because the treatment system operates intermittently.

Development of Effluent Limitations Outfall No. Latitude 002 Stription: Design Flow (MGD) Longitude 0.044 (avg.); 0.72 (max) Congitude Wastewater Description: Treated acid mine drainage from an underground deep mine

002.A. <u>Technology-Based Effluent Limitations (TBELs)</u>

Outfall 002 is an alternative discharge location for effluent from the Central Treatment Facility. TBELs for Outfall 002 are the same as the TBELs for Outfall 001 (see Table 1).

002.B. Water Quality-Based Effluent Limitations (WQBELs)

Reasonable Potential Analysis and WQBEL Development for Outfall 001

Table 7. 001 PENTOXSD Inputs

Parameter	Value
River Mile Index	18.22
Discharge Flow (MGD)	0.044
Basin/Stream Characterist	tics
Parameter	Value
Drainage Area (sq. mi.)	66.7
Q ₇₋₁₀ (cfs)	40
Low-flow yield (cfs/mi ²)	0.5982
Elevation (ft)	1,179
Slope	0.001

The PENTOXSD model is run for Outfall 002 with the modeled discharge and receiving stream characteristics shown in Table 7. The pollutants selected for analysis are those identified as candidates for modeling by the Toxics Screening Analysis. Pollutants for which water quality standards have not been promulgated (e.g., TSS, oil and grease, etc.) are excluded from the PENTOXSD modeling.

Based on the results of the PENTOXSD modeling (see Attachment B), no WQBELs or water quality-based reporting requirements are necessary for Outfall 002.

Kiskiminetas-Conemaugh River Watershed TMDL

TMDL WLAs for Outfall 002 are the same as those for Outfall 001 (see Table 4).

002.C. Effluent Limitations and Monitoring Requirements for Outfall 002

Effluent limits applicable at Outfall 002 are the more stringent of TBELs, WQBELs, regulatory effluent standards, and monitoring requirements as summarized in the table below.

Table 8. Effluent Limits and Monitoring Requirements for Outfall 002

	Mass (pounds)	Con	centration (m	g/L)	
Parameter	Average Monthly	Daily Maximum	Average Monthly	Daily Maximum	Instant Maximum	Basis
Flow (MGD)	Report	Report	_		_	25 Pa. Code § 92a.61(d)(1)
Total Suspended Solids	_	_	35	70	90	25 Pa. Code § 89.52(f)(2)
Aluminum, Total	_	_	0.75	0.75	0.75	TMDL WQBELs
Iron, Total	_	_	1.5	3.0	3.75	TMDL WQBELs
Manganese, Total	_	_	1.0	2.0	2.0	TMDL WQBELs
Alkalinity	_	_	Report	Report	_	25 Pa. Code § 89.52(f)(2)
Acidity	_	_	Report	Report	_	25 Pa. Code § 89.52(f)(2)
Net Alkalinity	_	_	0.0 (Minimum)	_	_	25 Pa. Code § 89.52(f)(2)
Osmotic Pressure (mOs/kg)	_	_	Report	Report	_	25 Pa. Code §§ 89.59(a)(3) & 92a.61(b)
Sulfates	1		Report	Report	_	25 Pa. Code §§ 89.59(a)(3) & 92a.61(b)
Total Dissolved Solids		_	Report	Report	_	25 Pa. Code §§ 89.59(a)(3) & 92a.61(b)
Chlorides		_	Report	Report	_	25 Pa. Code §§ 89.59(a)(3) & 92a.61(b)
pH (s.u.)		within	the range of 6	.0 to 9.0		25 Pa. Code § 95.2(1)

Monitoring frequencies and sample types are the same as those at Outfall 001.

	Tools and References Used to Develop Permit
	MOM (= AM' = down Mardel (= = AM = denomination)
	WQM for Windows Model (see Attachment)
	PENTOXSD for Windows Model (see Attachment B)
- -	TRC Model Spreadsheet (see Attachment)
	Temperature Model Spreadsheet (see Attachment)
	Toxics Screening Analysis Spreadsheet (see Attachment A)
	Water Quality Toxics Management Strategy, 361-0100-003, 4/06. Technical Guidance for the Development and Specification of Effluent Limitations, 362-0400-001, 10/97.
	Policy for Permitting Surface Water Diversions, 362-2000-003, 3/98.
౼	Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 362-2000-008, 11/96.
౼	Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97.
	Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 362-2183-004, 12/97.
	Pennsylvania CSO Policy, 385-2000-011, 9/08.
	Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.
	Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 391-2000-002, 4/97.
	Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97.
	Implementation Guidance Design Conditions, 391-2000-006, 9/97.
	Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004.
	Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 391-2000-008, 10/1997.
	Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 391-2000-010, 3/99.
	Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 391-2000-011, 5/2004.
	Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97.
	Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 391-2000-014, 4/2008.
	Implementation Guidance Total Residual Chlorine (TRC) Regulation, 391-2000-015, 11/1994.
<u> </u>	Implementation Guidance for Temperature Criteria, 391-2000-017, 4/09.
	Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/97.
	Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97.
	Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 391-2000-021, 3/99.
	Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/1999.
	Design Stream Flows, 391-2000-023, 9/98.
	Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 391-2000-024, 10/98.
	Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97.
	Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.
\boxtimes	SOP: Establishing Effluent Limitations for Individual Industrial Permits, BCW-PMT-032, v1.5, 1/10/2019.
\boxtimes	SOP: Establishing Water Quality-Based Effluent Limitations (WQBELs) and Permit Conditions for Toxic Pollutants in NPDES Permits for Existing Dischargers, BCW-PMT-037, v1.2, 7/30/2019.
\boxtimes	SOP: New and Reissuance Industrial Waste and Industrial Stormwater Individual NPDES Permit Applications, BPNPSM-PMT-001, v1.5, 10/11/2013.
	Other:

ATTACHMENT A

Toxics Screening Analysis for Outfall 001

TOXICS SCREENING ANALYSIS – OUTFALL 001 WATER QUALITY POLLUTANTS OF CONCERN VERSION 2.6

Facility: Homer City Dixon Run Central Trtm. Fac.

NPDES Permit No.: PA0235555

Outfall: 001

Analysis Hardness (mg/L): Discharge Flow (MGD): 0.044

Analysis pH (SU): 7

Stream Flow, Q₇₋₁₀ (cfs): **0.04**

Parameter		eximum Concentration in oplication or DMRs (µg/L)	Most Stringent Criterion (μg/L)	Candidate for PENTOXSD Modeling?	Most Stringent WQBEL (µg/L)	Screening Recommendation
Pollutant Group 1					1	
Total Dissolved Solids		928000	500000	Yes		
Chloride		6680	250000	No		
Bromide		46	N/A	No		
Sulfate		571000	250000	Yes		
Fluoride		369	2000	No		
Pollutant Group 2 – Metals						
Total Aluminum		286	750	No	762.473	
Total Antimony		0.76	5.6	No		
Total Arsenic	<	1	10	No (Value < QL)	15.862	
Total Barium		4	2400	No		
Total Beryllium		0.3	N/A	No		
Total Boron		213	1600	No		
Total Cadmium	<	0.2	0.401	No (Value < QL)	1.369	
Total Chromium		0.9	N/A	No		
Hexavalent Chromium		5	10.4	No		
Total Cobalt		2	19	No		
Total Copper		2	14.7	No		
Total Cyanide			N/A			
Total Iron		193	1500	No		
Dissolved Iron		83	300	No		
Total Lead	<	3.3	6.3	Yes	37.003	No Limits/Monitoring
Total Manganese		47	1000	No		
Total Mercury		0.04	0.05	Yes	0.079	Establish Limits
Total Molybdenum		2	N/A	No		
Total Nickel		5	81.7	No		

Parameter		ximum Concentration in plication or DMRs (μg/L)	Most Stringent Criterion (μg/L)	Candidate for PENTOXSD Modeling?	Most Stringent WQBEL (µg/L)	Screening Recommendation
Total Phenols (Phenolics)	٧	2	5	No (Value < QL)		
Total Selenium	<	2	5.0	No (Value < QL)	7.914	
Total Silver	<	3.3	9.4	No	56.787	
Total Thallium		2.2	0.24	Yes	0.381	Establish Limits
Total Zinc		5	187.8	No		
Pollutant Group 7 - Additiona	l Par	ameters				
Osmotic Pressure (mOs/kg)		9	50	No		

TOXICS SCREENING ANALYSIS – OUTFALL 002 WATER QUALITY POLLUTANTS OF CONCERN VERSION 2.6

Facility: Homer City Dixon Run Central Trtm. Fac.

NPDES Permit No.: Discharge Flow (MGD): PA0235555

0.044

Analysis pH (SU):

Outfall:

002

Analysis Hardness (mg/L): Stream Flow, Q₇₋₁₀ (cfs): 100 4.9

Parameter		nximum Concentration in plication or DMRs (µg/L)	Most Stringent Criterion (μg/L)	Candidate for PENTOXSD Modeling?	Most Stringent WQBEL (µg/L)	Screening Recommendation
Pollutant Group 1						
Total Dissolved Solids		928000	500000	Yes	348070000	No Limits/Monitoring
Chloride		6680	250000	No		
Bromide		46	N/A	No		
Sulfate		571000	250000	Yes	174030000	No Limits/Monitoring
Fluoride		369	2000	No		
Pollutant Group 2 – Metals						
Total Aluminum		286	750	No	60918.48	
Total Antimony		0.76	5.6	No		
Total Arsenic	<	1	10	No	5871.777	
Total Barium		4	2400	No		
Total Beryllium		0.3	N/A	No		
Total Boron		213	1600	No		
Total Cadmium	<	0.2	0.271	Yes	160.023	No Limits/Monitoring
Total Chromium		0.9	N/A	No		
Hexavalent Chromium		5	10.4	No		
Total Cobalt		2	19	No		
Total Copper		2	9.3	No		
Total Cyanide			N/A			
Total Iron		193	1500	No	880766.5	
Dissolved Iron		83	300	No		
Total Lead	<	3.3	3.2	Yes	1890.83	No Limits/Monitoring
Total Manganese		47	1000	No		
Total Mercury		0.04	0.05	No	29.359	
Total Molybdenum		2	N/A	No		
Total Nickel		5	52.2	No		

Parameter	_	ximum Concentration in plication or DMRs (µg/L)	Most Stringent Criterion (μg/L)	Candidate for PENTOXSD Modeling?	Most Stringent WQBEL (µg/L)	Screening Recommendation
Total Phenols (Phenolics)	<	2	5	No (Value < QL)		
Total Selenium	<	2	5.0	Yes	2929.52	No Limits/Monitoring
Total Silver	<	3.3	3.8	No	331.079	
Total Thallium		2.2	0.24	Yes	140.923	No Limits/Monitoring
Total Zinc		5	119.8	No		
Pollutant Group 7 - Additiona	l Par	ameters				
Osmotic Pressure (mOs/kg)		9	50	No		_

ATTACHMENT B PENTOXSD Modeling Results

PENTOXSD

Modeling Input Data

Stre		RMI	Elevation (ft)	A	nage rea mi)	Slope	PWS (mg				pply FC				
44	273	1.21	1415	.00	0.70	0.04000		0.00			✓				
							1	Stream Da	ıta						
		LFY	Trib Flow	Stream Flow	WD Ratio	Rch Width	Rch Depth	Rch Velocity	Rch Trav Time	<u>Tributa</u> Hard	r <u>y</u> pH	<u>Strear</u> Hard	<u>n</u> pH	Analys Hard	<u>sis</u> pH
		(cfsm)	(cfs)	(cfs)		(ft)	(ft)	(fps)		(mg/L)		(mg/L)		(mg/L)	
Q7-10		0.057	0	0	0	0	0	0	0	170	7	0	0	0	C
Qh			0	0	0	0	0	0	0	100	7	0	0	0	C
							D	ischarge D	ata						
	Nar	me	Perm Numb			rmitted Disc Flow	Design Disc Flow	Reserve Factor	AFC PMF	CFC PMF	THH PMF	CRL PMF	Disc Hard	Disc pH	
				(m	gd) (mgd)	(mgd)						(mg/L)		
1	Outfal	II 001	PA0235	555 0.0)44	0	0	0	0	0	0	0	659	8	
							Pa	arameter D	ata						
	Pa	rameter N	lame		Disc Conc	Trib Conc	Disc Daily CV	Hourly	y Cond	: CV	Fate Coef		Crit Mod	Conc	
		7			(µg/L)	(µg/L)	78500	- 0-	(µg/L					(µg/L)	3
ALUM					100000		0.:				0	0	1	0	
ARSE CADM					100000		0.: 0.:			0	0	0	1 1	0	
LEAD					100000		0.:			0	0	0	1	0	
MANG		QE.			100000		0.:				0	0	1	0	
MERC		<u></u>			100000		0.:			0	0	0	1	0	
		PRESSUF	RE		100000		0.:				0	0	1	0	
SELEI					100000		0.:			0	0	0	1	0	
SILVE					100000		0.:			0	0	0	1	0	
THALI					100000	0 0	0.:			0	0	0	1	0	
TOTA	L IRO	N			100000	0 0	0.5	5 0.5	0.11	1 0	0	0	1	0	

Stre:		Elevation (ft)	on Drain Are (sq 1	a	Slope	PWS \ (mg				oply FC				
44	273 1.0	00 135	5.00	1.56	0.04000		0.00			~				
							Stream Da	ata						
	LFY	Trib Flow	Stream Flow	WD Ratio	Rch Width	Rch Depth	Rch Velocity	Rch Trav Time	<u>Tributa</u> Hard	<u>ry</u> pH	<u>Strear</u> Hard		<u>Analysi</u> Hard	<u>is</u> pH
-	(cfsm)	(cfs)	(cfs)		(ft)	(ft)	(fps)	(days)	(mg/L)	9	(mg/L)	- 1	(mg/L)	
Q7-10	0.057	0	0	0	0	0	0	0	170	7	0	0	0	0
Qh		0	0	0	0	0	0	0	100	7	0	0	0	0
-						Di	ischarge [Data						
	Name	Perm Numb		ວັ	ermitted Disc Flow	Design Disc Flow	Reserve Factor	AFC PMF	CFC PMF	THH PMF	CRL PMF	Disc Hard	Disc pH	
			(mg	d) (mgd)	(mgd)						(mg/L)		
-			0		0	0	0	0	0	0	0	100	7	_
						Pa	arameter D	ata						
	Paramete	er Name		Disc Conc	Trib Conc	cv	Hourl	y Con	c CV	Fate Coe		Crit Mod	Max Disc Conc	
ALUM	INITINA		(µg/L) 0	(µg/L	0.5	5 0.5	(µg/l 0	7//	0	0	1	(µg/L) 0	-
ARSE				0	0	0.5			0	0	0	1	0	
CADM				0	0	0.5			0	0	0	1	0	
LEAD	11.07.1115			0	0	0.5			0	0	0	1	0	
MANG	SANESE			0	0	0.5	5 0.5	0	0	0	0	1	0	
MERC	URY			0	0	0.5	5 0.5	0	0	0	0	1	0	
OSMC	TIC PRESS	URE		0	0	0.5	5 0.5	0	0	0	0	1	0	
SELEI	MUIV			0	0	0.5	5 0.5	0	0	0	0	1	0	
SILVE				0	0	0.5			0	0	0	1	0	
THALI				0	0	0.5			0	0	0	1	0	
TOTA	L IRON			0	0	0.5	5 0.5	0	0	0	0	1	0	

PENTOXSD Analysis Results

RM	Na	me P	ermit Nur	nber						
1.21	Outfa	II 001	PA02355	55						
						AFC				
G	7-10:	CCT (min)	0.059	PMF	1	Analysis p	н 7.363	Analysis I	Hardness 47	8.288
	Parar	meter		Stream Conc (µg/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)
	ALUM	IINUM		0.09	0	0	0	750	750	1189.581
	MANGA	ANESE		0.09	0	0	0	NA	NA	NA
	TOTAL	IRON		0.11	0	0	0	NA	NA	NA
	OSMOTIC F	PRESSURE		6.43	0	0	0	NA	NA	NA
	ARSI	ENIC	Б	0	0	0 Chemical tran	0	340	340	539.301
	CADI	MILIM	ט	0	0 0	nemicai tran 0	0	9.199	10.471	16.609
	O/ 1.51	.	Di	10.7	3.723	Chemical tran	0.700			10.000
	LE.	AD		0	0	0	0	337.015	598.653	949.57
	MERC	CURY	Di	issolved 0	WQC. C	Chemical tran 0	slator of 0.5	563 applied. 1.4	1.647	2.613
			Di	issolved	WQC. C	Chemical tran	slator of 0.	85 applied.		
	SELE	NIUM		0	0	0	0	NA	NA	NA
	SILV	/ER		0	0	0	0	47.477	55.855	88.597
			Di	issolved	WQC. C	Chemical tran	slator of 0.	85 applied.		
	THAL	LIUM		0	0	0	0	65	65	103.102
						CFC				
Q7-10:		CCT (min)	0.059	PMF	1	Analysis p	H 7.363	Analysis	Hardness 4	78.288
	Dara	meter		Stream Conc.	Stream CV	n Trib Conc.	Fate Coef	WQC	WQ Obj	WLA
	ı ara	inclei		(µg/L)	CV	(µg/L)	Coci	(µg/L)	(µg/L)	(µg/L)
	ALUM	INUM		0.09	0	0	0	NA	NA	NA
	MANGA	NESE		0.09	0	0	0	NA	NA	NA
	TOTAL	IRON	١٨	0.11	0	0 erage. PMF =	0	1500	1500	2379.203
	OSMOTIC F	RESSURE		6.43	0	0	0	50	50	75.54
	ARSE	ENIC		0	0	Effluent Limit	0	150	gram. 150	237.927
	CADN	/IUM		0	0	Chemical tran 0 Chemical tran	0	0.728	0.863	1.369

PENTOXSD Analysis Results

RM	l Name	Permit Number						
1.21	Outfall 001	PA0235555						
	LEAD	0	0	0	0	13.133	23.329	37.003
		Dissolved	WQC.	Chemical tra	nslator of	0.563 applied.		
	MERCURY	0	0	0	0	0.77	0.906	1.437
		Dissolved	WQC.	Chemical tra	nslator of	0.85 applied.		
	SELENIUM	0	0	0	0	4.6	4.989	7.914
		Dissolved	WQC.	Chemical tra	nslator of	0.922 applied.		
	SILVER	0	0	0	0	NA	NA	NA
	THALLIUM	0	0	0	0	13	13	20.62
				тнн				
Q7-10	: CCT (min)	0.059 PMF	1	Analysis	pH NA	Analysis	Hardness	NA
		Stream	Stream		Fate	WQC	WQ	WLA
	Parameter	Conc	CV	Conc	Coef	(ug/L)	Obj	(ug/L)
		(µg/L)		(µg/L)		(µg/L)	(µg/L)	(µg/L)
	ALUMINUM	0.09	0	0	0	NA	NA	NA
	MANGANESE	0.09	0	0	0	1000	1000	1586.126
	TOTAL IRON	0.11	0	0	0	NA	NA	NA
	OSMOTIC PRESSUR	E 6.43	0	0	0	NA	NA	NA
	ARSENIC	0	0	0	0	10	10	15.862
	CADMIUM	0	0	0	0	NA	NA	NA
	LEAD	0	0	0	0	NA	NA	NA
	MERCURY	0	0	0	0	0.05	0.05	0.079
	SELENIUM	0	0	0	0	NA	NA	NA
	SILVER	0	0	0	0	NA	NA	NA
	THALLIUM	0	0	0	0	0.24	0.24	0.381
				CRL				
Qh:	CCT (min)	0.117 PMF	1					
		Stream	Stream	n Trib	Fate	WQC	WQ	WLA
	Parameter	Conc	CV	Conc	Coef		Obj	
		(µg/L)		(µg/L)		(µg/L)	(µg/L)	(µg/L)
	ALUMINUM	0.09	0	0	0	NA	NA	NA

PENTOXSD Analysis Results

RMI	Name	Permit Number					
1.21	Outfall 001	PA0235555					
	MANGANESE	0.09	0	0	0	NA	
	TOTAL IRON	0.11	0	0	0	NA	
С	SMOTIC PRESSU	RE 6.43	0	0	0	NA	
	ARSENIC	0	0	0	0	NA	
	CADMIUM	0	0	0	0	NA	
	LEAD	0	0	0	0	NA	
	MERCURY	0	0	0	0	NA	
	SELENIUM	0	0	0	0	NA	
	SILVER	0	0	0	0	NA	
	THALLIUM	0	0	0	0	NA	

PENTOXSD Analysis Results Hydrodynamics

	SWP Basin	<u>n</u>	Stream	n Code:			Stream	m Name	<u>.</u>		
	18D		44	273			ALLE	EN RUN			
RM	Stream Flow	PWS With	Net Stream	Disc Analysis	Reach	Depth	Width	WD	Velocity	Reach Trav	CMT
IXIVI	1 10 44	VVILII	Flow	Flow	Slope	Deptil	vvidili	Ratio	Velocity	Time	CIVIT
4	(cfs)	(cfs)	(cfs)	(cfs)	N. S.	(ft)	(ft)		(fps)	(days)	(min)
					Q7-	-10 Hyd	Irodyna	amics			
1.2	10 0.0399	0	0.0399	0.06806	0.04	0.3684	3.7749	10.248	0.0776	0.1653	.059
1.0	00 0.0889	0	0.0889	NA	0	0	0	0	0	0	NA
					Q	h Hydr	odynar	nics			
1.2	10 0.4449	0	0.4449	0.06806	0.04	0.7313	3.7749	5.1623	0.1858	0.0691	.117
1.0	00 0.8962	0	0.8962	NA	0	0	0	0	0	0	NA

PENTOXSD Analysis Results

Recommended Effluent Limitations

	SWP Basin	Stream Code:		Stream Name:	
	18D	44273		ALLEN RUN	
	RMI	Name	Permit Number	Disc Flow (mgd)	
9.5	1.21	Outfall 001	PA0235555	0.0440	

	Effluent Limit		Max. Daily	Most S	tringent
Parameter	(µg/L)	Governing Criterion	Limit (µg/L)	WQBEL (µg/L)	WQBEL Criterion
ALUMINUM	762.473	AFC	1189.581	762.473	AFC
ARSENIC	15.862	THH	24.747	15.862	THH
CADMIUM	1.369	CFC	2.135	1.369	CFC
LEAD	37.003	CFC	57.731	37.003	CFC
MANGANESE	1586.126	THH	2474.611	1586.126	THH
MERCURY	0.079	THH	0.124	0.079	THH
OSMOTIC PRESSURE	75.54	CFC	117.854	75.54	CFC
SELENIUM	7.914	CFC	12.347	7.914	CFC
SILVER	56.787	AFC	88.597	56.787	AFC
THALLIUM	0.381	THH	0.594	0.381	THH
TOTAL IRON	2379.203	CFC	3711.94	2379.203	CFC

PENTOXSD

Modeling Input Data

Code	RMI	Elevation (ft)	Drain: Are (sq r	a	Slope	PWS (mg			100	oply FC				
44073	3 18.22	1179.0) (6.70	0.00100		0.00			✓				
							Stream Da	ta						
	LFY			WD Ratio	Rch Width	Rch Depth	Rch Velocity	Rch Trav Time	<u>Tributa</u> Hard	<u>ry</u> pH	<u>Stream</u> Hard		<u>Analysi</u> Hard	<u>s</u> pH
	(cfsm)	(cfs)	(cfs)		(ft)	(ft)	(fps)		(mg/L)	-	(mg/L)	(mg/L)	
Q7-10	0.5982	0	0	0	0	0	0	0	100	7	0	0	0	0
Qh		0	0	0	0	0	0	0	100	7	0	0	0	0
						D	ischarge D	ata						
1	Name	Permit Number	Existii Disc Flow		ermitted Disc Flow	Design Disc Flow	Reserve Factor	AFC PMF	CFC PMF	THH PMF	CRL PMF	Disc Hard	Disc pH	
			(mgd) (mgd)	(mgd)						(mg/L)		
Out	tfall 002	PA0235555	5-1 0.04	4	0	0	0	0	0	0	0	659	8	
						P	arameter D	ata						
	Parameter N													
	Parameter n	lame	(Disc Conc	Trib Conc	CV	Hourly		: CV	Fate Coef	FOS	Crit Mod	Max Disc Conc	
		lame	(Daily CV)	Hourly CV	Cond (μg/L	: CV .)	Coef			Disc Conc (µg/L)	
ALUMINU	JM	lame	() 11	Conc (g/L) (0000	Conc (µg/L)	Daily CV)	Hourly CV	Cond (μg/L 0	CV .) 0	Coef 0	0	Mod 1	Disc Conc (µg/L)	
ALUMINU ARSENIO	JM	Name	() 1(1)	Conc 1g/L) 100000	Conc (μg/L) 0 0 0 0	Daily CV) 0.	Hourly CV 5 0.5 5 0.5	(μg/L 0 0	0 0	0 0	0	Mod 1 1	Disc Conc (µg/L) 0 0	
ALUMINU ARSENIO CADMIUI	JM	Name	() 1) 1) 1)	conc 1g/L) 100000 100000	Conc (µg/L) 0 0 0 0 0 0	Daily CV) 0. 0.	Hourly CV 5 0.5 5 0.5 5 0.5	(μg/L 0 0	0 0 0	0 0 0	0 0 0	1 1 1	Disc Conc (µg/L) 0 0	
ALUMINU ARSENIC CADMIUI LEAD	M C NW	Name	() 1) 1) 1) 1)	Conc 1g/L) 100000 100000 100000	Conc (μg/L) 0 0 0 0 0 0 0 0	Daily CV 0. 0. 0.	Hourly CV 5 0.5 5 0.5 5 0.5 5 0.5 5 0.5	(μg/L 0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	1 1 1 1	Disc Conc (µg/L) 0 0 0	
ALUMINU ARSENIO CADMIUI LEAD MANGAN	JM C M	lame	() 10 10 10 10 10	ig/L) 000000 000000 000000	Conc (µg/L) 0 0 0 0 0 0 0 0 0 0	Daily CV 0. 0. 0. 0. 0.	Hourly CV 5 0.5 5 0.5 5 0.5 5 0.5 5 0.5 5 0.5	(μg/L 0 0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0	1 1 1 1 1 1 1	Disc Conc (µg/L) 0 0 0 0	
ALUMINU ARSENIC CADMIUI LEAD MANGAN MERCUR	JM C M NESE		() 10 10 10 10 10 10	conc 1g/L) 100000 100000 100000 100000	Conc (μg/L) 0 0 0 0 0 0 0 0 0 0 0 0	Daily CV 0. 0. 0. 0. 0. 0. 0.	Hourly CV 5 0.5 5 0.5 5 0.5 5 0.5 5 0.5 5 0.5 5 0.5 5 0.5	(μg/L 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	1 1 1 1 1 1 1 1	Disc Conc (μg/L) 0 0 0 0 0	
ALUMINU ARSENIC CADMIUI LEAD MANGAN MERCUR OSMOTIC	JM C M NESE RY C PRESSUF		(y 10 10 10 10 10 10 10	ig/L) 000000 000000 000000	Conc (µg/L) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Daily CV 0. 0. 0. 0. 0. 0. 0. 0. 0.	Hourly CV 5 0.5 5 0.5 5 0.5 5 0.5 5 0.5 5 0.5 5 0.5 5 0.5 5 0.5	(μg/L 0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	1 1 1 1 1 1 1 1 1	Disc Conc (μg/L) 0 0 0 0 0 0	
ALUMINU ARSENIC CADMIUI LEAD MANGAN MERCUR OSMOTIC SELENIU	JM C M NESE RY C PRESSUF		() 10 10 10 11 10 10 11	conc (g/L) (00000) (00000) (00000) (00000)	Conc (µg/L) 0	Daily CV 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	Hourly CV 5 0.5 5 0.5 5 0.5 5 0.5 5 0.5 5 0.5 5 0.5 5 0.5 5 0.5 5 0.5	(μg/L 0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Disc Conc (μg/L) 0 0 0 0 0 0	
ALUMINU ARSENIC CADMIUI LEAD MANGAN MERCUR OSMOTIC SELENIU SILVER	UM C M NESE RY C PRESSUR		() 10 10 10 10 10 10 11 10	ig/L) 000000 000000 000000 000000 000000	Conc (µg/L) 0	Daily CV 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	Hourly CV 5 0.5 5 0.5 5 0.5 5 0.5 5 0.5 5 0.5 5 0.5 5 0.5 5 0.5 5 0.5 5 0.5	(μg/L 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0	Mod 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Disc Conc (μg/L) 0 0 0 0 0 0 0	
ALUMINU ARSENIC CADMIUI LEAD MANGAN MERCUR OSMOTIC SELENIU SILVER SULFATE	JM C M NESE RY C PRESSUF JM		() () () () () () () () () () () () () (ig/L) 000000 000000 000000 000000 000000 0000	Conc (µg/L) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Daily CV 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	Hourly CV 5 0.5 5 0.5 5 0.5 5 0.5 5 0.5 5 0.5 5 0.5 5 0.5 5 0.5 5 0.5 5 0.5 5 0.5	(μg/L 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0	Mod 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Disc Conc (μg/L) 0 0 0 0 0 0 0 0 0	
ALUMINU ARSENIC CADMIUI LEAD MANGAN MERCUR OSMOTIC SELENIU SILVER SULFATE THALLIU	JM C M NESE RY C PRESSUF JM	RE	() () () () () () () () () () () () () (ig/L) 000000 000000 000000 000000 000000	Conc (µg/L) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Daily CV 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	6 O.5	(μg/L 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0	Mod 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Disc Conc (μg/L) 0 0 0 0 0 0 0	

Strea		Elevation (ft)	Draina Area (sq m	ī	Slope	PWS (mg				oply FC				
440	073 13.34	1090.00	7:	9.10	0.00100		6.00			V				
News Control of the C							Stream Da	ıta						
	LFY	Flow F	low F	VD Ratio	Rch Width		Rch Velocity	Rch Trav Time	<u>Tributa</u> Hard	pН	<u>Strean</u> Hard	рН		<u>s</u> pH
-	(cfsm)	(cfs) (cfs)	cfs)		(ft)	(ft)	(fps)	(days)	(mg/L)	ē	(mg/L)	((mg/L)	
Q7-10	0.5982	0	0	0	0	0	0	0	100	7	0	0	0	0
Qh		0	0	0	0	0	0	0	100	7	0	0	0	0
						D	ischarge D	ata						
	Name	Permit Number	Existin Disc Flow	51.°	ermitted Disc Flow	Design Disc Flow	Reserve Factor	AFC PMF	CFC PMF	THH PMF	CRL PMF	Disc Hard	Disc pH	
			(mgd)	((mgd)	(mgd)						(mg/L)		
() -			0		0	0	0	0	0	0	0	100	7	=7
						Pa	arameter D	ata						
	Parameter N	Vame		isc onc	Trib Conc	Disc Daily CV	/ Hourly			Fate Coef		Crit Mod	Max Disc Conc	
			(þ	g/L)	(µg/L			(µg/l	_)				(µg/L)	
ALUM	INUM			0	0	0.:		0	0	0	0	1	0	
ARSE	NIC			0	0	0.:	En Meiore	0	0	0	0	1	0	
CADM	IUM			0	0	0.			0	0	0	1	0	
LEAD				0	0	0.:			0	0	0	1	0	
	ANESE			0	0	0.			0	0	0	1	0	
MERC				0	0	0.			0	0	0	1	0	
	TIC PRESSUE	RE.		0	0	0.			0	0	0	1	0	
SELEN				0	0	0.			0	0	0	1	0	
SILVE				0	0	0.			0	0	0	1	0	
	ATE (PWS)			0	0	0.:			0	0	0	1	0	
THALL				0	0	0.			0	0	0	1	0	
	DISSOLVED	SOLIDS (PV	VS)	0	0	0.			0	0	0	1	0	
TOTAL	_ IRON			0	0	0.:	5 0.5	0	0	0	0	1	0	

PENTOXSD Analysis Results

RMI	Name	Permit 1	lumber						
18.22	Outfall 002	PA023	5555-1						
					AFC				
Q7-	10: CCT (n	nin) 15	PMF	0.214		pH 7.003	Analysi	s Hardness	104.411
	Parameter	,	Stream	Stream		Fate Coef	WQC	WQ Obj	WLA
	- COMMITTEE - COMM		(µg/L)	0=37.0	(µg/L)	William Co.	(µg/L)	(µg/L)	(µg/L)
	ARSENIC		0	0	0	0	340	340	43086
	CADMILIM		Dissolved 0		Chemical tra	anslator of 1		2 220	202.452
	CADMIUM		1,55	0		0 anslator of 0	2.1	2.229	282.452
	LEAD		0	0	Onemical in	0	.942 applie 67.687	u. 86.257	10930.81
	LEAD			3.50		anslator of 0			10930.01
	MERCURY		0	0	Onemical in	0	7 03 applie 1.4	u. 1.647	208.721
	WERCORT			923	7.5	anslator of 0			200.721
	SELENIUM		0	0	0	0	NA NA	NA	NA
	SILVER		0	0	0	0	3.465	4.076	516.537
			Dissolved	WQC.	Chemical tra	anslator of 0	85 applied		
	THALLIUM		0	0	0	0	65	65	8237.028
	ALUMINUM		0	0	0	0	750	750	95042.63
	TOTAL IRON		0	0	0	0	NA	NA	NA
	MANGANESE		0	0	0	0	NA	NA	NA
0	SMOTIC PRESSU	JRE	0	0	0	0	NA	NA	NA
	SULFATE (PWS	6)	0	0	0	0	NA	NA	NA
TOTAL I	DISSOLVED SOLI	DS (PWS)	0	0	0	0	NA	NA	NA
					CFC				
Q7-10:	CCT (m	in) 326.0	74 PM F	· 1	Analysis	spH 7	Analys	is Hardness	100.952
			Stream	Strear		Fate	WQC	WQ	WLA
	Parameter		Conc. (µg/L)	CV	Conc. (µg/L)	Coef	(µg/L)	Obj (µg/L)	(μg/L)
	ARSENIC		0	0	0	0	150	150	88076.66
	ANGENIC		2.55	1874	1,175	anslator of 1		130	00070.00
	CADMIUM		0	0	Onemical tra	0	0.248	0.273	160.023
	CADIMION			10 - 77		anslator of 0			100.023
	LEAD		0	0	Onemical in	0	2.543	u. 3.22	1890.83
			1,50	920	7.5	anslator of 0.			. 555.55
	MERCURY		0	0	Onemical in	0	.79 applied 0.77	0.906	531.914
	MERCORT			150	0.77	anslator of 0			551.514

PENTOXSD Analysis Results

			vvast	eload All	location	IS		
RMI	Name	Permit Number						
18.22	Outfall 002	PA0235555-1	_					
	SELENIUM	0	0	0	0	4.6	4.989	2929.52
		Dissol	ved WQC.	Chemical t	ranslator o	of 0.922 applie	ed.	
	SILVER	0	0	0	0	NA	NA	NA
	THALLIUM	0	0	0	0	13	13	7633.31
	ALUMINUM	0	0	0	0	NA	NA	NA
	TOTAL IRON	0	0 - 30 day a	0 verage. PM	0	1500	1500	880766.5
								2000
	MANGANESE	0	0	0	0	NA	NA	NA
08	SMOTIC PRESSURE		0	0	0	50	50	29358.88
						iosmoles per l	10 THE STATE OF TH	
	SULFATE (PWS)	0	0	0	0	NA	NA	NA
TOTAL D	ISSOLVED SOLIDS	(PWS) 0	0	0	0	NA	NA	NA
				ТНН				
Q7-10:	CCT (min)	326.074 PI	VIF 1	Analys	sispH N	NA A nalys	sis Hardness	NA
	Parameter	Strea			Fate	WQC	WQ Obi	WLA
	Parameter	Strea Con (µg/L	c CV		Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)
	Parameter ARSENIC	Con	c CV	Conc	Coef		Obj	
		Con (µg/l	c CV .)	Conc (µg/L)	Coef	(µg/L)	Obj (µg/L)	(µg/L)
	ARSENIC	Con (µg/l 0	c CV .)	Conc (µg/L) 0	Coef 0	(µg/L)	Οbj (μg/L) 10	(μg/L) 5871.777
	ARSENIC	Con (µg/l 0	0 0	Conc (µg/L) 0 0	Coef 0	(μg/L) 10 NA	Obj (µg/L) 10 NA	(μg/L) 5871.777 NA
	ARSENIC CADMIUM LEAD	Con- (µg/L 0 0	0 0	Conc (μg/L) 0 0	0 0 0	(μg/L) 10 NA NA	Obj (µg/L) 10 NA NA	(μg/L) 5871.777 NA NA
	ARSENIC CADMIUM LEAD MERCURY	Con. (µg/L 0 0	0 0 0	Conc (μg/L) 0 0 0	0 0 0 0	(μg/L) 10 NA NA 0.05	Obj (μg/L) 10 NA NA 0.05	(μg/L) 5871.777 NA NA 29.359
	ARSENIC CADMIUM LEAD MERCURY SELENIUM	Con- (µg/L 0 0 0	0 0 0 0	Conc (μg/L) 0 0 0 0	0 0 0 0	(μg/L) 10 NA NA 0.05	Obj (μg/L) 10 NA NA 0.05	(μg/L) 5871.777 NA NA 29.359 NA
	ARSENIC CADMIUM LEAD MERCURY SELENIUM SILVER	Con- (µg/L 0 0 0	0 0 0 0	Conc (μg/L) 0 0 0 0 0 0	0 0 0 0 0 0 0	(μg/L) 10 NA NA 0.05 NA NA	Obj (µg/L) 10 NA NA 0.05 NA	(μg/L) 5871.777 NA NA 29.359 NA NA
	ARSENIC CADMIUM LEAD MERCURY SELENIUM SILVER THALLIUM	Con- (µg/L 0 0 0 0	0 0 0 0 0	Conc (μg/L) 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	(μg/L) 10 NA NA 0.05 NA NA 0.24	Obj (μg/L) 10 NA NA 0.05 NA NA 0.24	(μg/L) 5871.777 NA NA 29.359 NA NA 140.923
	ARSENIC CADMIUM LEAD MERCURY SELENIUM SILVER THALLIUM ALUMINUM	Con- (µg/L 0 0 0 0 0 0 0 0	0 0 0 0 0	Conc (μg/L) 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0	(μg/L) 10 NA NA 0.05 NA NA NA NA NA NA NA NA	Obj (μg/L) 10 NA NA 0.05 NA NA 0.24	(μg/L) 5871.777 NA NA 29.359 NA NA 140.923 NA

PENTOXSD Analysis Results

RMI	Name	Permit Numb	er						
18.22	Outfall 002	PA0235555	-1						
	SULFATE (PWS)		0 C ann	0	0	0 with a design	250000	250000 of 47.31762.	1.7403E+08
TOTAL	DISSOLVED SOLIC		o O	0	0	with a design	500000	500000	3.4807E+08
TOTAL	DIGGOLVED GOLIL							of 47.31762.	3.4007 E+00
		•••	ao upp			with a design	Stream now	01 47.01702.	
				CF	RL.				
Qh:	CCT (mir	118.344	PMF	1					
	Parameter	(ream Conc	Stream CV	Trib Conc	Fate Coef	WQC	WQ Obj	WLA
		(µg/L)		(µg/L)		(µg/L)	(µg/L)	(µg/L)
	ARSENIC		0	0	0	0	NA	NA	NA
	CADMIUM		0	0	0	0	NA	NA	NA
	LEAD		0	0	0	0	NA	NA	NA
	MERCURY		0	0	0	0	NA	NA	NA
	SELENIUM		0	0	0	0	NA	NA	NA
	SILVER		0	0	0	0	NA	NA	NA
	THALLIUM		0	0	0	0	NA	NA	NA
	ALUMINUM		0	0	0	0	NA	NA	NA
	TOTAL IRON		0	0	0	0	NA	NA	NA
	MANGANESE		0	0	0	0	NA	NA	NA
(DSMOTIC PRESSU	RE	0	0	0	0	NA	NA	NA
	SULFATE (PWS)		0	0	0	0	NA	NA	NA
TOTAL	DISSOLVED SOLIE	OS (PWS)	0	0	0	0	NA	NA	NA

PENTOXSD Analysis Results

Hydrodynamics

	SWP Basin	<u>n</u>	<u>Stream</u>	n Code:			<u>Strear</u>	n Name	l _o		
	18D		44	073			TWO LI	CK CRE	EK		
RM		PWS With	Net Stream Flow	Disc Analysis Flow	Reach Slope	Depth	Width	WD Ratio	Velocity	Reach Trav Time	CMT
	(cfs)	(cfs)	(cfs)	(cfs)		(ft)	(ft)		(fps)	(days)	(min)
					Q7-	-10 Hyd	Irodyna	amics			
18.2	20 39.9	0	39.9	0.06806	0.001	0.8799	78.931	89.708	0.5755	0.5182	326.074
13.3	47.318	9.282	38.036	NA	0	0	0	0	0	0	NA
					Q	h Hydr	odynan	nics			
18.2	220 186.31	0	186.31	0.06806	0.001	1.7324	78.931	45.563	1.3631	0.2188	118.344
13.3	40 216.25	9.282	206.97	NA	0	0	0	0	0	0	NA

PENTOXSD Analysis Results

Recommended Effluent Limitations

SWP Basin	Stream Code:		Stream Name:	
18D	44073		TWO LICK CREEK	
RMI	Name	Permit Number	Disc Flow (mgd)	
18.22	Outfall 002	PA0235555-1	0.0440	

	Effluent Limit		Max. Daily	Most S	tringent
Parameter	(µg/L)	Governing Criterion	Limit (µg/L)	WQBEL (µg/L)	WQBEL Criterion
ALUMINUM	60918.48	AFC	95042.63	60918.48	AFC
ARSENIC	5871.777	THH	9160.916	5871.777	THH
CADMIUM	160.023	CFC	249.662	160.023	CFC
LEAD	1890.83	CFC	2949.998	1890.83	CFC
MANGANESE	587177.7	THH	916091.6	587177.7	THH
MERCURY	29.359	THH	45.805	29.359	THH
OSMOTIC PRESSURE	29358.88	CFC	45804.58	29358.88	CFC
SELENIUM	2929.52	CFC	4570.522	2929.52	CFC
SILVER	331.079	AFC	516.537	331.079	AFC
SULFATE (PWS)	1E+07	INPUT	1.56E+07	1.7403E+08	THH
THALLIUM	140.923	THH	219.862	140.923	THH
TOTAL DISSOLVED SOLIDS (PWS	1E+07	INPUT	1.56E+07	3.4807E+08	THH
TOTAL IRON	880766.5	CFC	1370000	880766.5	CFC

ATTACHMENT C

Kiskiminetas-Conemaugh River Watershed TMDL Waste Load Allocations

Kiskiminetas River Watershed Mining Wasteload Allocations

Region	SWS	Mining Permit	NPDES PERMIT	Outlets	Metal	Baseline Load (lbs/yr)	Baseline Concentration (mg/L)	Allocated Load (lbs/yr)	Allocated Concentration (mg/L)	% Reduction
4	4415	32031701	PA0235555	1	Aluminum	823	0.75	823	0.75	0
4	4415	32031701	PA0235555	1	Iron	1,645	1.50	1,645	1.50	0
4	4415	32031701	PA0235555	1	Manganese	1,097	1.00	1,097	1.00	0
4	4415	32031701	PA0235555	2	Aluminum	2,193	2.00	823	0.75	63
4	4415	32031701	PA0235555	2	Iron	3,510	3.20	1,645	1.50	53
4	4415	32031701	PA0235555	2	Manganese	2,193	2.00	1,097	1.00	50