

Southcentral Regional Office CLEAN WATER PROGRAM

Application Type

Facility Type

Major

Municipal

Major / Minor

Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

Application No. PA0247910 A-1

APS ID 562641

Authorization ID 1333824

		Applicant and Fa	cility Information					
Applicant Name		el Township Municipal Authority s County	Facility Name	Bethel Township Frystown STP				
Applicant Address	PO Bo	ox 274, 60 Klahr Road	Facility Address	1711 Camp Swatara Road				
	Bethe	I, PA 19507-0274		Myerstown, PA 17067-1904				
		d Gruber, Chairman of the Board	Facility Contact	Michael Kreiser (+ project contact = Doug.Kopp@arroconsulting.com))				
Applicant Phone	(717)	933-8813/ betheltwpma@gmail.com	Facility Phone	(610) 589-4023 Kreiser 484-525-4553 Kopp				
Client ID	24337	78	Site ID	660904				
Ch 94 Load Status	Not O	verloaded	Municipality	Bethel Township				
Connection Status	No Lir	mitations	County	Berks				
Date Application Received		November 10, 2020 & November 18, 2020 (email) & December 10, 2020	EPA Waived?	No				
Date Application Accepted		November 18, 2020	If No, Reason	Chesapeake Bay TMDL- existing discharger proposing to expand				
Purpose of Application	n	Expansion of STP – increase in des	Expansion of STP – increase in design flow					

Summary of Review

The existing NPDES permit was issued July 25, 2019 with an expiration date of July 31, 2024. A NPDES amendment application and a WQM permit application were received separately in 2020 for a planned increase in design flow and upgrades to the Sewage Treatment Plant (STP). According to the facility's 2019 Chapter 94 Municipal Wasteload Report, a hydraulic and organic overload is projected beginning in 2022 due to increased flow from new Equivalent Dwelling Units (EDU's) including the Pilot Travel Center's sewage (existing NPDES permit PA0070360) which is expected to be diverted to the MUA's Frystown STP. Sewage Planning approval was granted by DEP, according to Sewage Planning staff. The applicant has represented that all wastewater conveyed to the STP at this time is domestic wastewater, no industrial wastewater.

The STP's discharge is to Little Swatara Creek, within the Chesapeake Bay watershed. Expansions to existing facilities discharging to waters within the Chesapeake Bay watershed trigger nutrient caploads in order to achieve the nutrient reductions required by the Chesapeake Bay Total Maximum Daily Load (TMDL).

The NPDES permit will be amended first. The applicant will have the option to withdraw their WQM permit application and submit a new one if their proposal is not adequate to meet the new NPDES limits. Otherwise, the WQM permit will be issued based on the design in the already-submitted WQM permit application.

Because construction cannot commence until a WQM permit is issued, this amended NPDES permit will carry forward the existing permit limits for an interim period, will include final permit limits based on the new design flow, and will include a compliance schedule in Part C. During the comment period, the permittee can request changes to the compliance schedule.

Approve	Deny	Signatures	Date
х		Bonnie J. Boylan Bonnie J. Boylan / Environmental Engineering Specialist	February 4, 2021
х		Maria D. Bebenek for Daniel W. Martin Daniel W. Martin, P.E. / Environmental Engineer Manager	March 1, 2021
х		Maria D. Bebenek Maria D. Bebenek, P.E. / Environmental Program Manager	March 1, 2021

Summary of Review

Sludge use and disposal description and location(s):

Solids are hauled offsite for disposal in a larger POTW or an eligible landfill.

Unresolved Violations

At this time, there are no unresolved violations for this facility or this client.

EPA Review

According to the latest EPA Permit Review Waiver (December 2019), this draft permit amendment and Fact Sheet must be provided to EPA because a) it is an expanding discharge to Chesapeake Bay with cap loads; and b) it is an existing discharge to waters with an approved TMDL which will apply different permit requirements than were imposed in previous permit.

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Discharge, Receiving Wa	aters and Water Supply Informa	tion
Outfall No. 001 Latitude 40°26'39" Quad Name Wastewater Description: Sewage Effluent	_ Design Flow (MGD) _ Longitude _ Quad Code	0.113 (after STP upgrade) 0.0724 (before STP upgrade) -76°19'51"
Receiving Waters NHD Com ID 56395743 Drainage Area 38 sq.mi. Q ₇₋₁₀ Flow (cfs) Elevation (ft) Watershed No. Existing Use Exceptions to Use Assessment Status Cause(s) of Impairment Source(s) of Impairment	Existing Use Qualifier	09888 12.4 0.05 USGS/PA Strm Stats CWF -
TMDL Status	Name	
Background/Ambient Data pH (SU) Temperature (°F) Hardness (mg/L)	Data Source – no WQN statio	n nearby
Other:		
Nearest Downstream Public Water Supply Intake PWS Waters Swatara Creek PWS RMI 16.4	PA American Water Flow at Intake (cfs) Distance from Outfall (mi)	Approx 35 miles

Changes Since Last Permit Issuance:

- Increase in design flow from 0.0724 MGD to 0.113 MGD

Other Comments:

- No upstream gages. No nearby downstream gages.

^{*}Not Class A Wild Trout or Trout Natural Reproduction classification

	Treatment Facility Summary									
Treatment Facility Na	me: Frystown System, pro	posed								
WQM Permit No.	Issuance Date									
0606402 A-1	pending									
Waste Type	Degree of Treatment	Process Type	Disinfection	Avg Annual Flow (MGD)						
Sewage	Tertiary	To Be Determined	Ultraviolet	0.113						
Hydraulic Capacity (MGD)	Organic Capacity (lbs/day)	Load Status	Biosolids Treatment	Biosolids Use/Disposal						
0.113	185	Not Overloaded	Aerobic Digestion	Combination of methods						

The existing STP:

WQM Permit No.	Issuance Date			
0606402				
	Degree of			Avg Annual
Waste Type	Treatment	Process Type	Disinfection	Flow (MGD)
		Extended Aeration With		
Sewage	Tertiary	Solids Removal	Ultraviolet	0.0724
Hydraulic Capacity	Organic Capacity			Biosolids
(MGD)	(lbs/day)	Load Status	Biosolids Treatment	Use/Disposal
				Combination of
0.0767	145	Not Overloaded	Aerobic Digestion	methods

The existing facility consists of a comminutor, two lift pumps, a mechanical screen, multiple anoxic tanks, multiple aeration tanks with fine bubble diffusion, two settling tanks, a UV disinfection system, a post-aeration chamber and the outfall.

NPDES Permit Fact Sheet Bethel Township Frystown STP

Existing Permit:

			Effluent	Limitations			Monitoring Re	quirements
Parameter	Mass Uni	ts (lbs/day)		Concentra	tions (mg/L)		Minimum	Required
Parameter	Average Monthly	Weekly Average	Instantaneous Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report Daily Max	XXX	XXX	XXX	XXX	Continuous	Measured
pH (S.U.)	XXX	XXX	6.0	XXX	XXX	9.0	1/day	Grab
DO	XXX	XXX	5.0	XXX	XXX	XXX	1/day	Grab
CBOD5	15.0	24.0	XXX	25.0	40.0	50	2/month	24-Hr Composite
BOD5 Raw Sewage Influent	Report	Report Daily Max	XXX	Report	XXX	XXX	2/month	24-Hr Composite
TSS	18.0	27.0	XXX	30.0	45.0	60	2/month	24-Hr Composite
TSS Raw Sewage Influent	Report	Report Daily Max	XXX	Report	XXX	XXX	2/month	24-Hr Composite
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2000 Geo Mean	XXX	10000	2/month	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	xxx	XXX	200 Geo Mean	XXX	1000	2/month	Grab
UV Intensity (mW/cm²)	XXX	XXX	Report	XXX	XXX	XXX	1/day	Metered
Ammonia Nov 1 - Apr 30	Report	XXX	XXX	Report	XXX	XXX	2/month	24-Hr Composite
Ammonia May 1 - Oct 31	Report	XXX	XXX	Report	xxx	XXX	2/month	24-Hr Composite
Total Phosphorus	Report	XXX	XXX	Report	XXX	XXX	2/month	24-Hr Composite

Continued.....

NPDES Permit Fact Sheet Bethel Township Frystown STP

NPDES Permit No. PA0247910 A-1

			Effluent L	imitations			Monitoring Requirements		
Parameter	Mass Units	(lbs/day) (1)		Concentrat	Minimum ⁽²⁾	Required			
i diameter		_		Monthly		Instant.	Measurement	Sample	
	Monthly	Annual	Monthly	Average	Maximum	Maximum	Frequency	Туре	
								24-Hr	
AmmoniaN	Report	Report	XXX	Report	XXX	XXX	2/month	Composite	
								24-Hr	
KjeldahlN	Report	XXX	XXX	Report	XXX	XXX	2/month	Composite	
								24-Hr	
Nitrate-Nitrite as N	Report	XXX	XXX	Report	XXX	XXX	2/month	Composite	
Total Nitrogen	Report	Report	XXX	Report	XXX	XXX	1/month	Calculation	
								24-Hr	
Total Phosphorus	Report	Report	XXX	Report	XXX	XXX	2/month	Composite	

Compliance History

DMR Data for Outfall 001 (from January 1, 2020 to December 31, 2020)

Parameter	DEC-20	NOV-20	OCT-20	SEP-20	AUG-20	JUL-20	JUN-20	MAY-20	APR-20	MAR-20	FEB-20	JAN-20
Flow (MGD)												
Average Monthly	0.0277	0.0264	0.024	0.0229	0.0243	0.022	0.0213	0.0187	0.0195	0.0214	0.0166	0.0151
Flow (MGD)												
Daily Maximum	0.0499	0.041	0.0374	0.0356	0.0533	0.0361	0.0384	0.0331	0.0328	0.0388	0.032	0.0385
pH (S.U.)												
Instantaneous												
Minimum	6.89	6.83	6.96	7.12	7.12	7.12	6.91	6.98	6.82	6.87	6.93	6.81
pH (S.U.)												
Instantaneous												
Maximum	7.97	7.72	7.7	7.95	7.90	7.89	7.72	7.85	7.97	7.82	7.75	8.0
DO (mg/L)												
Instantaneous												
Minimum	6.92	7.99	8.2	7.97	8.04	7.95	7.99	8.34	8.83	7.23	10.33	7.87
CBOD5 (lbs/day)												
Average Monthly	< 0.2	< 0.4	< 0.40	< 0.5	< 0.5	0.5	< 0.5	< 0.2	< 0.5	< 0.4	< 0.3	< 0.3
CBOD5 (lbs/day)												
Weekly Average	< 0.2	< 0.4	< 0.4	< 0.6	< 0.5	0.5	< 0.6	< 0.3	< 0.5	< 0.4	< 0.3	0.4
CBOD5 (mg/L)												
Average Monthly	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	2.1	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
CBOD5 (mg/L)												
Weekly Average	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	2.1	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	2.0
BOD5 (lbs/day)												
Raw Sewage Influent												
 br/> Average												
Monthly	11	26	48	28	42	125	35	21	44	78	24	34
BOD5 (lbs/day)												
Raw Sewage Influent												
 br/> Daily Maximum	12	27	57	33	57	205	39	35	52	111	36	38
BOD5 (mg/L)												
Raw Sewage Influent												
 br/> Average												
Monthly	146	129	248	114	187	482	136.2	217	194	389	193.7	212
TSS (lbs/day)												
Average Monthly	< 0.3	< 1.0	1.0	< 1.0	1.0	2.0	< 1.0	< 0.5	1.0	< 0.9	< 0.6	8.0
TSS (lbs/day)												
Raw Sewage Influent												
 Average		40	4.5	50	00	50	00		70		00	4.4
Monthly	8	13	45	53	36	50	36	22	79	86	30	41

NPDES Permit Fact Sheet Bethel Township Frystown STP

TSS (lbs/day)												
Raw Sewage Influent												
 br/> Daily Maximum	9	20	56	58	37	63	44	33	100	103	53	59
TSS (lbs/day)												
Weekly Average	< 0.3	1.0	1.0	1.0	1.0	2.0	1.0	0.9	1.0	1.0	0.6	1.0
TSS (mg/L)												
Average Monthly	< 4.0	< 4.8	6.4	< 5.4	5.0	7.2	< 4.2	< 5.0	4.4	< 4.6	< 4.4	4.4
TSS (mg/L)												
Raw Sewage Influent												
 br/> Average												
Monthly	106	62	232	233	159	197	144	246	342	427	249	295
TSS (mg/L)												
Weekly Average	< 4.0	5.6	7.2	6.8	5.6	9.2	4.4	6.0	4.8	5.2	4.8	4.8
Fecal Coliform												
(No./100 ml)												
Geometric Mean	1228	51	38	115	54	93	31	26	141	119	< 9	104
Fecal Coliform												
(No./100 ml)												
Înstantaneous												
Maximum	7500	96	481	1100	140	268	157	136	216	136	90	5400
UV Intensity (mW/cm²)												
Instantaneous												
Minimum	2.8	1.9	1.7	0.6	1	0.2	0.2	0.5	0.7	0.7	0.5	0.4
Nitrate-Nitrite (mg/L)												
Average Monthly	20.6	19.9	20.2	19.8	17.5	18.8	21.5	19.7	19.4	20.7	25.9	24.7
Nitrate-Nitrite (lbs)												
Total Monthly `	50	122	121	144	122	150	178	60	133	130	94	130
Total Nitrogen (mg/L)												
Average Monthly	< 21.2	< 20.5	< 20.8	20.7	< 18	19.7	< 22.3	< 20.4	< 19.9	< 21.3	27.2	< 25.5
Total Nitrogen (lbs)												
Total Monthly	< 52	< 126	< 125	150	< 125	156	< 184	< 63	< 136	< 134	99	< 135
Total Nitrogen (lbs)												
Total Annual				< 1618								
Ammonia (lbs/day)												
Average Monthly	< 0.008	< 0.02	< 0.02	< 0.02	< 0.02	< 0.03	< 0.03	< 0.009	< 0.02	< 0.02	< 0.01	< 0.02
Ammonia (mg/L)												
Average Monthly	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Ammonia (lbs)												
Total Monthly	< 0.2	< 0.6	< 0.6	< 0.7	< 0.7	< 0.8	< 0.8	< 0.3	< 0.7	< 0.6	< 0.4	< 0.5
Ammonia (lbs)												
Total Annual				< 7								
TKN (mg/L)												
Average Monthly	< 0.61	< 0.63	< 0.53	0.82	< 0.5	0.86	< 0.82	< 0.74	< 0.5	< 0.58	1.28	< 0.8

NPDES Permit Fact Sheet Bethel Township Frystown STP

NPDES Permit No. PA0247910 A-1

TKN (lbs) Total Monthly	< 2	< 4	< 3	6	< 3	7	< 6	< 3	< 3	< 4	5	< 5
Total Phosphorus												
(lbs/day)												
Average Monthly	0.02	0.08	0.07	0.1	0.07	0.1	0.1	0.04	0.07	0.05	0.05	0.06
Total Phosphorus												
(mg/L)												
Average Monthly	0.27	0.37	0.34	0.42	0.33	0.46	0.41	0.44	0.3	0.24	0.38	0.36
Total Phosphorus (lbs)												
Total Monthly	0.7	2	2.0	3	2	4	3	1	2	2	1	2
Total Phosphorus (lbs)												
Total Annual				26								

Compliance History

Effluent Violations for Outfall 001, from: February 1, 2020 To: December 31, 2020

Parameter	Date	SBC	DMR Value	Units	Limit Value	Units
Fecal Coliform	09/30/20	IMAX	1100	No./100 ml	1000	No./100 ml

Summary of Inspections:

4/7/2020 - Administrative File Review - No Violations.

2/23/2018 – Inspection – No violations. 12/13/2016 – Inspection – No violations.

11/19/2014 – Inspection – No violations.

Development of Effluent Limitations									
Outfall No.	001		Design Flow (MGD)	0.113 (final)					
Latitude	40° 26' 39"		Longitude	-76° 19' 51"					
Wastewater D	escription:	Sewage Effluent	·						

Technology-Based Effluent Limitations (TBELs)

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
CBOD ₅	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD5	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
pН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform				
(5/1 – 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform				
(5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform				
(10/1 - 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform				
(10/1 – 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)

Water Quality-Based Effluent Limitations (WQBELs)

TMDL:

On December 29, 2010, the US EPA published a final Total Maximum Daily Load (TMDL) for Nitrogen, Phosphorus and Sediment in the Chesapeake Bay (CB). The TMDL requires Pennsylvania to reduce its overall pollutant loading of nitrogen, phosphorus and sediment by 32%, 26%, and 25%, respectively, by 2025.

With a design flow of 0.113, this facility qualifies as a Phase 5 facility for the CB TMDL. Phase 5 facilities are those sewage facilities having a design flow more than 0.002 MGD and less than 0.2 MGD. It does not qualify as a "significant sewage treatment facility" because it does not discharge in excess of 75 lbs/day of Total Nitrogen (TN) or 25 lbs/day of Total Phosphorus (TP). As such the previous permit only required monitoring for TN and TP.

According to DEP's Phase 3 Chesapeake Bay Watershed Implementation Plan (WIP) Wastewater Supplement dated December 17, 2019 (and DEP's Phase 2 WIP Wastewater Supplement dated 2012): "If, however, Phase 5 facilities choose to expand, the renewed or amended permits will contain Cap Loads based on the <u>lesser</u> of a) existing TN/TP concentrations at current design average annual flow or b) 7,306 lbs/yr TN and 974 lbs/yr TP." The WIP also allows for the following: "If Facility A has a permitted discharge and decides to eliminate the discharge through connection to Facility B, the <u>lesser</u> of the existing annual TN and TP loads or Cap Loads of Facility A may be transferred to Facility B's Cap Load. The transferred loads are not considered Offsets and can be used for nutrient trading purposes." In this case, Pilot Travel Center STP's existing discharge (PA0070360) is being eliminated by connecting to the Frystown STP (PA0247910).

The average TN concentration for the Frystown STP according to DMRs from 8/1/2019 through 12/31/2020 was 25.3 mg/l. The average TP concentration according to DMRs from 8/1/2019 through 12/31/2020 was 0.53 mg/l. TN and TP monitoring only began in August 1, 2019. The existing TN/TP concentrations at current design average annual flow for the Frystown STP are:

25.3 mg/l x 0.0724 MGD x 8.34 conversion factor x 365 days/year = 5576 lbs/yr TN

0.53 mg/l x 0.0724 MGD x 8.34 c.f. x 365 days/year = 117 lbs/yr TP

NPDES Permit Fact Sheet Bethel Township Frystown STP

For the Pilot Travel Center STP, monitoring for TN and TP has been conducted longer. The below values are the average of their mass loads in lbs/yr as reported on their DMRs and CB Annual Nutrient Summaries from 10/1/2015 through 9/30/2020. (For CB reporting, water years are used rather than calendar years. A water year starts October 1 and ends the following September 30.)

```
Average TN mass load = 2469 lbs.
Average TP mass load = 71 lbs
```

The above existing annual TN and TP loads are less than cap loads based on Pilot Travel Center STP's design flow of 0.04 MGD and so shall be transferred to Frystown STP's new cap loads. If cap loads had been assigned to the Pilot Travel Center STP's permit, they would have been calculated as follows:

```
Average TN concentration = 53.3 \text{ mg/l}, from DMRs covering 10/1/2015 \text{ through } 9/30/2020 TN cap load = 53.3 \text{ mg/l} \times 0.04 \text{ MGD} \times 8.34 \text{ conversion factor } \times 365 \text{ days/year} = 6490 \text{ lbs/year}
```

Average TP concentration 1.50 mg/l, from DMRs covering 10/1/2015 through 9/30/2020 TP cap load = 1.50 mg/l x 0.04 MGD x 8.34 c.f. x 365 days/year = 183 lbs/year

After adding in the transferred loads from the Pilot Travel Center STP, the **nutrient Cap Loads** that have been included in this draft permit amendment are as follows:

5576 lbs/yr TN from Frystown STP + 2469 lbs/yr TN from Pilot = **8045 lbs/yr TN** 117 lbs/yr TP from Frystown STP + 71 lbs/yr TP from Pilot = **188 lbs/yr TP**

These Chesapeake Bay TMDL reporting requirements are included in the draft permit amendment:

An Annual DMR for Chesapeake Bay must be submitted by November 28th following each compliance year. The facility must also complete and submit an Annual Chesapeake Bay Spreadsheet. This Spreadsheet will reflect all nutrient sample results (for the period October 1–September 30), Credit transactions (including the Truing Period) & Offsets applied during the Compliance Yr.

These Chesapeake Bay TMDL Nutrient Credit requirements are included in the draft permit amendment:

Nutrient Credits may be used for compliance with the Cap Loads where authorized under 25 Pa. Code § 96.8 (Use of offsets and tradable credits from pollution reduction activities in the Chesapeake Bay Watershed), including amendments, updates and revisions thereto; in accordance with DEP's Phase 2 WIP Wastewater Supplement; and in accordance with the Phase 2 WIP Nutrient Trading Supplement (see www.dep.pa.gov/nutrient_trading).

Chesapeake Bay Offsets are included in the draft permit amendment:

The draft permit amendment allows the use of offsets for compliance with the cap loads. Offsets must be approved by DEP in writing before they may be applied for compliance with Cap Loads. Offsets may be approved for the connection of onlot sewage disposal systems that existed prior to January 1, 2003 to public sewers. Twenty-five pounds (25 lbs) of TN Offsets per year may be approved for each on-lot system retirement. These approved Offsets are cumulative. For example, if 10 on-lot systems are retired in year 1 (250 lbs TN approved Offsets) and 10 on-lot systems are retired in year 2, 500 lbs TN Offsets may be used toward compliance with the TN Cap Load in year 2 and thereafter. Documentation must be submitted and retained.

WQBEL's other than TMDL:

The following limitations were determined through water quality modeling (output files attached):

Parameter	Limit (mg/l)	SBC	Model
CBOD5	25	Average Monthly	WQM 7.0, Version 1b
Total Copper	None	=	Toxics Management Spreadsheet Vsn 1.1/ PENTOXSD
Total Lead	None	-	Toxics Management Spreadsheet Vsn 1.1/ PENTOXSD
Total Zinc	None	-	Toxics Management Spreadsheet Vsn 1.1/ PENTOXSD

Default values are commonly used in the models where site-specific data is not available. Stream Hardness and discharge Hardness of 100 mg/l and stream and discharge pH of 7.0 s.u. were defaults values used as model input values.

CBOD5, NH3-N and Dissolved Oxygen (DO)

DEP's WQM 7.0 model was run with the design flow of 0.113 MGD and only this STP's discharge; there are no other sewage dischargers in the vicinity. DEP's guidance 391-2000-007 provides the technical methods contained in WQM 7.0 for conducting wasteload allocation and for determining recommended NPDES effluent limits for point source discharges. As with the existing permit, the model recommended a CBOD5 permit limit of 25 mg/l as a Monthly average—meaning the TBEL is adequately protective of the receiving stream. The model and past Discharge Monitoring Reports (DMRs) also indicate that no limits for NH3-N are needed, but the monitoring requirement has been continued from the existing permit. The WQM 7.0 model incorporates the implementation of ammonia criteria as provided in DEP's guidance 391-2000-013. The model used a minimum concentration of 5.0 mg/l for DO, consistent with the existing permit, 25 Pa. Code 93.7(a), and DEP's Standard Operating Procedure for Establishing Effluent Limitations for Individual Sewage Permits.

Toxics and Total Dissolved Solids

For toxics, the DEP's Toxics Management Spreadsheet (TMS) was used, with the design flow of 0.113 MGD and the maximum effluent concentrations from the permit application. No other dischargers were included in the evaluation; no industrial or sewage dischargers are in the vicinity.

The TMS is a macro-enabled Excel binary file that combines the functions of the former PENTOXSD model and the former Toxics Screening Analysis spreadsheet to evaluate the reasonable potential for discharges to cause excursions above water quality standards and to determine water-quality based effluent limits (WQBELs). The PENTOXSD model is explained in depth in DEP's technical guidance document: Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, 391-2000-011. The logic used in the TMS is explained in DEP's Standard Operating Procedure (SOP) Establishing WQBELs and Permit Conditions for Toxic Pollutants in NPDES Permits for Existing Dischargers/

The TMS found no Reasonable Potential to cause an excursion above water quality standards for any toxic parameter, namely Copper, Lead, and Zinc for which the discharge had been sampled. The TMS did not recommend any additional monitoring requirements for any toxic parameter.

Total Phosphorus and Total Nitrogen

Due to the increase in design flow, calculations were re-run to verify that concentration limits for TP and TN did not need to be added to the permit, in addition to the mass load limits already discussed. DEP assumes that TP is the limiting nutrient.

Phosphorus limits are based on the Department's *Implementation Guidance for Section 96.5 Phosphorus Discharges to Free Flowing Streams* dated 10/27/97 (DEP ID No. 391-2000-018). Without considering the limit on the TP load due to the Chesapeake Bay TMDL:

10 mg/L x 0.113 mgd x 8.34 conversion factor = 9.42 lbs/day TP

Using the Equation documented in EPA's Chesapeake Bay Management Report:

TP @ Y = TP x 0.99^Y (Y = stream miles to PA-MD line)

TP @ 100 mi = $(9.42 \text{ lbs TP/day}) * 0.99^{(100)}$ TP @ 100 mi = 3.45 lbs TP/day

Assuming the Total TP loading to the Susquehanna River is 3814 lbs TP/day:

3.45 lbs TP/day / 3814 lbs TP/day = 0.09%

According to the CB Phase 3 WIP Supplement, the total Wasteload Allocation (WLA) of TP to the Susquehanna River for Non-Significant sewage dischargers in Pennsylvania is 842,104 lbs/yr = 2307 lbs/day:

3.45 lbs/day TP / 2307 lbs/day WLA = 0.15%

Since the potential loading from this source is less than 0.25%, no TP (or TN) concentration limits are necessary.

Monitoring Frequencies and Sample Types

No changes were made for monitoring frequencies and sample types from the existing permit for the interim limits. After the increase in flow, DEP's guidance document 362-0400-001 recommends once per week monitoring (except for DO and pH and UV). The monitoring frequency for the final limits is therefore once per week, except for DO and pH and UV which remain as daily.

Anti-Backsliding

No concentration limits have been made less stringent than the existing permit.

Antidegradation Requirements

All effluent limitations and monitoring requirements have been developed to ensure that existing instream water uses and the level of water quality necessary to protect the existing uses are maintained and protected. The receiving water is not classified as an Exceptional Value (EV) or High Quality (HQ) water.

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Construction Completed of Treatment Plant Expansion

			Effluent Lir	mitations			Monitoring Red	quirements
Parameter	Mass Unit	s (lbs/day)		Concentration	ons (mg/L)		Minimum	Required
r ai ailietei	Average Monthly	Weekly Average	Instantaneous Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report Daily Max	XXX	XXX	XXX	XXX	Continuous	Measured
pH (S.U.)	XXX	XXX	6.0	XXX	XXX	9.0	1/day	Grab
DO	XXX	XXX	5.0	XXX	XXX	XXX	1/day	Grab
UV Intensity (mW/cm²)	XXX	XXX	Report	XXX	XXX	XXX	1/day	Metered
CBOD5	15	24	XXX	25.0	40.0	50	2/month	24-Hr Composite
BOD5 Raw Sewage Influent	Report	Report Daily Max	XXX	Report	XXX	XXX	2/month	24-Hr Composite
TSS	18	27	XXX	30.0	45.0	60	2/month	24-Hr Composite
TSS Raw Sewage Influent	Report	Report Daily Max	XXX	Report	XXX	XXX	2/month	24-Hr Composite
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2000 Geo Mean	XXX	10000	2/month	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	XXX	XXX	200 Geo Mean	XXX	1000	2/month	Grab
Ammonia	Report	XXX	XXX	Report	XXX	XXX	2/month	24-Hr Composite
Total Phosphorus	Report	XXX	XXX	Report	XXX	XXX	2/month	24-Hr Composite

Compliance Sampling Location: at discharge from facility

Continued next page...

The limitations and monitoring requirements specified below are proposed for the draft permit, to comply with Pennsylvania's Chesapeake Bay Tributary Strategy.

Outfall 001, Effective Period: Permit Effective Date through Construction Completed of Treatment Plant Expansion

			Effluent L	imitations			Monitoring Re	quirements
Parameter	Mass U	nits (lbs)		Concentrat	tions (mg/L)		Minimum	Required
i arameter				Monthly		Instant.	Measurement	Sample
	Monthly	Annual	Monthly	Average	Maximum	Maximum	Frequency	Туре
								24-Hr
Nitrate-Nitrite	XXX	XXX	XXX	Report	XXX	XXX	2/month	Composite
								24-Hr
TKN	XXX	XXX	XXX	Report	XXX	XXX	2/month	Composite
Total Nitrogen	xxx	XXX	XXX	Report	XXX	XXX	1/month	Calculation
	Report			- 1				
Nitrate-Nitrite (lbs)	Total Mo	XXX	XXX	XXX	XXX	XXX	1/month	Calculation
	Report							
TKN (lbs)	Total Mo	XXX	XXX	XXX	XXX	XXX	1/month	Calculation
	Report							
Total Nitrogen (lbs)	Total Mo	XXX	XXX	XXX	XXX	XXX	1/month	Calculation
	Report							
Ammonia (lbs)	Total Mo	XXX	XXX	XXX	XXX	XXX	1/month	Calculation
	Report							
Total Phosphorus (lbs)	Total Mo	XXX	XXX	XXX	XXX	XXX	1/month	Calculation
T (1 N); (II)	V/V/	Report	100	1000	2007	1007	4.1	
Total Nitrogen (lbs)	XXX	Total Annual	XXX	XXX	XXX	XXX	1/year	Calculation
Ammonia (Iba)	xxx	Report	XXX	xxx	XXX	XXX	1/voor	Coloulation
Ammonia (lbs)		Total Annual	^^^	^^^	^^^	^^^	1/year	Calculation
Total Phosphorus (lbs)	XXX	Report Total Annual	XXX	XXX	XXX	XXX	1/year	Calculation

Compliance Sampling Location: at discharge from facility

Other Comments:

- -See Part C for Chesapeake Bay Requirements.
- This is the minimum number of sampling events required. Permittees are encouraged, and it may be advantageous in demonstrating compliance, to perform more than the minimum number of sampling events required.

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Construction Completed of Treatment Plant Expansion through Permit Expiration Date

			Effluent Lir	mitations			Monitoring Red	quirements
Parameter	Mass Unit	ts (lbs/day)		Concentration	ons (mg/L)		Minimum	Required
Farameter	Average Monthly	Weekly Average	Instantaneous Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report Daily Max	XXX	XXX	XXX	XXX	Continuous	Measured
pH (S.U.)	XXX	XXX	6.0	XXX	XXX	9.0	1/day	Grab
DO	XXX	XXX	5.0	XXX	XXX	XXX	1/day	Grab
UV Intensity (mW/cm²)	XXX	XXX	Report	XXX	XXX	XXX	1/day	Metered
CBOD5	24	38	XXX	25.0	40.0	50	1/week	24-Hr Composite
BOD5 Raw Sewage Influent	Report	Report Daily Max	XXX	Report	XXX	XXX	1/week	24-Hr Composite
TSS	28	42	XXX	30.0	45.0	60	1/week	24-Hr Composite
TSS Raw Sewage Influent	Report	Report Daily Max	XXX	Report	XXX	XXX	1/week	24-Hr Composite
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2000 Geo Mean	XXX	10000	1/week	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	XXX	XXX	200 Geo Mean	XXX	1000	1/week	Grab
Ammonia	Report	XXX	XXX	Report	XXX	XXX	1/week	24-Hr Composite
Total Phosphorus	Report	XXX	XXX	Report	XXX	XXX	1/week	24-Hr Composite

Compliance Sampling Location: at discharge from facility

Continued next page....

The limitations and monitoring requirements specified below are proposed for the draft permit, to comply with Pennsylvania's Chesapeake Bay Tributary Strategy.

Outfall 001, Effective Period: Construction Completed of Treatment Plant Expansion through Permit Expiration Date

			Effluent L	imitations			Monitoring Re	quirements
Parameter	Mass Ur	nits (lbs)		Concentrat	tions (mg/L)		Minimum	Required
Farameter	Monthly	Annual	Monthly	Monthly Average	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Nitrate-Nitrite	XXX	XXX	XXX	Report	XXX	XXX	1/week	24-Hr Composite
TKN	XXX	XXX	XXX	Report	XXX	XXX	1/week	24-Hr Composite
Total Nitrogen	XXX	XXX	XXX	Report	XXX	XXX	1/month	Calculation
Nitrate-Nitrite (lbs)	Report Total Mo	XXX	XXX	XXX	XXX	XXX	1/month	Calculation
TKN (lbs)	Report Total Mo	XXX	XXX	XXX	XXX	XXX	1/month	Calculation
Total Nitrogen (lbs)	Report Total Mo	XXX	XXX	XXX	XXX	XXX	1/month	Calculation
Ammonia (lbs)	Report Total Mo	XXX	XXX	XXX	XXX	XXX	1/month	Calculation
Total Phosphorus (lbs)	Report Total Mo	XXX	XXX	XXX	XXX	XXX	1/month	Calculation
Ammonia (lbs)	XXX	Report	XXX	XXX	XXX	XXX	1/year	Calculation
Total Nitrogen (lbs)	XXX	Report	XXX	XXX	XXX	XXX	1/year	Calculation
Total Phosphorus (lbs)	XXX	Report	XXX	XXX	XXX	XXX	1/year	Calculation
Net Total Nitrogen (lbs)	XXX	8045	XXX	XXX	XXX	XXX	1/year	Calculation
Net Total Phosphorus (lbs)	XXX	188	XXX	XXX	XXX	XXX	1/year	Calculation

Compliance Sampling Location: at discharge from facility

Other Comments:

- -See Part C for Chesapeake Bay Requirements.
- This is the minimum number of sampling events required. Permittees are encouraged, and it may be advantageous in demonstrating compliance, to perform more than the minimum number of sampling events required.

Tools and References Used to Develop Permit
WQM for Windows Model (see Attachment)
Toxics Management Spreadsheet (see Attachment)
TRC Model Spreadsheet (see Attachment)
Temperature Model Spreadsheet (see Attachment)
Water Quality Toxics Management Strategy, 361-0100-003, 4/06.
Technical Guidance for the Development and Specification of Effluent Limitations, 362-0400-001, 10/97.
Policy for Permitting Surface Water Diversions, 362-2000-003, 3/98.
Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 362-2000-008, 11/96.
Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97.
Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 362-2183-004, 12/97.
Pennsylvania CSO Policy, 385-2000-011, 9/08.
Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.
Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 391-2000-002, 4/97.
Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97.
Implementation Guidance Design Conditions, 391-2000-006, 9/97.
Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004.
Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 391-2000-008, 10/1997.
Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 391-2000-010, 3/99.
Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 391-2000-011, 5/2004.
Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97.
Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 391-2000-014, 4/2008.
Implementation Guidance Total Residual Chlorine (TRC) Regulation, 391-2000-015, 11/1994.
Implementation Guidance for Temperature Criteria, 391-2000-017, 4/09.
Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/97.
Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97.
Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 391-2000-021, 3/99.
Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/1999.
Design Stream Flows, 391-2000-023, 9/98.
Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 391-2000-024, 10/98.
Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97.
Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.
Pennsylvania's Phase 2 and Phase 3 Chesapeake Bay Watershed Implementation Plan (WIP) Wastewater Supplement, last revised December 17, 2019.
DEP SOP: Establishing Effluent Limitations for Individual Sewage Permits, Vsn 1.8, October 1, 2020
DEP SOP: Establishing WQBELs and Permit Conditions for Toxic Pollutants in NPDES Permits for Existing Dischargers, Vsn 1.3, October 1, 2020

NPDES Permit Fact Sheet Bethel Township Frystown STP

StreamSta	ts Output	Report			
State/Reg	ΡΔ				
	PA2021012		21000		
Latitude		202213334	21000		
	40.44393				
Longitude		CŽ202 CŽ /2	€Ž2021‎	^ CŽE ^ CŽ. ^ .	CŽ402CŽ.2
Time	a€Z1a€Z/a	€ZZ8a€Z/a	€750519€7	a€∠5a€∠:aŧ	€Z19a€Z:a€
Basin Cha	racteristics				
	Paramete		Unit		
	Area that		square mi	les	
PRECIP	Mean Ann		inches		
STRDEN	Stream De		miles per	sguare mil	e
_	Depth to r		feet	Square IIIII	
CARBON	Percentag		percent		
O, III DOIN	reroemag	2.00	percent		
Low-Flow	100 Percei	nt Low Flo	w Region 2		
Paramete	Paramete	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage /	37.9	square mi	4.93	1280
PRECIP	Mean Ann	45	inches	35	50.4
STRDEN	Stream De	1.44	miles per	0.51	3.1
ROCKDEP	Depth to F	3.5	feet	3.32	5.65
CARBON	Percent Ca	2.66	percent	0	99
Low-Flow	100 Percei	nt Low Flo	w Region 2		
Statistic	Value	Unit	SE	SEp	
7 Day 2 Ye	4.98	ft^3/s	38	38	
30 Day 2 Y	7.13	ft^3/s	33	33	
7 Day 10 Y	1.86	ft^3/s	51	51	
30 Day 10	2.81	ft^3/s	46	46	
90 Day 10	4.85	ft^3/s	36	36	
USGS Data			no warrar		
	the USGS		is made b		
USGS Proc	tirm	or produc	t names is	tor descrip	otive purpo
Applicatio	n Version:	4.4.0			

Permit No. PA0247910 A-1

StreamSta	ts Output	Report			
	•	•			
State/Reg	PA				
Workspac	PA2021012	2822341336	56000		
Latitude	40.41948				
Longitude	-76.3824				
Time	‎1‎/â	€Ž28‎/â	€Ž2021‎	‎5‎:âŧ	€Ž34‎:â€
Basin Cha	racteristics				
Paramete	Paramete	Value	Unit		
DRNAREA	Area that	64.7	square mi	les	
PRECIP	Mean Ann	45	inches		
STRDEN	Stream De	1.41	miles per	square mil	e
ROCKDEP	Depth to r	3.7	feet		
CARBON	Percentag	2.13	percent		
Low-Flow	100 Percei	nt Low Flow	w Region 2		
Paramete	Paramete	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage /	64.7	square mi	4.93	1280
PRECIP	Mean Ann	45	inches	35	50.4
STRDEN	Stream De	1.41	miles per	0.51	3.1
ROCKDEP	Depth to F	3.7	feet	3.32	5.65
CARBON	Percent Ca	2.13	percent	0	99
Low-Flow	100 Percei	nt Low Flow	w Region 2		
Statistic	Value	Unit	SE	SEp	
7 Day 2 Ye	10.1	ft^3/s	38	38	
30 Day 2 Y	14	ft^3/s	33	33	
7 Day 10 Y	4.18	ft^3/s	51	51	
30 Day 10	6.04	ft^3/s	46	46	
90 Day 10	9.88	ft^3/s	36	36	
USGS Data	all data				nor shall t
USGS Soft	the USGS	expresse	is made b	the softw	are is relea
USGS Proc	firm	or produc	t names is	for descrip	otive purpo
Applicatio	n Version:	4.4.0			

eMapPA

StreamStats Page 2 of 3

StreamStats Report - Bethel Twp MUA STP

Region ID: Workspace ID: Clicked Point (Latitude, Longitude):

PA PA20210128221933431000 40.44393, -76.33095 - 2021-01-28 17:19:51 -0500

Basin Characteristics			
Parameter Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	37.9	square miles
PRECIP	Mean Annual Precipitation	45	inches
STRDEN	Stream Density total length of streams divided by drainage area	1.44	miles per square mile
ROCKDEP	Depth to rock	3.5	feet
CARBON	Percentage of area of carbonate rock	2.66	percent

Parameter Code	Parameter Name	Value	Units		Min Limit	Max Limit
DRNAREA	Drainage Area	37.9	square miles		4.93	1280
PRECIP	Mean Annual Precipitation	45	inches		35	50.4
STRDEN	Stream Density	1.44	miles per sq	uare mile	0.51	3.1
ROCKDEP	Depth to Rock	3.5	feet		3.32	5.65
CARBON	Percent Carbonate	2.66	percent		0	99
Low-Flow Statistics Flow R		d Fron of Prediction	. SE: Standard Erro	r (other see report)		
PII: Prediction Interval-Lo	Reportition/Flow Region 2) wer, Plu: Prediction Interval-Upper, SEp: Standar	d Error of Prediction	, SE: Standard Erro Value	r (other see report) Unit	SE	SEp
PII: Prediction Interval-Lo	wer, Plu: Prediction Interval-Upper, SEp: Standar	d Error of Prediction			SE : 38	SEp 38
PII: Prediction Interval-Lor Statistic 7 Day 2 Year Low Flow	wer, Plu: Prediction Interval-Upper, SEp: Standar	d Error of Prediction	Value	Unit		
	wer, Plu: Prediction Interval-Upper, SEp: Standari	d Error of Prediction	Value 4.98	Unit ft^3/s	. 38	38
PII: Prediction Interval-Lor Statistic 7 Day 2 Year Low Flow 30 Day 2 Year Low Flo	wer, Plu: Prediction Interval-Upper, SEp: Standari v ow	d Error of Prediction	Value 4.98 7.13	Unit ft^3/s ft^3/s	38	38

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

Stuckey, M.H., 2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations

Report 2006-5130, 84 p. (http://pubs.usgs.gov/sir/2006/5130/)

Low-Flow Statistics Citations

StreamStats

Page 2 of 3

StreamStats Report- at confluence with UNT 09932 & Little Swatara Creek

Region ID:
Workspace ID:
PA20210128222558359000
Clicked Point (Latitude, Longitude):
Time:

PA20210128222558359000
40.44414, -76.33631
2021-01-28 17:26:16-0500

PA366 Point (Latitude, Longitude):

Pine Grove

P

Basin Characteristics			
Parameter Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	38	square miles
PRECIP	Mean Annual Precipitation	45	inches
STRDEN	Stream Density total length of streams divided by drainage area	1.44	miles per square mile
ROCKDEP	Depth to rock	3.5	feet
CARBON	Percentage of area of carbonate rock	2.65	percent

Parameter Code	Parameter Name	Value	Units		Min Limit	Max Limit
DRNAREA	Drainage Area	38	square miles		.4.93	1280
PRECIP	Mean Annual Precipitation	45	inches		35	50.4
STRDEN	Stream Density	1.44	miles per squ		0.51	3.1
ROCKDEP	Depth to Rock	3.5	feet		3.32	5.65
CARBON Low-Flow Statistics Flow R PII: Prediction Interval-Lo Statistic	Perce'nt Carbonate leportkow Flow Region থ wer, Plu: Prediction Interval-Upper, SEp: Standar	2.65 d Error of Prediction	percent SE: Standard Erro Value	or (other see report) Unit	0 SE	99 SEp
Low-Flow Statistics Flow F	Reportkow Flow Region 2 wer, Plu: Prediction Interval-Upper, SEp: Standar		SE: Standard Erro Value	Unit	SE	SEp
Low-Flow Statistics Flow R Pil: Prediction Interval-Lo Statistic 7 Day 2 Year Low Flow	Reportkow Flow Region 2 wer, Plu: Prediction Interval-Upper, SEp: Standar	d Error of Prediction	, SE: Standard Erro Value 4.99	Unit ft*3/s	SE 38	SEp 38
Low-Flow Statistics Flow R PH: Prediction Interval-Lo Statistic 7 Day 2 Year Low Flov	Reportkow Flow Region 2 wer, Plu: Prediction Interval-Upper, SEp: Standar v	d Error of Prediction	SE: Standard Erro Value	Unit	SE	SEp
Low-Flow Statistics Flow Regil: Prediction Interval-Low Statistic 7 Day 2 Year Low Flow 30 Day 2 Year Low Flow 7 Day 10 Year Low Flow 7 Day 10 Year Low Flow Flow 7 Day 10 Year Low Flow Flow Flow Flow Flow Flow Flow Fl	Reportition Flow Region 2 wer, Plu: Prediction Interval-Upper, SEp: Standar v	d Error of Prediction	, SE: Standard Erro Value 4.99	Unit ft*3/s	SE 38	SEp 38
Low-Flow Statistics Flow Regil: Prediction Interval-Low Statistic 7 Day 2 Year Low Flow 30 Day 2 Year Low Flow 7 Day 10 Year Low Flow 7 Day 10 Year Low Flow Flow 7 Day 10 Year Low Flow Flow Flow Flow Flow Flow Flow Fl	teportkowFlowRegion 2 wer, Plu: Prediction Interval-Upper, SEp: Standar v DW	d Error of Prediction	SE: Standard Erro Value 4.99 7.15	Unit ft*3/s ft*3/s	SE 38 33	SEp 38 33

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

Report 2006-5130, 84 p. (http://pubs.usgs.gov/sir/2006/5130/)

StreamStats

Page 2 of 3

StreamStats Report - at confl with Crosskill Creek and Little Swatara

Region ID:
Workspace ID:
PA
PA20210128222908971000
Glicked Point (Latitude, Longitude):
Time:
PA
PA20210128222908971000
40.44463, -76.35099
2021-01-28 17:29:28 -0500

Phine Grove
Pine Gro

Basin Characteristics			
Parameter Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	40.8	square miles
PRECIP	Mean Annual Precipitation	45	inches
STRDEN	Stream Density total length of streams divided by drainage area	1.43	miles per square mile
ROCKDEP	Depth to rock	3.5	feet
CARBON	Percentage of area of carbonate rock	2.49	percent

Myerstown

arameter Code	Parameter Name	Value	Units		Min Limit	Max Limit
DRNAREA	Drainage Area	40.8	square miles		4.93	1280
PRECIP	Mean Annual Precipitation	45	inches		35	50.4
STRDEN	Stream Density	1.43	miles per squa		0.51	3.1
, , , , , , , , , , , , , , , , , , ,	Depth to Rock	3.5	feet		3.32	5.65
ROCKDEP	Duptin to Mook				3.52	
CARBON ow-Flow Statistics Flow F	Percent Carbonate	2.49 d Error of Prediction,	percent	(other see report) Unit	0 SE	99 SEp
CARBON _ow-Flow Statistics Flow I !I: Prediction Interval-Lo	Percent Carbonate Reportuow Flow Region 2 wer, Plu: Prediction Interval-Upper, SEp: Standar		percent		0	99
CARBON _ow-Flow Statistics Flow ! !I: Prediction Interval-Lo Statistic	Percent Carbonate Report(Low Flow Region 2) wer, Plu: Prediction Interval-Upper, SEp: Standar W		percent SE: Standard Error Value	Unit	0 SE	99 SEp
CARBON _ow-Flow Statistics Flow I 'IL: Prediction Interval-Lo Statistic 7 Day 2 Year Low Flow	Percent Carbonate Reportition Flow Region 2] IWER, Plu: Prediction Interval-Upper, SEp: Standar		percent SE: Standard Error Value 5.42	Unit ft^3/s	0 SE 38	99 SEp 38
CARBON .ow-Flow Statistics Flow f if: Prediction Interval-Lo Statistic 7 Day 2 Year Low Flor 30 Day 2 Year Low Flor	Percent Carbonate ReportLow Flow Region 2 ower, Plu: Prediction Interval-Upper, SEp: Standard W DW		percent SE: Standard Error Value 5.42 7.75	Unit ft^3/s ft^3/s	0 SE 38 33	99 SEp 38 33

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

Report 2006-5130, 84 p. (http://pubs.usgs.gov/sir/2006/5130/)

Input Data WQM 7.0

	SWP Basin	Strea Cod		Stre	eam Name		RMI	Ele	evation (ft)	Draina Area (sq m	ā	Slope (ft/ft)	PW Withd (mg	frawal	Apply FC
	07D	98	388 LITTLI	SWATA	RA CREEK	(12.40	00	450.00	3	7.90 C	.00000		0.00	✓
					St	ream Dat	ta								
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	n Tem	<u>Tributa</u> np	<u>ry</u> pH	Ten	<u>Strear</u> np	<u>m</u> pH	
Condi	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C	;)		(°C	;)		
Q7-10 Q1-10 Q30-10	0.050	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000	0.0	0.00	,0.	00 2	0.00	7.00		0.00	0.00	
					Di	scharge l	Data]	
			Name	Per	mit Number	Disc	Permitte Disc Flow (mgd)	Di: Flo	sc Res	erve ctor	Disc Temp (°C)		sc H		
		Bethe	elFrystwnS	r PA	0247910	0.000	0 0.113	0.0	0000	0.000	25.0	00	7.00		
					Pa	rameter l	Data								
				Paramete	r Name	С	onc C	rib Conc ng/L)	Stream Conc (mg/L)	Fate Coef (1/day					
			CBOD5				25.00	2.00	0.00	1.	50				
			Dissolved	Oxygen			5.00	8.24	0.00	0.	00				
			NH3-N				25.00	0.00	0.00	0.	70				

Permit No. PA0247910 A-1

Input Data WQM 7.0

	SWP Basir	Stre Co		Str	eam Name		RMI		ration ft)	Drainage Area (sq mi)	Slop (ft/ft	Witho	Irawal	Apply FC
	07D	9	888 LITTLI	E SWATA	RA CREE	(12.00	00	445.00	38.00	0.00	000	0.00	V
					St	ream Da	ta							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	<u>Tributary</u> ip pH		<u>Strear</u> Temp	n pH	
oona.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C)		
Q7-10 Q1-10 Q30-10	0.050	0.00 0.00 0.00	0.00	0.000 0.000 0.000	0.000	0.0	0.00	0.00) 2	0.00 7	7.00	0.00	0.00	. "
					D	ischarge		 ·-			_		1	
			Name	Per	mit Numbe	Disc	Permitte Disc Flow (mgd)	Disc Flov	Res v Fa	erve Te ctor	isc mp C)	Disc pH		
		confl	UNT09932			0.000	0.000	0.00	000	0.000	25.00	7.00		
					Pa	arameter	Data						,	
			ı	Paramete	r Name				Stream Conc	Fate Coef				
4	_				<i>+</i>	(m	ng/L) (m	ng/L)	(mg/L)	(1/days)				
			CBOD5		•		25.00	2.00	0.00	1.50				
			Dissolved	Oxygen			5.00	8.24	0.00	0.00				
			NH3-N	-			25,00	0.00	0.00	0.70				

Input Data WQM 7.0

	SWP Basii			Stre	eam Name		RMI	Eleva (f		Drainag Area (sq mi			VS drawal gd)	Apply FC
	07D	98	388 LITTLI	E SWATA	RA CREEK	;	11.20	00 4	135.00	40	.80 0.0	0000	0.00	V
	#*************************************				St	ream Da	ta							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	<u>Tributan</u> ip	ℓ pH	<u>Strear</u> Temp	m pH	
Cona.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C)		
27-10 21-10 230-10	0.050	0.00 0.00 0.00	0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00	0.00	2	0.00	7.00	0.00	0.00	
					Đi	scharge	Data				wa		7	
			Name	Per	mit Number	Disc	Permitte Disc Flow (mgd)	Disc Flow	Res Fa	erve	Disc Temp (°C)	Disc pH		
	*	conf	Crosskill			0.000	0.000	0.00	00	0.000	25.00	7.00	•	
					Pa	arameter	Data							
			ı	Paramete	r Namo				tream Conc	Fate Coef				
				-aramete	INSILIE	(n	ng/L) (r	mg/L) (mg/L)	(1/days)			
	-		CBOD5				25.00	2.00	0.00	1.5	0	J		
	-		Dissolved	Oxygen			5.00	8.24	0.00	0.0	0			
			NH3-N				25.00	0.00	0.00	0.7	0			

WQM 7.0 Hydrodynamic Outputs

	<u>sw</u>	<u> IP Basin</u>	<u>Strea</u>	m Code				<u>Stream</u>	<u>Name</u>				
	07 D			888	LITTLE SWATARA CREEK								
RMI	Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow	Reach Slope	Depth	Width	W/D Ratio	Velocity	Reach Trav Time	Analysis Temp	Analysis pH	
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)		
Q7-10	0 Flow												
12.400	1.90	0.00	1.90	.1748	0.00237	.611	25.38	41.51	0.13	0.183	20.42	7.00	
12.000	1.90	0.00	1.90	.1748	0.00237	.612	25.41	4 1.54	0.13	0.366	20.42	7.00	
Q1-10	0 Flow												
12.400	1.21	0.00	1.21	.1748	0.00237	· NA	NA	NA	0.11	0.229	20.63	7.00	
12.000	1.22	0.00	1.22	.1748	0.00237	NA	NA	NA	0.11	0.458	20.63	7.00	
Q30-	10 Flow	,											
12.400	2.58	0.00	2.58	.1748	0.00237	NA	NA	NA	0.16	0.156	20.32	7.00	
12.000	2.58	0.00	2.58	.1748	0.00237	NA	NA	NA	0.16	0.312	20.32	7.00	

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	Y
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	V
D.O. Saturation	90.00%	Use Balanced Technology	V
D.O. Goal	5		

WQM 7.0 Wasteload Allocations

SWP	<u>Basin</u>	Stream	Code

Stream Name

07D

9888

LITTLE SWATARA CREEK

RMI	Discharge Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
12.40	0 BethelFrystwnST	9.24	50	9.24	50	0	0
12.00	0 confl UNT09932	NA	NA	9.24	NA	NA	NA
H3-N (Chronic Allocati	ons					
RMI	Discharge Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
12.40	0 BethelFrystwnST	1.87	25	1.87	25	0	0
12.00	0 confi I INT09932	NΔ	, NA	1 87	NA	NA	NA

Dissolved Oxygen Allocations

		CBOD5		<u>NH3-N</u>		Dissolved Oxygen		Critical	Percent
RMI	Discharge Name	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Reach	Reduction
12	.40 BethelFrystwnST	25	25	25	25	5	5	0	0
12	.00 confl UNT09932	NA	NA	NA	NA	NA	NA	NA	NA

WQM 7.0 D.O.Simulation

SWP Basin St	ream Code			Stream Name	
07D	9888		LITTI	E SWATARA CREEK	(
RMI 12.400 Reach Width (ft) 25.379 Reach CBOD5 (mg/L) 3.94	Total Discharge 0.11 Reach De 0.61 Reach Kc (0.75 Reach Kr (3 pth (ft) 1 1/days) 1		lysis Temperature (°C' 20.422 Reach WDRatio 41.506 each NH3-N (mg/L) 2.11 Kr Equation	Analysis pH 7.000 Reach Velocity (fps) 0.133 Reach Kn (1/days) 0.723 Reach DO Goal (mg/L)
Reach DO (mg/L) 7.969	3.03			Tsivoglou	5
Reach Travel Time (days) 0.183	TravTime (days)	Subreach CBOD5 (mg/L)	Results NH3-N (mg/L)	D.O. (mg/L)	
	0.018 0.037 0.055 0.073	3.89 3.83 3.78 3.73	2.08 2.06 2.03 2.00	7.83 7.69 7.57 7.46	
	0.073 0.092 0.110 0.128 0.147	3.68 3.62 3.57 3.52	1.98 1.95 1.92 1.90	7.35 7.25 7.17 7.08	
	0.147 0.165 0.183	3.47 3.43	1.87 1.85	7.08 7.01 6.94	
<u>RMI</u> 12.000 <u>Reach Width (ft)</u>	Total Discharge 0.11: Reach De	3 pth (ft)) <u>Ana</u>	lysis Temperature (°C' 20.421 Reach WDRatio	7.000 Reach Velocity (fps)
25.410 Reach CBOD5 (mg/L) 3.42	0.61: <u>Reach Kc (</u> 0.59: Reach Kr (<u>1/days)</u> 6	<u>R</u>	41.537 each NH3-N (mg/L) 1.84 <u>Kr Equation</u>	0.133 <u>Reach Kn (1/days)</u> 0.723 Reach DO Goal (mg/ <u>L)</u>
Reach DO (mg/L) 6.945	3.03	•		Tsivoglou	5
Reach Travel Time (days) 0.366	TravTime (days)	Subreach CBOD5 (mg/L)	Results NH3-N (mg/L)	D.O. (mg/L)	
	0.037 0.073	3.35 3.27	1.80 1.75	6.86 6.78 6.72	
	0.110 0.147 0.183	3.20 3.13 3.06	1.70 1.66 1.62	6.68 6.65	
	0.220 0.256 0.293	3.00 2.93 2.87	1.57 1.53 1.49	6.63 6.61 6.61	
	0.330 0.366	2.80 2.74	1.45 1.42	6.61 6.62	

WQM 7.0 Effluent Limits

	SWP Basin Stream	n Code 88		Stream Nam LITTLE SWATARA	_		
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effi. Limit Minimum (mg/L)
12.400	BethelFrystwnST	PA0247910	0.000	CBOD5	25		
				NH3-N	25	50	
		•		Dissolved Oxygen			5

Σ
ĕ
Beth
ន
23
72
å

2 CONC 3 SAMPLE FISAMPLE TYPE 2/month 24-Hr Composite						Z/month Z4-Hr Composite	1/month Calculation	1/month Calculation				1/month Calculation	1/month Calculation	1/month Calculation	1/month Calculation	1/month Calculation						1/month Calculation		2/month Calculation					1/month Calculation						1/month Calculation	1/month Calculation					1/year Calculation	£	1/month Calculation			1/month Calculation		1/month Calculation					1/month Calculation				1/month Calculation		2/month 24-Hr Composite
NONTINEM STREAMS FRAME FRAME SANDE SAND STREAMS FRAME SANDER SANDER SANDER SANDE SANDE SANDE SANDE SANDE FRAME SANDE SANDE SANDE SANDE FRAME SANDE SANDE SANDE SANDE SANDE SANDE FRAME SANDE SAN	0.86	< 0.5 Monitor ar Average Monthly	0.82			< 0.51 Monitor ar Average Monthly																		2.4.4. Monitor or Average Monthly	A 20 5 Monton or Average Monthly	37 Monitor ar Average Monthly		28.7 Monitor ar Average Monthly	< 25.5 Monitor ar Average Monthly	27.2 Monitor ar Average Monthly	< 21.3 Monitor ar Average Monthly	< 19.9 Monitor ar Average Monthly	< 20.4 Monitor ar Average Monthly	< 22.3 Monitor ar Average Monthly	19.7 Monitor at Average Monthly	20.7 Monitor at Average Monthly	20.8 Monitor at Average Monthly	< 20.5 Monitor ar Average Monthly	< 21.2 Monitor ar Average Monthly	< 25.3 Avg																			1.67 Monitor at Average Monthly 1.67 Monitor at Average Monthly
/ FOAD 2 ILLOAD 2 SICONC UNICONC 1 Y CONC 1 L CON	J/Sm	mg/L	mg/L	1/Sm	mg/L	. 1/8m																		(bound	1800 1800	Valle Mark	1/Sm	mg/L	mg/L	mg/L	mg/L	√2/m	mg/L	mg/L	1/3LL	7/8H	1/20	mg/L	1/8w		Monitor at Total Applia				Monitor ar Total Annual														. 7/8m
LOAD 1 V LOAD 1 LI LOAD 1 SI LOAD 2 V	_					-		< 31 Monitor ar Total Monthly	m	<14 Monitor ar Total Monthly	w	< 5 Monitor ar Total Monthly	5 Monitor ar Total Monthly	< 4 Monitor ar Total Monthly	< 3 Monitor ar Total Monthly		< 6 Monitor ar Total Monthly	7	<3 Monitor ar Total Monthly	œ		< Monitor at Total Monthly																			8826 >	< 163 Monitor ar Total Monthly		148 Monitor ar Total Monthly		< 180 Monitor ar Total Monthly	112 Monttor at lotal Monthly	86		< 136 Monitor ar Total Monthly		< 184 Monitor at Total Monthly	156 Monitor ar Total Monthly	S LZ3 Monttof at 10tal Monthly 150 Monttor or Total Monthly	Monitor at Total Monthly Monitor at Total Monthly		< 52 Monitor ar Total Monthly	-	0.3 Monitor ar Average Monthly 0.3 Monitor ar Average Monthly
1 Final Effluent Total Kjeldahi Nitrogen	1 Final Effluent Total Kjeldahl Nitrogen	Final Effluent	1 Final Effluent Total Kjeldahi Nitrogen		1 Final Effluent Total Kjeldahl Nitrogen	Hnai Effluent Total Kjeldahl Nifrogen	1. Final Effluent Total Kield: ibs	1 Final Effluent Total Kield: lbs	1 Final Effluent Total Kjeld: lbs	Final Effluent		1 Final Effluent Total Kjeld: lbs		1 Final Effluent Total Kjeld: lbs	Final Effluent	Final Effluent	1 Final Effluent Total Kjeld: lbs	1 Final Effluent Total Kjeld: ibs	1. Final Effluent Total Kjeld: lbs	1 Final Effluent Total Kjeld: ibs		1 Final Effluent Total Kjeld: lbs	TOTAL NICTOR	A Charl Cofficent Total Mitracen		Final Efficent	Final Effluent	Final Effluent			Final Effluent		Final Effluent	Final Effluent	Final Effluent	1 challeftuart Total Nitrogen	Final Effluent	Final Effluent			1 Floal Effluent Total Nitro (he		•			Final Effluent	1 Final Efficient Total Nitro lbs	Final Effluent	Final Effluent	Final Effluent	Final Effluent	Final Effluent	Final Effluent	1 Chall Efficant Total Nitro like	Final Effluent	Total Nitro	1 Final Effluent Total Nitro lbs		1 Final Effluent Total Phosj lbs/day
6/1/2020 6/30/2020		8/1/2020 8/31/2020	9/1/2020 9/30/2020	10/1/2020 10/31/2020		12/1/2020 12/31/2020		9/1/2019 9/30/2019			-		2/1/2020 2/29/2020				6/1/2020 6/30/2020				10/1/2020 10/31/2020	11/1/2020 11/30/2020		פימרו ובוס פומרו ווס		10/1/2019 10/31/2019										02/02/TE/9 0202/T/9		11/1/2020 11/30/2020	12/1/2020 12/31/2020		P10C/05/P 810C/1/01			10/1/2019 10/31/2019				2/1/2020 2/29/2020						0707/15/9 0707/1/9	-		12/1/2020 12/31/2020		8/1/2019 8/31/2019 9/1/2019 9/30/2019
1159971						11599/1		1159971				1159971	1159971	1159971			1159971			1159971		1159971	1/50511	********			1159971						1159971	1159971	1159971	1159971					1159071	1159971					1159971			1159971	1159971	1159971	1159971	1159971	1159371	1159971	1159971		11599/1

Σ
je P
ž
ġ
ę,
걸

SAMPLE TYPE	24-Hr Composite	24-fit Composite	24-Hr Composite	24-Hr Composite	24-Hr Composite			24-Hr Composite	24-Hr Composite	24-Hr Composite	24-Hr Composite	24-Ur Composite	24-Hr Composite		Calculation					Calculation	Calculation	Calculation	Calculation		Calculation	Calculation				Calculation	Calculation		24-Hr Composite	24-Hr Composite	24-Hr Composite	24-Hr Composite	24-Hr Composite	24-Hr Composite	24-Hr Composite	24-Hr Composite	24-Hr Composite	24-Hr Composite	24-Hr Composite				24-Hr Composite	24-Hr Composite					24-Hr Composite						
3 L CONC 3 S SAMPLE FI	2/month	2/month	2/month	2/month	2/month	2/month	2/month	2/month	Z/month	muom/7	2/month	2/month	z/month		1/year	1/month	1/month	1/month	1/year	T/month	1/month	1/month	1/month	1/month	1/month	1/month	1/month	1/month	1/month	1/month	1/month		45 Weekly Av: 2/month	45 Weekly Avi 2/month	45 Weekly Avi 2/month	45 Weekly Av. 2/month	45 Weekly Avi 2/month	45 Weekly Av. 2/month	45 Weekly Aw 2/month	45 Weekly Avi 2/month	45 Weekly Aw 2/month	45 Weekly Av. 2/month	45 Weekly Av. 2/month	45 Weekly Av. Z/month		45 Weekly Av. 2/month	45 Weekly Av. 2/month	45 Weekly Av. 2/month	45 Weekly Avi 2/month	45 Weekly Avr 2/month	45 Weekly Avi 2/month	45 Weekly Aw Z/month	45 Weekly Avi 2/month	45 Weekly Avi 2/month				45 Weekly Av. 2/month	45 Weekly Av. 2/month
3 V CON																																	23	£	7.5	20	9	3 %			8.8	4.1	14.4	84	6	11.6	12.8	at u	8.4	77	13.5	9.5	T 84	t 4	5.2	8.4	٠.	t r	5.6
2 V, CONC 2 L CONC 2 S CONC	nitor ar Average Monthly	0.28 Monitor at Average Monthly	0.65 Monitor at Average Monthly	0.38 Monitor ar Average Monthly	0.24 Monitor ar Average Monthly	0.3 Monitor ar Average Monthly	0.44 Monitor ar Average Monthly	0.41 Monitor ar Average Monthly	0.46 Monitor at Average Monthly	0.55 Monitor at Average Monthly	0.42 Monitor at Average Monthly	0.54 Monitor of Average Monthly	0.27 Monitor ar Average Monthly	, .																			30 Average M	30 Average M	30 Average M	30 Average M < 4	30 Average M	30 Average M	30 Average M < 4	30 Average M < 4	30 Average M	30 Average M	30 Average iv	30 Average M	30 Average M	30 Average M	30 Average M	an Average M	30 Average M	30 Average M	30 Average M	30 Average M	30 Average M 30 Average M	30 Average M	30 Average M	30 Average M	30 Average M	30 Average W	30 Average M
C 2 V, CO	D 15.0	017.28 MID	0.36 Mo	0.38 Mo	0.24 Mo	0.3 Mo	0.44 Mo	0.41 Ma	0.46 Mg	0.55 MIO	0.42 IMO	0.24 750	0.27 Mo	0.53 Avg																			13		~						7	5.2	‡ ¢	7.8	8,9		-	٧ ،	n et	9.4		8.6	. d	ţ.	· 10	4,4			i w
SBC CON														ľ																					< 5.8	9 9	, ,	, vis	4	4 4							× 8× 4	7.90	444		× 8.8			4.4	< 4.6		65.0	Ĵ	
NC UNI CONC 1 V CONC 1 L CONC 1	7	7.	7.4	, ₁		γ	٧-		A.	4 =																							<i>V</i>	7/	4	7.	4.5	3.4		7	7	, 'K			7/2	1/2	7.			. 5	1/1	7.					4.		14
2 LI LOAD 2 SI CON	Su.	T/Sea	1/AIII	1/80	1/gm	/Sm	mg/L	E	200		1/8:::	1/8 E	1/3m	•	70 Monitor ar Total Annual				Monitor ar Fotal Annual														27 Weekly Av. mg/L	27 Weekly Av: mg/l			27 Weekly Avi mg/l						27 Weekly Avi mg/L		27 Weekly Av. mg/L			27 Weekly Avi.mg/l	27 Weekly Avi mg/L	27 Weekly Avi mg/L			27 Weekly Avi mg/L					27 Weekly Aw mg/l	27 Weekly Av. mg/l
2 V LOAD															70 Moni				Se Mon														m	7	7	7	,	4 74	ı		т.	8	nr	4 ~	7	7.0	8	H 0	8 6	7	7	~	7 -	90		r-1	6.0	-4 C	
V LOAD 1 LILOAD 1 SILOAD	0.06 Monitor ar Average Monthly	O.US MONITOR OF AVERAGE MONITORY		05 Monitor ar Average Monthly	0.05 Monitor ar Average Monthly	07 Monitor ar Average Monthly	04 Monitor ar Average Monthly	0.1 Monitor ar Average Monthly	 Monitor at Average Monthly 	or Monitor at Average Monthly	0.1 Monitor at Average Monthly 0.07 Monitor at Average Monthly		0.02 Monitor at Average Monthly	•		8 Monitor ar Total Monthly	9 Monitor ar Total Monthly	2 Monitor ar Total Monthly		2 Monitor or Total Monthly		1 Monitor ar Total Monthly	2 Monitor ar Total Monthly	2 Monitor ar Total Monthly	1 Monitor ar Total Monthly	3 Monitor ar Total Monthly	4 Monitor ar Total Monthly	2 Monitor ar Total Monthly	3 Monitor ar Total Monthly	2 Monitor ar Total Monthly	2 Monitor at Total Monthly 0.7 Monitor at Total Monthly		2 18 Average M	18	18 Average M	18 Average M	18 Average W		18 Average M < 1	18 Average M < 0.7	18	82		18	1 18 Average M	. 18	18 Average M		18 Average M		18		21 2	U.O LO AVERAGE IVI				18 Average M	1 18 Average M
I LOAD 1	ŏ	3 8	5 6	ä	ð	ŏ	8	0 1	2	3 '	' č	3 2	3 3																			,			1	6.0 >	, .	; ;	× 0.8	< 0.7		_					< 0.7	707	× 0.7		< 1.0		•	, 9.0 ×	¢ 0.9		< 0.5	9	
PARAMETE LOAD UN	Total Phosi ibs/day	Total Phosi lbs/day							Total Phosi lbs/day	Total Phospips/day	Total Phoe lbs/day	Total Phote lbs/day	Total Phosi lbs/day	-	•		Total Phosi Ibs			Total Phosi ibs	-			Total Phospibs							Total Phosi lbs		Total Suspi lbs/day				Total Such lbs/day						Total Suspribs/day						Total Suson lbs/day				Total Suspy bs/day					Total Suspellos/day	
OUTEA MONITORING PARAMETE LOAD U	1 Final Effluent	1 Hinal Efficient	1 Final Fiffuent			1 Final Effluent	1 Final Effluent	1 Final Effluent	Final Effluent	Final Effluent	1 Final Fiffuent	1 Challeffuent	1 Final Effluent			1 Final Effluent	1 Final Effluent	1 Final Effluent	1 Final Efficient	1 Circl 6#heat	1 Final Effluent	1 Final Effluent	1 Final Effluent	1 Final Effluent	1. Final Effluent	1 Final Effluent	1 Final Effluent	1. Final Effluent	1 Final Effluent	1 Final Effluent	1 Final Effluent		1 Final Effluent	1 Final Effluent	1 Final Effluent	1 Final Effluent	1 Sinal Effluent	1 Final Effluent		1 Final Effluent			1 Final Efficient	4 **		#1	1 Final Effluent	1 Final Effluent	1 Final Effluent		Т	-1	1 Final Effluent	٠.	1 64	1 Final Effluent	1 Final Effluent	1 Final Efficent	1 Final Effluent
ONITORING	0/31/2019	6102/06/11	1/31/2029	2/29/2020	3/31/2020	4/30/2020	5/31/2020	6/30/2020	0202/18//	0/307/15/0	0202/05/6	0202/76/01	12/30/2020		9/30/2019	8/31/2019	9/30/2019	10/31/2019	9/30/2020	5102/05/11	1/31/2020	2/29/2020	3/31/2020	4/30/2020	5/31/2020	6/30/2020	7/31/2020	8/31/2020	9/30/2020	0/31/2020	12/31/2020		1/31/2018	2/28/2018	3/31/2018	4/30/2018	8/00//06/9	7/31/2018	8/31/2018	9/30/2018	10/31/2018	11/30/2018	37/21/2018	2/28/2019	3/31/2019	4/30/2019	5/31/2019	6/30/2019	8/31/2019	9/30/2019	10/31/2019	11/30/2019	02/21/2019	0202/15/1	3/31/2020	4/30/2020	5/31/2020	0/30/2020	8/31/2020
MONITORING MONITORING O	10/1/2019	E 6102/1/11			3/1/2020								12/1/2020				9/1/2019									6/1/2020					1 0202/1/11		1/1/2018			4/1/2018											5/1/2019	6/1/2019	8/1/2019							4/1/2020	5/1/2020	0/1/2020	8/1/2020
AUTH ID MO	1159971	13559/1			1159971			1159971							•		1159971									1159971					1159971		870267																		1159971			1159971	1159971	1159971	1159971	1159971	1159971

Dennsy DEPARTMENT OF PROTECTION	pennsylvania DEPARITMENT OF ENVIRONMENTAL PROTECTION	TAL			٥	HESA	PEAKE	E BAY S L NUTR	APEAKE BAY SUPPLEMENTAL RE ANNUAL NUTRIENT MONITORING	MENTA!	CHESAPEAKE BAY SUPPLEMENTAL REPORT ANNUAL NUTRIENT MONITORING] Continuou	Continuous Discharge	Versi	Version 2.1, 4/1/2019
Facility Name: Municipality: Watershed:		Bethel Township Frystown STP Bethel Township 7-D	own STP		5		Berks				ŏz⊨⊧	Compliance Year: NPDES Permit No This permit will ex	Compliance Year: NPDES Permit No.: This permit will expire	2019 PA0247910 on: July 31, 2024	11, 2024	Outfall:		001
IN Cap Load (Ibs): TN Delivery Ratio:)s): 					ຶກ •	Sewage	= O	Industrial Waste	Vaste	=	I P Cap Load (Ibs) TP Delivery Ratio:	TP Cap Load (lbs): TP Delivery Ratio:					
te		Total Phosporus (TP) Q mg/L Q lbs	orus (TP) Q lbs/day	ay Q	J/gm .		NH ₃ -N Q lbs	lbs/day	a mg/L	TKN J/L O	t lbs/day	y Q	· · · NO ₂ +N mg/L	NO ₂ +NO ₃ as N ig/L Q lbs/day	day Q		Total Nitrogen (TN) mg/L. Q lb	(TN) lbs/day
10/2/18	0.0157																	
	0.0146																	
	0.0206	1.49	0.3	٧	0.1		v	0.0										
10/5/18	0.0068					-					,			-				
	0.0121							-										
	0.0099																	
	0.0075					-												
1	0.0107						-											
1	0.0222						+		-									
+	0.0099			-		1												
_	0.0129																	
\dashv	0.0189											1						
+	0.0108		1	1			_											
_	0.0127			+														
10/1//18	0.009	1 67		\	5													
+	0.0096	0.	7.0	+				2		1								
	0.0104			_														
	0.0151																	
<u> </u>	0.0122											 						
	0.0085																	
+	0.0189					+	-											
10/25/18	0.0039		<u> </u>				1	T		+		<u> </u>						
+	0.007				***************************************													
	0.0268																	
	0.0091																	
1	8600.0											.					.	
10/31/18	0.0146	4.77	6			+						-						
+	0.0177	71:1	7.0	<u>' </u>	5		<u> </u>	0.0										
	0.0161			1														
	0.0235						<u> </u>			-								
	0.0289						_											
	0.0227																	
	0.0194																	
+	0.0228						1											
4	0.0147		-	1			_						-					
-	0.0191		-	+			1			+						-		
11/11/18	0.0233	<u> </u>		+		+	+	\top	_		_	+			+		1	***************************************
+	0.0224	+	+	+	-	+	+	+	+	+	_	+		<u>.</u>	$\frac{\perp}{\parallel}$			
-	2020.0	_	_		_	_			_	_	_	_	_	_	-	_	_	-

		-									_			_	_									_		-										 	
										5.6	,													9.0												6.3	
										٧	<u> </u>																									٧	٧
									***************************************	33.90														51.10												38.42	
\vdash	_				_	<u> </u>	-	-	\vdash	v	H	_		-	-	┢	-	_	_	 	\vdash	-	<u> </u>		-				_	_						v	
	-									5.5														7.0												2.7	2078
							H			<u> </u>						Г	T	T	<u> </u>																		
										33.4														39.7												35.1	
										0.1														2.0												9.0	210
Γ										v										Γ																<	٧
										0.5														11.4											-	3.32	
\vdash			<u> </u>	-	<u> </u>				1	v																				-	-	 				v	
						***************************************				0.1														0.1												0.02	
							•	Г																								Ì				v	Y
										0.37							-							0.3												0.12	
																											·									v	
										0.3														0.3												0.2	
_							_	_	<u> </u>																-					_	_		<u> </u>			 	
										1.6														1.74												1.31	Annual Total Mass Loads (lbs):
																						L															ass
0.0118	0.012	0.02	0.0116	0.0117	0.0136	0.0135	0.0166	0.0118	0.0094	0.0199	0.0048	0.0163	0.012	0.0117	0.0114	0.0222	0.0132	0.012	0.0191	0.0141	0	0.0118	0.0109	0.0212	9600'0	0.0087	0.0146	0.0116	0.0105	0.0109	0.0118	0.0076	0.0113	0.0095	0.0088	0.0149	nnual Total
8/26/19	8/27/19	8/28/19	8/29/19	8/30/19	8/31/19	9/1/19	9/2/19	9/3/19	9/4/19	9/5/19	9/6/19	9/7/19	9/8/19	9/9/19	9/10/19	9/11/19	9/12/19	9/13/19	9/14/19	9/15/19	9/16/19	9/17/19	9/18/19	9/19/19	9/20/19	9/21/19	9/22/19	9/23/19	9/24/19	9/25/19	9/26/19	9/27/19	9/28/19	9/29/19	9/30/19	Avg	[*]

I certify under penalty of law that this document was prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel gather and evaluate the information submitted. Based on my inquiry of the persons who manage the system or those persons directly responsible for gathering the information, the information, the information, the information and penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations. See 18 Pa. C.S. § 4904 (relating to unsworn falsification).

S16380 10/25/2019 License No.: Date: Selena K Kreiser Vice President Prepared By: Title:

DEPARTMENT PROTECTION	pennsylvania Department of environmental PROTECTION	пад				CHES	APEAK ANNUA	APEAKE BAY SUPPLEMENTAL RE ANNUAL NUTRIENT MONITORING	UPPLEN IENT MC	TENTAL	CHESAPEAKE BAY SUPPLEMENTAL REPORT ANNUAL NUTRIENT MONITORING			Conti	Continuous Discharge	charge	Versian 2.1, <i>4/1/</i> 2019	, 4/1/2019
Facility Name: Municipality: Watershed: TN Cap Load (lbs): TN Delivery Ratio:		Bethel Township Frystown STP Bethel Township 7-D	own STI			County:	ty: Berks Sewage	ဖွ	Industrial Waste	/aste	Con NPI This	Compliance Year: NPDES Permit No.: This permit will expire TP Cap Load (lbs): TP Delivery Ratio:	φ ·	2020 PA0247910 on: July 31, 2024		Outfall:	001	
Sample Date 10/1/19	FLOW MGD 0.0084	Total Phosporus (TP) Q mg/L. Q lbs	orus (TP Q : lbs	is (TP)	ď	mg/L	NH3·N	lbs/day (O mg/L	TKN Jil O	lbs/day	ø	NO ₂ +NO ₃ as N mg/L Q	s N Ibs/day	- G	Total Nitrogên (TN) mg/L Q lb	gên (TN) Q lbs	V) (V
10/2/19	0.0117	200							6							30		
10/4/19	0.0092	0.0		r.o		6.3	-	0.0	69:0	20	0.1	36.6	တ္	9.		37.29	+	0.4
10/5/19	0.011																	
10/6/19	0.0085																	
10/8/19	0.0097						-											
10/9/19	9600.0																	•
10/10/19	0.0229																	
10/11/19	900.0																	
10/12/19	0.0084		1															
10/14/19	0.0118				-		+			<u> </u> 								
10/15/19	0.0024				-													
10/16/19	0.0181	0.35	-	0.1	v	0.1	v	0.0	0.81	_	0.1	35.8	80	5.4		36.61		5.5
10/17/19	0.0221																	
91/81/01	0.003/				+	+		-										
10/19/19	0.015/														1			
10/20/19	0.0170																	
10/22/19	0.0063		-				-			1								
10/23/19	0.0129												:					
10/24/19	0.0216																	
10/25/19	0.01																	
10/27/19	0.0164														ļ			
10/28/19	0.0178																	
10/29/19	0.0148																	
10/30/19	0.0163																-	
11/1/19	0.0463		-												1		+	
11/2/19	0.0156																	
11/3/19	0.0102																<u> </u>	
11/4/19	0.0024								,									
11/5/19	0.0091													-				
11/6/19	0.0132	0.16		0.0		0 1	v	0	A 0.5	۷	10	25.8	00	5.4	v	26 30	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	u u
11/8/19	0.0103								L			í				2	_	2
11/9/19	0.0121																	
11/10/19	0.008																	
11/11/19	0.003			-	-	+	+		_									
11/12/19	0.0086						+											

_											_									_		-					_											
									6.0														4.0														4.4	1618
																																					٧	V.
									20.06														21.18														24.23	-
												<u>.</u>																									٧	V 11 600
									5.8				,				-						3.8														4.3	1555
Н				<u> </u>																																		Vinte
							:		19.4														20.2														23.3	
				-							<u> </u>								<u> </u>	<u></u>																\vdash	Н	ef:
									0.2														0,2														0.2	63
										_									_																		v	٧
									99.0										·				0.98														0.95	
							<u> </u>														_																٧	
									0.0								,						0.0							1							0.02	1
H			-		<u> </u>				ν	<u> </u>									<u> </u>				v														>	V
									0.1						:								0.1														0.1	\$155E
				<u> </u>												_																	·	_				
					_	<u> </u>			٧											<u>.</u>			٧					<u> </u>									>	
									0.1											A.C	_		0.1														0.07	26
-			-		-	-	-				<u> </u>						.		_	<u> </u>	<u> </u>												-		_		H	s):
	-				:				4.0														0.44						-								0.4	Annual Total Mass Loads (lbs):
\vdash				<u> </u>	_						<u> </u>	<u> </u> 			L	_				<u> </u>	<u> </u>						_			-	-						H	Mas
0.0234	0.0466	0.0193	0.0254	0.0181	0.0331	0.0062	0.0262	0.0247	0.0356	0.0207	0.0297	0.0101	0.026	0.0119	0.0344	0.0289	0.0215	0.0183	0.0258	0.0271	0.0201	0.0163	0.0227	0.024	0.0225	0.024	0.0054	0.0332	0.0147	0.0284	0.0246	0.0152	0.0292	0.022	0.0219	0.0215	0.0182	nnual Tota
8/25/20	8/26/20	8/27/20	8/28/20	8/29/20	8/30/20	8/31/20	9/1/20	9/2/20	9/3/20	9/4/20	9/5/20	9/6/20	9/7/20	9/8/20	9/9/20	9/10/20	9/11/20	9/12/20	9/13/20	9/14/20	9/15/20	9/16/20	9/17/20	9/18/20	9/19/20	9/20/20	9/21/20	9/22/20	9/23/20	9/24/20	9/25/20	9/26/20	9/27/20	9/28/20	9/29/20	9/30/20	Avg	

I certify under penalty of law that this document was prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system or those persons directly responsible for gathering the information, the information, the information, the information, the information or persons who manage the accurate and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations. See 18 Pa. C.S. § 4904 (relating to unsworn falsification). S16380 10/25/2020 License No.: Date: Selena K Kreiser Vice President Prepared By: Title:

Monthly Statistics

Calculation	Calculation	Calculation	Calculation	Calculation	Calculation	Calculation	Calculation	Calculation	Calculation		8-Hr Composite	8-Hr Composite		8-Hr Composite	24-Hr Composite	Calculation	Calculation	Calculation	Calculation
1/year	1/year	2/year	1/year	2/year	1/year	1/year	1/year	1/year	1/year		2/month	2/month	4/year	1/year	2/year	1/vear	1/year	1/year	1/vear
63.2 Monitor ar Annual Average	46.1 Monitor ar Annual Average	65.07 Monitor ar Annual Average	48.73 Monitor ar Annual Average	43.64 Monitor ar Annual Average 53.3 Avg. reported conc. 10/1/2015-9/30/2020						/30/2020	1.51 Monitor ar Annual Average	2.52 Monitor ar Annual Average	2.53 Monitor ar Annual Average	0.319 Monitor ar Annual Average	0.619 Monitor ar Annual Average 1.50 Avg. reported conc. 10/1/2015-9/30/2020				
1/Bim	> _1/B/m	T/Bm	> 1/Bm	mg/L	2624 Monitor ₹ Total Annual	< 1720 Monitor a Total Annual	3492 Monitor a Total Annual	< 1645 Monitor : Total Annual	2862 Monitor ₹ Total Annual	2468.6 Avg, reported mass load 10/1/2015-9/30/2020	ng/L	7/8w	T/Sm	mg/L		79 Monitor ¿Total Annual	107 Monitor a Total Annual	108 Monitor ∈ Total Annual	11 Monitor a Total Annual
1 Total Nitrogen	1 Total Nitrogen	1 Total Nitrogen	1 Total Nitrogen	1 Total Nitrogen	1 Total Nitro Ibs	1 Total Nitro Ibs	1 Total Nitro lbs	1 Total Nitro lbs	1 Total Nitro lbs		1 Total Phosphorus	1 Total Phosphorus	1 Total Phosphorus	1 Total Phosphorus	1 Total Phosphorus	1 Total Phosi ibs	1 Total Phosi lbs	1 Total Phosi lbs	1 Total Phosi lbs
↔ '	v- 4	Н	Η.	터	Н	Н	н	₽	Н		н	₩	ст	Н	ч	← 1	₽	ŧН	-
9/30/2016	9/30/2017	9/30/2018	9/30/2019	9/30/2020	9/30/2016	9/30/2017	9/30/2018	9/30/2019	9/30/2020		9/30/2016	9/30/2017	9/30/2018	9/30/2019	9/30/2020	9/30/2016	9/30/2017	9/30/2018	9/30/2019
10/1/2015	10/1/2016	10/1/2017	10/1/2018	10/1/2019	10/1/2015	10/1/2016	10/1/2017	10/1/2018	10/1/2019		10/1/2015	10/1/2016	10/1/2017	10/1/2018	10/1/2019	10/1/2015	10/1/2016	10/1/2017	10/1/2018
	915848 1	915848 1	915848 1	915848 1		915848 1	915848 1	915848 1	915848 1		915848 1	915848 1	915848	915848 1	915848	915848			915848

71.2 Avg, reported mass load 10/1/2015-9/30/2020

Page 1

pennsylvania opparimental protection

Model Results

Wasteload Allocations

☐ Hydrodynamics

Bethel MUA Frystown STP, NPDES Permit No. PA0247910, Outfall 001

Toxics Management Spreadsheet Version 1.1, October 2020

Jits	
큰	SECOND SECOND
\circ	20000 50000 20000 20000
<u>\$</u>	
nsa	
ፚ	
0	20000
	3000
orts	
) Inputs	
0	
_	
=	
∢	
()	
5	
2	
"	
١,	
()	
占	
S	
AVE AS PD	
	10222
S	
\/	
()	
ΙĘ	
₫	
=	
ΙĘ	
	##20174 ##20174 ##20174 ##20174
E	
_ ≅ ,	
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
	2000
2	
25.	
č	
4	

Analysis pH: 7.00	Comments				Chem Translator of 0.96 applied	Chem Translator of 0.791 applied	Chem Translator of 0.978 applied	Analysis pH: 7.00
100								100
ss (mg/l):	WLA (µg/L)	A/N	A/N	A/A	118	689	1,012	:ss (mg/l):
Analysis Hardness (mg/l):	WQ Obj (µg/L)	N/A	A/N	N/A	14.0	81.6	120	Analysis Hardness (mg/l):
Anal	WQC (µg/L)	N/A	N/A	N/A	13.439	64.581	117.180	Ana
0.687	Fate Coef	0	0	0	0	0	0	[-]
PMF:	Stream Trib Conc CV (µg/L)							PMF:
15	Stream CV	0	0	0	0	0	0	1.809
CCT (min):	Conc	0	0	0	0	o	0	CCT (min): 31.8
✓ AFC CC	Pollutants	Total Dissolved Solids (PWS)	Chloride (PWS)	Sulfate (PWS)	Total Copper	Total Lead	Total Zinc	CFC CC

	_	_	_	_			
				lied	olied	olied	
				96 app	791 ap	386 ap	
Comments				or of 0.	or of 0.	or of 0.	A/N
Cor				ransla	ranslat	ranslat	. bH:
				Chem Translator of 0.96 applied	Chem Translator of 0.791 applied	hem T	Analysis pH:
						U	`
							A/A
- C.							L
WLA (µg/L)	A/N	N/A	N/A	110	37.7	1,419	Analysis Hardness (mg/l):
WQ Obj (µg/L)	N/A	N/A	N/A	9.33	3.18	120	Hardnes
MC E	_	_		6	က	1	alysis l
WQC (µg/L)	N/A	N/A	N/A	8.956	2.517	118.139	Ā
						<u>, </u>	
Fate Coef	0	0	0	<i>///</i>	0	0	~
rib Conc (µg/L)							PMF:
rib Cor (µg/L)							ā
A STREET GROWINGS							
Conc CV	0	0	0	0	0	0	600
Conc	0	0	0	0	0	0	31.8
ਸ਼ ਹੱ ਵੱ							CCT (min): 31.809
	(SMc						ŏ
ıts	olids (F	(SMc	WS)	oper	ad	nc	
Pollutants	olved S	Chloride (PWS)	Sulfate (PWS)	Total Copper	Total Lead	Total Zinc	
	Fotal Dissolved Solids (PWS)	Ch	ഗ	Ľ	, -		THH [
	^L						

tream Trib Conc Fate WQC WQ Obj WLA (µg/L) CV (µg/L) Coef (µg/L) (µg/L)	0 500,000 500,000 N/A	0 W//// 0 250,000 250,000 N/A	0
Conc	0	0	0
ollutants	solved Solids (PWS)	noride (PWS)	ulfate (PWS)

			N/A Analysis pH: N/A	Comments						
N/A	N/A	N/A		WLA (µg/L)	N/A	A/A	N/A	A/A	N/A	N/A
N/A	N/A	N/A	Analysis Hardness (mg/l):	WQ Obj (µg/L)	N/A	A/N	N/A	VA	A/N	N/A
N/A	N/A	N/A	Ana	WQC (µg/L)	N/A	A/A	N/A	Y/N	N/A	N/A
0	0	0	_	Fate Coef	0	0	0	0	0	0
		1		12112/11/11		111		111		
			PMF:	frib Conc (µg/L)						
			집	lă B		(l)				
0	0	0	896	Stream CV	0	0	0	0.	0	0
0	0	0	CCT (min): 10.896	Conc CV	0	0	0	0	0	0
Total Copper	Total Lead	Total Zinc	CRL CC	Pollutants	Total Dissolved Solids (PWS)	Chloride (PWS)	Sulfate (PWS)	Total Copper	Total Lead	Total Zinc

✓ Recommended WQBELs & Monitoring Requirements

No. Samples/Month:

	- 60	
	eu	
	Ĕ	
	රී	
	Address of the control of the contro	
	BE	
	88	
		_
	ming BEL	
	err 2Bi	
	68	
1.500	ţs	
7000	5	
mik	ξX	
n L	2	
atio		
entr		
)uc	ē	
ľΫ	M	
0000		
	2	
2000 2000 2000 2000	ই	
755	· · ·	
	MDL s/day	
nits		
ss Lii	0	
fas	. (ć	
1	β/MI S/d	
	, 9	
:		
:		
	CO .	
	Pollutant	
	8	

Other Pollutants without Limits or Monitoring

The following pollutants do not require effluent limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharge concentration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QL).

. Pollutants	Governing WQBEL	Units	Comments
Total Dissolved Solids (PWS)	N/A	A/N	PWS Not Applicable
Chloride (PWS)	A/N	N/A	PWS Not Applicable
Bromide	A/A	N/A	SOW oN
Sulfate (PWS)	N/A	N/A	PWS Not Applicable
Total Copper	75.8	hg/L	Discharge Conc ≤ 10% WQBEL
Total Lead	A/N	N/A	Discharge Conc < TQL
Total Zinc	648	hg/L	Discharge Conc ≤ 10% WQBEL

Toxics Management Spreadsheet Version 1.1, October 2020

Discharge Information

Instructions Discharge Stream											
Facility: Bethel MUA Frystown STP NPDES Permit No.: PA0247910 Outfall No.: 001											
Evaluation Type: Major Sewage / Industrial Waste Wastewater Description: sewage>0.1 MGD											
			Discharge	Characterist	ics						
Design Flow	P	artial Mix Fa	ectors (PMF	s)	Complete Mix	x Times (min)					
(MGD)*	Hardness (mg/l)*	pH (SU)*	AFC	CFC	THH	CRL	Q ₇₋₁₀	Q,			
0.440	400	7									

0 If left blank 0.5 If left blank

0 if left blank

					O W ACAL DIGITAL		U.O II ACA DIGIN		O F ICH MAIN			7 II ACIA DIMINA	
	Discharge Pollutant	Units	Ма	x Discharge Conc	Trib Conc	Stream Conc	Daily CV	Hourly CV	Strea m CV	Fate Coeff	FOS	Criteri a Mod	Chem Transl
г	Total Dissolved Solids (PWS)	mg/L		722									
12	Chloride (PWS)	mg/L		229									
Group	Bromide	mg/L	٧	1									
ច	Sulfate (PWS)	mg/L		27.1									
L	Fluoride (PWS)	mg/L											
Г	Total Aluminum	µg/L											
ı	Total Antimony	µg/L											
ı	Total Arsenic	µg/L											
ı	Total Barlum	µg/L											
ı	Total Beryllum	µg/L											
ı	Total Boron	µg/L											
ı	Total Cadmium	µg/L											
ı	Total Chromium (III)	µg/L											
ı	Hexavalent Chromlum	µg/L											
ı	Total Cobalt	µg/L											
ı	Total Copper	µg/L		6									
2	Free Cyanide	µg/L											
group	Total Cyanide	µg/L											
ច	Dissolved Iron	µg/L											
ı	Total Iron	µg/L											
ı	Total Lead	µg/L	٧	1									
ı	Total Manganese	µg/L											
ı	Total Mercury	µg/L											
ı	Total Nickel	µg/L											
ı	Total Phenois (Phenolics) (PWS)	µg/L											
ı	Total Selenium	µg/L											
ı	Total Silver	µg/L											
ı	Total Thaillum	µg/L											
ı	Total Zinc	µg/L		11									
L	Total Molybdenum	µg/L											
Г	Acrolein	µg/L	٧										
ı	Acrylamide	µg/L	٧										
ı	Acrylonitrile	µg/L	٧										
ı	Benzene	µg/L	٧										