

Northwest Regional Office CLEAN WATER PROGRAM

Application Type
Facility Type
Major / Minor

Renewal

Non-Municipal

Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

Application No. PA0240061

APS ID 994567

Authorization ID 1275578

plicant Name	Country Acres Personal Care Home, Inc.	Facility Name	Country Acres Personal Care Home
plicant Address	2017 Meadville Road	Facility Address	2017 Meadville Road
	Titusville, PA 16354		Titusville, PA 16354
plicant Contact	Donald Morrison	Facility Contact	Richard Kreider, Operator
olicant Phone	(814) 827-3708	Facility Phone	(814) 734-4430
ent ID	252370	Site ID	671603
94 Load Status	Not Overloaded	Municipality	Cherrytree Township
nection Status	No Limitations	County	Venango County
Application Rece	eived May 30, 2019	EPA Waived?	Yes
Application Acce	pted June 5, 2019	If No, Reason	-

Summary of Review

Act 14 - Proof of Notification was submitted and received.

A Part II Water Quality Management permit is not required at this time.

The Permittee should be able to meet the limits of this permit, which will protect the uses of the receiving stream.

I. OTHER REQUIREMENTS:

A. Stormwater into sewers

B. Right of way

C. Solids handling

D. Public sewerage availability

E. Effluent Chlorine Optimization and Minimization

SPECIAL CONDITIONS:

II. Solids Management

III. Compliance Schedule for Dissolved Oxygen (DO)

There are no open violations in efacts for Client ID 252370 as of 5/26/2021.

Approve	Deny	Signatures	Date
V		Stephen A. McCauley	5/26/2021
^		Stephen A. McCauley, E.I.T. / Environmental Engineering Specialist	3/20/2021
V		Justin C. Dickey	Mov 27, 2021
^		Justin C. Dickey, P.E. / Environmental Engineer Manager	May 27, 2021

Solid

scharge, Receiving	g Waters and Water Supply Info	rmation	
Outfall No. 001		Design Flow (MGD)	0.002
Latitude 41° 3	6' 49.00"	Longitude	-79° 45' 46.00"
Quad Name -		Quad Code	-
Wastewater Descrip	ption: Sewage Effluent	·	
Receiving Waters	Unnamed Tributary to the Prather Creek (CWF)	Stream Code	N/A
NHD Com ID	127347473	RMI	N/A
Drainage Area	-	Yield (cfs/mi²)	-
Q ₇₋₁₀ Flow (cfs)	_ =	Q ₇₋₁₀ Basis	-
Elevation (ft)		Clana (ft/ft)	-
Watershed No.	16-D	Chapter 93 Class.	CWF
Existing Use		Existing Use Qualifier	
Exceptions to Use		Exceptions to Criteria	
Assessment Status	Attaining Use(s)		
Cause(s) of Impairn	ment		
Source(s) of Impair	ment -		
TMDL Status		Name	
Background/Ambie	nt Data	Data Source	
pH (SU)	-	-	
Temperature (°F)	-	-	
Hardness (mg/L)	-	-	
Other:	-	-	
Nearest Downstrea	m Public Water Supply Intake	Aqua Pennsylvania, Inc Em	lenton
	Allegheny River	Flow at Intake (cfs)	1,376
rvvo vvaleis <i>F</i>			

Sludge use and disposal description and location(s): Sludge is not used, it is disposed of at a certified landfill.

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Narrative: This Fact Sheet details the determination of draft NPDES permit limits for an existing discharge of 0.002 MGD of treated sewage from an existing non-municipal STP serving a nursing home in Cherrytree Township, Venango County.

NPDES Permit Fact Sheet Country Acres Personal Care Home

Permitted treatment consists of: A flow equalization tank with manual bar screen, an aeration tank, a clarifier, a sludge (WQM Permit no. 6107403) holding tank, and tablet chlorine disinfection with a contact tank.

1. Streamflow:

The yieldrate for the receiving stream at Outfall 001 was calculated from the nearest gage station details:

<u>Sugar Creek at Sugar Creek, PA</u>: Q₇₋₁₀: <u>16.7</u> cfs (from StreamStats) (USGS Gage 03025000) Drainage Area: 166 sq. mi. (from StreamStats)

Yieldrate: <u>0.10</u> cfsm calculated

<u>Unnamed Tributary to the</u> Yieldrate: <u>0.10</u> cfsm (calculated above)

<u>Prather Creek at Outfall 001</u>: Drainage Area: <u>0.25</u> sq. mi. (from StreamStats)

Q₇₋₁₀: 0.025 cfs calculated

2. Wasteflow: Outfall 001

Maximum discharge: 0.002 MGD = 0.003 cfs

Runoff flow period: 24 hours Basis: Runoff flow with flow equalization

There is more than 3 parts stream flow (Q7-10) to 1 part effluent (design flow) at the discharge point. Therefore, the treatment requirements in document number 391-2000-014, titled, "Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers", dated April 12, 2008, will not be evaluated for this NPDES Permit renewal.

3. Parameters:

The following parameters were evaluated: pH, Total Suspended Solids, Fecal Coliform, E. Coli, Phosphorus, NH₃-N, CBOD₅, Dissolved Oxygen, and Total Residual Chlorine. NH₃-N, CBOD₅, and Dissolved Oxygen were evaluated using WQM 7.0 at the discharge point.

NO₂-NO₃, Fluoride, Phenolics, Sulfates, and Chlorides can be evaluated using PentoxSD at the nearest downstream potable water supply (PWS). Since there is significant dilution available, no modeling was performed for this facility.

a. <u>pH</u>

Between 6.0 and 9.0 at all times

Basis: Application of Chapter 93.7 technology-based limits. The measurement frequency was increased from 1/week to 1/day as recommended in the SOP, based on Table 6-3 in the "Technical Guidance for the Development and Specification of Effluent Limitations"

(362-0400-001).

b. <u>Total Suspended Solids</u>

Limits are 30 mg/l as a monthly average and 60 as a daily maximum.

Basis: Application of Chapter 92a47 technology-based limits

c. Fecal Coliform

05/01 - 09/30: <u>200/100ml</u> (monthly average geometric mean)

1,000/100ml (instantaneous maximum)

10/01 - 04/30: <u>2,000/100ml</u> (monthly average geometric mean)

10,000/100ml (instantaneous maximum)

Basis: Application of Chapter 92a47 technology-based limits.

d. <u>E. Coli</u>

Monitoring was added for E. Coli at a frequency of 1/year.

Basis: Application of Chapter 92a.61 as recommended by the SOP.

	Pasis. Application of chapter 32a.01 as recommended by the cor.
e.	<u>Phosphorus</u>
	Basis: Monitoring for Total Nitrogen will be added in accordance with the SOP, based on
	Chapter 92a.61.
	Limit necessary due to:
	☐ Discharge to a lake, pond, or impoundment
	☐ Discharge to a stream☐ Discharge to a dry stream
	Basis: N/A
f.	Total Nitrogen
۱.	
	Chapter 92a.61.
	Limit necessary due to:
	Discharge to a lake, pond, or impoundment
	Discharge to a stream
	Discharge to a dry stream
	Basis: <u>N/A</u>
g.	NO2-NO3, Fluoride, Phenolics, Sulfates, and Chlorides
	Nearest Downstream potable water supply (PWS): Aqua Pennsylvania, Inc Emlenton
	Distance downstream from the point of discharge: 60 miles (approximate)
	No limits necessary ■ No limits
	Limits needed
	Basis: Significant dilution available.
h.	Ammonia-Nitrogen (NH₃-N)
	Median discharge pH to be used: 7.8 Standard Units (S.U.)
	Basis: Average pH value from DMR summary
	Discharge temperature: 25°C (default value used in the absence of data)
	Median stream pH to be used: 7.0 Standard Units (S.U.)
	Basis: Default value used in the absence of data
	Stream Temperature: 20°C (default value used for CWF modeling)
	Background NH₃-N concentration: <u>0.1</u> mg/l
	Basis: Default value used in the absence of data
	calculated summer NH₃-N limits: 23.2 mg/l (monthly average)

calculated winter NH3-N limits:

46.4 mg/l (instantaneous maximum)25.0 mg/l (monthly average)

<u>50.0</u> mg/l (instantaneous maximum)

Result: WQ modeling resulted in the calculated summer limits above (see Attachment 1), which are

slightly less restrictive than in the previous NPDES Permit. Since the previous summer limits are more restrictive, and are being attained, they will be retained with this renewal. The winter limits are calculated as three times the summer limits, but since the technology-based limits are more protective, they will be used. In accordance with the SOP, since the summer NH3-N is not

technology-based, monitoring for winter NH3-N was added with this renewal.

i. CBOD₅

Median discharge pH to be used: 7.8 Standard Units (S.U.)

Basis: Average pH value from DMR summary

Discharge temperature: <u>25°C</u> (default value used in the absence of data)

Median stream pH to be used: 7.0 Standard Units (S.U.)

Basis: Default value used in the absence of data

Stream Temperature: 20°C (default value used for CWF modeling)

Background CBOD₅ concentration: 2.0 mg/l

Basis: Default value used in the absence of data

calculated summer CBOD₅ limits: 25.0 mg/l (monthly average)

50.0 mg/l (instantaneous maximum)

calculated winter CBOD₅ limits: 25.0 mg/l (monthly average)

50.0 mg/l (instantaneous maximum)

Result: WQ modeling resulted in the calculated summer limits above (see Attachment 1), which

are the same as the previous NPDES Permit. The winter limits are calculated as three times the summer limits, but since the technology-based limits are more protective, they will be used. Since the summer limits and the winter limits are the same, the limits for

CBOD₅ will be set year-round as in the previous NPDES Permit.

j. <u>Dissolved Oxygen (DO)</u>

5.0 mg/l - desired in effluent for CWF, WWF, or TSF.

6.0 mg/l - minimum required due to discharge going to a drainage swale or ditch.

8.0 mg/l - required due to discharge going to a naturally reproducing salmonid stream

Discussion: The technology-based minimum of 4.0 mg/l is recommended by the WQ Model (see

Attachment 1) and the SOP based on Chapter 93.7, under the authority of Chapter 92a.61. The measurement frequency was set to 1/day as recommended in the SOP, based on Table 6-3 in the "Technical Guidance for the Development and Specification of Effluent Limitations" (362-0400-001). Since there is no data available for Dissolved Oxygen and it is a new technology-based limit, a 1 year compliance schedule was added

as a special condition to provide the permittee time to adjust to the new limit.

k. Total Residual Chlorine (TRC)

□ No limit necessary

☐ TRC limits: 0.5 mg/l (monthly average)

1.6 mg/l (instantaneous maximum)

Basis:

The calculated monthly average TRC limit above (see Attachment 2) is the same as the previous permit and will be retained. The instantaneous maximum limit was calculated as 1.6 mg/l, which is less stringent than the previous limit of 1.2 mg/l. The newly calculated instantaneous maximum limit for TRC will be used with this renewal. The measurement frequency was increased from 1/week to 1/day as recommended in the SOP, based on Table 6-3 in the "Technical Guidance for the Development and Specification of Effluent Limitations" (362-0400-001).

I. Anti-Backsliding

The instantaneous maximum limit for TRC was relaxed to make it more consistent with the current SOP and other similar statewide sewage permits. Based on 40 CFR §122.44(I)(i)(B)(1) and 40 CFR §122.44(I)(i)(B)(2), this permit can be renewed with modifications to contain less stringent effluent limitations.

4. Attachment List:

Attachment 1 - WQ Modeling Printouts

Attachment 2 - TRC Calc Spreadsheet

(The Attachments above can be found at the end of this document)

Compliance History

DMR Data for Outfall 001 (from April 1, 2020 to March 31, 2021)

Parameter	MAR-21	FEB-21	JAN-21	DEC-20	NOV-20	OCT-20	SEP-20	AUG-20	JUL-20	JUN-20	MAY-20	APR-20
Flow (MGD) Average Monthly	0.00111	0.00108	0.00084	0.000828	0.00087	0.000904	0.00097	0.00134	0.001145	0.0011	0.00118	0.001236
pH (S.U.) Minimum	7.62	7.99	8.02	8.16	8.32	7.68	7.62	7.58	7.57	7.54	7.49	7.48
pH (S.U.) Maximum	7.94	8.26	8.29	8.26	8.42	8.10	7.86	7.76	7.72	7.69	7.56	7.62
TRC (mg/L) Average Monthly	< 0.01	< 0.10	< 0.10	< 0.10	< 0.1	< 0.10	< 0.10	< 0.1	< 0.10	< 0.10	< 0.1	< 0.10
CBOD5 (mg/L) Average Monthly	34.2	24.60	15.9	13.1	6.45	< 4.0	5.10	< 4.0	10.3	4.0	7.95	9.55
TSS (mg/L) Average Monthly	24.5	35.50	25.75	24.6	6.25	8.25	10.25	7.75	8.50	5.75	9.0	18
Fecal Coliform (CFU/100 ml) Geometric Mean	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ammonia (mg/L) Average Monthly						0.545	0.89	11.29	2.21	0.62	1.01	

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through July 31, 2022.

			Effluent L	imitations			Monitoring Red	quirements
Parameter	Mass Units	(lbs/day) (1)		Concentrat	ions (mg/L)		Minimum (2)	Required
Farameter	Average Monthly	Average Weekly	Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	XXX	XXX	XXX	XXX	XXX	1/week	Estimate
pH (S.U.)	XXX	XXX	6.0 Daily Min	XXX	9.0 Daily Max	XXX	1/day	Grab
DO	XXX	XXX	Report Inst Min	XXX	XXX	xxx	1/day	Grab
TRC	XXX	XXX	XXX	0.5	XXX	1.6	1/day	Grab
CBOD5	XXX	XXX	XXX	25.0	XXX	50	2/month	Grab
TSS	XXX	XXX	XXX	30.0	XXX	60	2/month	Grab
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2000 Geo Mean	XXX	10000	2/month	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	XXX	XXX	200 Geo Mean	XXX	1000	2/month	Grab
E. Coli (No./100 ml)	XXX	XXX	XXX	XXX	XXX	Report	1/year	Grab
Ammonia-Nitrogen Nov 1 - Apr 30	XXX	XXX	XXX	Report	XXX	XXX	2/month	Grab
Ammonia-Nitrogen May 1 - Oct 31	XXX	XXX	XXX	22.0	XXX	44	2/month	Grab
Total Nitrogen	XXX	XXX	XXX	Report Daily Max	XXX	XXX	1/year	Grab
Total Phosphorus	XXX	XXX	XXX	Report Daily Max	XXX	XXX	1/year	Grab

Compliance Sampling Location: at Outfall 001, after disinfection.

Flow is monitor only based on Chapter 92a.61. The limits for pH are technology-based on Chapter 93.7. Monitoring for DO is based on Chapter 92a.61. The limits for Total Residual Chlorine (TRC) are technology based on Chapter 92a.47. The limits for CBOD₅, Total Suspended Solids, and Fecal Coliform are technology based on Chapter 92a.47. The limits for Ammonia-Nitrogen are water quality-based on Chapter 93.7. Monitoring for E. Coli, Total Nitrogen, and Total Phosphorus is based on Chapter 92a.61.

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: August 1, 2022 through Permit Expiration Date.

			Effluent L	imitations			Monitoring Red	quirements
Parameter	Mass Units	(lbs/day) (1)		Concentrat	ions (mg/L)		Minimum ⁽²⁾	Required
Farameter	Average Monthly	Average Weekly	Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	XXX	XXX	XXX	XXX	XXX	1/week	Estimate
pH (S.U.)	XXX	XXX	6.0 Daily Min	XXX	9.0 Daily Max	XXX	1/day	Grab
DO	XXX	XXX	4.0 Inst Min	XXX	XXX	XXX	1/day	Grab
TRC	XXX	XXX	XXX	0.5	XXX	1.6	1/day	Grab
CBOD5	XXX	XXX	XXX	25.0	XXX	50	2/month	Grab
TSS	XXX	XXX	XXX	30.0	XXX	60	2/month	Grab
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2000 Geo Mean	XXX	10000	2/month	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	XXX	XXX	200 Geo Mean	XXX	1000	2/month	Grab
E. Coli (No./100 ml)	XXX	XXX	XXX	XXX	XXX	Report	1/year	Grab
Ammonia-Nitrogen Nov 1 - Apr 30	XXX	XXX	XXX	Report	XXX	XXX	2/month	Grab
Ammonia-Nitrogen May 1 - Oct 31	XXX	XXX	XXX	22.0	XXX	44	2/month	Grab
Total Nitrogen	XXX	XXX	XXX	Report Daily Max	XXX	XXX	1/year	Grab
Total Phosphorus	XXX	XXX	XXX	Report Daily Max	XXX	XXX	1/year	Grab

Compliance Sampling Location: at Outfall 001, after disinfection.

Flow is monitor only based on Chapter 92a.61. The limits for pH and DO are technology-based on Chapter 93.7. The limits for Total Residual Chlorine (TRC) are technology based on Chapter 92a.47. The limits for CBOD₅, Total Suspended Solids, and Fecal Coliform are technology based on Chapter 92a.47. The limits for Ammonia-Nitrogen are water quality-based on Chapter 93.7. Monitoring for E. Coli, Total Nitrogen, and Total Phosphorus is based on Chapter 92a.61.

Attachment 1

WQM 7.0 Effluent Limits (Perennial Reach)

	SWP Basin Str	<u>eam Code</u> 51757		Stream Name			
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
0.629	Country Acres	PA0240061b	0.002	CBOD5	18.57		-
				NH3-N	20.92	41.84	
				Dissolved Oxygen			2

The outputs equal the dry stream reach model inputs for CBOD5 and DO, so the technology-based limitations are protective.

Since the output for NH3-N does not equal the dry stream reach model inputs, the limit will need to be back-calculated using the equation: $c_t = c_0 (e^{-kt})$, where $c_t = 20.92 \text{ mg/l}$ for NH3-N

 $k = 0.7 \text{ days}^{-1} \text{ (constant)}$

t = dry stream travel time = 0.157 days

Therefore, $c_0 = 20.82 / (e^{-(0.7)(0.157)}) = 23.2$

The calculated limit for NH3-N is then 23.2 mg/l.

WQM 7.0 D.O.Simulation

SWP Basin St	ream Code			Stream Name	
16D	51757		F	RATHER CREEK	
<u>RMI</u> 0.629	Total Discharge	2	<u>) Ana</u>	lysis Temperature (20.571	7.044
Reach Width (ft) 2.112	Reach De 0.290)		Reach WDRatio 7.275	Reach Velocity (fps) 0.044
Reach CBOD5 (mg/L) 3.89 Reach DO (mg/L) 7.530	Reach Kc (0.576 Reach Kr (26.84	5 1/days)	<u>R</u>	each NH3-N (mg/L 2.39 <u>Kr Equation</u> Owens	Neach Kn (1/days) 0.731 Reach DO Goal (mg/L) 6
Reach Travel Time (days) 0.869	TravTime (days)	Subreach CBOD5 (mg/L)	n Results NH3-N (mg/L)	D.O. (mg/L)	
	0.087	3.70 3.51	2.24	8.16 8.16	
	0.261	3.34	1.97	8.16	
	0.348 0.435	3.17	1.85	8.16 8.16	
	0.522 0.609	2.86	1.63	8.16 8.16	
	0.696 0.782 0.869	2.58 2.45 2.33	1.44 1.35 1.26	8.16 8.16 8.16	
-	0.000	2.55	1.20	0.10	

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	✓
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	✓
D.O. Saturation	90.00%	Use Balanced Technology	✓
D.O. Goal	6		

Input Data WQM 7.0

	SWP Basin			Stre	eam Name		RMI	E	levation (ft)	Drainage Area (sq mi)		ope Vv /ft)	PWS ithdrawal (mgd)	Apply FC
	16D	517	757 PRAT	HER CRE	EK		0.62	29	1584.00	0.	24 0.0	0000	0.00	~
					St	ream Dat	a							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Dept	th Ten		<u>/</u> oH	Temp	<u>ream</u> pH	
	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C	;)		(°C)		
ଇ7-10 ඛ1-10 ඛ30-10	0.100	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000	0.0	0.00	C).00 2	20.00	7.00	0.0	0.00	
					Di	scharge I	Data							
			Name	Per	rmit Number	Disc	Permitte Disc Flow (mgd)	D F	isc Res	serve ⁻ ictor	Disc Temp (°C)	Disc pH		
		Coun	try Acres	PA	0240061b	0.0020	0.000	00 0	0.0000	0.000	25.00	7.8	30	
					Pa	arameter l	Data							
			1	Paramete	r Name			Trib Conc	Stream Conc	Fate Coef				
			*		d destronoseduros	(m	ıg/L) (n	ng/L)	(mg/L)	(1/days))			
			CBOD5				18.57	2.00	0.00	1.50	0			
			Dissolved	Oxygen			2.00	8.24	0.00	0.00	0			
			NH3-N			;	21.26	0.00	0.00	0.70	0			

Input Data WQM 7.0

					iii.p.	at Dutt								
	SWP Basin			Stre	eam Name		RMI	El	evation (ft)	Drainage Area (sq mi)	Slope (ft/ft)	PV Witho (m	Irawal	App FC
	16D	517	757 PRAT	HER CRE	EK		0.0	00	1485.00	0.39	0.0000	00	0.00	V
8					St	ream Dat	a							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depti		<u>Tributary</u> np pH	Te	<u>Strear</u> emp	<u>n</u> pH	
Conu.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C	()	('	°C)		
Q7-10 Q1-10 Q30-10	0.100	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00	0.	00 2	0.00 7.	00	0.00	0.00	
					Di	scharge l	Data						1	
			Name	Per	mit Number	Disc	Permitt Disc Flow (mgd	: Di	sc Res	Di serve Ter actor	mp	Disc pH		
						0.000	0.00	00 0.	0000	0.000	25.00	7.00		
					Pa	rameter l	Data							
)	Paramete	r Name			Trib Conc	Stream Conc	Fate Coef				
	_					(m	g/L) (mg/L)	(mg/L)	(1/days)				
			CBOD5				25.00	2.00	0.00	1.50				
			Dissolved	Oxygen			3.00	8.24	0.00	0.00				
			NH3-N				25.00	0.00	0.00	0.70				

WQM 7.0 Wasteload Allocations

SWP Basin	Stream Code	Stream Name
16D	51757	PRATHER CREEK

RMI	Discharge Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
0.62	9 Country Acres	14.72	42.52	14.72	42.52	0	0
13-N	Chronic Allocati	one					
13-N (Chronic Allocati	ons Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction

		CBC	DD5	<u>NH</u>	<u>3-N</u>	Dissolved	d Oxygen	Critical	Percent
RMI	Discharge Name	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Reach	Reduction
0.63	Country Acres	18.57	18.57	20.92	20.92	2	2	0	0

WQM 7.0 Hydrodynamic Outputs

	sw	P Basin	Strea	m Code				Stream	<u>Name</u>			
		16D	5	1757			PF	RATHER	CREEK			
RMI	Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow	***	Depth	Width	W/D Ratio	Velocity	Reach Trav Time	Analysis Temp	Analysis pH
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)	
Q7-1	0 Flow											
0.629	0.02	0.00	0.02	.0031	0.02981	.29	2.11	7.28	0.04	0.869	20.57	7.04
Q1-1	0 Flow											
0.629	0.02	0.00	0.02	.0031	0.02981	NA	NA	NA	0.04	1.078	20.84	7.07
Q30-	10 Flow	,										
0.629	0.03	0.00	0.03	.0031	0.02981	NA	NA	NA	0.05	0.745	20.43	7.03

WQM 7.0 D.O.Simulation

SWP Basin St	ream Code			Stream Name	
16D	51757		F	RATHER CREEK	
RMI 0.063 Reach Width (ft) 0.500	Total Discharge 0.002 Reach De 0.253	2 oth (ft) 3	_	7.799 Reach Velocity (fps) 0.024	
Reach CBOD5 (mg/L) 24.99 Reach DO (mg/L) 3.999	Reach Kc (1.500 Reach Kr (25.84) 1/days)	K	each NH3-N (mg/L) 24.99 <u>Kr Equation</u> Owens	Reach Kn (1/days) 1.028 Reach DO Goal (mg/L) NA
Reach Travel Time (days) 0.157	TravTime (days)	Subreach CBOD5 (mg/L)	NH3-N (mg/L)	D.O. (mg/L)	
	0.016 0.031 0.047	24.26 23.55 22.86	24.59 24.20 23.81	2.00 2.00 2.00	
	0.063 0.079 0.094 0.110	22.19 21.55 20.92 20.30	23.43 23.05 22.68 22.32	1.97 1.90 1.90 1.94	
	0.126 0.142 0.157	19.71 19.13 18.57	21.96 21.61 21.26	2.00 2.00 2.00	

(Input into perennial reach model)

WQM 7.0 Modeling Specifications

Parameters	D.O.	Use Inputted Q1-10 and Q30-10 Flows	✓
WLA Method	Simulation	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	✓
D.O. Saturation	90.00%	Use Balanced Technology	✓
D.O. Goal	2		

Input Data WQM 7.0

					iii.p	ut Dut	u •••							
	SWP Basin			Str	eam Name		RMI	Ele	evation (ft)	Drainag Area (sq mi)		Wit	PWS hdrawal mgd)	Appl FC
	16D	517	757 PRAT	HER CRE	EEK		0.0	63	1589.00	0.	.01 0.0	0000	0.00	
ud.					St	ream Da	ta							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	n Ten	Tributary	<u>(</u> bH	<u>Stre</u> Temp	<u>am</u> pH	
Cona.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C	()		(°C)		
Q7-10 Q1-10 Q30-10	0.000	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000	0.0	0.00	0.0	00 2	20.00	7.00	0.00	0.00	
					Di	ischarge	Data							
			Name	Pe	rmit Numbe	Disc	Permitt Disc Flow (mgd	Dis Flo	sc Res	serve -	Disc Temp (°C)	Disc pH		
		Dry R	Reach	PA	0240061a	0.002	0.00	0.0	0000	0.000	25.00	7.80		
					Pa	arameter	Data							
			310000	Paramete	r Name	C	Conc (Trib Conc	Stream Conc	Fate Coef				
						(n	ng/L) (i	mg/L)	(mg/L)	(1/days)	l .			
			CBOD5				25.00	0.00	0.00	1.5	0			
			Dissolved	Oxygen			4.00	2.00	0.00	0.0	0			
			NH3-N				25.00	0.00	0.00	0.7	0			

Input Data WQM 7.0

Cond. Cfsm) (cfs) (cfs) (days) (fps) (ft) (ft) (°C) (°C) 7-10 0.000 0.00 0.000 0.000 0.00						885,60			508 3 0603							
Cond. Cofs Flow Flow Flow Time Time Flow Flow Flow Time Time Flow Flow Flow Time Time Flow Flow Time Time Flow					Stre	eam Name		RMI			Area		1001 3 0100	Withd	rawal	
LFY		16D	517	757 PRAT	HER CRE	EK		0.00	00	1585.00	(0.02 0.0	00000		0.00	
Place Plow Flow Trav Velocity Ratio Width Depth Temp pH ph ph ph ph ph ph	udi.					St	ream Dat	a								
(cfsm) (cfs) (cfs) (days) (fps) (ft) (ft) (°C) (°C) 7-10 0.000 0.00 0.000 0.000 0.000 0.00	Design	LFY			Trav					Tem						
1-10	Coriu.	(cfsm)	(cfs)	(cfs)		(fps)		(ft)	(ft)	(°C	3)		(°C))		
Name Permit Number Existing Permitted Design Disc Dis	Q7-10 Q1-10 Q30-10	0.000	0.00	0.00	0.000	0.000	0.0	0.00	0.0	0 2	0.00	7.00	(0.00	0.00	
Name Permit Number Flow Flow						Di	scharge	Data								
Parameter Data				Name	Per	rmit Number	Disc Flow	Disc Flow	Dis Flo	c Res w Fa		Temp				
Disc Trib Stream Fate Conc Conc Conc Coef							0.000	0.000	0.0	000	0.000	25.0	0	7.00		
Conc Conc Coef						Pa	arameter	Data								
CBOD5 25.00 2.00 0.00 1.50 Dissolved Oxygen 3.00 8.24 0.00 0.00				3000	Paramete	r Name	С	onc C	Conc	Conc	Coef					
Dissolved Oxygen 3.00 8.24 0.00 0.00							(m	ng/L) (n	ng/L)	(mg/L)	(1/days	s)				
				CBOD5				25.00	2.00	0.00	1.5	50				
NH3-N 25.00 0.00 0.00 0.70				Dissolved	Oxygen			3.00	8.24	0.00	0.0	00				
				NH3-N				25.00	0.00	0.00	0.7	70				

WQM 7.0 Hydrodynamic Outputs

	sw	P Basin	Strea	m Code				Stream	<u>Name</u>			
		16D	5	1757			PF	RATHER	CREEK			
RMI	Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow	10	Depth	Width	W/D Ratio	Velocity	Reach Trav Time	Analysis Temp	Analysis pH
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)	
Q7-1	0 Flow											
0.063	0.00	0.00	0.00	NA	0.01203	.253	.5	1.97	0.02	0.157	25.00	7.80
Q1-1	0 Flow											
0.063	0.00	0.00	0.00	NA	0.01203	NA	NA	NA	0.00	0.000	0.00	0.00
Q30-	10 Flow	Į.										
0.063	0.00	0.00	0.00	NA	0.01203	NA	NA	NA	0.00	0.000	0.00	0.00

Attachment 2

TRC EVALUA	ATION								
Input appropria	te values in <i>i</i>	A3:A9 and D3:D9							
0.025	= Q stream (cfs)	0.5	= CV Daily					
0.002	= Q discharg	e (MGD)	0.5	= CV Hourly					
30	= no. sample	8	1	= AFC_Partial I	Mix Factor				
0.3	= Chlorine D	emand of Stream	1	= CFC_Partial f	Mix Factor				
0	= Chlorine D	emand of Discharge	15	= AFC_Criteria	Compliance Time (min)				
0.5 = BAT/BPJ Value 720 = CFC_Criteria Compliance Time (min)									
0	= % Factor o	of Safety (FOS)	=Decay Coeffic	eient (K)					
Source	CFC Calculations								
TRC	1.3.2.iii	WLA afc =	2.597	1.3.2.iii	WLA cfc = 2.524				
PENTOXSD TRG	5.1a	LTAMULT afc =	0.373	5.1c	LTAMULT cfc = 0.581				
PENTOXSD TRG	5.1b	LTA_afc=	0.968	5.1d	LTA_cfc = 1.467				
Source		Efflue	nt Limit Calcu						
PENTOXSD TRG	5.1f	ELECTROPICS OPERATION WHILE IN	AML MULT =		TOT 9859-100010070				
PENTOXSD TRG	5.1g		_IMIT (mg/l) =		BAT/BPJ				
		INST MAX	_I M IT (mg/l) =	1.635					
WLA afc	120 man a 12 man a 12 man	FC_tc)) + [(AFC_Yc*Qs*.019 C_Yc*Qs*Xs/Qd)]*(1-FOS/10		:_tc))					
LTAMULT afc	EXP((0.5*LN)	(cvh^2+1))-2.326*LN(cvh^2+	·1)^0.5)						
LTA_afc	wla_afc*LTA	MULT_afc							
WLA_cfc		FC_tc) + [(CFC_Yc*Qs*.011/ C_Yc*Qs*Xs/Qd)]*(1-FOS/10		_tc))					
LTAMULT_cfc	28/85	(cvd^2/no_samples+1))-2.32	6*LN(cvd^2/n	o_samples+1)^(0.5)				
LTA_cfc	wla_cfc*LTA	MULT_cfc							
AML MULT		N((cvd^2/no_samples+1)^0.	and the second second	^2/no_samples+	- 1))				
AVG MON LIMIT	NUMBER OF THE PROPERTY OF THE	J,MIN(LTA_afc,LTA_cfc)*AN							
INST MAX LIMIT	1.5*((av_moi	n_limit/AML_MULT)/LTAMUL	.T_afc)						