

Northwest Regional Office CLEAN WATER PROGRAM

Renewal Application Type Non-Municipal Facility Type Major / Minor Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

PA0239003 Application No. APS ID 1017725 1316801 Authorization ID

Applicant Name	H&H	Property Investments, LLC	Facility Name	Perry Lake Estates MHP
Applicant Address	21 Wi	nnow Drive	Facility Address	126 Holly Circle
	Clayto	on, DE 19938	<u></u>	Harmony, PA 16037
Applicant Contact	Tessie	e Harrison	Facility Contact	Tessie Harrison
Applicant Phone	(267)	981-4783	Facility Phone	(267) 981-4783
Client ID	23625	52	Site ID	445365
Ch 94 Load Status	Not O	verloaded	Municipality	Lancaster Township
Connection Status	No Lir	mitations	County	Butler County
Date Application Rece	ived	May 22, 2020	EPA Waived?	Yes
Date Application Acce	pted	June 10, 2020	If No, Reason	-

Summary of Review

Act 14 - Proof of Notification was submitted and received.

A Part II Water Quality Management permit is not required at this time.

The applicant should be able to continue to meet the limits of this permit, which will protect the uses of the receiving stream.

I. OTHER REQUIREMENTS:

SPECIAL CONDITIONS: II. Solids Management

was noticed more than two years ago, so it is being redrafted to provide for public comment.

- A. Stormwater into sewers
- B. Right of way

Purpose of Application

- C. Solids handling
- D. Public sewerage availability
- E. Effluent Chlorine Optimization and Minimization

There are 5 open violations in efacts associated with the subject Client ID (236252) as of 1/9/2024 (see Attachment 1). The permittee will be notified of the open violations in the Draft Permit Cover Letter and given an opportunity to address the violations prior to final permit issuance. CWY 1/9/2024

Approve	Deny	Signatures	Date
Х		Stephen A. McCauley	1/9/2024
		Stephen A. McCauley, E.I.T. / Environmental Engineering Specialist	170/2021
X		Chad W. Yurisic	1/9/2024
		Chad W. Yurisic, P.E. / Environmental Engineer Manager	17072024

ischarge, Receivi	ng Waters and Water Supply Info	rmation	
Outfall No. 00° Latitude 40° Quad Name Wastewater Desc	9 52' 30.00"	Design Flow (MGD) Longitude Quad Code	0.0046 -80° 8' 40.00" -
Receiving Waters NHD Com ID Drainage Area Q ₇₋₁₀ Flow (cfs) Elevation (ft) Watershed No. Existing Use Exceptions to Use Assessment State Cause(s) of Impa Source(s) of Impa	Scholars Run (WWF) 126216798 0.35 0.016 1200 20-C - ee - us	Stream Code RMI Yield (cfs/mi²) Q ₇₋₁₀ Basis Slope (ft/ft) Chapter 93 Class. Existing Use Qualifier Exceptions to Criteria	34913 5.9 0.047 (Buffalo Cr. 1976-1996) calculated 0.01578 WWF -
TMDL Status	-	Name	
Background/Amb pH (SU) Temperature (°F) Hardness (mg/L) Other:		Data Source	
Nearest Downstre PWS Waters PWS RMI	eam Public Water Supply Intake Beaver River 3.5	Beaver Falls Municipal Water Flow at Intake (cfs) Distance from Outfall (mi)	Authority - Eastvale 561 33.0

Sludge use and disposal description and location(s): Sludge is hauled to the New Castle WWTP, where it is disposed of at an approved landfill.

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the Pennsylvania Bulletin in accordance with 25 Pa. Code § 92a.82. Upon publication in the Pennsylvania Bulletin, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the Pennsylvania Bulletin at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Narrative: This Fact Sheet details the determination of draft NPDES permit limits for an existing discharge of 0.0046 MGD of treated sewage from a MHP in Lancaster Township, Butler County.

NPDES Permit Fact Sheet Perry Lake Estates MHP

Treatment permitted under Water Quality Management Permit No. 1003404 consists of the following: A 1,700 gallon flow equalization tank, a Bio-Wheel rotating biological contactor package STP that provides aeration as well as 2,367 square feet of contact stabilization, an integral 1,064 gallon clarifier, chemical addition for ammonia and phosphorus control, chlorine tablet disinfection with a 376 gallon chlorine contact tank, and a 1,970 gallon aerated sludge holding tank.

1. Streamflow:

Buffalo Creek at Freeport, PA (1976-1996) - used for most Connoquenessing Creek discharges:

 Q_{7-10} : def (USGS StreamStats) Drainage Area: 6.37 sq. mi. (USGS StreamStats)

Yieldrate: <u>0.047</u> cfsm calculated

Scholars Run at Outfall 001:

Yieldrate: <u>0.047</u> cfsm calculated above
Drainage Area: <u>0.35</u> sq. mi. (USGS StreamStats)

 Q_{7-10} : 0.016 cfs calculated

% of stream allocated: 100% Basis: No nearby discharges

2. Wasteflow:

Maximum discharge: 0.0046 MGD = 0.0071 cfs

Runoff flow period: 24 hours Basis: Runoff flow with flow equalization

There is greater than 3 parts stream flow (Q7-10) to 1 part effluent (design flow). In accordance with the SOP, the treatment requirements in document number 391-2000-014, titled, "Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers", dated April 12, 2008, are not required to be evaluated for this facility.

Flow will be required to be monitored as authorized under Chapter 92a.61, and as recommended in the SOP.

3. Parameters:

The following parameters were evaluated: pH, Total Suspended Solids, Fecal Coliform, E. Coli, Total Phosphorus, Total Nitrogen, NH₃-N, CBOD₅, Dissolved Oxygen, and Disinfection.

a. <u>pH</u>

Between 6.0 and 9.0 at all times

Basis: Application of Chapter 93.7 technology-based limits.

The measurement frequency was previously set to 1/day as recommended in the SOP, based on Table 6-3 in the "Technical Guidance for the Development and Specification of Effluent Limitations" (362-0400-001), which will be retained.

b. Total Suspended Solids

Limits are 30.0 mg/l as a monthly average and 60.0 as an instantaneous maximum.

Basis: Application of Chapter 92a47 technology-based limits.

NPDES Permit Fact Sheet Perry Lake Estates MHP

c. Fecal Coliform

05/01 - 09/30: <u>200/100ml</u> (monthly average geometric mean)

1,000/100ml (instantaneous maximum)

10/01 - 04/30: <u>2,000/100ml</u> (monthly average geometric mean)

10,000/100ml (instantaneous maximum)

Basis: Application of Chapter 92a47 technology-based limits

d. E. Coli

Monitoring was added for E. Coli at a frequency of 1/year.

Basis: Application of Chapter 92a.61 as recommended by the SOP for flows greater than 0.002 MGD

and less than 0.05 MGD.

e. Total Phosphorus

The previous limits based on Chapter 96.5 to protect the Connoquenessing Creek will be retained with this renewal.

f. Total Nitrogen

The previous monitoring for Total Nitrogen will be retained in accordance with the SOP, based on Chapter 92a.61.

g. <u>Ammonia-Nitrogen (NH₃-N)</u>

Median discharge pH to be used: 7.2 Standard Units (S.U.)

Basis: eDMR data

Discharge temperature: 25°C (default value used in the absence of data)

Median stream pH to be used: 7.0 Standard Units (S.U.)

Basis: default value used in the absence of data

Stream Temperature: 25°C (default value used for WWF modeling)

Background NH₃-N concentration: <u>0.1</u> mg/l

Basis: Default value.

Calculated NH₃-N Summer limits: 5.5 mg/l (monthly average)

<u>11.0</u> mg/l (instantaneous maximum)

Calculated NH₃-N Winter limits: <u>16.5</u> mg/l (monthly average)

33.0 mg/l (instantaneous maximum)

Result: WQ modeling resulted in the summer limits above (see Attachment 2). The winter limits are

calculated as three times the summer limits. Since the previous NH3-N limits are more restrictive,

and are being attained, they will be retained.

h. CBOD₅

Median discharge pH to be used: 7.2 Standard Units (S.U.)

Basis: eDMR data

Discharge temperature: 25°C (default value used in the absence of data)

Median stream pH to be used: 7.0 Standard Units (S.U.)

Basis: default value used in the absence of data

Stream Temperature: 25°C (default value used for WWF modeling)

Background CBOD₅ concentration: 2.0 mg/l

> Default value Basis:

Calculated CBOD₅ limits: 25.0 mg/l (monthly average)

> 50.0 mg/l (instantaneous maximum)

WQ modeling resulted in the limits above (see Attachment 2), which are the same as in the previous Result:

permit and will be retained.

i. Dissolved Oxygen (DO)

The Dissolved Oxygen minimum of 4.0 mg/l will be retained with this renewal. The technology-based minimum of 4.0 mg/l is recommended by the WQ Model (see Attachment 2) and the SOP based on Chapter 93.7, under the authority of Chapter 92a.61.

The measurement frequency was previously set to 1/day as recommended in the SOP, based on Table 6-3 in the "Technical Guidance for the Development and Specification of Effluent Limitations" (362-0400-001), which will be retained.

j. Disinfection

Ultraviolet (UV) light monitoring

Total Residual Chlorine (TRC) limits: 0.3 mg/l (monthly average)

> 1.1 mg/l (instantaneous maximum)

Basis: The TRC limits above are water quality-based using the TRC Calc Spreadsheet

(see Attachment 3), which are the same as the final limits in the previous permit and will be

retained.

The measurement frequency was previously set to 1/day as recommended in the SOP, based on Table 6-3 in the "Technical Guidance for the Development and Specification of Effluent

Limitations" (362-0400-001), which will be retained.

4. Reasonable Potential Analysis for Receiving Stream:

A Reasonable Potential Analysis was not performed in accordance with State practices for Outfall 001 since no sampling other than sewage-related parameters was performed for this facility with the renewal application.

5. Reasonable Potential for Downstream Public Water Supply (PWS):

The Reasonable Potential Analysis performed above does not calculate limits for parameters that are based on PWS criteria (TDS, Chloride, Bromide, and Sulfate). However, since no data was provided, mass-balance calculations were not able to be performed.

Nearest Downstream potable water supply (PWS): <u>Beaver Falls Municipal Water Authority - Eastvale</u>
Distance downstream from the point of discharge: <u>33.0</u> miles (approximate)

Basis: No limits or monitoring are necessary as significant dilution is available.

6. Anti-Backsliding:

Since all the permit limits in this renewal are the same or more restrictive than the previous NPDES Permit, anti-backsliding is not applicable.

6. Attachment List:

Attachment 1 - Open Violations by Client

Attachment 2 - WQ Modeling Printouts

Attachment 3 - TRC_Calc Spreadsheet

(The Attachments above can be found at the end of this document)

Compliance History

DMR Data for Outfall 001 (from December 1, 2022 to November 30, 2023)

Parameter	NOV-23	OCT-23	SEP-23	AUG-23	JUL-23	JUN-23	MAY-23	APR-23	MAR-23	FEB-23	JAN-23	DEC-22
Flow (MGD)												
Average Monthly	0.0016	0.00171	0.00164	0.00158	0.00169	0.00098	E	E	E	E	E	E
Flow (MGD)												
Daily Maximum	0.0028	0.00281	0.00258	0.0022	0.0051	0.0017	E	E	E	E	E	E
pH (S.U.)												
Minimum	7.4	7.59	6.99	7.27	6.74	6.69	6.02	6.21	E	E	E	E
pH (S.U.)												
Maximum	8.99	8.99	8.8	8.58	8.63	7.83	7.73	7.59	E	E	E	E
DO (mg/L)												
Minimum	4.91	4.54	4.01	4.88	1.16	0.88	0.9	1.58	E	E	E	Е
TRC (mg/L)												
Average Monthly	0.08	< 0.06	0.07	< 0.06	0.08	0.09	0.08	0.59	E	E	E	Е
TRC (mg/L)												
Instantaneous Maximum	0.25	0.24	0.38	0.72	0.23	0.22	0.22	1.52	E	E	E	E
CBOD5 (mg/L)												
Average Monthly	18.1	17.5	27.9	26	< 33.5	21.5	51.2	81.2	266.7	< 117.8	< 41.9	60.7
CBOD5 (mg/L)												
Instantaneous Maximum	32	23.3	66.2	60.1	118	53.1	132	155	551	303	63.6	70.5
TSS (mg/L)												
Average Monthly	757	56	67	63	15	129	183	179	72	199	20	23
TSS (mg/L)												
Instantaneous Maximum	1460	57	98	70	18	248	348	274	108	370	29	25
Fecal Coliform (CFU/100 ml)												
Geometric Mean	2420	68	312	> 85	< 7	69	< 1	> 2420	> 2420	> 2420	> 2420	> 2420
Fecal Coliform (CFU/100 ml)												
Instantaneous Maximum	2420	82	649	> 2420	44	473	1	> 2420	> 2420	> 2420	> 2420	> 2420
Total Nitrogen (mg/L)												
Average Monthly	44.3	32	29.5	43.2	19.7	51.3	39.5	79.3	52	89.3	43.6	47.9
Ammonia (mg/L)												
Average Monthly	29.3	22.3	20.9	29.7	20.3	3.13	24.0	26.9	40.1	41.7	28.4	39.5
Ammonia (mg/L)												
Instantaneous Maximum	31.7	23.4	21.0	32.3	27.1	4.98	26.7	48.0	42.6	43.3	28.9	40.3
Total Phosphorus (mg/L)												
Average Monthly	9.8	5.57	5.44	5.09	2.63	5.65	5.8	9.14	9.55	8.22	7.34	6.65
Total Phosphorus (mg/L)												
Instantaneous Maximum	11.5	5.85	6.3	5.14	3.4	9.6	8.72	9.94	12.5	11.6	9.72	6.8

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

			Effluent L	imitations			Monitoring Red	quirements
Parameter	Mass Units	(lbs/day) ⁽¹⁾		Concentrat	ions (mg/L)		Minimum ⁽²⁾	Required
raiametei	Average Monthly	Average Weekly	Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report Daily Max	XXX	XXX	XXX	XXX	1/week	Measured
pH (S.U.)	XXX	XXX	6.0 Daily Min	XXX	9.0 Daily Max	XXX	1/day	Grab
DO	XXX	XXX	4.0 Daily Min	XXX	XXX	XXX	1/day	Grab
TRC	XXX	XXX	XXX	0.3	XXX	1.1	1/day	Grab
CBOD5	XXX	XXX	XXX	25.0	XXX	50.0	2/month	Grab
TSS	XXX	XXX	XXX	30.0	XXX	60.0	2/month	Grab
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2000 Geo Mean	XXX	10000	2/month	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	XXX	XXX	200 Geo Mean	XXX	1000	2/month	Grab
E. Coli (No./100 ml)	XXX	XXX	XXX	XXX	XXX	Report	1/year	Grab
Total Nitrogen	xxx	xxx	xxx	Report	xxx	xxx	1/month	Grab
Ammonia Nitrogen Nov 1 - Apr 30	XXX	XXX	XXX	10.5	XXX	21.0	2/month	Grab
Ammonia- Nitrogen May 1 - Oct 31	XXX	XXX	XXX	3.5	XXX	7.0	2/month	Grab
Total Phosphorus	XXX	XXX	XXX	2.0	XXX	4.0	2/month	Grab

Compliance Sampling Location: at Outfall 001, after disinfection.

Flow is monitor only based on Chapter 92a.61. The limits for pH and Dissolved Oxygen are technology-based on Chapter 93.7. The Total Residual Chlorine (TRC) limits are water quality-based on Chapter 93.7. The limits for CBOD₅, Total Suspended Solids, and Fecal Coliforms are technology-based on Chapter 92a.47. Monitoring for E. Coli and Total Nitrogen is based on Chapter 92a.61. The limits for Ammonia-Nitrogen are water quality-based on Chapter 93.7. The limits for Total Phosphorus are based on Chapter 96.5.

Attachment 1

WATER MANAGEMENT SYSTEM OPEN VIOLATIONS BY CLIENT

Client ID: 236252 Client: All

Open Violations: 5

CLIENT ID	CLIENT	PF ID	FACILITY	PF KIND	PF STATUS	INSP PROGRAM
236252	H & H PROP INVESTMENTS LLC	470387	PERRY LAKE ESTATES	Community	Active	Safe Drinking Water
236252	H & H PROP INVESTMENTS LLC	631232	PERRY LAKE ESTATES MHP	Sewage Non-Publicly Owned (Non-Muni)	Active	WPC NPDES
236252	H & H PROP INVESTMENTS LLC	631232	PERRY LAKE ESTATES MHP	Sewage Non-Publicly Owned (Non-Muni)	Active	WPC NPDES
236252	H & H PROP INVESTMENTS LLC	631232	PERRY LAKE ESTATES MHP	Sewage Non-Publicly Owned (Non-Muni)	Active	WPC NPDES
236252	H & H PROP INVESTMENTS LLC	631232	PERRY LAKE ESTATES MHP	Sewage Non-Publicly Owned (Non-Muni)	Active	WPC NPDES

PROGRAM SPECIFIC ID	INSP ID	VIOLATION ID	INSPECTION CATEGORY	VIOLATION DATE	VIOLATION CODE	VIOLATION	PF INSPECTOR	INSP REGION
5100043	3561485	996808	PF	05/23/2023	C7	FAILURE TO COMPLY WITH A PERMIT CONDITION	MUHA,LARRY	NWRO
PA0239003	3331032	947164	PF	03/02/2022	CSL611A	CSL - Failure to comply with a DEP-issued enforcement order	SINGER, SEAN	NWRO
PA0239003	3390192	961404	PF	07/11/2022	CSL611A	CSL - Failure to comply with a DEP-issued enforcement order	SINGER,SEAN	NWRO
PA0239003	3437105	971446	PF	10/06/2022	CSL611A	CSL - Failure to comply with a DEP-issued enforcement order	SINGER,SEAN	NWRO
PA0239003	3533337	990529	PF	04/04/2023	CSL611A	CSL - Failure to comply with a DEP-issued enforcement order	SINGER, SEAN	NWRO

Attachment 2

WQM 7.0 Effluent Limits

	SWP Basin St	tream Code 34913		<u>Stream Nam</u> SCHOLARS R			
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
5.900	Perry Lake	PA0239003	0.005	CBOD5	25		
				NH3-N	5.57	11.14	
				Dissolved Oxygen			4

WQM 7.0 D.O.Simulation

SWP Basin St	ream Code			Stream Name	
20C	34913		;	SCHOLARS RUN	
<u>RMI</u>	Total Discharge	URANI.	<u>) Ana</u>	lysis Temperature	S CONTRACTOR OF THE SECOND SEC
5.900	0.00			25.000	7.051
Reach Width (ft)	Reach De			Reach WDRatio	Reach Velocity (fps)
2.378	0.27			8.563	0.036
Reach CBOD5 (mg/L)	Reach Kc		<u>R</u>	each NH3-N (mg/	
8.95	0.58			1.68	1.029
Reach DO (mg/L)	Reach Kr (water Account to the Control of the		Kr Equation	Reach DO Goal (mg/L)
6.471	28.03	37		Owens	5
Reach Travel Time (days)		Subreach	Results		
2.054	TravTime	CBOD5	NH3-N	D.O.	
	(days)	(mg/L)	(mg/L)	(mg/L)	
	0.205	7.70	1.36	7.54	
	0.411	6.63	1.10	7.54	
	0.616	5.71	0.89	7.54	
	0.822	4.91	0.72	7.54	
	1.027	4.23	0.59	7.54	
	1.233	3.64	0.47	7.54	
	1.438	3.13	0.38	7.54	
	1.643	2.70	0.31	7.54	
	1.849	2.32	0.25	7.54	
	2.054	2.00	0.20	7.54	

Tuesday, January 9, 2024 Version 1.1 Page 1 of 1

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	✓
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	✓
D.O. Saturation	90.00%	Use Balanced Technology	✓
D.O. Goal	5		

Tuesday, January 9, 2024 Version 1.1 Page 1 of 1

Input Data WQM 7.0

						ut Dutt								
	SWP Basin			Stre	eam Name		RMI		evation (ft)	Drainage Area (sq mi)	Slope (ft/ft)	Witho	VS drawal gd)	Appl FC
	20C	349	913 SCHO	LARS RU	JN		5.9	00	1200.00	0.35	0.000	00	0.00	✓
					St	ream Dat	a							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	n Tem	<u>Tributary</u> np pH	Т	<u>Strear</u> emp	<u>n</u> pH	
Cona.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)	ĺ	(°C)		
Q7-10 Q1-10 Q30-10	0.047	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000	0.0	0.00	0.0	00 2	5.00 7	.00	0.00	0.00	00 E
					Di	scharge [Data						1	
			Name	Per	rmit Number	Disc	Permitt Disc Flow (mgd)	Dis Flo	sc Res	Di serve Ter ctor	mp	Disc pH		
		Perry	Lake	PA	0239003	0.0046	6 0.000	0.0	0000	0.000	25.00	7.20		
					Pa	arameter I	Data							
			1	Paramete	r Name	Di Co		Trib Conc	Stream Conc	Fate Coef				
	_					(m	g/L) (r	mg/L)	(mg/L)	(1/days)		_		
			CBOD5			:	25.00	2.00	0.00	1.50				
			Dissolved	Oxygen			4.00	7.54	0.00	0.00				
			NH3-N			1	25.00	0.00	0.00	0.70				

Input Data WQM 7.0

	SWP Basin			Stre	eam Name		RMI	Ele	evation (ft)	Drainag Area (sq mi)		With	NS drawal ngd)	Appl FC
	20C	349	913 SCHO	LARS RU	JN		4.7	00	1100.00	1	.20 0.0	0000	0.00	✓
					St	ream Da	ta							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	n Ten	Tributary	<u>/</u> oH	<u>Strea</u> Temp	<u>m</u> pH	
Cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C	;)		(°C)		
Q7-10 Q1-10 Q30-10	0.047	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000	0.0	0.00	0.	00 2	5.00	7.00	0.00	0.00	
					Di	scharge	Data						Ī	
			Name	Per	mit Number	Disc	Permitt Disc Flow (mgd	Di Fl	sc Res		Disc Temp (°C)	Disc pH		
						0.000	0.00	00 0.	0000	0.000	25.00	7.00	-	
					Pa	arameter	Data							
				Paramete	r Name			Trib Conc	Stream Conc	Fate Coef				
	_				р — покуплов соверши (5449)	(m	ng/L) (i	mg/L)	(mg/L)	(1/days)			
			CBOD5				25.00	2.00	0.00	1.5	0			
			Dissolved	Oxygen			3.00	8.24	0.00	0.0	0			
			NH3-N				25.00	0.00	0.00	0.7	0			

WQM 7.0 Hydrodynamic Outputs

	<u>sw</u>	P Basin	Strea	m Code				Stream	<u>Name</u>			
		20C	3	4913			s	CHOLAF	RS RUN			
RMI	Stream Flow	PWS With	Net Stream Flow	Flow	14	Depth	Width	W/D Ratio	Velocity	Tra∨ Time	Analysis Temp	Analysis pH
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)	
Q7-1	0 Flow											
5.900	0.02	0.00	0.02	.0071	0.01578	.278	2.38	8.56	0.04	2.054	25.00	7.05
Q1-1	0 Flow											
5.900	0.01	0.00	0.01	.0071	0.01578	NA	NA	NA	0.03	2.416	25.00	7.07
Q30-	10 Flow	,										
5.900	0.02	0.00	0.02	.0071	0.01578	NA	NA	NA	0.04	1.812	25.00	7.04

WQM 7.0 Wasteload Allocations

SWP Basin	Stream Code	Stream Name
20C	34913	SCHOLARS RUN

RMI	Discharge Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
5.90	0 Perry Lake	10.38	25.75	10.38	25.75	0	0
H3-N (Chronic Allocati	ons Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction

			CBC	<u>DD5</u>	<u>NH</u>	<u>3-N</u>	Dissolved Oxygen		Critical	Percent	
87	RMI	Discharge Name	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Reach	Reduction	
	5.90 Perry Lake		25	25	5.57	5.57	4	4	0	0	

Attachment 3

TRC EVALUA	ATION							
Input appropria	te values in <i>i</i>	A3:A9 and D3:D9						
0.016	= Q stream (cfs)	0.5	= CV Daily				
0.0046	= Q discharg	je (MGD)	0.5	= CV Hourly				
30	= no. sample	8	1	= AFC_Partial I	Mix Factor			
0.3	= Chlorine D	emand of Stream	1	= CFC_Partial (Mix Factor			
0	= Chlorine D	emand of Discharge	15	= AFC_Criteria	Compliance Time (min)			
0.5	= BAT/BPJ V	alue	720	= CFC_Criteria Compliance Time (min)				
0	= % Factor o	of Safety (FOS)	0	=Decay Coeffic	cient (K)			
Source	Reference	AFC Calculations		Reference	CFC Calculations			
TRC	1.3.2.iii	WLA afc =	0.736	1.3.2.iii	WLA cfc = 0.710			
PENTOXSD TRG	5.1a	LTAMULT afc =	0.373	5.1c	LTAMULT cfc = 0.581			
PENTOXSD TRG	5.1b	LTA_afc=	0.274	5.1d	LTA_cfc = 0.413			
Source		Efflue	nt Limit Calcu	lations				
PENTOXSD TRG	5.1f	Lindel	AML MULT =					
PENTOXSD TRG								
	5		_IMIT (mg/l) =		5000 SEO			
	(040)-(1.**	-0 1-11 - MAEO W-+0-+ 040	10 .H . / L+AF0					
WLA afc	AND STATE OF STREET STREET, STREET ST. AU	FC_tc)) + [(AFC_Yc*Qs*.019		_tc)}				
LTAMULT afc	10 m	<mark>C_Yc*Qs*Xs/Qd)]*(1-FOS/10</mark> (cvh^2+1))-2.326*LN(cvh^2+	35					
LTA afc	wla afc*LTA	L	1) 0.5)					
LIA_aic	WIA_AIC LIA	WIOLI_aic						
WLA_cfc	(.011/e(-k*Cl	FC_tc) + [(CFC_Yc*Qs*.011/	Qd*e(-k*CFC	tc))				
		C_Yc*Qs*Xs/Qd)]*(1-FOS/10						
LTAMULT_cfc	A CONTRACTOR OF THE PROPERTY O							
LTA_cfc	wla_cfc*LTA							
	EVD(0.200*1.	N//IAO/	E) O E*I N/	A0/	411			
AML MULT		N((cvd^2/no_samples+1)^0.		~2ino_samples-	17))			
AVG MON LIMIT		J,MIN(LTA_afc,LTA_cfc)*AN						
NST MAX LIMIT 1.5*((av_mon_limit/AML_MULT)/LTAMULT_afc)								