

 Application Type
 Renewal

 Facility Type
 Industrial

 Major / Minor
 Minor

NPDES PERMIT FACT SHEET INDIVIDUAL INDUSTRIAL WASTE (IW) AND IW STORMWATER

 Application No.
 PA0247154

 APS ID
 484376

 Authorization ID
 1301704

Applicant and Facility Information

Applicant Name	Possum Valley Municipal Authority Adams County	Facility Name	Possum Valley Municipal Authority Water System			
Applicant Address	609 Clearview Road	Facility Address	70 Opossum Hill Road			
	Aspers, PA 17304-9703	_	Aspers, PA 17304			
Applicant Contact	Jeffrey Taylor	Facility Contact	Jeffery Taylor			
Applicant Phone	(717) 677-8551	Facility Phone	(717) 677-8551			
Client ID	6159	Site ID	454084			
SIC Code	4952	Municipality	Menallen Township			
SIC Description	Trans. & Utilities - Sewerage Systems	County	Adams			
Date Application Receiv	ved January 2, 2020	EPA Waived?	Yes			
Date Application Accep	ted January 15, 2020	If No, Reason				
Purpose of Application	NPDES permit renewal.					

Summary of Review

Possum Valley Municipal Authority (PVMA) has applied to the Pennsylvania Department of Environmental Protection (DEP) for reissuance of its NPDES permit. The permit was last reissued on June 29, 2015 and became effective on July 1, 2015. The permit will expire on June 30, 2020.

This facility is not covered under Effluent Limitation Guidelines (ELG). The discharge flow design is 0.0065 MGD. The facility discharges membrane filter backwash water at a rate of 0.0006 MGD. The discharge through Outfall 001 is into an Unnamed Tributary (UNT) to Opossum Creek.

The WQM Part II permit is not needed for PVWA facility because this is not treatment of wastewater. Additionally, backwash is a combination of compressed air and filtered water, and not treated before discharge to surface.

Based on the review outline in this fact sheet, it is recommended that the permit be drafted and published in the Pennsylvania Bulletin for public comments for 30 days.

Approve	Deny	Signatures	Date
х		<i>Hilaryle</i> Hilary H. Le / Environmental Engineering Specialist	June 12, 2020
		Daniel W. Martin, P.E. / Environmental Engineer Manager	
		Maria D. Bebenek, P.E. / Clean Water Program Manager	

ischarge, Receiving waters and water Supply informa	tion				
Outfall No. 001	Design Flow (MGD)	0.0006			
Latitude 39° 59' 29.00"	Longitude	-77º 14' 14.65"			
Quad Name Biglerville	Quad Code				
Wastewater Description: Water Treatment Effluent					
Unnamed Tributary to Opossum Receiving Waters Creek (TSF)	Stream Code	09107			
NHD Com ID 57469817	RMI	0 13 mile			
Drainage Area 0.26 mi ²	Yield (cfs/mi ²)	0.37			
Q ₇₋₁₀ Flow (cfs) 0.095	Q7-10 Basis	USGS StreamStats			
Elevation (ft) 700	Slope (ft/ft)				
Watershed No. 7-F	Chapter 93 Class.	TSF			
Existing Use	Existing Use Qualifier				
Exceptions to Use	Exceptions to Criteria				
Assessment Status Attaining Use(s)					
Cause(s) of Impairment					
Source(s) of Impairment					
TMDL Status End date 7/8/2013	Name Opossum C	reek			
Nearest Downstream Public Water Supply Intake	Nrightsville Water Supply Co.	., York County			
PWS Waters Susquehanna River	Flow at Intake (cfs)				
PWS RMI 29 miles	Distance from Outfall (mi) Approximate 80 miles				

Changes Since Last Permit Issuance: none

Drainage Area

The discharge is to unnamed tributary of Swift Run at RMI 0.13 miles. A drainage area upstream of the discharge is estimated to be 0.26 mi.², according to USGS StreamStats available at <u>https://streamstats.usgs.gov/ss/</u>.

Stream Flow

According to USGS StreamStats, the Q_{7-10} at the discharge point is 0.095 cfs and the drainage area is 0.26 mi.² which results in a Q_{7-10} low flow yield of 0.37 cfs/mi.². This information is used to obtain a chronic or 30-day (Q_{30-10}), and an acute or 1-day (Q_{1-10}) exposure stream flow for the discharge point as follows (Guidance No. 391-2000-023):

 $Q_{7-10} = 0.095 \text{ cf}$

Low Flow Yield = 0.095 cfs / 0.26 mi.² ≈ 0.365 (0.37) cfs/mi.²

$$Q_{30-10} = 1.36 * 0.095 \text{ cfs} \approx 0.129 \text{ cfs}$$

 $Q_{1-10} = 0.64 * 0.095 \text{ cfs} \approx 0.061 \text{ cfs}$

The resulting Q_{7-10} dilution ratio is: Q_{stream} / $Q_{discharge}$ = 0.095 cfs / [0.0006 MGD * (1.547 cfs/MGD)] = 102.3:1

Public Water Supply

The nearest downstream public water supply intake is the Wrightsville Water Supply Co. on Susquehanna River in York County, approximately 80 miles downstream of this discharge. Given the nature and dilution, the discharge is not expected to significantly impact the water supply.

Treatment Facility Summary								
Treatment Facility Name: Possum Valley Municipal Authority Water Filtration Plant								
WQM Permit No.	Issuance Date							
		1						
	Degree of			Avg Annual				
Waste Type	Treatment	Process Type	Disinfection	Flow (MGD)				
Industrial								
		·	·					
Hydraulic Capacity	Organic Capacity			Biosolids				
(MGD)	(lbs/day)	Load Status	Biosolids Treatment	Use/Disposal				

Changes Since Last Permit Issuance: none

The process wastewater is backwash from drinking water membrane filter.

Compliance History				
Summary of DMRs:	See DMR reported from May 1, 2019 to April 30, 2020 Table below (Page # 4).			
Summary of Inspections:	 11/20/2017: Mr. Bowen, DEP WQS, conducted compliance evaluation inspection. Effluent was clear. The field test results were within permit limits. There were no violations noted during inspection. 3/1/2016: Mr. Haines, DEP WQS, conducted compliance evaluation inspection. Effluent was clear. The field test results were within permit limits. The industrial waste discharge is made up of the filter backwash from the two membrane filtration units used to filter the drinking water. 			
Other Comments:	There are currently no open violations associated with the permittee or the facility.			

Other Comments: The DMR data did not indicate any limit exceedances.

Compliance History

DMR Data for Outfall 001 (from May 1, 2019 to April 30, 2020)

Parameter	APR-20	MAR-20	FEB-20	JAN-20	DEC-19	NOV-19	OCT-19	SEP-19	AUG-19	JUL-19	JUN-19	MAY-19
Flow (MGD)												
Average Monthly		0.0006					0.0006			0.0006	0.0006	
Flow (MGD)												
Daily Maximum		0.0006					0.0006			0.0006	0.0006	
pH (S.U.)												
Minimum		6.6					6.6			6.3	6.5	
pH (S.U.)												
Maximum		6.7					6.8			6.7	6.5	
TRC (mg/L)												
Average Monthly		< 0.1					< 0.1			< 0.1	< 0.1	
TRC (mg/L)												
Instantaneous												
Maximum		< 0.1					< 0.1			< 0.1	< 0.1	
TSS (mg/L)												
Average Monthly		4.0			5			3			1	
TSS (mg/L)												
Daily Maximum		4.0			5			3			1	
Total Aluminum												
(mg/L)												
Average Monthly		0.2			0.1			0.2			0.1	
Total Aluminum												
(mg/L)												
Daily Maximum		0.22			0.13			0.16			0.1	
Total Iron (mg/L)												
Average Monthly		0.3			0.4			0.5			0.3	
Total Iron (mg/L)												
Daily Maximum		0.28			0.4			0.45			0.31	
Total Manganese												
(mg/L)		0.005						0.04			0.04	
Average Monthly		0.005			< 0.1			0.01			0.01	
I otal Manganese												
(mg/L)		0.005			0.05							
Daily Maximum		0.005			< 0.05			0.014			0.014	

Outfall No.	001	Design Flow (MGD)	0.0006
Latitude	39º 59' 29.00"	Longitude	-77º 14' 15.00"
Wastewater De	scription: Water Treatment Effluent		

Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Parameter	Limit (mg/l)	SBC	Federal Regulation	State Regulation
рН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)

Water Quality-Based Limitations / Best Professional Judgment (BPJ) Limitations

Effluent Limitations Evaluation:

Evaluation of effluent limitations for this facility is based on Best Practicable Control Technology Currently Available (BPT), according to guidance document 362-2183-003 (*Technology-Based Control Requirements for Water Treatment Plant Wastes*). The attached TRC Excel spreadsheet calculator, which uses the equations and calculations from guidance document 391-2000-015, was also used. However, the TRC limits from the BPT document will be used in the permit since they are more stringent. The existing instantaneous maximum TRC limitation will be changed from 1.6 mg/L to 1.0 mg/L to reflect the requirements of 362-2183-003 and remain in the proposed permit due to anti-backsliding requirements. Additionally, past DMRs and inspection reports show that the facility has been consistently achieving concentrations under these limits.

Guidance document 362-2183-003 defines Best Practicable Control Technology Currently Available (BPT) effluent control requirements for filter backwash wastewater as follows:

Parameter	Monthly Average (mg/L)	Daily Maximum (mg/L)			
Total Suspended Solids	30	60			
Total Iron	2	4			
Total Aluminum	4	8			
Total Manganese	1	2			
Flow	Monitor				
рН	6 to 9 at all times				
Total Residual Chlorine	0.5	1.0			

PENTOXSD was run for Total Iron, Total Aluminum, and Total Manganese (see attached data). The model results indicate limits that are less stringent than the above technology limits for all three parameters. Therefore, the renewed permit will reflect the above BPT limitations. These limits will remain in the proposed permit.

Toxics:

The attached toxics screening analysis spreadsheet indicates phenolics as a parameter of concern. However, since the phenolics sample was non-detect and no public water supply exists nearby, PENTOXSD was not run for phenolics.

No additional toxics monitoring requirements are recommended for the permit.

Chesapeake Bay Strategy:

This is a non-significant industrial discharge facility that will not need a Total Phosphorus (TP) or Total Nitrogen (TN) loading cap.

A TN and TP "Monitor & Report" requirement will not be necessary since this facility discharges wastewater without any chemical additives containing nitrogen or phosphorus. The Supplement to Phase II Watershed Implementation Plan states the following:

"For non-significant IW facilities, monitoring and reporting of TN and TP will be required throughout the permit term in renewed or amended permits anytime the facility has the potential to introduce a net TN or TP increase to the load contained within the intake water used in processing. In general, facilities that discharge groundwater and cooling water with no addition of chemicals containing N or P do not require monitoring."

NPDES Permit Fact Sheet Possum Valley Municipal Authority Water System Antidegradation (93.4):

The effluent limits for this discharge have been developed to ensure that existing in-stream water uses and the level of water quality necessary to protect the existing uses are maintained and protected. No High Quality Waters are impacted by this discharge. No Exceptional Value Waters are impacted by this discharge.

303(d) Listed Streams:

This discharge is not located on a 303(d) listed stream segment. A TMDL is currently proposed for Opossum Creek in order to address siltation issues. This facility is not contained in the draft TMDL as it does not contribute a significant sediment load to the Opossum Creek watershed.

Class A Wild Trout Fisheries:

No Class A Wild Trout Fisheries are impacted by this discharge.

WQM 7.0 / PENTOXSD Data:

The following two nodes were used in the modeling effort.

Discharge Flow:

Node 1:	Outfall 001 on UNT Ope	ossum Creek (09107)
	Elevation:	700 ft (USGS National Map Viewer)
	Drainage Area:	0.26 mi. ² (USGS PA StreamStats)
	River Mile Index:	0.13 (PA DEP eMapPA)
	Low Flow Yield:	0.37 cfs/mi. ²
	Discharge Flow:	0.0006 MGD
Node 2:	Just before confluence	with Opossum Creek
	Elevation:	653 ft (USGS National Map Viewer)
	Drainage Area:	0.27 mi. ² (USGS PA StreamStats)
	River Mile Index:	0.01 (PA DEP eMapPA)
	Low Flow Yield:	0.37 cfs/mi. ²

0.0 MGD

6

	TOXICS SCREENING ANALYSIS WATER QUALITY POLLUTANTS OF CONCERN VERSION 2.7 CLEAR FORM								
	Possum Valley MA Analysis Hardness (mg/L): 44 Stream Flow, Q7-10 (cfs): 0.095			NPDES Permit N Discharge Flow (lo.: MGD):	PA0247 0.0065	154	Analy	Outfall: 001 vsis pH (SU): 7
	Parameter	M	aximum Concentration in pplication or DMRs (µg/L)	Most Stringent Criterion (µg/L)	Car PENTO)	ndidate for (SD Modeling?	Most Str WQBEL	ringent . (µg/L)	Screening Recommendation
	Total Dissolved Solids			500000					
	Chloride			250000					
	Bromide	<		N/A					
6	Sulfate			250000					
	Fluoride	<		2000					
	Total Aluminum	<	1.5	750	No (Value < QL)	13,94	6.26	
	Total Antimony	<		5.6					
	Total Arsenic			10					
	Total Barium	<		2400					
	Total Beryllium	<		N/A					
	Total Boron	<		1600					
	Total Cadmium	<		0.271					
	Total Chromium	<		N/A					
	Hexavalent Chromium	<		10.4					
	Total Cobalt	<		19					
2	Total Copper	<		9.3					
	Total Cyanide	<		N/A					
1	Total Iron		3	1500		No	43,51	6.80	
	Dissolved Iron			300					
	Total Lead	<		3.2					
	Total Manganese		0.06	1000		No	29,01	1.20	
	Total Mercury	<		0.05					
	Total Molybdenum	<		N/A					
	Total Nickel			52.2					
	Total Phenols (Phenolics)			5					
	Total Selenium	<		5.0					
	Total Sliver	<		3.8					
		<		0.24					
	I otal Zinc	<		119.8					

TRC EVAL	UATION							
Input appropriate values in A3:A9 and D3:D9								
0.095	= Q stream	n (cfs)	0.5	= CV Daily				
0.0006	= Q discha	arge (MGD)	0.5	= CV Hourly				
30	= no. samp	oles	1	= AFC_Partia	al Mix Factor			
0.3	= Chlorine	Demand of Stream	1	= CFC_Partial Mix Factor				
0	= Chlorine	Demand of Discharge	15	= AFC_Crite	ria Compliance Time (min)			
0.5	= BAT/BPJ	l Value	= CFC_Crite	ria Compliance Time (min)				
0	= % Facto	r of Safety (FOS)	=Decay Coet	fficient (K)				
Source	Reference	AFC Calculations		Reference	CFC Calculations			
TRC	1.3.2.iii	WLA afc =	32.668	1.3.2.iii	WLA cfc = 31.841			
PENTOXSD TRG	5.1a	LTAMULT afc =	0.373	5.1c	LTAMULT cfc = 0.581			
PENTOXSD TRG	5.1b	LTA_afc=	12.173	5.1d	LTA_cfc = 18.511			
Source		Effluer	nt Limit Calcu	lations				
PENTOXSD TRG	6 5.1f		AML MULT =	1.231				
PENTOXSD TRG	6 5.1g	AVG MON L	.IMIT (mg/l) =	0.500	BAT/BPJ			
		INST MAX L	.IMIT (mg/l) =	1.635				
	(040/a/ k*		at 040/04*					
WLA alc	(.019/e(-k	AFU_IC)) + [(AFU_TC Q AFC_Vo*Oo*Vo/Od\]*(4_	5 .019/Qa (E09/400)	e(-K AFC_IC)				
I TAMULT afc	EXP((0.5*LN	(cvh^2+1))-2 326*1 N(cvh^2	2+1)^0 5)					
ITA afc	wla afc*l TA	MULT afc	2.1, 0.0,					
2 m_uio	ina_are 217	linoer_uio						
WLA cfc	(.011/e(-k*	CFC tc) + [(CFC Yc*Qs	s*.011/Qd*e	(-k*CFC tc))				
-	+ Xd + ((CFC_Yc*Qs*Xs/Qd)]*(1-	FOS/100)	. –				
LTAMULT_cfc	EXP((0.5*LN	(cvd^2/no_samples+1))-2.3	326*LN(cvd^2	2/no_samples+	1)^0.5)			
LTA_cfc	wla_cfc*LTA	MULT_cfc						
AML MULT	EXP(2.326*L	N((cvd^2/no_samples+1)^	0.5)-0.5*LN(c	vd^2/no_samp	es+1))			
AVG MON LIMIT	MIN(BAT_B	PJ,MIN(LTA_afc,LTA_cfc)*	AML_MULT)					
INST MAX LIMIT	1.5*((av_m	non_limit/AML_MULT)/L1	FAMULT_af	c)				

Effluent Limits Hydrodynamics Wasteload Allocations Effluent Limits RMI Name Permit Number Disc Flow (mgd) (mgd) 0.13[Possum Valley PA0247154 0.0006 Effluent Max. Most Stringent Limit Governing (µg/L) Umit Criterion WQBEL WQBEL Parameter Limit (µg/L) Criterion Daily Limit (µg/L) WQBEL WQBEL MANGANESE 29011.2 THH 45262.14 29011.2 THH TOTAL IRON 43516.8 CFC 67893.21 43516.8 CFC mber of Samples 4 Search Print <_Back Next > Archive Cancel]		Analysis	Results)
Hydrodynamics Wasteload Allocations Effluent Limits RMI Name Permit Number Disc Flow (mgd) 0.13 Possum Valley PA0247154 0.0006 Effluent Effluent Max. Most Stringent Parameter Effluent Daily WQBEL WQBEL Parameter (µg/L) Criterion Uµg/L) Criterion MANGANESE 29011.2 THH 45262.14 29011.2 THH TOTAL IRON 43516.8 CFC 67893.21 43516.8 CFC Record: H 1 of 1 H >> X. No Filter Search			Effluent Li	mits				
RMI Name Permit Number Disc Flow (mgd) 0.13 Possum Valley PA0247154 0.0006 Imit Governing Daily Wost Stringent Parameter Limit Governing Daily (µg/L) Criterion Umit WQBEL WQBEL µg/L) Criterion Uµg/L) Criterion Criterion MANGANESE 29011.2 THH 45262.14 29011.2 THH TOTAL IRON 43516.8 CFC 67893.21 43516.8 CFC Record: H 1 of 3 H >* No Filter Search mber of Samples 4 Print <back< td=""> Next > Archive Cancel</back<>	Hydrodynamics	Wasteload Allocatio	ons	Effluent Limit	s			
0.13 Possum Valley PA0247154 0.0006 Parameter Effluent Limit (µg/L) Max. Daily Limit (µg/L) Most Stringent WQBEL WQBEL WQBEL > ALUMINUM 13946.26 AFC 21758.4 13946.26 AFC MANGANESE 29011.2 THH 45262.14 29011.2 THH TOTAL IRON 43516.8 CFC 67893.21 43516.8 CFC Record: H 1 of 1 H X No Filter Search mber of Samples 4 Next > Archive Cancel	RMI N-	ame Permit Nur	mber Disc Flow (mgd)					_
Effluent Max. Most Stringent Daily Limit Governing Daily Limit Governing Limit WQBEL WQBEL (µg/L) Criterion Limit WQBEL WQBEL MANGANESE 29011.2 THH 45262.14 29011.2 THH TOTAL IRON 43516.8 CFC 67893.21 43516.8 CFC Record: H < 1 of 3	0.13 Possum Valley	V PA02471	54 0.000	J6				
Image: Second and the second and th	Effluent Max. Most Stringent Limit Governing Limit WQBEL WQBEL (ug/L) Criterion (ug/L) Criterion							
MANGANESE 29011.2 THH 45262.14 29011.2 THH TOTAL IRON 43516.8 CFC 67893.21 43516.8 CFC Record: H 1 of 3 H K No Filter Search Record: H 1 of 1 H K No Filter Search mber of Samples 4 Print < Back	ALUMINUM	13946.26	AFC	21758.4	13946.26	AFC	Т	
TOTAL IRON 43516.8 CFC 67893.21 43516.8 CFC Record: H < 1 of 3	MANGANESE	29011.2	THH	45262.14	29011.2	THH		
Record: H 1 of 3 > H > Search Record: H 1 of 1 > H > X No Filter mber of Samples 4 Print Mext	TOTAL IRON	43516.8	CFC	67893.21	43516.8	CFC		
Print Archive Cancel	Record: I4 4 1 of 3 Record: I4 4 1 of 1	► ► ► ► To Filter	Search					7
Print Archive Cancel	mber of Samples 4							
	Print	< <u>B</u> ack	<u>N</u> ext >	_	Archive	<u></u>	ancel	

NPDES Permit Fact Sheet

Possum Valley Municipal Authority Water System

-8	Anal	lysis Results WQM 7.0			—	\Box \times
Hydrodynamics	NH3-N Allocations	D.O. Allocations	D.O. Simulation	n Effluent Li	mitations	· · · · · · · · · · · · · · · · · · ·
1		Permit N	lumber Disc Flow		-	
	RMI Discharg	e Name	(mgd)			
	0.13 Possum Valley	V PA024	7154 0.0006		-	
		Effluent Limit	Effluent Limit Efflu	ient Limit		
	Parameter	30 Day Averag (mg/L)	e Maximum Mi (mg/L) (1	inimum mg/L)		
	CBOD5	25	50			
	Dissolved Oxygen	25	50	5		
	Record: I 4 4 1 of 1	▶ ▶ ▶* To Filte	Search			
,						
		1		1		
Print	< <u>B</u> ack	<u>N</u> ext >	Archiv	e	Cancel	

Existing Effluent Limitations and Monitoring Requirements

	Effluent Limitations							quirements
Baramatar	Mass Units	; (lbs/day) ⁽¹⁾		Concentrat	Minimum ⁽²⁾	Required		
	Average Monthly	Daily Maximum	Minimum	Average Quarterly	Daily Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report	xxx	XXX	xxx	xxx	Daily when Discharging	Estimate
pH (S.U.)	XXX	xxx	6.0	XXX	XXX	9.0	Daily when Discharging	Grab
TRC	XXX	XXX	XXX	0.5 Avg Mo	XXX	1.0	Daily when Discharging	Grab
TSS	XXX	xxx	xxx	30.0	60.0	75	1/quarter	24-Hr Composite
Total Aluminum	XXX	xxx	xxx	4.0	8.0	10	1/quarter	24-Hr Composite
Total Iron	XXX	XXX	xxx	2.0	4.0	5	1/quarter	24-Hr Composite
Total Manganese	XXX	XXX	xxx	1.0	2.0	2.5	1/quarter	24-Hr Composite

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

		Monitoring Requirements						
Parameter	Mass Units (Ibs/day) ⁽¹⁾			Concentrat	Minimum ⁽²⁾	Required		
	Average Monthly	Daily Maximum	Minimum	Average Quarterly	Daily Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report	xxx	xxx	xxx	xxx	Daily when Discharging	Estimate
pH (S.U.)	XXX	XXX	6.0	XXX	XXX	9.0	Daily when Discharging	Grab
TRC	XXX	XXX	xxx	0.5 Avg Mo	XXX	1.0	Daily when Discharging	Grab
TSS	XXX	XXX	xxx	30.0	60.0	75.0	1/quarter	24-Hr Composite
Total Aluminum	XXX	xxx	xxx	4.0	8.0	10.0	1/quarter	24-Hr Composite
Total Iron	ХХХ	XXX	xxx	2.0	4.0	5.0	1/quarter	24-Hr Composite
Total Manganese	XXX	XXX	XXX	1.0	2.0	2.5	1/quarter	24-Hr Composite

Compliance Sampling Location:

Other Comments:

	Tools and References Used to Develop Permit
	WQM for Windows Model (see Attachment
	PENTOXSD for Windows Model (see Attachment
	TRC Model Spreadsheet (see Attachment
	Temperature Model Spreadsheet (see Attachment)
	Toxics Screening Analysis Spreadsheet (see Attachment
	Water Quality Toxics Management Strategy, 361-0100-003, 4/06.
	Technical Guidance for the Development and Specification of Effluent Limitations, 362-0400-001, 10/97.
	Policy for Permitting Surface Water Diversions, 362-2000-003, 3/98.
	Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 362-2000-008, 11/96.
	Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97.
	Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 362-2183-004, 12/97.
	Pennsylvania CSO Policy, 385-2000-011, 9/08.
	Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.
	Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 391-2000-002, 4/97.
	Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97.
	Implementation Guidance Design Conditions, 391-2000-006, 9/97.
	Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004.
	Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 391-2000-008, 10/1997.
	Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 391-2000-010, 3/99.
\square	Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 391-2000-011, 5/2004.
	Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97.
	Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 391-2000-014, 4/2008.
	Implementation Guidance Total Residual Chlorine (TRC) Regulation, 391-2000-015, 11/1994.
	Implementation Guidance for Temperature Criteria, 391-2000-017, 4/09.
	Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/97.
	Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97.
	Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 391-2000-021, 3/99.
	Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/1999.
	Design Stream Flows, 391-2000-023, 9/98.
	Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 391-2000-024, 10/98.
	Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97.
	Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.
	SOP:
	Other:

Dasin Characteristics Parameter Code

DRNAREA

BSI OPD

ROCKDEP

Basin Characteristics

StreamStats Basin Delineated â + p 1: You can modify computed basin aracteristics here, then select the es of reports you wish to generate. an click the "Build Report" button Ē ✓ Show Basin Characteristics Select available reports to display: ✓ Basin Characteristics Report Scenario Flow Reports POWERED BY WIM Zoom Map Lat:

StreamStats	
Basin Delineated 👒	^
SELECT SCENARIOS 🗸	+
BUILD A REPORT Report Built >	
Step 1: You can modify computed basin characteristics here, then select the types of reports you with to generate. Then click the "Build Report" button	B
✓ Show Basin Characteristics	
Select available reports to display:	
✓ Basin Characteristics Report	F
Scenario Flow Reports	/
Continue	
POWERED BY WIM	Zoom
USGS Home Contact USGS Search USGS Accessibility FOIA Privacy Policy &	Lat: 3

Parameter Code	Parameter Description			Value	Unit
DRNAREA	Area that drains to a point on a stream	n		0.26	square miles
BSLOPD	Mean basin slope measured in degree	s		9.2	degrees
ROCKDEP	Depth to rock			5.2	feet
URBAN	Percentage of basin with urban develo	pment		0	percent
Low-Flow Statistics Parameter	S(Low Flow Region 1)				
Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	0.26	square miles	4.78	1150
BSLOPD	Mean Basin Slope degrees	9.2	degrees	1.7	6.4
ROCKDEP	Depth to Rock	5.2	feet	4.13	5.21
URBAN	Percent Urban	0	percent	0	89
Low-Flow Statistics Disclaimer	'S(Low Flow Region 1)				
One or more of the parame	ters is outside the suggested range. Estimates	were extrap	olated with unknown erro	ors	
Low-Flow Statistics Flow Repo	rt[Low Flow Region 1]				
Statistic			Value		Unit
7 Day 2 Year Low Flow			0.175		ft^3/s
30 Day 2 Year Low Flow			0.19		ft^3/s
7 Day 10 Year Low Flow			0.0954		ft^3/s
30 Day 10 Year Low Flow			0.108		ft^3/s

NPDES Permit No. PA0247154

URBAN Percentage of basin with urban development 0 percent Low-Flow Statistics Parameters[Low Flow Region 1] Parameter Code Parameter Name Value Units Min Limit Max Limit DRNAREA Drainage Area 0.27 square miles 4.78 1150 BSLOPD 9.1 degrees 1.7 6.4 Mean Basin Slope degrees

Value

0.27

9.1

5.2

4.13

0

Unit

feet

square miles

5.21

89

degrees

ROCKDEP Depth to Rock 5.2 feet URBAN Percent Urban 0 percent

Parameter Description

Depth to rock

Area that drains to a point on a stream

Mean basin slope measured in degrees

Low-Flow Statistics Disclaimers(Low Flow Region 1)

Low-Flow Statistics Flow Report[Low Flow Region 1]		
Statistic	Value	Unit
7 Day 2 Year Low Flow	0.179	ft^3/s
30 Day 2 Year Low Flow	0.195	ft^3/s
7 Day 10 Year Low Flow	0.0975	ft^3/s
30 Day 10 Year Low Flow	0.11	ft^3/s
90 Day 10 Year Low Flow	0.124	ft^3/s

NPDES Permit No. PA0247154

	rptEffLimits	_		×		rpt_WL4	4	-		×
	WGM <u>EVP Rate</u> <u>EVP Rate</u> RE 2 RM Nove Parel Noview 212 ResearValley PADD 310	T.0 Effluent Limits Elements T408 107 internet Creat The Presente State State (meth) Colspan="2">Creat State	18 Line I III. Line Indexes Meteore (mg1) (mg2)			WGM <u>BPF Res</u> is <u>Free Ceck</u> CF 8 NHO-N Acute Alcoard one RM Dauloge New Ender RM Dauloge New Colle is S. 322 Present Valley 8	7.0 Westeload Alloca <u>Bannik</u> 3-6 WE7b Oye Bandie Mallyk Mally Bandie Mallyk Mally Bandie Mallyk Bandie M	<mark>stions</mark> as can the trans to calcul Pres to Calcul Pres to Calcul Pres to Calcul Pres	ee l	
		Doubled Dage #			-	NHO-N Obronic Allocations Exercise MI Discharge Name Celler 5: 02 Present Valley 11 Discolved Oxygen Allocations MI Discharge Name In 10 2: 03 Present Valley	Reseture Uk. Eight Uk. Eight Uk. Eight Uk. Eight Uk. Eight Uk. Eight Imple. Imple. <td>Collard Preserver Reach Pedrate 28 0 0 Control Denates Analysis Multiple Pear 8 8 0 8 8 0</td> <td>d Proved here</td> <td></td>	Collard Preserver Reach Pedrate 28 0 0 Control Denates Analysis Multiple Pear 8 8 0 8 8 0	d Proved here	
					-					
	Paley, Jure 0, 2021	Von de 18 k	Page1al1			Palag, Jure 10, 200	Van. k. = 13 k		Page 1 of 1	
Page:		🕨 😵 No Filte	r		Page:		> >* <u>K</u>	No Filter		

NPDES Permit No. PA0247154

	rptDOSim —		🗐 rptModelSpecs — 🗆	×
	WGM 7.0 D.0. Simulation NE Install Install Install 197 197 198 Install Install 197 197 198 Install Install Install 198 198 198 198 Install Install Install 198 </td <td>di hilai Maani Alaadii</td> <td>WGM 7.0 Modeling Specifications</td> <td></td>	di hilai Maani Alaadii	WGM 7.0 Modeling Specifications	
Page: 1	Pring, Jaco 13, 2005 Version 1.35 I I I I I I I I I I I I I I I I I I I	Page1:d1	Nike, Aur 12, 323 Value 12b Page: 14 Page: 14 1 >>1 Page: 14 1 >>1	×
	<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header>	 Page1 al1 	<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header>	

NPDES Permit No. PA0247154

	rptGeneral	_		×						
	InputOata WQM7.0									
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
	29 8127 b is 391 27 is Operation Careful 6 010	610 17 10	an en 🗹							
	Stream Data	Malas	No. of							
Daniga Caral	How How Save Vehally Rate Width Day	a Temp pH	hange get							
0748 g 0148	n) (A) (A) (A) (App) (px) (p) (P (200 0.0 0.00 0.00 0.0 0.0 0.0 0.0 0.0 0.) (%) 100 2000 700	(R) 100 100	-						
0.3010	the the the the									
	Eabling Permit Ind D Disc Dec D Name Permit Namber Plan (south (south))	nige Diva Dia Reserve Temp Res Faster regil (*C)	pH							
	Prosen Way P4030784 00000 0000		7.00							
	Parameter Data Dire Tata	Shear Fals								
	Core Core Parameter Name (md.) (md.)	Con Carl								
	CHICK 21.0 21	0 0.00 1.00	-							
	Doubei Dapper 1.00 83									
I	NGN 210 15	0 0.00 0.70		_						
Bilm bor 17	100.7 Vice as 17.		Res 24							
n say, as at 13,	ver venantik		Page 343							
ane la a	2	No Filto								