

 Application Type
 Renewal

 Facility Type
 Municipal

 Major / Minor
 Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

 Application No.
 PA0246727

 APS ID
 802591

 Authorization ID
 1311978

Applicant and Facility Information

Applicant Name	Dudley Carbon Coalmont Joint Municipal Authority	Facility Name	Dudley Carbon Coalmont STP
Applicant Address	PO Box 276	Facility Address	19599 Municipal Drive
	Dudley, PA 16634-0276	_	Saxton, PA 16678
Applicant Contact	Christopher Hamilton	Facility Contact	Christopher Hamilton
Applicant Phone	(814) 635-2384	Facility Phone	(814) 635-2384
Client ID	242720	Site ID	559626
Ch 94 Load Status	Not Overloaded	Municipality	Carbon Township
Connection Status	No Limitations	County	Huntingdon
Date Application Recei	ved _ April 21, 2020	EPA Waived?	Yes
Date Application Accep	otedApril 27, 2020	If No, Reason	
Purpose of Application	<u>.</u>		

Summary of Review

Dudley Carbon Coalmont Joint Municipal Authority (DCC JMA) Wastewater Treatment Plant has applied to the Pennsylvania Department of Environmental Protection (DEP) for reissuance of its NPDES permit. The permit No. PA0246727 was last reissued on March 17, 2015 and became effective on April 1, 2015. The permit expired on March 31, 2020.

The wastewater treatment plant located at Middletown serves the Boroughs of Dudley and Coalmont, the villages of Barnettstown and Middletown, Route 913 between Dudley and Middletown, the areas of Little Valley, Ribson Hill, and Black's Farm Road. The WWTP was constructed for 0.1 MGD and with an annual average discharge flow of 0.071MGD.

The treated wastewater will discharge from the left bank of Shoup Run. This stream is classified as a Warm Water Fishery (WWF), but is also listed as an Acid Mine Drainage impaired stream on the Department's 303(d) list. A TMDL for the effects of Acid Mine Drainage was completed and approved on February 21, 2001 and is discussed further in this report.

WQM part II permit No. 3102401 was issued on 11/18/2002.

Based on the review outline in this fact sheet, it is recommended that the permit be drafted and published in the Pennsylvania Bulletin for public comments for 30 days.

Approve	Deny	Signatures	Date
x		<i>Hilaryle</i> Hilary H. Le / Environmental Engineering Specialist	May 28, 2020
		Daniel W. Martin, P.E. / Environmental Engineer Manager	
		Maria D. Bebenek, P.E. / Clean Water Program Manager	

Discharge, Receiving	g Water	s and Water Supply Inform	ation	
Outfall No. <u>001</u> Latitude <u>40º 1</u> Quad Name <u>Sa</u> Wastewater Descri	3' 23.50 xton ption:	" Sewage Effluent	Design Flow (MGD) Longitude Quad Code	0.071 -78º 12' 59.28"
Receiving Waters NHD Com ID Drainage Area Q ₇₋₁₀ Flow (cfs) Elevation (ft) Watershed No. Existing Use	Shoup 65842 18.2 n See co 980 11-D	9 Run (WWF) 2243 ni. ² omments below	Stream Code RMI Yield (cfs/mi ²) Q7-10 Basis Slope (ft/ft) Chapter 93 Class. Existing Use Qualifier	13717 2.1 miles See comments below USGS StreamStats WWF
Existing Use Exceptions to Use Assessment Status [Cause(s) of Impairment [Source(s) of Impairment [TMDL Status]		Impaired METALS, PH ACID MINE DRAINAGE, Final	Exceptions to Criteria	Watershed
Nearest Downstrea PWS Waters PWS RMI	ım Publio Raystow 2.0 miles	c Water Supply Intake n Branch Juniata River	Lake Raystown Resort, Hunti Flow at Intake (cfs) Distance from Outfall (mi)	ngdon County

Changes Since Last Permit Issuance:

Drainage Area

The discharge is to Shoup Run at RMI 2.1 mile. A drainage area upstream of the discharge is estimated to be 18.2 mi.², according to USGS PA StreamStats available at <u>https://streamstats.usgs.gov/ss/</u>.

Stream Flow

Stream flows for the water quality were determined by correlating with the yield of USGS gauging station No.01562000 on Raystown Branch Juniata River at Saxton, PA. The Q_{7-10} is 44.9 cfs and the drainage area is 755 mi.² (according to USGS PA StreamStats available at <u>https://streamstats.usgs.gov/ss/)</u> which results in a Q_{7-10} low flow yield of 0.06 cfs/mi.². This information is used to obtain a chronic or 30-day (Q_{30-10}), and an acute or 1-day (Q_{1-10}) exposure stream flow for the discharge point as follows (Guidance No. 391-2000-023):

 $\begin{array}{l} \mbox{Low Flow Yield} = 44.9 \mbox{ cfs} \ / \ 755 \ mi.^2 \approx 0.06 \ cfs/mi.^2 \\ \mbox{Q}_{7\text{-}10} \ discharge = 0.06 \ cfs/mi.^2 \ x \ D.A \ discharge = 0.06 \ cfs/mi.^2 \ x \ 18.2 \ mi.^2 = 1.09 \ cfs \\ \mbox{Q}_{30\text{-}10} = 1.36 \ ^* \ 1.09 \ cfs \approx 1.48 \ cfs \\ \mbox{Q}_{1\text{-}10} = 0.64 \ ^* \ 1.09 \ cfs \approx 0.7 \ cfs \end{array}$

Public Water Supply

The closest water supply intake is located downstream from the discharge in the Lake Raystown Resort, Huntingdon County approximately 39.0 miles from the point of discharge. Given the nature and dilution, the discharge is not expected to significantly impact the water supply.

Acid Mine Drainage (AMD) Requirements

AMD treatment requirements are taken from Chapter 95, Section 95.5. Section 95.5(a)(1) provides for standard secondary treatment, unless downstream conditions require greater treatment for reasons provided in Section 95.5(b). The water quality analysis below is for informational purposes and could change final limitations if the biologist's report indicates the stream is recovering downstream of the discharge.

Treatment Facility Summary Treatment Facility Name: Dudley Carbon Coalmont STP WQM Permit No. **Issuance Date** 3102401 11/28/2002 Degree of Avg Annual Treatment Waste Type **Process Type** Disinfection Flow (MGD) Ultraviolet Sewage 0.071 Hydraulic Capacity **Organic Capacity Biosolids** Load Status **Biosolids Treatment** Use/Disposal (MGD) (lbs/day) 0.1 Not Overloaded 250

Changes Since Last Permit Issuance:

The existing WWTP train is as follows:

Mechanical Bar Screen (1) \Rightarrow Equalization Tank (1) \Rightarrow Aeration Tanks (2) \Rightarrow Clarifier \Rightarrow Ultraviolet Disinfection Unit (1) \Rightarrow Sludge Holding (1) \Rightarrow Reed Beds (2) \Rightarrow Discharge

Sodium bicarbonate is used as needed.

Compliance History							
Summary of DMRs:	DMRs reported last 12 months from April 1, 2019 to March 31, 2020 are summarized in the Table below (Pages 4 & 5).						
Summary of Inspections:	10/2/2019: Mr. Clark, DEP WQS, conducted compliance evaluation inspection. There was a recommendation such as submit NPDES renewal application as soon possible. The field test results were within permit limits. The effluent was clear.						
	8/21/2018: Mr. Clark, DEP WQS, conducted compliance evaluation inspection. There were recommendations such as repair fine screen and EQ tank pump. The field test results were within permit limits. The effluent was clear. There were no violations noted during inspection.						
	6/15/2017: Mr. Clark, DEP WQS, conducted compliance evaluation inspection. The field test results were within permit limits. The effluent was clear. There were no violations noted during inspection.						
Other Comments:	There are currently no open violations associated with the permittee or the facility.						

Other Comments: DMRs for the past 12 months indicated compliance with permitted limits.

Compliance History

DMR Data for Outfall 001 (from April 1, 2019 to March 31, 2020)

Parameter	MAR-20	FEB-20	JAN-20	DEC-19	NOV-19	OCT-19	SEP-19	AUG-19	JUL-19	JUN-19	MAY-19	APR-19
Flow (MGD)												
Average Monthly	0.085	0.073	0.079	0.049	0.039	0.036	0.041	0.043	0.047	0.039	0.075	0.061
Flow (MGD)												
Daily Maximum	0.282	0.156	0.204	0.099	0.076	0.070	0.114	0.086	0.087	0.073	0.208	0.134
pH (S.U.)												
Minimum	7.3	7.3	7.2	7.1	7.2	7.1	6.2	6.9	6.7	6.8	6.8	6.5
pH (S.U.)												
Maximum	7.5	7.63	7.5	7.4	7.5	7.4	7.2	7.9	7.4	7.4	7.5	7.2
DO (mg/L)												
Minimum	7.2	7.3	7.3	7.0	6.9	6.0	5.04	5.6	5.2	5.2	5.1	6.0
CBOD₅ (lbs/day)												
Average Monthly	< 1	< 4	2	2	< 1	< 0.7	< 0.8	2	2	2	2	1
CBOD ⁵ (lbs/day)												
Weekly Average	< 2	6	3	3	< 1	< 0.8	0.9	3	2	2	2	1
CBOD₅ (mg/L)												
Average Monthly	< 3	< 5	4.24	6	< 3	< 3	< 2	4	4	5	2.54	2
CBOD₅ (mg/L)												
Weekly Average	< 3	8	5.04	7	< 3	< 3	2	5	5	6	2.75	2
BOD₅ (lbs/day)												
Raw Sewage Influent												
Average Monthly	40	78	145	63	48	39	55	123	85	36	49	30
BOD₅ (lbs/day)												
Raw Sewage Influent												
Daily Maximum	40	87	188	84	57	54	66	186	118	44	51	34
BOD₅ (mg/L)												
Raw Sewage Influent	100	400		100		407		100				
Average Monthly	109	123	294	136	145	137	157	190	201	111	83	65
ISS (lbs/day)											_	0
	2	4	3	6	1	2	3	<2	< 1	< 2	< 5	<2
ISS (Ibs/day)												
Raw Sewage Influent	40	20	10	07	<u> </u>	40	45	400	0.4	F 4	20	24
	43	39	49	37	69	42	45	129	84	54	39	34
155 (IDS/day)												
Raw Sewage Inituent	50	42	57	71	96	47	50	102	110	60	47	14
	56	43	57	(1	00	47	59	192	110	00	47	44
Wookly Average	2	F	F	7	1	2	4	2	1	2	7	2
	2	5	5	1	1	۷	4	۷	1	۷	/	۷
133 (IIIy/L) Average Monthly	6	6	6	16	2		7		- 2	- 1	- 0	- 1
Average monthly	0	0	0	0 I	۷ ک	Э	1	< 3	< 3	< 4	< 9	< 4

NPDES Permit No. PA0246727

TSS (mg/L)												
Raw Sewage Influent												
Average Monthly	105	66	105	55	205	160	128	201	203	154	61	75
TSS (mg/L)												
Weekly Average	8	6	9	24	2	12	11	4	4	6	16	5
Fecal Coliform												
(CFU/100 ml)												
Geometric Mean	< 1	< 2	< 1	< 2	8	< 1	< 3	< 1	2	< 1	< 1	< 1
Fecal Coliform												
(CFU/100 ml)												
Instantaneous												
Maximum	< 1	3	1	< 4	31	< 1	< 10	1	3	< 1	1	< 1
UV Intensity (mW/cm ²)												
Minimum	0.08	0.8	1.0	1.1	1	1.1	1.0	1.2	1	1.0	1	0.9
Nitrate-Nitrite (mg/L)												
Average Quarterly	< 13.55			4.8			2.45			13.2		
Total Nitrogen (mg/L)												
Average Quarterly	< 13.4			< 5.8			< 3.88			< 15.2		
TKN (mg/L)												
Average Quarterly	< 0.5			< 1.0			3.63			< 2.0		
Total Phosphorus												
(mg/L)												
Average Quarterly	2.43			5.7			2.45			1.70		
Total Aluminum												
(lbs/day)												
Average Monthly	< 0.05	< 0.05	< 0.04	< 0.05	< 0.04	< 0.03	< 0.03	< 0.05	< 0.05	< 0.03	< 0.05	< 0.04
Total Aluminum												
(mg/L)												
Average Monthly	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.100	< 0.10	< 0.1	< 0.100	< 0.10	< 0.01	< 0.10
Total Iron (lbs/day)												
Average Monthly	< 0.1	< 0.1	< 0.09	< 0.1	< 0.08	< 0.07	0.02	0.02	0.04	0.01	0.07	0.03
Total Iron (mg/L)												
Average Monthly	< 0.2	< 0.2	< 0.2	< 0.25	< 0.2	< 0.2	0.07	0.038	0.08	0.04	0.148	0.07
Total Manganese												
(lbs/day)												
Average Monthly	0.08	0.01	0.01	0.06	< 0.008	< 0.007	< 0.007	< 0.01	0.04	< 0.06	0.02	0.01
Total Manganese												
(mg/L)												
Average Monthly	0.164	0.0251	0.0321	0.09	< 0.02	< 0.02	< 0.02	< 0.02	0.08	< 0.02	0.0458	0.03

Development of Effluent Limitations

Outfall No.	001		
Latitude	40º 13' 20.00)"	
Wastewater D	escription:	Sewage Effluent	

Design Flow (MGD) 0.071

Longitude

700 4 21 0 00"

-78º 13' 0.00"

Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
CROD-	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD5	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
рН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform				
(5/1 – 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform				
(5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform				
(10/1 – 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform				
(10/1 - 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	Ultraviolet	Disinfection	Used	

Water Quality-Based Limitations

Carbonaceous Biochemical Oxygen Demand (CBOD₅):

The attached computer printout of the WQM 7.0 stream model indicates that a monthly average limit of 25 mg/L, or secondary treatment, is adequate to protect the water quality of the stream. However, the existing limits of 25 mg/L monthly average (AML), 40mg/l average weekly limit (AWL), and 50 mg/L instantaneous maximum will remain in the proposed permit as per guidance document 391-2000-014. Recent DMRs and inspection reports show that the facility has been consistently achieving these limits. Mass limits are calculated as follows:

Average monthly mass limit: $25 \text{ mg/L} \times 0.071 \text{ MGD} \times 8.34 = 14.8 (15.0) \text{ lbs/day}$ Average weekly mass limit: $40 \text{ mg/L} \times 0.071 \text{ MGD} \times 8.34 = 23.68 (24.0) \text{ lbs/day}$

The secondary treatment is again recommended for this permit cycle and this also agrees with AMD requirements from Chapter 95, Section 95.5(a)(1).

Total Suspended Solids (TSS):

The existing technology-based limits of 30 mg/L average monthly, 45 mg/L average weekly, and 60 mg/L instantaneous maximum will remain in the proposed permit based on the minimum level of effluent quality attainable by secondary treatment based on 25 Pa. Code § 92a.47. Recent DMRs and inspection reports show that the facility has been consistently achieving these limits. Mass limits are calculated as follows:

Average monthly mass limit: $30 \text{ mg/L} \times 0.071 \text{ MGD} \times 8.34 = 17.76 (18.0) \text{ lbs/day}$ Average weekly mass limit: $45 \text{ mg/L} \times 0.071 \text{ MGD} \times 8.34 = 26.65 (27.0) \text{ lbs/day}$

This would also meet the AMD requirements of Chapter 95, Section 95.5(a)(1).

Dissolved Oxygen (D.O.):

A minimum D.O. of 5.0 mg/L is required per 25 Pa. Code § 93.7. This is consistent with the previous permit and current Department criteria.

pH:

The effluent discharge pH should remain above 6 and below 9 standard units according to 25 Pa. Code § 95.2(1).

NPDES Permit Fact Sheet Dudley Carbon Coalmont STP Fecal Coliform:

The recent coliform guidance in 25 Pa. Code § 92a.47.(a)(4) requires a summer technology limit of 200/100 ml as a geometric mean and an instantaneous maximum not greater than 1,000/100 ml and 25 Pa. Code § 92a.47.(a)(5) requires a winter limit of 2,000/100 ml as a geometric mean and an instantaneous maximum not greater than 10,000/100 ml.

Ultraviolet (UV):

Since UV is used for disinfection, routine monitoring of UV light transmittance (%) will remain in the proposed permit.

NH₃N Calculations:

 NH_3N calculations will be based on the Department's Implementation Guidance of Section 93.7 Ammonia Criteria, dated 11/4/97 (ID No. 391-2000-013). The following data is necessary to determine the instream NH_3N criteria used in the attached computer model of the stream:

- STP pH = 7.0 (Default)
- STP Temperature = 25 ° C (default)
- Stream pH = 5.0 (AMD)
- Stream Temperature = 23 ° C (WQN station on Raystown Branch at Saxton)
- Background NH₃-N = 0.0 (default)

The attached computer printout of the WQM 7.0 stream model indicates that no limits of NH_3 as a monthly average is necessary to protect the aquatic life from toxicity effects. This would also meet the AMD requirements of Chapter 95, Section 95.5(a)(1).

Influent BOD₅ and TSS Monitoring:

The permit will include influent BOD₅ and TSS monitoring at the same frequency as is done for effluent in order to implement 25 Pa. Code § 94.12 and assess percent removal requirements, per DEP policy.

Toxics:

No toxic parameters of concern associated with this discharge. The discharge consists entirely of domestic sewage, no industrial users discharge to the facility.

Biosolids Management:

Digested Sludge is sent out periodically to the drying beds.

Stormwater:

There is no stormwater outfall associated with this facility.

Chesapeake Bay Strategy:

The Department formulated a strategy to comply with the EPA and Chesapeake Bay Foundation requirements by reducing point source loadings of Total Nitrogen (TN) and Total Phosphorus (TP). Sewage discharges have been prioritized by Central Office based on their delivered TN loadings to the Bay. The highest priority (Phases 1, 2, and 3) dischargers will receive annual loading caps based on their design flow on August 29, 2005 and concentrations of 6 mg/l TN and 0.8 mg/l TP. These limits may be achieved through a combination of treatment technology, credits, or offsets. Phase 4 (0.2 -0.4 MGD) will be required to monitor and report TN and TP during permit renewal monthly and Phase 5 (below 0.2 MGD) will monitor during current permit renewal once a year unless two years of monitoring are completed and documented. Any facility in Phases 4 and 5 that undergoes expansion is subjected to cap load right away. This plant is classified as a phase 5, and thus required to monitor and report Total Phosphorus, Nitrate-Nitrite as N, Total Kjeldahl Nitrogen and Total Nitrogen.

According to SOP for establishing effluent limitation for individual sewage, monitoring frequency for nutrients should be equivalent to conventional pollutants in Table 6-3 of DEP's *Technical Guidance for the Development and Specification of Effluent Limitations* (362-0400-001) ("Permit Writer's Manual") where the facility discharges to nutrient-impaired waters, or a lesser frequency for discharges to waters not impaired for nutrients. Quarterly monitoring frequency is required for this discharge since the receiving stream is not nutrient impaired. This monitoring will remain in the proposed permit.

Anti-Degradation (93.4)

The effluent limits for this discharge have been developed to ensure that existing instream water uses and the level of water quality necessary to protect the existing uses are maintained and protected. No High Quality Waters are impacted by this discharge. No Exceptional Value Waters are impacted by this discharge.

Class A Wild Trout Fisheries

No Class A Wild Trout Fisheries are impacted by this discharge.

303d Listed Streams:

The discharge is located on a 303d listed stream segment for the effects of AMD. A TMDL was completed and approved on February 21, 2001. The TMDL provided load allocations for Aluminum, Iron, Manganese, and negative alkalinity for nonpoint sources. Sewage wastewater treatment plants such as this facility are not considered a source of AMD and are not included in the TMDL. This treated wastewater discharge improves the stream quality by adding alkalinity and nutrients. The TMDL calls for reduction in Aluminum downstream of the discharge at sampling station SR1. This facility does not seem to contribute Total Aluminum, Total Manganese and Total Iron to the impairment, but will be required to monitor them to collect data for further analysis.

WQM 7.0

Node 1: Outfall 001 on Shoup R	tun (13717)
Elevation:	980.0 ft (USGS National Map Viewer)
Drainage Area:	18.2 mi. ² (USGS PA StreamStats)
River Mile Index:	2.1 (PA DEP eMapPA)
Low Flow Yield:	0.06 cfs/mi. ²
Discharge Flow:	0.0710 MGD (NPDES Application)
-	

Node 2: Just before junction with Trib. 13718

915.59 ft (USGS National Map Viewer)
20.4 mi. ² (USGS PA StreamStats)
1.55 (PA DEP eMapPA)
0.06 cfs/mi. ²
0.000 MGD

-8	Ana	lysis Results WQM 7.0			_	
Hydrodynamics	NH3-N Allocations	D.O. Allocations	D.O. Simulation	Effluent Limita	ations	
	PMI Dischar	Permit N	umber Disc Flow			
	2.10 Dudley Sewer	PA024	6727 0.0710			
	Parameter	Effluent Limit 30 Day Averag (mg/L)	Effluent Limit Effluent e Maximum Minimu (mg/L) (mg/L	Limit um -)		
	CBOD5 NH3-N Dissolved Oxygen	25 25	50 5			
	Record: I4 4 1 of 1	▶ ▶ ▶ ♦ 🕏 No Filte	r Search			
Print	< <u>B</u> ack	<u>N</u> ext >	Archive		<u>C</u> ancel	_

3		Analysi	is Results \	WQM 7.0			_		>
RMI Tot 2:100 Reach Width (ft) 17.747 Reach C-BOD5 (mg/L) 3.80 Reach D0 (mg/L) 7.989	tal Discharge 0.100 <u>Reach Der</u> 0.605 <u>Reach Kc (1</u> 0.720 <u>Reach Kr (1</u> 39.100	Flow (mqd) hth (ft) /days) /days)	<u>Analy</u> <u>R</u> <u>Rea</u>	<u>sis Temper</u> 20.392 <u>each WD F</u> 29.318 a <u>ch NH3-N</u> 1.96 <u>Kr Equatio</u> Tsivogloi	ature (®C) Ratio (mg/L) on u	<u>Analysis pH</u> 5.035 <u>Reach Velocity (fps)</u> 0.184 <u>Reach Kn (1/days)</u> 0.721 <u>Reach DO Goal (mg/L)</u> 5			-
<u>Reach Travel Time (days)</u> 0.183		TravTime (days)	Subreach CBOD5 (mg/L)	Results NH3-N (mg/L)	D.O. (mg/L)				
		0.018 0.037 0.055	3.75 3.70 3.65	1.93 1.91 1.89	8.18 8.18 8.18				
		0.073	3.60 3.56	1.86 1.83	8.18 8.18				
		0.110 0.128 0.146	3.51 3.46 3.42	1.81 1.79 1.76	8.18 8.18 8.18				
		0.165 0.183	3.37 3.32	1.74 1.72	8.18 8.18				
Record: I4 → 1 of 1	> > >> >> >> >> >> >> >> >> >> >> >> >>	™ No Fili	ter Sear	ch		• 1: 1		1	
Print	< Back		<u>N</u> e>	(t >		Archive	Cancel		

NPDES Permit No. PA0246727

	rptModelS	pecs —		×	M	rptDC	DSim	- 🗆	×
	WGM 7.0.04 Parama In Bulk B14.5 Method BMPE D11012715 Method B M D1002715 Method B M	o dellarg Specifications Les legs hel 010 end CB Office Les legs hel Wach Tanel Tens Ten parten Aljai fo Les Batend Batrology			or in is ch	INF Back Example INF Example 2 NOT Example 2 NOT 3 NOT	WGM 7.0 D.0. Simulation Intervention Int	5. Endots all 8 and 9 and 9 and 9 and 9 and 9 and 9 and 9 and 10 and 9 and 10 and 9 and 10 and 9 and 10 and 10	
	Me ming, M ap 18, 302 5	Vandor 10b	Page 1 of 1			Munning, Marg. 19, 2 (20)	Version 1. Sk	Page 1 of 1	
Page	e⊣← 1 →	No Fi	lter		Pa	ge: 💷 🖣 1	* * * *	No Filter	

	Basin Ch
	Param
	DRNAF
IDENTIFY A STUDY AREA	PRECI
Basin Delineated 🗸 🔒 🕂	STRDE
_	ROCKE
SELECT SCENARIOS 👻	CARBO
BUILD A REPORT Report Built >	
	Low-Flo
characteristics here, then select the	Param
Then click the "Build Report" button	DRNAF
	PRECI
✓ Show Basin Characteristics	STRDE
	ROCKE
Select available reports to display:	CARBO
Basin Characteristics Report	Low-Flo
	PII: Pred
 Scenario Flow Reports 	Statist
⊘ Continue	7 Day 2
	30 Day
	7 Day
POWERED BY WIM	30 Day
USGS Home Contact USGS Search USGS V	90 Day

asin Characteristics			
arameter Code	Parameter Description	Value	Unit
RNAREA	Area that drains to a point on a stream	18.2	square miles
RECIP	Mean Annual Precipitation	40	inches
TRDEN	Stream Density total length of streams divided by drainage area	1.48	miles per square mile
OCKDEP	Depth to rock	4.8	feet
ARBON	Percentage of area of carbonate rock	0	percent

DW-Flow Statistics Parametersilow Poor Region 2 arameter Code Parameter Name Value Units

RNAREA	Drainage Area	18.2	square miles		4.93	1280	
RECIP	Mean Annual Precipitation	40	inches		35	50.4	
RDEN	Stream Density	1.48	miles per squa	re mile	0.51	3.1	
OCKDEP	Depth to Rock	4.8	feet		3.32	5.65	
RBON	Percent Carbonate	0	percent		0	99	
Prediction Interval-I o	CDO GLOW How Region 21						
atistic	wer, Plu: Prediction Interval-Upper, SEp: S	tandard Eri	ror of Prediction, SE Value	: Standard Error Unit	r (other see rep SE	oort) SEp	
atistic Day 2 Year Low Flow	wer, Plu: Prediction Interval-Upper, SEp: S	tandard Eri	ror of Prediction, SE Value 2.4	Standard Error Unit ft^3/s	r (other see rep SE 38	SEp 38	
atistic Day 2 Year Low Flor Day 2 Year Low Flor	wer, Plu: Prediction Interval-Upper, SEp: S M	tandard Er	ror of Prediction, SE Value 2.4 3.15	Standard Error Unit ft^3/s ft^3/s	r (other see rep SE 38 33	38 33	
atistic Day 2 Year Low Flow Day 2 Year Low Flo Day 10 Year Low Flo	wer, Plu: Prediction Interval-Upper, SEp: S W DW	tandard Eri	ror of Prediction, SE Value 2.4 3.15 1.25	Standard Error Unit ft^3/s ft^3/s ft^3/s	r (other see rep SE 38 33 51	SEp 38 33 51	
atistic Day 2 Year Low Flou Day 2 Year Low Flo Day 10 Year Low Flo Day 10 Year Low Flo	wer, Plu: Prediction Interval-Upper, SEp: S w DW DW Iow	tandard Eri	ror of Prediction, SE Value 2.4 3.15 1.25 1.62	E Standard Error Unit ft^3/s ft^3/s ft^3/s ft^3/s ft^3/s	r (other see rep SE 38 33 51 46	SEp 38 33 51 46	
atistic Day 2 Year Low Flov Day 2 Year Low Flov Day 10 Year Low Flov Day 10 Year Low Flov Day 10 Year Low F	wer, Plu: Prediction Interval-Upper, SEp: S w ow ow low low	tandard Eri	ror of Prediction, SE Value 2.4 3.15 1.25 1.62 2.47	E Standard Error Unit ft^3/s ft^3/s ft^3/s ft^3/s ft^3/s ft^3/s	r (other see rep SE 38 33 51 46 36	SEp 38 33 51 46 36	

Min Limit Max Limit

NPDES Permit No. PA0246727

StreamStats	Basin Characteristics								🗰 Rep	ort 🚯 About 🤉 Hel
	Parameter Code	Parameter Description			Val	ue Unit				
SELECT A STATE / REGION	DRNAREA	Area that drains to a point on a stre	eam		20.	4 square i	niles	MountUnid	un.	
Pennsylvania 0 V	PRECIP	Mean Annual Precipitation			40	inches		1 2 2	100	
	STRDEN	Stream Density total length of str	reams divide	d by drainage area	a 1.4	8 miles pe	r square mile		E	Base Maps 💊
Basin Delineated	ROCKDEP	Depth to rock			4.7	feet		VI BE	330	Application Layers
	CARBON	Percentage of area of carbonate ro	ick		0	percent		1 The	500	National Lavers
SELECT SCENARIOS V								CE Star	AND T	
BUILD A REPORT Report Built >	Low-Flow Statistics Pa	rameters(Low Flow Region 2)						1-1-2		PA Map Layers
	Parameter Code	Parameter Name	Value	Units		Min Limit	Max Limit	12/05	a de	1 3 36 3
Step 1: You can modify computed basin characteristics here, then select the	DRNAREA	Drainage Area	20.4	square miles		4.93	1280	The Shi		19-50-9/
types of reports you wish to generate.	PRECIP	Mean Annual Precipitation	40	inches		35	50.4	188 A		1132 1
	STRDEN	Stream Density	1.48	miles per squar	e mile	0.51	3.1	The I		1155 1 3
✓ Show Basin Characteristics	ROCKDEP	Depth to Rock	4.7	feet		3.32	5.65			11/2 20
20	CARBON	Percent Carbonate	0	percent		0	99	BRE B		TA VSA
Select available reports to display:	Low-Flow Statistics Flo	w Report [Low Flow Region 2]						St.L		N Part
✓ Basin Characteristics Report	PII: Prediction Interval Statistic	I-Lower, Plu: Prediction Interval-Upper, SE	p: Standard Err	or of Prediction, SE: Value	Standard Error Unit	(other see re SE	port) SEp			
✓ Scenario Flow Reports	7 Day 2 Year Low F	Flow		2.62	ft^3/s	38	38	1 hours		
	30 Day 2 Year Low	Flow		3.45	ft^3/s	33	33	Med 2		
Continue Zoom	7 Day 10 Year Low	Flow		1.34	ft^3/s	51	51	13		Upto gins
Map \$ Lat: 41	30 Day 10 Year Lov	w Flow		1.75	ft^3/s	46	46	a Ca		710 m
POWERED BY WIM	90 Day 10 Year Lov	w Flow		2.7	ft^3/s	36	36		P/	2 // Leaf

	Basin Char
IDENTIFY A STUDY AREA	Paramete
Basin Delineated V and E	DRNAREA
+	PRECIP
SELECT SCENARIOS	STRDEN
BUILD A REPORT Report Built >	ROCKDER
Latr iburg	CARBON
Step 1: You can modify computed basin characteristics here, then select the types of reports you wish to generate.	Low-Flow S
	Paramete
✓ Show Basin Characteristics	DRNAREA
62	PRECIP
Select available reports to display:	STRDEN
	ROCKDER
✓ Basin Characteristics Report	CARBON
✓ Scenario Flow Reports	Low-Flow S
Continue	PII: Predict Statistic
S.C.	7 Day 2 Y
POWERED BY WIM	30 Day 2
Zoom	7 Day 10
USGS Home Contact USGS Search USGS Lat 3	30 Day 10
Notices	90 Day 10

asin Characteristics						
arameter Code	Parameter Description			Value	Unit	
RNAREA	Area that drains to a point on a stre	755	square miles			
RECIP	Mean Annual Precipitation				inches	
TRDEN	Stream Density total length of str	2.34	miles pe	r square mile		
OCKDEP	Depth to rock	4.3	feet			
ARBON	16	percent				
ow-Flow Statistics Pa	arameters(100 Percent (754 square miles) Low Flow Region 2)					
arameter Code	Parameter Name	Value	Units	м	in Limit	Max Limit
RNAREA	Drainage Area	755	square miles	4.	93	1280
RECIP	Mean Annual Precipitation	38	inches	35	5	50.4
TRDEN	Stream Density	2.34	miles per square mile	0.	51	3.1
OCKDEP	Depth to Rock	4.3	feet	3	32	5.65

percent

99

0

w-Flow Statistics Flow Report (100 Percent (754 square miles) Low Flow Region

Percent Carbonate

Prediction Interval-Lower, Plu: Prediction Interval-Upper, SEp: Standard Error of Prediction, SE: Standard Error (other see report)								
atistic	Value	Unit	SE	SEp				
Day 2 Year Low Flow	79.5	ft^3/s	38	38				
Day 2 Year Low Flow	102	ft^3/s	33	33				
Day 10 Year Low Flow	44.9	ft^3/s	51	51				
Day 10 Year Low Flow	58.4	ft^3/s	46	46				
Day 10 Year Low Flow	82.3	ft^3/s	36	36				

16

Existing Effluent Limitations and Monitoring Requirements

	Effluent Limitations						Monitoring Requirements		
Baramatar	Mass Units	s (Ibs/day) ⁽¹⁾		Concentrat	ions (mg/L)		Minimum ⁽²⁾	Required	
Faiameter	Average	Daily	Daily	Average	Weekly	Instant.	Measurement	Sample	
	Monthly	Maximum	Minimum	Monthly	Average	Maximum	Frequency	Туре	
	Poport	Poport	~~~	vvv	~~~	~~~	Continuous	Measured	
	Report	Кероп	~~~		~~~	~~~	Continuous	Measureu	
pH (S.U.)	XXX	XXX	6.0	XXX	ХХХ	9.0	1/day	Grab	
DO	XXX	XXX	5.0	XXX	ххх	ххх	1/day	Grab	
UV Intensity (mW/cm ²)	XXX	XXX	Report	XXX	XXX	XXX	1/day	Recorded	
		24						8-Hr	
CBOD ₅	15	Wkly Avg	XXX	25	40	50	2/month	Composite	
BOD ₅									
Raw Sewage Influent	Report	Report	XXX	Report	XXX	XXX	2/month	Grab	
TSS	18	27 Wkly Ava	xxx	30	45	60	2/month	8-Hr Composite	
TSS									
Raw Sewage Influent	Report	Report	XXX	Report	XXX	XXX	2/month	Grab	
Fecal Coliform (No./100 ml)				200					
May 1 - Sep 30	XXX	XXX	XXX	Geo Mean	XXX	1,000	2/month	Grab	
Fecal Coliform (No./100 ml)				2,000					
Oct 1 - Apr 30	XXX	XXX	XXX	Geo Mean	XXX	10,000	2/month	Grab	
				Report		2007		8-Hr	
Nitrate-Nitrite	XXX	XXX	XXX	Avg Qrtly	XXX	XXX	1/quarter	Composite	
Total Nitrogon	VVV	XXX	XXX	Report	XXX	VVV	1/quarter	Calculation	
Total Nillogen	~~~~			Report		~~~	i/quarter	8-Hr	
TKN	XXX	XXX	XXX	Avg Ortly	XXX	XXX	1/quarter	Composite	
	7000	7007	7000	Report	7000	7000	inquartor	8-Hr	
Total Phosphorus	XXX	XXX	XXX	Avg Qrtly	XXX	XXX	1/quarter	Composite	
								8-Hr	
Total Aluminum	Report	XXX	XXX	Report	XXX	XXX	1/month	Composite	
								8-Hr	
Total Iron	Report	XXX	XXX	Report	XXX	XXX	1/month	Composite	
								8-Hr	
Total Manganese	Report	XXX	XXX	Report	XXX	XXX	1/month	Composite	

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

	Effluent Limitations						Monitoring Re	quirements
Baramatar	Mass Units	s (Ibs/day) ⁽¹⁾		Concentrat	ions (mg/L)		Minimum ⁽²⁾	Required
Parameter	Average	Daily	Daily	Average	Weekly	Instant.	Measurement	Sample
	Monthly	Maximum	Minimum	Monthly	Average	Maximum	Frequency	Туре
Flow (MGD)	Pepart	Poport	x x x	VVV	VVV	VVV	Continuous	Mossured
	Кероп	Кероп				~~~~	Continuous	Ineasureu
pH (S.U.)	XXX	XXX	6.0	XXX	XXX	9.0	1/day	Grab
DO	XXX	XXX	5.0	XXX	XXX	xxx	1/day	Grab
IV Intensity (mW/cm2)	YYY	x x x	Peport	YYY	YYY	YYY	1/day	Recorded
	~~~~	24	Кероп			~~~	1/uay	8-Hr
CBOD₅	15	Wkly Avg	XXX	25	40	50	2/month	Composite
BOD ₅								
Raw Sewage Influent	Report	Report	XXX	Report	XXX	XXX	2/month	Grab
		27						8-Hr
TSS	18	Wkly Avg	XXX	30	45	60	2/month	Composite
TSS			2004		2004	2004		
Raw Sewage Influent	Report	Report	XXX	Report	XXX	XXX	2/month	Grab
May 1 - Sep 30	XXX	XXX	x y y	200 Geo Mean	x y y	1 000	2/month	Grab
Fecal Coliform (No /100 ml)				2 000		1,000	2/1101101	Giab
Oct 1 - Apr 30	XXX	XXX	XXX	Geo Mean	XXX	10.000	2/month	Grab
								8-Hr
Total Aluminum	Report	XXX	XXX	Report	XXX	XXX	1/month	Composite
								8-Hr
Total Iron	Report	XXX	XXX	Report	XXX	XXX	1/month	Composite
								8-Hr
Total Manganese	Report	XXX	XXX	Report	XXX	XXX	1/month	Composite
		2004		Report	2004	2004		8-Hr
Nitrate-Nitrite	XXX	XXX	XXX	Avg Qrtly	XXX	XXX	1/quarter	Composite
Total Nitra gap	VVV	VVV	VVV	Report	VVV	VVV	1/20102102	Coloulation
i otai Nitrogen	~~~	~~~	~~~	Avg Qrtiy	~~~	~~~	1/quarter	
TKN	XXX	xxx	xxx	Ava Orthy	xxx	xxx	1/quarter	Composite
				Avgoing			i/quarter	Composite

#### 3800-PM-BPNPSM0011 Rev. 10/2014 Permit

## Permit No. PA0246727

			Effluent L	imitations			Monitoring Red	quirements
Baramotor	Mass Units	(lbs/day) ⁽¹⁾		Concentrat	ions (mg/L)		Minimum ⁽²⁾	Required
Farameter	Average	Daily	Daily	Average	Weekly	Instant.	Measurement	Sample
	Monthly	Maximum	Minimum	Monthly	Average	Maximum	Frequency	Туре
				Report				8-Hr
Total Phosphorus	XXX	XXX	XXX	Avg Qrtly	XXX	XXX	1/quarter	Composite

Compliance Sampling Location:

Other Comments:

	Tools and References Used to Develop Permit
	WQM for Windows Model (see Attachment
	PENTOXSD for Windows Model (see Attachment )
	TRC Model Spreadsheet (see Attachment )
	Temperature Model Spreadsheet (see Attachment
	Toxics Screening Analysis Spreadsheet (see Attachment )
	Water Quality Toxics Management Strategy, 361-0100-003, 4/06.
	Technical Guidance for the Development and Specification of Effluent Limitations, 362-0400-001, 10/97.
	Policy for Permitting Surface Water Diversions, 362-2000-003, 3/98.
	Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 362-2000-008, 11/96.
	Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97.
	Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 362-2183-004, 12/97.
	Pennsylvania CSO Policy, 385-2000-011, 9/08.
$\square$	Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.
	Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 391-2000-002, 4/97.
	Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97.
	Implementation Guidance Design Conditions, 391-2000-006, 9/97.
$\boxtimes$	Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004
	Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges,
	391-2000-008, 10/1997.
	Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 391-2000-010, 3/99.
$\boxtimes$	Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 391-2000-011, 5/2004.
$\boxtimes$	Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97.
	Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 391-2000-014, 4/2008.
	Implementation Guidance Total Residual Chlorine (TRC) Regulation, 391-2000-015, 11/1994.
	Implementation Guidance for Temperature Criteria, 391-2000-017, 4/09.
	Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/97.
	Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97.
	Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 391-2000-021, 3/99.
	Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/1999.
	Design Stream Flows, 391-2000-023, 9/98.
	Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 391-2000-024, 10/98.
	Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97.
$\boxtimes$	Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.
	SOP:
	Other: