

Application Type	Renewal
Facility Type	Municipal
Maior / Minor	Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

Application No.	PA0247570
APS ID	535590
Authorization ID	1411613

Applicant and Facility Information

Applicant Name	Freder	icksburg S&W Authority	Facility Name	Fredericksburg Authority Camp Strauss Monroe Valley
Applicant Address	113 Ea	ast Main Street (P O Box 161)	Facility Address	7 Kreider Lane
	Freder	icksburg, PA 17026-0161	_	Jonestown, PA 17038
Applicant Contact	Dale B	evans	Facility Contact	Dusty Keller
Applicant Phone	(717) 8	365-7452	Facility Phone	(717) 865-0774
Client ID	85895		Site ID	645621
Ch 94 Load Status	Not Ov	rerloaded	Municipality	Swatara Township
Connection Status	No Lim	litations	County	Lebanon
Date Application Recei	ved	September 26, 2022	EPA Waived?	Yes
Date Application Accepted		October 11, 2022	If No, Reason	
Purpose of Application		New STP.		

Summary of Review

1.0 General Discussion

This fact sheet supports the renewal of an existing NPDES permit for discharge of treated domestic wastewater from Fredericksburg Sewer & Water Authority's (Authority) Camp Strauss Monroe Valley wastewater treatment plant. The Authority owns, operates, and maintains the WWTP. The facility is located in Swatara Township in Lebanon County. The sewer collection system is not combined in these areas and there are no bypasses or overflows in the collection system. The plant serves the Monroe Valley area of both Bethel and Swatara Townships in Lebanon County. All flow enters the Little Mountain Road Pump Station. Influent pump station has a comminutor and two pumps. Influent is pumped to one of two SBR units. SBRs each has a complete cycle in 320 minutes (mix/fill, react/fill, react, settle and decant). The treatment plant has a hydraulic design capacity of 0.1MGD and an annual average design capacity of 0.1MGD. The organic design capacity of the facility is 208 lbs/day-BOD5. The discharge goes to Swatara Creek classified for warm water fishes (WWF) and Migratory Fishes (MF). The existing NPDES permit was issued on June 15, 2018 with an effective date of July 1, 2018 and expiration date of June 30, 2023. The applicant submitted a timely NPDES renewal application to the Department is currently operating under the terms and conditions in the existing permit under administrative extension provisions pending Department action on the renewal application. A topographic map showing the discharge location is presented in attachment A.

1.1 Sludge use and disposal description and location(s):

Digested sludge is dewatered with a trailer mounted volute press prior to ultimate disposal at Greater Lebanon Refuse Authority Landfill.

Approve	Deny	Signatures	Date
х		<i>J. Pascal Kwedza</i> J. Pascal Kwedza, P.E. / Environmental Engineer	December 8, 2023
х		Maria D. Bebenek for Daniel W. Martin Daniel W. Martin, P.E. / Environmental Engineer Manager	December 8, 2023
х		Maria D. Bebenek Maria D. Bebenek, P.E./ Program Manager	December 8, 2023

Summary of Review

1.2 Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

1.3 Changes to the existing Permit

Quarterly E. Coli monitoring has been added.

NPDES Permit Fact Sheet Fredericksburg Authority Camp Strauss Monroe Valley

1.4 Existing limitation and Monitoring Requirements

		Monitoring Requirements						
Parameter	Mass Units	; (lbs/day) ⁽¹⁾		Concentrat	ions (mg/L)		Minimum ⁽²⁾	Required
	Average Monthly	Weekly Average	Daily Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report Daily Max	xxx	xxx	xxx	xxx	Continuous	Measured
_pH (S.U.)	ххх	xxx	6.0 Inst Min	xxx	xxx	9.0	1/day	Grab
DO	xxx	XXX	5.0	XXX	XXX	XXX	1/day	Grab
CBOD5	20	33	xxx	25	40	50	2/month	24-Hr Composite
BOD5 Raw Sewage Influent	Report	Report Daily Max	xxx	Report	XXX	xxx	2/month	24-Hr Composite
TSS Raw Sewage Influent	Report	Report Daily Max	xxx	Report	xxx	xxx	2/month	24-Hr Composite
TSS	25	37	xxx	30	45	60	2/month	24-Hr Composite
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	xxx	xxx	2000 Geo Mean	XXX	10000	2/month	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	xxx	xxx	xxx	200 Geo Mean	xxx	1000	2/month	Grab
UV Transmittance (%)	xxx	xxx	Report	xxx	XXX	xxx	1/day	Recorded
Nitrate-Nitrite	xxx	xxx	xxx	xxx	Report Daily Max	xxx	1/6 months	24-Hr Composite
Total Nitrogen	XXX	xxx	xxx	xxx	Report Daily Max	xxx	1/6 months	Calculation
Ammonia	XXX	xxx	XXX	xxx	Report Daily Max	XXX	1/6 months	24-Hr Composite
TKN	xxx	XXX	XXX	xxx	Report Daily Max	XXX	1/6 months	24-Hr Composite
Total Phosphorus	XXX	xxx	xxx	xxx	Report Daily Max	XXX	1/6 months	24-Hr Composite

Outfall No. 001 Design Flow (MGD) .1 Latitude 40° 28' 5" Longitude -76° 30' 22" Quad Name Quad Code Wastewater Description: Sewage Effluent	
Latitude 40° 28' 5" Longitude -76° 30' 22" Quad Name Quad Code	
Quad Name Quad Code	
Receiving Waters <u>Swatara Creek (WWF, MF)</u> Stream Code <u>09361</u>	
NHD Com ID56395795 RMI44.39	
Drainage Area 170 Yield (cfs/mi ²)	
Q ₇₋₁₀ Flow (cfs) 11.1 Q ₇₋₁₀ Basis USGS Gage Station	
Elevation (ft) Slope (ft/ft)	
Watershed No. 7-D Chapter 93 Class. WWF, MF	
Existing Use Existing Use Qualifier	
Exceptions to Use Exceptions to Criteria	
Assessment Status Attaining Use(s)	
Cause(s) of Impairment	
Source(s) of Impairment	
TMDL Status Name	
Background/Ambient Data Data Source	
pH (SU)	
Temperature (°F)	
Hardness (mg/L)	
Other:	
Nearest Downstream Public Water Supply Intake <u>City of Lebanon Water Authority</u>	
PWS Waters Swatara Creek Flow at Intake (cfs)	
PWS RMI Distance from Outfall (mi) >5	

Changes Since Last Permit Issuance:

1.6 Water Supply Intake

The closest water supply intake located downstream from the discharge is for the City of Lebanon Water Authority approximately 5 miles downstream. Because of the dilution and distance downstream, the discharge will have no impact on the intake.

	2.0 T	reatment Facility Sumn	nary	
reatment Facility Na	me: Monroe Valley/Camp S	Strauss STP		
WQM Permit No.	Issuance Date			
3804404	1/25/2005			
3804404 A-1	3/2/2017			
Waste Type	Degree of Treatment	Process Type	Disinfection	Avg Annual Flow (MGD)
Sewage	Secondary	Sequencing Batch Reactor	Ultraviolet	0.1
			·	
Hydraulic Capacity	Organic Capacity			Biosolids
(MGD)	(lbs/day)	Load Status	Biosolids Treatment	Use/Disposa
0.1	208	Not Overloaded	Aerobic Digestion	Combination of methods

Changes Since Last Permit Issuance: None

2.1 Treatment Facility Details

The treatment plant consists of influent pump station with comminutor, 2 SBR tanks, one aerobic digester, post EQ tank and UV for disinfection. Trailer mounted volute press designed by PW Tech is used for sludge dewatering prior to ultimate disposal.

3.0 Compliance History

3.1 DMR Data for Outfall 001 (from September 1, 2022 to August 31, 2023)

Parameter	AUG-23	JUL-23	JUN-23	MAY-23	APR-23	MAR-23	FEB-23	JAN-23	DEC-22	NOV-22	OCT-22	SEP-22
Flow (MGD)												
Average Monthly	0.02234	0.02312	0.02247	0.02247	0.022	0.0259	0.02288	0.02578	0.03051	0.0222	0.02255	0.02249
Flow (MGD)												
Daily Maximum	0.03118	0.03288	0.03662	0.0518	0.03333	0.0491	0.03041	0.03825	0.06011	0.0298	0.03690	0.04246
pH (S.U.)												
Daily Minimum	6.44	6.68	5.84	6.41	6.61	6.36	6.60	6.21	6.59	6.36	6.43	6.45
pH (S.U.)												
Daily Maximum	7.66	7.16	7.00	7.19	7.25	6.94	6.94	6.99	7.00	7.09	6.84	6.98
DO (mg/L)												
Daily Minimum	5.13	5.57	5.53	4.94	6.05	5.56	6.02	6.04	6.48	5.75	6.03	5.59
CBOD5 (lbs/day)												
Average Monthly	1.1	0.9	1.0	1.7	1.2	1.5	0.7	1.2	0.7	0.4	1.9	0.7
CBOD5 (lbs/day)												
Weekly Average	1.5	1.1	1.4	2.3	1.2	2.0	0.8	1.6	0.8	0.4	2.5	0.9
CBOD5 (mg/L)												
Average Monthly	4.8	4.8	5.7	9.8	6.6	6.0	3.9	5.7	3.0	2.3	7.6	2.8
CBOD5 (mg/L)												
Weekly Average	7.2	5.9	8.1	13.5	6.7	6.7	4.3	6.1	3.1	2.4	8.1	2.9
BOD5 (lbs/day)												
Raw Sewage Influent												
 Average												
Monthly	22	31	57	40	49	23	29	24	22	35	36	56
BOD5 (lbs/day)												
Raw Sewage Influent			70	50	= 4	05		05			07	- 4
 	23	31	76	53	51	25	34	35	29	38	37	74
BOD5 (mg/L)												
Raw Sewage Influent												
 Average	105	187	417	244	202	93	161	104	106	201	101	256
Monthly	105	187	417	241	283	93	101	104	106	201	191	256
TSS (lbs/day)	2.5	2.5	3.8	3.9	1.8	2.2	1.2	0.9	1.5	1.6	3.3	2.1
Average Monthly	2.0	2.0	3.0	৩.৬	1.0	2.2	1.2	0.9	6.1	1.0	3.3	2.1
TSS (lbs/day) Raw Sewage Influent												
<pre> Average</pre>												
Nonthly	25	31	68	40	59	18	18	15	20	33	48	73
wontiny	20	31	00	40	59	10	10	10	20	33	40	13

NPDES Permit No. PA0247570

NPDES Permit Fact Sheet Fredericksburg Authority Camp Strauss Monroe Valley

TSS (lbs/day)												
Raw Sewage Influent												
 br/> Daily Maximum	28	32	88	42	82	19	19	22	24	42	48	97
TSS (lbs/day)												
Weekly Average	2.6	3.1	4.9	6.5	2.3	2.5	1.4	1.1	1.6	1.7	4.0	2.2
TSS (mg/L)												
Average Monthly	11.0	13.5	20.9	22.4	10.3	8.7	6.8	4.3	6.6	8.6	15.8	9.0
TSS (mg/L)												
Raw Sewage Influent												
 Average												
Monthly	121	187	495	238	342	71	97	66	97	194	255	333
TSS (mg/L)												
Weekly Average	12.4	17.0	29.0	38.0	12.5	8.8	7.6	4.5	7.6	10.0	23.0	11.5
Fecal Coliform												
(No./100 ml)	. 1	2	. 1	. 1	. 0	. 1	. 1	. 1	. 1	. 1	. 0	. 1
Geometric Mean	< 1	3	< 1	< 1	< 2	< 1	< 1	< 1	< 1	< 1	< 2	< 1
Fecal Coliform												
(No./100 ml) Instantaneous												
Maximum	< 1	3	2	1	5	< 1	< 1	1	< 1	1	4	2
UV Transmittance (%)	~ 1	0	2		U			•				~
Daily Minimum	2.3	1.1	1.5	0.6	2.1	3.4	2.2	1.9	1.8	1.6	0.8	2.1
Nitrate-Nitrite (mg/L)												
Daily Maximum			64.2						64.6			
Total Nitrogen (mg/L)												
Daily Maximum			66.76						66.76			
Ammonia (mg/L)												
Daily Maximum			1.4						20.7			
TKN (mg/L)												
Daily Maximum			4.49						26.0			
Total Phosphorus												
(mg/L)												
Daily Maximum			14.4						14.4			

3.2 Effluent Violations for Outfall 001, from: October 1, 2022 To: August 31, 2023

Parameter	Date	SBC	DMR Value	Units	Limit Value	Units
рН	06/30/23	Daily Min	5.84	S.U.	6.0	S.U.
DO	05/31/23	Daily Min	4.94	mg/L	5.0	mg/L

NPDES Permit Fact Sheet Fredericksburg Authority Camp Strauss Monroe Valley

NPDES Permit No. PA0247570

3.3 Summary of Discharge Monitoring Reports (DMRs):

DMRs reviewed for the facility for the last 12 months of operation, presented on the table above in section 3.1 indicate permit limits have been most of the time Two effluent violations were noted on DMRs for the period reviewed presented on table 3.2. The violations appear to be a one-time occurrence.

3.4 Summary of Inspections:

The facility has been inspected a couple times during last permit cycle. No effluent violations were found during plant inspections. The facility is operated and maintained well.

4.0 Development of Effluent Limitations									
Outfall No.	001	Design Flow (MGD) .1							
Latitude	40° 28' 5.00"	Longitude -76° 3	80' 22.00"						
Wastewater D	escription: Sewage Effluent								

4.1 Basis for Effluent Limitation

In general, the Clean Water Act (CWA) requires that the effluent limits for a particular pollutant be the more stringent of either technology-based limits or water quality-based limits. Technology-based limits are set according to the level of treatment that is achievable using available technology. A water quality-based effluent limit is designed to ensure that the water quality standards applicable to a waterbody are being met and may be more stringent than technology-based effluent limits.

4.2 Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
CBOD ₅	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD5	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
рН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform				
(5/1 – 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform				
(5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform				
(10/1 – 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform				
(10/1 – 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)

Comments: TRC is not applicable to this facility

4.3 Water Quality-Based Limitations

4.3.1 Mass-Based Limits

The federal regulation at 40 CFR 122.45(f) requires that effluent limits be expressed in terms of mass, if possible. The regulation at 40 CFR 122.45(b) requires that effluent limitations for POTWs be calculated based on the design flow of the facility. The mass-based limits are expressed in pounds per day and are calculated as follows:

Mass based limit (lb/day) = concentration limit (mg/L) × design flow (mgd) × 8.34

4.3.2 WQM 7.0 Stream Model

WQM 7.0 is a water quality model DEP utilizes to establish appropriate effluent limits for CBOD₅, NH₃-N and DO in permits. The model simulates mixing and degradation of NH₃-N in the stream and compares calculated instream NH₃-N concentrations to NH₃-N water quality criteria and also simulates mixing and consumption of D.O. in the stream due to the degradation of CBOD₅ and NH₃N and compares calculated instream D.O. concentrations to D.O. water quality criteria and recommends effluent limits.

4.3.3 Receiving Stream

The receiving stream is the Swatara Creek. According to 25 PA § 93.9, this stream is protected for Warm Water Fishes (WWF) and Migratory Fishes (MF). It is located in Drainage List N and State Watershed 7-D. It has been assigned stream code 09361. According to eMapPA, the segment of Swatara Creek receiving the discharge is attaining its designated uses

4.3.4 Streamflow:

Streamflows for the water quality analysis were determined by correlating with the yield of USGS gauging station No 01573000 on Swatara Creek at Harper Tavern. The Q_{7-10} and drainage area at the gage is 22.1ft3/s and 337 mi² respectively. The resulting yields are as follows:

- Q₇₋₁₀ = (22.1ft³/s)/337 mi² = 0.0656ft³/s/ mi²
- $Q_{30-10} / Q_{7-10} = 1.40$
- $Q_{1-10} / Q_{7-10} = 0.80$

The drainage area at discharge is calculated by USGS StreamStats = 170mi²

The Q_{7-10} at discharge = 170 mi² x 0.0.0656ft³/s/mi² = 11.1 ft³/s.

4.3.5 NH₃N Calculations

 $NH_{3}N$ calculations will be based on the Department's Implementation Guidance of Section 93.7 Ammonia Criteria, dated 11/4/97 (ID No. 391-2000-013). The following data is necessary to determine the instream $NH_{3}N$ criteria used in the attached computer model of the stream:

- * Discharge pH
- = 6.45 (July -Sept DMR median)
- * Discharge Temperature
- = 25 ° C (Default)
- * Stream pH = 7.0 (Default)
- * Stream Temperature = 20°C (Default)
 - * Background NH_3 -N = 0.0 (default)

4.3.6 CBOD₅

Due to the proximity of Fort Indiantown Gap discharge (PA0028142) and Northern Lebanon County Authority Discharge to Camp Strauss Monroe Valley discharge they were modeled together. The results of the WQM 7.0 Model presented in attachment B indicate that for a discharge of 0.1 MGD from Camp Strauss Monroe Valley STP, an average monthly limit (AML) of 25mg/l CBOD₅ is required to protect the water quality of the stream. This limit is consistent with the existing permit and the STP is consistently complying with the limitation. Therefore, a limit of 25mg/l AML, 40mg/l average weekly limit (AWL) and 50 mg/l IMAX are again recommended for the current permit renewal. Mass limits are calculated as follows:

Mass based AML (lb/day) = $25 \text{ (mg/L)} \times 0.1 \text{ (mgd)} \times 8.34 = 20$ Mass based AWL (lb/day) = $40 \text{ (mg/L)} \times 0.1 \text{ (mgd)} \times 8.34 = 33$

4.3.7 NH₃-N

The attached model results of the WQM 7.0 stream model (attachment B) also indicates that a summer limitation 21.5 NH_3 as a monthly average is necessary to protect the aquatic life from toxicity effects. For winter months, monitoring will be required in the permit.

4.3.8 Dissolved Oxygen

The existing permit contains a limit of 5 mg/l for Dissolved Oxygen (DO). DEP's Technical Guidance for the Development and Specification of Effluent Limitations (362-0400-001, 10/97) suggests that either the adopted minimum stream D.O. criteria for the receiving stream or the effluent level determined through water quality modeling be used for the limit. Since the WQM 7.0 model was run using a minimum D.O. of 5.0 mg/l, this limit will be continued in the renewed permit with a daily monitoring requirement per DEP guidance.

4.3.9 Total Suspended Solids (TSS):

There is no water quality criterion for TSS. A limit of 30 mg/l AML will be required based on the minimum level of effluent quality attainable by secondary treatment as defined in 40 CFR 133.102b(1) and 25 PA § 92a.47(a)(1) and an AWL of 45mg/l per 40CFR 133.102(b)(2) and 25 PA § 92a.47(a)(2)

Mass based AML (lb/day) = 30 (mg/L) × 0.1(mgd) × 8.34 = 25 Mass based AWL (lb/day) = $45(mg/L) \times 0.1(mgd) \times 8.34 = 37$

4.3.10 Total Residual Chlorine:

The discharge does not have any reasonable potential to cause or contribute to a water quality standards violation for total residual chlorine since the permittee utilizes UV instead of chlorine for wastewater disinfection. Therefore, the proposed permit does not contain effluent limits for total residual chlorine. The permittee may use chlorine-based chemicals for cleaning and is required to optimize chlorine usage to prevent negative impacts on receiving stream. Daily UV intensity monitoring (mW/cm²) is required in the permit to ensure efficiency of the UV unit.

4.3.11 Toxics

A reasonable potential (RP) analysis was done for pollutants sampled in support of the permit renewal application. All pollutants that were presented in the application sampling and additional sampling data were entered into DEP's Toxics Management Spreadsheet (TMS) to calculate WQBELs. The results of the TMS presented in attachment C indicate discharge levels for all pollutants are well below DEP's target quantitation limits and the calculated WQBELs, therefore, no monitoring or limitation is recommended.

The recommended limitations follow the logic presented in DEPs SOP, to establish limits in the permit where the maximum reported concentration exceeds 50% of the WQBEL, or for non-conservative pollutants to establish monitoring requirements where the maximum reported concentration is between 25% - 50% of the WQBEL, or to establish monitoring requirements for conservative pollutants where the maximum reported concentration is between 10% - 50% of the WQBEL.

4.3.12 Chesapeake Bay Strategy:

The Department formulated a strategy in April 2007, to comply with the EPA and Chesapeake Bay requirements to reduce point source loadings of Total Nitrogen (TN) and Total Phosphorus (TP) to the Bay. In the Strategy, sewage dischargers have been prioritized by DEP based on their delivered TN loadings to the Bay. The highest priority (Phases 1, 2, and 3) dischargers received annual loading caps based on their design flow on August 29, 2005 and concentrations of 6 mg/l TN and 0.8 mg/l TP. Phase 4 (0.2 -0.4mgd) and Phase 5(below 0.2mdg) are required to monitor and report TN and TP during permit renewal and any facility in Phases 4 and 5 that undergoes expansion is subjected to cap load right away. EPA published Chesapeake Bay TMDL in December of 2010. In order to address the TMDL, Pennsylvania developed Chesapeake Watershed Implementation Plan (WIP) Phase 1, Phase 2 and currently Phase 3 WIP and a supplement to the WIPs to be implemented with the original Chesapeake Bay Strategy.

As outlined in the current Phase 3 WIP and the current supplement to the WIP, re-issuing permits for significant dischargers would follow the same phased approach formulated in the original Bay strategy whilst Phase 4 and Phase 5 will be required to monitor and report TN and TP during permit renewals

As outlined in the current Phase 3 WIP and the current supplement to the WIP, re-issuing permits for significant dischargers would follow the same phased approach formulated in the original Bay strategy whilst Phase 4 and Phase 5 will be required to monitor and report TN and TP during permit renewals. This facility is classified as a phase 5, and has been monitoring Total Phosphorus, Nitrate-Nitrite as N, Total Kjeldahl Nitrogen and Total Nitrogen, and will continue to monitor and report the daily maximum concentration during the next permit cycle semi-annually.

4.3.13 Fecal Coliform and E. Coli

The existing Fecal Coliform limit is consistent with the technology limits recommended in 92a.47(a)(4) and (a)(5) and will remain in the permit. In March of 2021, EPA approved DEP's Triennial Review of Water Quality Standards, which included a new swimming season criterion for E.coli. As a result, DEP is including monitoring requirements for E. Coli in new and

NPDES Permit Fact Sheet Fredericksburg Authority Camp Strauss Monroe Valley

renewed sewage permits above 2000gpd. Monitoring frequency is based on annual average flow as follows: 1/month for design flows >= 1 MGD, 1/quarter for design flows >= 0.05 and < 1 MGD and 1/year for design flows of 0.002 - 0.05 MGD. Your discharge of 0.1 MGD requires 1/quarter monitoring as included in the permit

4.3.14 Influent BOD and TSS Monitoring

The permit will include influent BOD5 and TSS monitoring at the same frequency as is done for effluent in order to implement Chapter 94.12 and assess percent removal requirements, per DEP policy.

4.3.15 Industrial Users

This facility does not receive wastewater from any significant industrial users.

4.3.16 Pretreatment Requirements

The design annual average flow of the treatment plant is 0.1 MGD and the facility receives no flow from significant Industrial users. EPA does not require development of pretreatment program for facilities with design flow less than 5MGD. However, the permit contains standard conditions requiring the permittee to monitor and control industrial users if applicable.

5.0 Other Requirements

5.1 The permit contains the following special conditions:

The permit contains the following special conditions:

Stormwater Prohibition, Approval Contingencies, Proper Waste/solids Management, Restriction on receipt of hauled in waste under certain conditions and Chlorine minimization requirement

5.2 Stormwater

There is no stormwater outfall associated with this facility.

5.3 Anti-backsliding

Not applicable to this permit

5.4 Antidegradation (93.4):

The effluent limits for this discharge have been developed to ensure that existing instream water uses and the level of water quality necessary to protect the existing uses are maintained and protected. No High-Quality Waters are impacted by this discharge. No Exceptional Value Waters are impacted by this discharge.

5.5 Class A Wild Trout Fisheries:

No Class A Wild Trout Fisheries are impacted by this discharge.

5.6 303d listed stream

The discharge is not located on a 303d listed stream segment.

5.7 Basis for Effluent and Surface Water Monitoring

Section 308 of the CWA and federal regulation 40 CFR 122.44(i) require monitoring in permits to determine compliance with effluent limitations. Monitoring may also be required to gather effluent and surface water data to determine if additional effluent limitations are required and/or to monitor effluent impacts on receiving water quality. The permittee is responsible for conducting the monitoring and for reporting results on Discharge Monitoring Reports (DMRs).

5.8 Effluent Monitoring Frequency

Monitoring frequencies are based on the nature and effect of the pollutant, as well as a determination of the minimum sampling necessary to adequately monitor the facility's performance. Permittees have the option of taking more frequent samples than are required under the permit. These samples can be used for averaging if they are conducted using EPA-approved test methods (generally found in 40 CFR 136) and if the Method Detection Limits are less than the effluent limits. The sampling location must be after the last treatment unit and prior to discharge to the receiving water. If no discharge occurs during the reporting period, "no discharge" shall be reported on the DMR.

Proposed Effluent Limitations and Monitoring Requirements

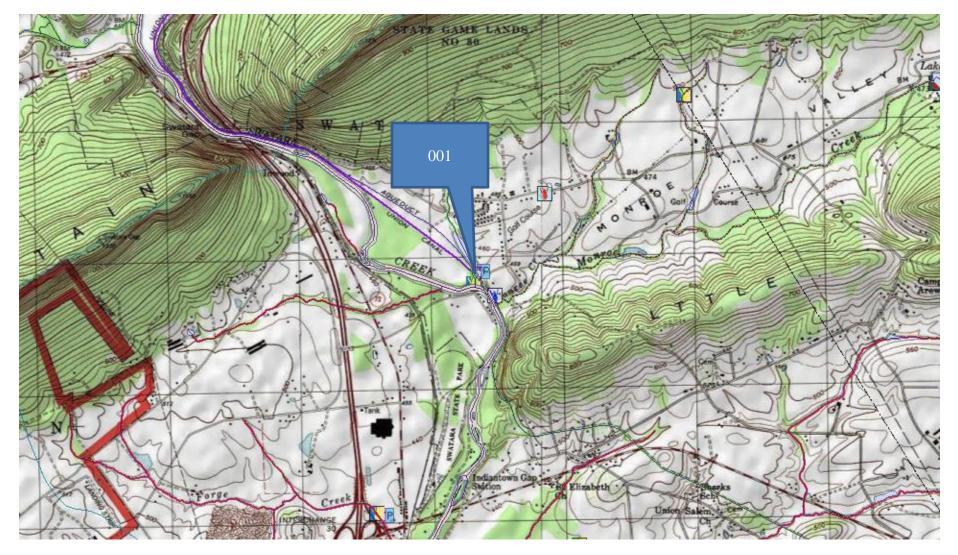
The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (386-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

			Effluent L	imitations.			Monitoring Re	quirements
Parameter	Mass Units	(lbs/day) ⁽¹⁾		Concentrat	ions (mg/L)		Minimum ⁽²⁾	Required
Parameter	Average Monthly	Weekly Average	Daily Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report Daily Max	xxx	xxx	XXX	xxx	Continuous	Measured
pH (S.U.)	XXX	xxx	6.0 Inst Min	XXX	XXX	9.0	1/day	Grab
DO	XXX	XXX	5.0	xxx	XXX	XXX	1/day	Grab
CBOD5	20	33	XXX	25	40	50	2/month	24-Hr Composite
BOD5 Raw Sewage Influent	Report	Report Daily Max	xxx	Report	XXX	xxx	2/month	24-Hr Composite
TSS Raw Sewage Influent	Report	Report Daily Max	xxx	Report	XXX	XXX	2/month	24-Hr Composite
TSS	25	37	XXX	30	45	60	2/month	24-Hr Composite
Ammonia-Nitrogen								24-Hr
Nov 1 - Apr 30 Ammonia-Nitrogen	Report	XXX	XXX	Report	XXX	XXX	2/month	Composite 24-Hr
May 1 - Oct 31	18	XXX	XXX	21.5	XXX	43.0	2/month	Composite
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2000 Geo Mean	XXX	10000	2/month	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	ххх	xxx	xxx	200 Geo Mean	XXX	1000	2/month	Grab
E. Coli (No./100 ml)	ХХХ	XXX	XXX	XXX	XXX	Report	1/quarter	Grab
Ultraviolet light Intensity (mW/cm ²)	XXX	xxx	Report	XXX	XXX	XXX	1/day	Recorded

Outfall 001, Continued (from Permit Effective Date through Permit Expiration Date)

			Effluent L	imitations			Monitoring Re	quirements
Parameter	Mass Units	(lbs/day) ⁽¹⁾		Concentrat	ions (mg/L)		Minimum ⁽²⁾	Required
Farameter	Average Monthly	Weekly Average	Daily Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
					Report			24-Hr
Nitrate-Nitrite	XXX	XXX	XXX	XXX	Daily Max	XXX	1/6 months	Composite
					Report			
Total Nitrogen	XXX	XXX	XXX	XXX	Daily Max	XXX	1/6 months	Calculation
					Report			24-Hr
TKN	XXX	XXX	XXX	XXX	Daily Max	XXX	1/6 months	Composite
					Report			24-Hr
Total Phosphorus	XXX	XXX	XXX	XXX	Daily Max	XXX	1/6 months	Composite


Compliance Sampling Location: At Outfall 001

	7.0 Tools and References Used to Develop Permit
	WQM for Windows Model (see Attachment B)
	Toxics Management Spreadsheet (see Attachment C)
	TRC Model Spreadsheet (see Attachment)
	Temperature Model Spreadsheet (see Attachment)
	Water Quality Toxics Management Strategy, 361-0100-003, 4/06.
	Technical Guidance for the Development and Specification of Effluent Limitations, 386-0400-001, 10/97.
	Policy for Permitting Surface Water Diversions, 386-2000-019, 3/98.
	Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 386-2000-018, 11/96.
	Technology-Based Control Requirements for Water Treatment Plant Wastes, 386-2183-001, 10/97.
	Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 386-2183-002, 12/97.
	Pennsylvania CSO Policy, 386-2000-002, 9/08.
	Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.
	Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 386-2000-008, 4/97.
	Determining Water Quality-Based Effluent Limits, 386-2000-004, 12/97.
	Implementation Guidance Design Conditions, 386-2000-007, 9/97.
\boxtimes	Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 386-2000-016, 6/2004.
	Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 386-2000-012, 10/1997.
	Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 386-2000-009, 3/99.
	Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 386-2000-015, 5/2004.
	Implementation Guidance for Section 93.7 Ammonia Criteria, 386-2000-022, 11/97.
	Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 386-2000-013, 4/2008.
	Implementation Guidance Total Residual Chlorine (TRC) Regulation, 386-2000-011, 11/1994.
	Implementation Guidance for Temperature Criteria, 386-2000-001, 4/09.
\square	Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 386-2000-021, 10/97.
	Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 386-2000-020, 10/97.
	Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 386-2000-005, 3/99.
	Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 386-2000-010, 3/1999.
\square	Design Stream Flows, 386-2000-003, 9/98.
	Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 386-2000-006, 10/98.
	Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 386-3200-001, 6/97.
	Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.
	SOP: Establishing Effluent limitation for individual sewage permit
	Other: WIP III and Supplement

NPDES Permit Fact Sheet Fredericksburg Authority Camp Strauss Monroe Valley

8. Attachments

A. Topographical Map

B. WQM Model Results

		WQM 7	7.0 Ef	fluent Limits	3		
	SWP Basin Str	eam Code		<u>Stream Name</u>	2		
	07D	9361		SWATARA CRE	EK		
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
44.390	Monroe Valley	PA0247570	0.100	CBOD5	25		
				NH3-N	21.76	43.52	
				Dissolved Oxygen			5
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
39.220	Nor Leb Co Auth	PA0080748	0.750	CBOD5	25		
				NH3-N	21.76	43.52	
				Dissolved Oxygen			5
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	
29.700	Fort IndianTG	PA0028142	1.000	CBOD5	25		
				NH3-N	21.76	43.52	
				Dissolved Oxygen			5

Wednesday, November 1, 2023

Version 1.1

	SWP Basir			Stre	am Name		RMI		vation (ft)	Drainage Area (sq mi)	Slope (ft/ft)	PWS Withdrawal (mgd)	Apply FC
	07D	93	361 SWAT	ARA CRE	EK		44.39	0	417.00	170.00	0.00000	0.00	✓
					S	tream Dat	ta						
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	<u>Tributary</u> ıp pH	Tem	<u>Stream</u> np pH	
	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)	(°C)	
Q7-10	0.065	0.00	0.00	0.000	0.000	0.0	0.00	0.0	0 2	0.00 7.	00	0.00 0.0	0
Q1-10		0,00	0.00	0.000	0,000								
Q30-10		0.00	0.00	0.000	0.000								
					D	ischarge	Data						
						Existing Disc	Permitte Disc	ed Desig Dis		Di erve Ter		isc oH	

Input Data WQM 7.0

	Dis	charge D	ata						
Name	Permit Number	Existing Disc Flow (mgd)	Perm Dis Flo (mg	w	Design Disc Flow (mgd)	Rese Fac		Disc Temp (°C)	Disc pH
Monroe Valley	PA0247570	0.1000	0.1	000	0.1000	C	0.000	25.00	6.4
	Pa	rameter D	ata						
D	arameter Name	Dis Co	-	Trib Conc	Stre Co		Fate Coef		
16	and motor mathe	(mg	/L)	(mg/L	.) (mg	g/L)	(1/days)	
CBOD5		2	5.00	2.0	00	0.00	1.5	0	
Dissolved C	xygen		5.00	8.2	24	0.00	0.0	0	
NH3-N		2	5.00	0.0	nn	0.00	0.7	0	

Wednesday, November 1, 202

Version 1.1

Nor Leb Co Auth

CBOD5

NH3-N

Dissolved Oxygen

PA0080748

Parameter Name

	SWF Basi			Stre	eam Name		RMI	Elevat (ft)		Drainage Area (sq mi)	Slope (ft/ft)	PWS Withdrawal (mgd)	Apply FC
	07D	9:	361 SWAT	ARA CRE	EEK		39.22	20 39) 2.00	291.00	0.00000	0.00	\checkmark
					S	tream Dat	a						
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	<u>T</u> Temp	T <u>ributary</u> p pH	Tem	<u>Stream</u> p pH	
00110.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(ºC)		(°C))	
Q7-10	0.065	0.00	0.00	0.000	0.000	0.0	0.00	0.00	20.	.00 7.0	0 (0.00 0.00	
Q1-10		0.00	0.00	0.000	0.000								
Q30-10		0.00	0.00	0.000	0.000								
	[D	ischarge	Data						
			Name	Per	mit Numbe	Existing Disc r Flow	Permitte Disc Flow	ed Design Disc Flow	Rese Fac				
						(mgd)	(mgd)			(°C)		

0.7500

Disc

Conc

(mg/L)

25.00

5.00

25.00

Parameter Data

0.7500

Trib

Conc

(mg/L)

2.00

8.24

0.00

0.7500

Stream

Conc

(mg/L)

0.00

0.00

0.00

0.000

Fate Coef

(1/days)

1.50

0.00

0.70

25.00

7.20

Input Data WQM 7.0

Wednesday, November 1, 202

Version 1.1

	SWP Basir			Stre	eam Name		RMI	Elevat (ft)	Ar	ea	With	WS drawal ngd)	Appl FC
	07D	93	61 SWAT	ARA CRE	EEK		29.70	0 36	3. 0 0 3	323.00 0	.00000	0.00	V
					St	ream Dat	a						
Design Cond.	LFY (cfsm)	Trib Flow (cfs)	Stream Flow (cfs)	Rch Trav Time (days)	Rch Velocity (fps)	WD Ratio	Rch Width (ft)	Rch Depth (ft)	<u>Tribu</u> Temp (⁰C)	<u>tary</u> pH	<u>Strea</u> Temp (⁰C)	ım pH	
Q7-10	0.065	0.00	0.00	0.000		0.0	0.00	0.00	20.00	7.00	0.00	0.00	1
Q1-10 Q30-10	0.000	0.00 0.00	0.00	0.000	0.000	0.0	0,00	0.00	20,000	1100	0.00	0.00	
					DI	scharge	Data						
			Name	Pei	rmit Number	Disc	Permitte Disc Flow (mgd)	ed Design Disc Flow (mgd)	Reserve Factor	Disc Temp (°C)	Disc pH		
		Fort I	ndianTG	PA	0028142	1.000	0 1.000	0 1.000	0 0.000	20.	00 6.90	-	
					Pa	arameter	Data						
				Paramete	r Name				eam Fa onc Co				
	_					(n	ng/L) (n	ng/L) (m	ng/L) (1/d	ays)			
			CBOD5				25.00	2.00	0.00	1.50			

5.00

25.00

8.24

0.00

0.00

0.00

0.00

0.70

Dissolved Oxygen

NH3-N

Input Data WQM 7.0

Wednesday, November 1, 202

NPDES Permit Fact Sheet

Version 1.1

Page 3 of 4

	SWP Basii			Stre	eam Name		RMI	El	evation (ft)	Drainag Area (sq mi		lope ft/ft)	PW Withd (mg	rawal	Apply FC
	07D	93	361 SWAT	ARA CRE	EEK		22.2	00	343.19	371	.00 0.0	00000		0.00	\checkmark
					St	ream Dat	ta								
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	n Ten	<u>Tributar</u> ıp	У pH	Tem	<u>Strean</u> p	р рН	
cona.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C	;)		(°C))		
Q7-10 Q1-10 Q30-10	0.065	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00	0.	00 2	0.00	7.00	C).00	0.00	
					Di	scharge	Data								
			Name	Pei	mit Number	Existing Disc Flow (mgd)	Permitt Disc Flow (mgd	Di Fle	sc Res	erve ictor	Disc Temp (°C)	Dis pl			
						0.000	0 0.00	00 0.	0000	0.000	25.0	0	7.00		
					Pa	arameter	Data								
			-	Paramete	r Name			Trib Conc	Stream Conc	Fate Coef					
	_		-			(m	ng/L) (r	ng/L)	(mg/L)	(1/days)				
			CBOD5				25.00	2.00	0.00	1.5	0				
			Dissolved	Oxygen			5.00	8.24	0.00	0.0	0				
			NH3-N				25.00	0.00	0.00	0.7	0				

Input Data WQM 7.0

Wednesday, November 1, 202

Version 1.1

Page 4 of 4

			WQN	<u>A 7.0</u>	Hydr	odyn	<u>amic</u>	Out	outs			
	sw	P Basin	<u>Strea</u>	m Code			,	Stream	<u>Name</u>			
		07D	9	361			sv	VATARA	CREEK			
RMI	Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow	Reach Slope	Depth	Width	W/D Ratio	Velocity	Reach Trav Time	Analysis Temp	Analysis pH
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)	
Q7-10) Flow											
44.390	11.05	0.00	11,05	.1547	0.00092	.833	58,99	70,86	0.23	1.385	20.07	6.98
39.220	18.91	0.00	18.91	1.3149	0.00058	.926	80.42	86.82	0.27	2.142	20.33	7.00
29.700	20.99	0.00	20.99	2.8619	0.00050	.951	87.24	91.78	0.29	1.593	20.28	6.99
Q1-1	0 Flow											
44.390	8.84	0.00	8.84	.1547	0.00092	NA	NA	NA	0.20	1.566	20.09	6.98
39.220	15.13	0.00	15.13	1.3149	0.00058	NA	NA	NA	0.24	2.406	20.40	7.00
29.700	16.80	0.00	16.80	2.8619	0.00050	NA	NA	NA	0.26	1.776	20,33	6.99
Q30-	10 Flow	,										
44.390	15.47	0.00	15.47	.1547	0.00092	NA	NA	NA	0.27	1.150	20.05	6.99
39.220	26.48	0.00	26.48	1.3149	0.00058	NA	NA	NA	0.32	1.793	20.24	7.00
29.700	29.39	0.00	29.39	2.8619	0.00050	NA	NA	NA	0.34	1.346	20.20	7,00

WOM 7.0 Hydrodynamic Outputs

Wednesday, November 1, 2023

Version 1.1

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	\checkmark
WLA Method	EMPR	Use Inputled W/D Ratio	
Q1-10/Q7-10 Ratio	0.8	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.4	Temperature Adjust Kr	\checkmark
D.O. Saturation	90.00%	Use Balanced Technology	\checkmark
D.O. Goal	5		

Wednesday, November 1, 2023

Version 1.1

	SWP Basin Str	eam Code		<u>St</u>	ream Name			
	07D	9361		SWA	TARA CREEK	ζ.		
NH3-N	Acute Allocatio	ons						
RMI	Discharge Nam	Baseline e Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction	1
44.3	90 Monroe Valley	16.91	50	16.91	50	0	0	_
39,2	20 Nor Leb Co Auth	16.11	50	16.2	50	0	0	
29.7	00 Fort IndianTG	16.9	50	16.42	50	0	0	
RMI	Discharge Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction	
44.3	90 Monroe Valley	1.89	25	1.89	25	0	0	
	90 Monroe Valley 20 Nor Leb Co Auth	1.89 1.86	25 25	1.89 1.86	25 25	0 0	0 0	
39.2	•					•	-	
39.2 29.7	20 Nor Leb Co Auth	1.86 1.89	25	1.86	25	0	0	
39.2 29.7	20 Nor Leb Co Auth 00 Fort IndianTG	1.86 1.89	25	1.86	25 25	0	0	Dorooni
39.2 29.7	20 Nor Leb Co Auth 00 Fort IndianTG	1.86 1.89 ocations	25 25 <u>28</u> <u>280D5</u> ne Multiple	1.86 1.87 <u>NH3-N</u> Baseline Mu	25 25 <u>Dissol</u>	0 0 ved Oxyger ne Multiple	0 0 Critical	Percent

25

25

25

25

25

25

21.76

21.76

5

5

5

5

3

3

10

10

Wednesday, November 1, 2023

39.22 Nor Leb Co Auth

29.70 Fort IndianTG

Version 1.1

SWP Basin Str	eam Code			Stream Name	
07D	9361		S	WATARA CREEK	
<u>RMI</u> 44,390	Total Discharge 0.10) <u>Ana</u> l	ysis Temperature (°C) 20.069	<u>Analysis pH</u> 6.985
Reach Width (ft)	Reach De			Reach WDRatio	Reach Velocity (fps)
58.995	0.83			70.864	0,228
Reach CBOD5 (mg/L)	Reach Kc		<u>R</u>	each NH3-N (mg/L)	Reach Kn (1/days)
2.32	0.10)1		0.30	0.704
<u>Reach DO (mg/L)</u> 8.198	<u>Reach Kr</u> 1.42			<u>Kr Equation</u> Tsivoglou	<u>Reach DO Goal (mg/L)</u> 5
<u>Reach Travel Time (days)</u> 1.385	TravTime (days)	Subreach CBOD5 (mg/L)	Results NH3-N (mg/L)	D.O. (mg/L)	
	0.138	3 2.29	0.27	8.21	
	0.277		0.25	8.23	
	0.415		0.22	8.23	
	0.554		0.20	8.23	
	0.692	2.16	0.18	8.23	
	0.831	2.13	0.17	8.23	
	0.969	2.10	0.15	8.23	
	1.108	3 2.07	0.14	8.23	
	1.246	5 2.04	0.12	8,23	
	1.385	5 2.02	0.11	8.23	
<u>RMI</u>	Total Discharg	e Flow (mgd) <u>Ana</u>	lysis Temperature (°C)	Analysis pH
39.220	0.85			20.325	7.001
Reach Width (ft)	Reach De			Reach WDRatio	Reach Velocity (fps)
80.421	0.92 Reach Kc			86.820 each NH3-N (mg/L)	0.272 <u>Reach Kn (1/days)</u>
Reach CBOD5 (mg/L) 3,33	0.23		D	1.31	0.718
Reach DO (mg/L)	Reach Kr			Kr Equation	Reach DO Goal (mg/L)
8.051	1.07			Tsivoglou	5
Reach Travel Time (days) 2.142	TravTime	Subreach CBOD5	n Results NH3-N	D.O.	
	(days)	(mg/L)	(mg/L)	(mg/L)	
	0.214	i 3.16	1.12	7.29	
	0.428		0.96	6.80	
	0.643		0.83	6.52	
	0.857		0.71	6.38	
	1.071		0.61	6.35	
	1.285		0.52	6.39	
	1.500		0.45	6.49	
		↓ 221	0.38	6.61	
	1.714		0.22	6 76	
	1.714 1.928 2.142	3 2.10	0.33 0.28	6.76 6.91	
	1.928	3 2.10			

WQM 7.0 D.O.Simulation

26

<u>SWP Basin</u> <u>St</u> 07D	ream Code 9361		s	<u>Stream Name</u> WATARA CREEK	
RMI	Total Discharge	Flow (mgd) <u>Ana</u> l	ysis Temperature (°C)	Analysis pH
29.700	1.85	C		20.276	6,993
Reach Width (ft)	<u>Reach De</u>	pth (ft)		Reach WDRatio	Reach Velocity (fps)
87.244	0.95	1		91.777	0.288
Reach CBOD5 (mg/L)	<u>Reach Kc (</u>	1/days)	R	each NH3-N (mg/L)	Reach Kn (1/days)
3.49	0.34	1		1.65	0.715
Reach DO (mg/L)	<u>Reach Kr (</u>			Kr Equation	Reach DO Goal (mg/L)
6.903	0,98	8		Tsivoglou	5
Reach Travel Time (days)		Subreact	Doculto		
1.593	TravTime	CBOD5	NH3-N	D.O.	
	(days)	(mg/L)	(mg/L)	(mg/L)	
	0.159	3.30	1.47	6.22	
	0.319	3.13	1.31	5.72	
	0.478	2.96	1.17	5.39	
	0.637	2.80	1.05	5.18	
	0,797	2,65	0,93	5.07	
	0.956	2.51	0.83	5.04	
	1.115	2.38	0.74	5.06	
	1.275	2.25	0.66	5.14	
	1.434	2.13	0.59	5.25	
	1.593	2.10	0.53 5.39		
		24107	0.00		

WQM 7.0 D.O.Simulation

Version 1.1

Page 2 of 2

C. TMS Calculation Results

Toxics Management Spreadsheet Version 1.4, May 2023

Discharge Information

Instructions Disc	charge Stream		
Facility: Frede	ricksburg Camp Strauss Monroe Valley S	NPDES Permit No.: PA0247570	Outfall No.: 001
Evaluation Type:	Major Sewage / Industrial Waste	Wastewater Description: Sewage	

	Discharge Characteristics										
Design Flow	Hardness (mg/l)*	pH (SU)*	P	artial Mix Fa	Complete Mix Times (min)						
(MGD)*	Haruness (Ing/I)	рн (30)	AFC	CFC	тнн	CRL	Q ₇₋₁₀	Q _h			
0.1	100	6.45									

			0 if lef	t blank	0.5 if left blank		0 if left blank			1 if left blank			
	Discharge Pollutant	Units	Ma	x Discharge Conc	Trib Conc	Stream Conc	Daily CV	Hourly CV	Strea m CV	Fate Coeff	FOS	Criteri a Mod	Chem Transl
	Total Dissolved Solids (PWS)	mg/L		801									
1	Chloride (PWS)	mg/L		293									
dno	Bromide	mg/L	>	1									
	Sulfate (PWS)	mg/L		49.3									
	Fluoride (PWS)	mg/L											

Stream / Surface Water Information

Fredericksburg Camp Strauss Monroe Valley STP, NPDES Permit No. PA0247570, Outfall 001

Instructions Discharge Stream

Receiving Surface Water Name: Swatara Creek

009631

39.22

392

No. Reaches to Model: 1

Yes

291

Stream Code*	RMI*	Elevation (ft)*	DA (mi ²)*	Slope (ft/ft)	PWS Withdrawal (MGD)	Apply Fish Criteria*
009361	44.39	417	170			Yes

Statewide Criteria O Great Lakes Criteria ORSANCO Criteria

_		
Q	-	^

Location

Point of Discharge

End of Reach 1

Location	RMI LFY		Flow	r (cfs)	W/D	Width	Depth	Velocit	Time	Tributa	iry	Stream	m	Analys	sis
Location	EXIVII	(cfs/mi ²)*	Stream	Tributary	Ratio	(ft)	(ft)	y (fps)	(dave)	Hardness	pН	Hardness*	pH*	Hardness	pН
Point of Discharge	44.39	0.066										100	7		
End of Reach 1	39.22	0.066													

Q_h

Location	RMI LFY		Flow	(cfs)	W/D	Width	Depth	Velocit	Time	Tributa	ry	Stream	m	Analys	sis
Location	EXIVII	(cfs/mi ²)	Stream	Tributary	Ratio	(ft)	(ft)	y (fps)	(days)	Hardness	рH	Hardness	pН	Hardness	рН
Point of Discharge	44.39														
End of Reach 1	39.22														

Model Results	Fredericksburg Camp Strauss Monroe Valley STP, NPDES Permit No. PA0247570, Outfall 001										
Instructions Results	RETURN	to inpu'	TS S	SAVE AS I	PDF	PRINT) () Al	I () Inputs	⊖ Results) Limits	
Hydrodynamics											
✓ Wasteload Allocations											
☑ AFC CC	T (min): 1	5	PMF:	0.271	Analy	ysis Hardnes	ss (mg/l):	100	Analysis pH:	6.95	
Pollutants	Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)		Con	nments	
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A				
Chloride (PWS)	0	0		0	N/A	N/A	N/A				
Sulfate (PWS)	0	0		0	N/A	N/A	N/A				
☑ CFC CC	CT (min): ###	#### Stream	PMF: Trib Conc	1 Fate		lysis Hardne		100	Analysis pH:	6.99	
Pollutants	Conc (ug/L)	CV	(µg/L)	Coef	WQC (µg/L)	(µg/L)	WLA (µg/L)		Con	nments	
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A				
Chloride (PWS)	0	0		0	N/A	N/A	N/A				
Sulfate (PWS)	0	0		0	N/A	N/A	N/A				
	:CT (min): ##	####	PMF:	1	An	alysis Hardn	ness (mg/l):	N/A	Analysis pH:	N/A	
Pollutants	Conc (ug/L)	Strean CV	n Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)		C	omments	
Total Dissolved Solids (PWS)	0	0		0	500,000	500,000	N/A				
Chloride (PWS)	0	0		0	250,000	250,000	N/A				
Sulfate (PWS)	0	0		0	250,000	250,000	N/A				
	CT (min): 68	.261	PMF:	1	An	alysis Hardn	ess (mg/l):	N/A	Analysis pH:	N/A	
Pollutants	Conc (ug/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)		C	omments	
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A				
Chloride (PWS)	0	0		0	N/A	N/A	N/A				
Sulfate (PWS)	0	0		0	N/A	N/A	N/A				
	1	t				+	+	1			

NPDES Permit Fact Sheet Fredericksburg Authority Camp Strauss Monroe Valley

Recommended WQBELs & Monitoring Requirements

	No. Samples/Month: 4									
		Mass	s Limits		Concentra	ation Limits		1		
	Pollutants	AML (lbs/day)	MDL (lbs/day)	AML	MDL	IMAX	Units	Governing WQBEL	WQBEL Basis	Comments
Mo	del Results					12/4/2023				Page

☑ Other Pollutants without Limits or Monitoring

The following pollutants do not require effluent limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharge concentration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QL).

Pollutants	Governing WQBEL	Units	Comments
Total Dissolved Solids (PWS)	N/A	N/A	PWS Not Applicable
Chloride (PWS)	N/A	N/A	PWS Not Applicable
Bromide	N/A	N/A	No WQS
Sulfate (PWS)	N/A	N/A	PWS Not Applicable