

Application TypeNewFacility TypeIndustrialMajor / MinorMinor

NPDES PERMIT FACT SHEET INDIVIDUAL INDUSTRIAL WASTE (IW) AND IW STORMWATER

Application No.PA0245208APS ID1021493Authorization ID1323465

Applicant and Facility Information

Applicant Name	Penn Engineering & Manufacturing Corp	Facility Name	Penn Engineering Manufacturing Plant
Applicant Address	5190 Old Easton Road	Facility Address	5190 Old Easton Road
	Danboro, PA 18916		Danboro, PA 18916
Applicant Contact	Matthew Miller	Facility Contact	Matthew Miller
Applicant Phone	(215) 766-8853	Facility Phone	(215) 766-8853
Client ID	83281	Site ID	249797
SIC Code	3452	Municipality	Plumstead Township
SIC Description	Manufacturing - Bolts, Nuts, Rivets, And Washers	County	Bucks
Date Application Recei	vedAugust 5, 2020	EPA Waived?	Yes
Date Application Accept	ted N/A	If No, Reason	
Purpose of Application	Groundwater Extraction and Treatm	nent system.	

Summary of Review

This application was submitted for a National Pollutant Discharge Elimination System (NPDES) permit to discharge groundwater remediation effluent to the North Branch Neshaminy Creek via an on-site, existing outfall (Outfall 003). The site is contaminated with chlorinated solvents and related compounds. Groundwater contamination is suspected to have occurred from previous vapor degreasers at the facility, spent solvents released from a septic system and leaking underground storage tanks. The facility is part of the DEP Act 2 program. The remediation system consists of two groundwater extraction wells, groundwater treatment system and a discharge. The groundwater treatment system is HiPox unit that utilizes ozone and hydrogen peroxide to destroy organic groundwater contaminants. Influent water from the extraction wells flow into a holding tank then into the HiPOX reactor to be treated with ozone and hydrogen peroxide. Ozone is produced by an ozone generator supplied with oxygen and the hydrogen peroxide is stored at the treatment facility in a 120-gallon tank. After treatment the water passes through a separator before being discharged to the outfall. The separator directs ozone to an ozone destruct reactor where it is destroyed. The flow rate is 7,200 gallons per day (GPD) run in continuous mode.

Based on effluent results reported in the application, it is anticipated that the facility will be able to meet the proposed permit limitations.

Act 14 Notifications:

Plumstead Township: received April 27, 2020 Bucks County: received April 14, 2020

Published in the newspaper on March 10, March 17, March 24, and March 31, 2020.

Approve	Deny	Signatures	Date
Х		Harmonie Hawley, PhD, PE / Environmental Engineering Specialist /s/	December 14, 2020
Х		Pravin C. Patel, P.E. / Environmental Engineer Manager /s/	12/14/2020

Summary of Review

Permit Conditions:

- A. Acquire Necessary Property Rights
- B. Proper Sludge Disposal
- C. BAT/BCT Reopener
- D. Groundwater Monitoring
- E. Annual Groundwater Report
- F. No Stripper Tower Wastewater
- G. Continuous Operation

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Discharge, Receiving Water	rs and Water Supply Inforn	nation				
Outfall No. 003		Design Flow (MGD)	0.0072			
Latitude 40° 21' 51.20	6"	Longitude	-75º 8' 24.47"			
Quad Name Doylestow	<u>/n</u>	Quad Code	1644			
Wastewater Description:	Groundwater Cleanup Disc	charge				
North	Branch Neshaminy Creek					
Receiving Waters (WW	F, MF)	Stream Code	002789			
NHD Com ID 2547	8638	RMI	2.31			
Drainage Area 5.05	square miles	Yield (cfs/mi ²)	0.012			
Q ₇₋₁₀ Flow (cfs) 0.06		Q ₇₋₁₀ Basis	PA StreamStats			
Elevation (ft) 354.4	41	Slope (ft/ft)	0.002			
Watershed No. 2-F		Chapter 93 Class.	WWF, MF			
Assessment Status	Attaining Use(s)					
Cause(s) of Impairment	None					
Source(s) of Impairment	None					
TMDL Status	Final	Name Neshaminy	Creek			
Background/Ambient Data		Data Source				
pH (SU)	7	Toxics Analysis Spreadsheet	default			
Temperature (°F)	68 (20 °C)	Toxics Analysis Spreadsheet	default			
Hardness (mg/l)	100	Toxics Analysis Spreadsheet default				
naruness (mg/L)						

Changes Since Last Permit Issuance: Not Applicable as new permit.

Other Comments: The RMI is upstream of the end of Lake Galena. The nearest water intake is 2.09 miles downstream of the beginning of Lake Galena and about 6.9 miles from the outfall (including Lake Galena).

Treatment Facility Summary								
reatment Facility Na	ame: Penn Engineering	GW Remediation						
WQM Permit No.	Issuance Date							
NI/A	N/A							

Changes Since Last Permit Issuance: Not Applicable as new permit.

Other Comments: None.

Compliance History										
Summary of DMRs:	None									
Summary of Inspections:	None									

Other Comments: This is a new facility so there are no DMRs. No violations by client number or permit number were found in WMS.

Development of Effluent Limitations

Outfall No.	003		Design Flow (MGD)	.0072
Latitude	40º 21' 51.26	"	Longitude	-75º 8' 24.47"
Wastewater De	escription:	Groundwater Cleanup Discharge		

Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Parameter	Limit (mg/l)	SBC	Federal Regulation	State Regulation
	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD5	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
рН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform				
(5/1 – 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform				
(5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform				
(10/1 – 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform				
(10/1 – 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)

Comments: There are no Federal Effluent Limitations Guidelines (ELGs) for groundwater contamination. The proposed monitoring frequency for this permit is 2 times per month, thus average weekly concentrations are not used. CBOD5 and fecal coliform are not expected in this effluent as this is treated groundwater. The facility does not use chlorine so TRC is not included in the permit.

The DEP Media Specific Criteria (MSC) for Groundwater were evaluated as this effluent is treated groundwater. In addition, drinking water standards were evaluated as the neighboring property has drinking water wells; however, for the contaminants of concern the MSC were the same as, or more stringent than, the drinking water standards and were used in this permit. The application noted that solvents are believed to be the cause of volatile organic compounds (VOCs) in the groundwater. The tetrachloroethylene and trichloroethylene limits from the MSC are included in this permit.

The DEP General NPDES Permit (PAG05) for Discharges from Petroleum Product Contaminated Groundwater Remediation Systems was evaluated. The contaminants of concern included Toluene, which was found in measurable levels in untreated groundwater, and samples were analyzed for benzene, ethylbenzene, and xylenes which are common petroleum contaminants. It was noted in the application that contamination may have occurred from leaking underground storage tanks indicating petroleum contamination. The limitations for parameters from the PAG05 (benzene, Total BTEX, MtBE, total suspended solids, pH, oil and grease) and associated parameters (toluene, ethylbenzene and total xylenes) are included in this permit.

Water Quality-Based Limitations

A "Reasonable Potential Analysis" (Attachment A) determined the following parameters were candidates for limitations: Vinyl Chloride.

The following limitations were determined through water quality modeling (output files attached):

Parameter	Limit (mg/l)	SBC	Model
Vinyl Chloride	0.0015	2/month	Toxics Management Spreadsheet (TMS)

Comments: Vinyl chloride limitations are included in the permit with the limits from the TMS.

Best Professional Judgment (BPJ) Limitations

Comments: Not applicable.

Anti-Backsliding

Not Applicable.

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 003, Effective Period: Permit Effective Date through Permit Expiration Date.

		Monitoring Red	quirements					
Parameter	Mass Units	(lbs/day) ⁽¹⁾		Concentrat	ions (mg/L)		Minimum ⁽²⁾	Required
	Average Monthly	Daily Maximum	Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	xxx	xxx	xxx	xxx	xxx	2/month	Measured
pH (S.U.)	XXX	XXX	6.0 Inst Min	XXX	XXX	9.0	2/month	Grab
TSS	XXX	xxx	xxx	30.0	60.0	75	2/month	Grab
Oil and Grease	XXX	XXX	xxx	15	XXX	30	2/month	Grab
Ethylbenzene	Report	xxx	xxx	Report	Report	xxx	2/month	Grab
Benzene	0.00006	0.00012	xxx	0.001	0.002	0.0025	2/month	Grab
Total BTEX	0.006	0.012	xxx	0.1	0.2	0.25	2/month	Grab
Tetrachloro-ethylene	0.0003	0.0006	xxx	0.005	0.01	0.0125	2/month	Grab
Toluene	Report	XXX	XXX	Report	Report	xxx	2/month	Grab
Trichloroethylene	0.0003	0.0006	XXX	0.005	0.01	0.0125	2/month	Grab
Total Xylenes	Report	XXX	XXX	Report	Report	XXX	2/month	Grab
МТВЕ	0.0012	0.0024	XXX	0.02	0.04	0.05	2/month	Grab
Vinyl Chloride	0.00009	0.00016	XXX	0.0015	0.0026	0.0036	2/month	Grab

Compliance Sampling Location: Outfall 003

Other Comments: None

Tools and References Used to Develop Permit
WQM for Windows Model (see Attachment)
PENTOXSD for Windows Model (see Attachment)
TRC Model Spreadsheet (see Attachment)
Temperature Model Spreadsheet (see Attachment)
Toxics Screening Analysis Spreadsheet (see Attachment A)
Water Quality Toxics Management Strategy, 361-0100-003, 4/06.
Technical Guidance for the Development and Specification of Effluent Limitations, 362-0400-001, 10/97.
Policy for Permitting Surface Water Diversions, 362-2000-003, 3/98.
Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 362-2000-008, 11/96.
Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97.
Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 362-2183-004, 12/97.
Pennsylvania CSO Policy, 385-2000-011, 9/08.
Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.
Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 391-2000-002, 4/97.
Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97.
Implementation Guidance Design Conditions, 391-2000-006, 9/97.
Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004.
Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 391-2000-008, 10/1997.
Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 391-2000-010, 3/99.
Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 391-2000-011, 5/2004.
Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97.
Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 391-2000-014, 4/2008.
Implementation Guidance Total Residual Chlorine (TRC) Regulation, 391-2000-015, 11/1994.
Implementation Guidance for Temperature Criteria, 391-2000-017, 4/09.
Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/97.
Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97.
Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 391-2000-021, 3/99.
Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/1999.
Design Stream Flows, 391-2000-023, 9/98.
Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 391-2000-024, 10/98.
Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97.
Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.
SOP for Establishing Effluent Limitations for Individual Industrial Permits, BCW-PMT-032, Final October 1, 2020, Version 1.6. SOP for New and Reissuance Industrial Waste and Industrial Stormwater Individual NPDES Permits, BPNPSM-PMT-001, Final November 9, 2012, Revised October 11, 2013, Version 1.5.

Attachment A

Discharge Information

Inst	tructions D	ischarge Stream														
Fadilty: Penn Eng & Manuf NPDES								ES Per	nit No.:	PA024	5208		Outfall	No.: 003		
Evaluation Type: Major Sewage / Industrial Waste					W	/as	stewater	Descript	tion: GV	V remedi	ation					
_																
						Discha	rge Cl	har	racterist	1C8						
De	esign Flow	Lineda and Incelling					Par	tia	al Mix Fa	ectors (P	PMFs)		Com	plete Mi	x Times	(min)
1	(MGD)*	Hardness (mg/i)*	pH (suj		AFC	:	(CFC	THH		CRL	Q	-10	(2
	0.0072	100	8	.3												
								_								
	Office blank Of Fice blank Office blank I High blank												blank			
	I															
	Disch	arge Pollutant	Units	Ma	Co	ioharge no	Trib	,	Stream Cone	Dally CV	Hourly CV	strea m CV	Fate Coeff	FOS	Criteri a Mod	Chem Transl
	Total Dissolve	d Solids (PWS)	mg/L													
5	Chloride (PW	S)	mg/L													
8	Bromide		mg/L													
0	Sulfate (PWS)	mg/L													
	Fluoride (PW3	8)	mg/L													
1	Total Aluminu	m	µg/L													
1	Total Antimon	V	µg/L					_								
1	Total Arsenic		µg/L					_								
1	Total Barium		h0/L					_				I				
1	Total Beryllur	n	µg/L					_				<u> </u>				
1	Total Boron	-	µg/L					-								
1	Total Chronik	m 	Up/L					+				<u> </u>				
1	Hexavalent C	hromium	unit	\vdash				+				<u> </u>				
1	Total Cobalt		unit.					+				<u> </u>				
1	Total Copper		unit	\vdash				+				<u> </u>				
64	Free Available	Cvanide	uo/L	\vdash				+				<u> </u>				
1	Total Cvanide		UO/L					+				<u> </u>				
20	Dissolved Iron	1	µg/L									<u> </u>				
1	Total Iron		µg/L													
	Total Lead		µg/L													
1	Total Mangan	ese	µg/L													
1	Total Mercury		µg/L													
1	Total Nickel		µg/L													
1	Total Phenois	(Phenolics) (PWS)	µg/L													
1	Total Seleniur	n	µg/L													
1	Total Silver		µg/L													
	Total Thailium	1	µg/L													
1	Total Zinc		µg/L													
\vdash	Total Molybde	num	µg/L													
1	Acrolein		H0/L	<												
	Acrylamide		HQ/L	<												
	Acryionitrie		ug/L	<				_								
	Denzene		PD/L	•		0.5										
1	Bromotorm		pg/L	<												

Discharge Information

12/4/2020

	Carbon Tetrachioride	µg/L	۷						
	Chlorobenzene	µg/L	<						
	Chlorodibromomethane	UQ/L	<						
	Chloroethane	UQ/L	<						
	2-Chlomethyl Vinyl Ether	unil	<						
	Chieroform	und.	-						
	Disblashmanathana	PP/L	-						
	Dichlorooromomethane	PD/L	<						
	1,1-Dichloroethane	hð/r		5.3					
3	1,2-Dichloroethane	hð/r	<						
5	1,1-Dichloroethylene	µg/L	<	1					
2	1,2-Dichloropropane	µg/L	<						
9	1,3-Dichloropropylene	µg/L	۷						
	1,4-Dioxane	hð/r		0.84					
	Ethylbenzene	µg/L	۷	1					
	Methyl Bromide	ug/L	<						
	Methyl Chloride	UQ/L	<						
	Methylene Chloride	ug/L	<						
	1.1.2.2-Tetrachiomethane	unil	~						
	Tairachlonathulana	und.	-						
	Telese	Part		0.5					
	I Olivera Diskingentining	POL	<	1					
	1,2-trans-Dichloroethylene	PD/L	<						
	1,1,1-Trichioroethane	µg/L		26.1					
	1,1,2-Trichloroethane	µg/L	<						
	Trichloroethylene	µg/L	۷	0.53					
	Vinyi Chloride	µg/L	۷	0.79					
	2-Chlorophenol	µg/L	<						
	2.4-Dichlorophenol	UQ/L	<						
	2 4-Dimethylphenol	un/L	<						
	4 5-Dinitro-o-Cresol	uni	-						
*	2.4 Distingheed	PP-L	-						
-	2,4-Dinitrophenol	PD/L	~						
ē	2-Nitrophenol	PD/L	<						
O	4-Nitrophenol	h0/r	<						
	p-Chloro-m-Cresol	pg/L	<						
	Pentachiorophenol	µg/L	<						
	Phenol	hð/L	٨						
	2,4,6-Trichlorophenol	hð/r	٨						
	Acenaphthene	µg/L	۷						
	Acenaphthylene	µg/L	<						
	Anthracene	un/l	<						
	Benzidine	uni	<						
	Denzo(a) Anthracana	und.	-						
	Benzo(a)Pynnracene	PDVL.	-						
	Benzo(a)Pyrene	PD/L	~						
	3,4-Benzofluoranthene	PD/L	<						
	Benzo(ghl)Perylene	µg/L	<						
	Benzo(k)Fluoranthene	µg/L	<						
	Bis(2-Chioroethoxy)Methane	µg/L	<						
	Bis(2-Chioroethyl)Ether	µg/L	۷						
	Bis(2-Chioroisopropyl)Ether	hð/r	٨						
	Bis(2-Ethylhexyl)Phthalate	ug/L	۷						
	4-Bromophenyl Phenyl Ether	UQ/L	<						
	Butyl Benzyl Phthalate	ug/L	<						
	2-Chlomoanhthalene	uni	<						
	A-Chloropherul Pherul Ether	unit	-						
	4-chlorophenyr Phenyr Ealer	PPr-	-						
	Unrysene	HO/L	<						
	Dibenzo(a,h)Anthrancene	h0/L	<						
	1,2-Dichlorobenzene	µg/L	<						
	1,3-Dichlorobenzene	µg/L	<						
-	1,4-Dichlorobenzene	µg/L	<						
e	3,3-Dichlorobenzidine	µg/L	<						
ē	Diethyl Phthalate	µg/L	<						
O	Dimethyl Phthalate	UQ/L	<						
	DI-n-Butyl Phthalate	UO/L	<						
	2 4-Dinitratoluene	Up/I	-						
·	and a second state of the		-				 		

Discharge Information

	2.6-Dinitrotoluene	UQ/L	<						
	Di-n-Octvi Phthalate	ug/L	<				 		
	1 3-Diobecultudrazine	unit							
	Eluprapihana	unit	-			 	 		
		Part				 	 		
	Fluorene	PD/L	~			 	 		
	Hexachiorobenzene	µg/L	<			 	 		
	Hexachiorobutadiene	hð/r	<			 	 		
	Hexachiorocyclopentadiene	hð/r	۷			 	 		
	Hexachioroethane	µg/L	<			 	 		
	Indeno(1,2,3-cd)Pyrene	µg/L	<				 		
	Isophorone	µg/L	<			 	 		
	Naphthaiene	µg/L	<						
	Nitrobenzene	µg/L	<						
	n-Nitrosodimethylamine	µg/L	<						
	n-Nitrosodi-n-Propylamine	µg/L	٨						
	n-Nitrosodiphenylamine	µg/L	٨						
	Phenanthrene	µg/L	٨						
	Pyrene	µg/L	٨						
	1,2,4-Trichlorobenzene	µg/L	٨						
	Aldrin	ug/L	<						
	alpha-BHC	UQ/L	<						
	beta-BHC	UQ/L	<						
	gamma-BHC	uo/I	<						
	delta BHC	uell							
	Chierdane	up/L				 			
	4 A-DDT	ug/L							
	4,4001	PD/L	-			 	 		
	4,4000	PD/L	-			 	 		
	4,4-000	hð/r	<			 	 		
	Dieldrin	µg/L	<						
	alpha-Endosulfan	µg/L	۷						
	beta-Endosulfan	µg/L	۷			 	 		
ď	Endosulfan Sulfate	µg/L	<			 	 		
8	Endrin	µg/L	<						
ð	Endrin Aldehyde	µg/L	<						
	Heptachior	µg/L	٨						
	Heptachior Epoxide	µg/L	٨						
	PCB-1016	µg/L	٨						
	PCB-1221	µg/L	٨						
	PCB-1232	µg/L	٨						
	PCB-1242	µg/L	٨						
	PCB-1248	ug/L	٨						
	PCB-1254	UQ/L	<						
	PCB-1260	UO/L	۷				 		
	PCBs Total	unit	<				 		
	Toxaphene	Unit.	•						
	2 3 7 8-TCDD	pol							
_	Gross Alpha	0000	-						
	Total Beta	DCHI.							
2	Padum 220/220	0.000	-						
2	Radium 226/228	PLANE	~			 	 		
5	Total Strondum	µg/L	<			 	 		
-		UQ/L	<						
	Osmobic Pressure	mOs/kg							
	Total Xylenes	µg/L	<	1				 	
	Acetone	µg/L	<	10					
	MTBE	µg/L	<	0.51					
	Freon 113	µg/L	<	5					

Stream / Surface Water Information

Penn Eng & Manuf, NPDES Permit No. PA0245208, Outfall 003

Instructions Discharge Stream

Receiving Surface Water Name: North Branoh Neshaminy Creek

Location	Stream Code*	RMI"	Elevation (ft)*	DA (m ²)*	Slope (ft/ft)	PWS Withdrawal (MGD)	Apply Fish Criteria*
Point of Discharge	002789	2.31	354.41	5.05			Yes
End of Reach 1	002789	0.73	335.39	7.38			Yes

Statewide Criteria
Great Lakes Criteria
ORSANCO Criteria

Q7-10

Location	DMI.	LFY	Flow	(cfs)	W/D	Width	Depth	Velocit	Time	Tributa	ry 🛛	Stream		Analysis	
Location	POVI	(cfs/mi ²)*	Stream	Tributary	Ratio	(11)	(11)	y (fps)	(days)	Hardness	pH	Hardness*	pH"	Hardness	pH
Point of Discharge	2.31	0.1	0.06									100	7		
End of Reach 1	0.73	0.1	0.11									100	7		

No. Reaches to Model: 1

Q,

Location	-	LFY	Flow	(cfs)	W/D	Width	Depth	Velocit	Tiere	Tributa	ary 🛛	Strea	m	Analy	sis
Location	POVI	(cfs/ml ²)	Stream	Tributary	Ratio	(11)	(11)	y (fps)	(dave)	Hardness	pH	Hardness	pH	Hardness	pH
Point of Discharge	2.31														
End of Reach 1	0.73														

Stream / Surface Water Information

12/4/2020

Model Results

Penn Eng & Manuf, NPDES Permit No. PA0245208, Outfall 003

Instructions	Results	RETURN TO INPUTS	SAVE AS PDF	PRINT) ® AI) Inputs	Results	\bigcirc Limits	

Hydrodynamics

Q7-10

RMI	Stream Flow (cfs)	PWS Withdrawal (cfs)	Net Stream Flow (cfs)	Discharge Analysis Flow (cfs)	Slope (ft/ft)	Depth (ft)	Width (ft)	W/D Ratio	Velocity (fps)	Time (dava)	Complete Mix Time (min)
2.31	0.06		0.06	0.011	0.002	0.351	6.453	18.364	0.031	3.078	4.082
0.73	0.11		0.11								

Q,

RMI	Stream Flow (cfs)	PWS Withdrawal (cfs)	Net Stream Flow (cfs)	Discharge Analysis Flow (cfs)	Slope (ft/ft)	Depth (ft)	Width (ft)	W/D Ratio	Velocity (fps)	Time	Complete Mix Time (min)
2.31	0.64		0.64	0.011	0.002	0.928	6.453	6.954	0.108	0.894	1.291
0.73	1.079		1.08								

Westeload Allocations

AFC	CCT (min): 4J	CCT (min): 4.082		PMF: 1		lysis Hardne:	ss (mg/l):	100 Analysis pH: 7.07
Pollutants	Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µgL)	WQ Obj (µg/L)	WLA (µg/L)) Comments
Benzene	0	0		0	640	640	4,088	
1,1-Dichloroethylene	0	0		0	7,500	7,500	47,901	
Ethylbenzene	0	0		0	2,900	2,900	18,522	
Tetrachioroethylene	0	0		0	700	700	4,471	
Toluene	0	0		0	1,700	1,700	10,858	
1,1,1-Trichloroethane	0	0		0	3,000	3,000	19,160	
Trichloroethylene	0	0		0	2,300	2,300	14,690	
Vinyl Chloride	0	0		0	N/A	N/A	NA	
Total Xylenes	0	0		0	1,100	1,100	7,025	
Acetone	0	0		0	450,000	450,000	2,874,047	
Freon 113	0	0		0	71,000	71,000	453,461	
CFC	CCT (min): 4.	082	PMF:	1	Ana	ilysis Hardne	ss (mg/l):	100 Analysis pH: 7.07

Model Results

12/4/2020

Pollutants	Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	(ugL)	(UQ/L)	WLA (µg/L)	Comments
Benzene	0	0		0	130	130	830	
1,1-Dichloroethylene	0	0		0	1,500	1,500	9,580	
Ethylbenzene	0	0		0	580	580	3,704	
Tetrachioroethylene	0	0		0	140	140	894	
Toluene	0	0		0	330	330	2,108	
1,1,1-Trichloroethane	0	0		0	610	610	3,896	
Trichloroethylene	0	0		0	450	450	2,874	
Vinyl Chloride	0	0		0	N/A	N/A	NA	
Total Xylenes	0	0		0	210	210	1,341	
Acetone	0	0		0	86,000	86,000	549,262	
Freon 113	0	0		0	1,250,000	1,250,000	7,983,463	
	CT (min): 4	082	PMP:	1	[Ana	alysis Hardne	ess (mg/l):	N/A Analysis pH: N/A
Pollutants	Conc	Stream	Trib Conc (unit.)	Fate	WQC (upl.)	WQ Obj	WLA (upL)	Comments
Benzene	(1001)	0	(1997-17	0	N/A	N/A	NIA	
11-Dichiomethylene		-		0	33	33.0	211	
Ethylaenzene		ň		ň	530	530	3 385	
Tetrachioroethylene		ō		0	N/A	N/A	NA	
Toluene	0	0		0	1,300	1,300	8.303	
1.1.1-Trichloroethane	0	0		0	N/A	N/A	NA	
Trichloroethviene		ō		ō	N/A	N/A	NA	
Vinyi Chloride	0	0		0	N/A	N/A	NA	
Total Xylenes	0	0		0	70,000	70,000	447,074	
Acetone	0	0		0	3,500	3,500	22,354	
Freon 113	0	0		0	NA	N/A	NA	
⊡ CRL a	CT (min): 1.	291	PMF:	1	[Ana	alysis Hardne	ss (mg/l):	N/A Analysis pH: N/A
Pollutants	Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	(ugL)	(ug/L)	WLA (µg/L)	Comments
Benzene	0	0		0	1.2	1.2	69.7	
1,1-Dichloroethylene	0	0		0	N/A	N/A	N/A.	
Ethylbenzene	0	0		0	N/A	N/A	NA	
Tetrachioroethylene	0	0		0	0.69	0.69	40.1	
Toluene	0	0		0	N/A	N/A	N/A	
1,1,1-Trichloroethane	0	0		0	N/A	N/A	N/A	
Trichloroethylene	0	0		0	2.5	2.5	145	
Vinyi Chioride	0	0		0	0.025	0.025	1.45	
Total Xylenes	0	0		0	N/A	N/A	NA	
Acetone	0	0		0	N/A	N/A	N/A	
Freon 113	0	0		0	NIA	N/A	NIA	

Model Results

12/4/2020

Recommended WQBELs & Monitoring Requirements

No. Samples/Month: 4

Mass Limits C				Concentra	tion Limits				
Pollutants	AML (Ibs/day)	MDL (Ibs/day)	AML	MDL	IMAX	Units	Governing WQBEL	WQBEL Basis	Comments
Vinyi Chioride	0.00009	0.0001	1.45	2.26	3.63	μgL	1.45	CRL	Discharge Conc ≥ 50% WQBEL (RP)

Other Pollutants without Limits or Monitoring

The following pollutants do not require effluent limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharge concentration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QL).

Pollutants	Governing WQBEL	Units	Comments
1,1-Dichioroethylene	211	µg/L	Discharge Conc ≤ 25% WQBEL
Ethylbenzene	3,385	hðr.	Discharge Conc < 25% WQBEL
Tetrachioroethylene	40.1	µg/L	Discharge Conc ≤ 25% WQBEL
Toluene	2,108	µg/L	Discharge Conc < 25% WQBEL
1,1,1-Trichloroethane	3,896	µg/L	Discharge Conc < 25% WQBEL
Trichloroethylene	145	h0r	Discharge Conc < 25% WQBEL
Acetone	22,354	µg/L	Discharge Conc ≤ 25% WQBEL
Freon 113	290,650	µg/L	Discharge Conc < 25% WQBEL
Benzene	69.7	µg/L	Discharge Conc < TQL
1,1-Dichloroethane	N/A	N/A	No WQS
1,4-Dioxane	NA	N/A	No WQS
Total Xylenes	1,341	µg/L	Discharge Conc < TQL
MTBE	N/A	N/A	No WQS

Model Results

12/4/2020