

Application Type	Renewal
	Non-
Facility Type	Municipal
Major / Minor	Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

Application No.	PA0248088
APS ID	823945
Authorization ID	1241798

Applicant and Facility Information

Applicant Name	PA American Water Co.	Facility Name	Franklin Waste Water Treatment Plant		
Applicant Address	852 Wesley Drive	Facility Address	2410 Chambersburg Road		
	Mechanicsburg, PA 17055		Gettysburg, PA 17325		
Applicant Contact	Cody Cutler	Facility Contact	Dave Boore		
Applicant Phone	(717) 663-9933	Facility Phone	(717) 691-2106		
Client ID	87712	Site ID	665661		
Ch 94 Load Status	Not Overloaded	Municipality	Franklin Township		
Connection Status	No Limitations	County	Adams		
Date Application Receiv	ved August 2, 2018	EPA Waived?	Yes		
Date Application Accep	ted August 29, 2018	If No, Reason			
Purpose of Application	NPDES permit renewal.				

Summary of Review

PA American Water submitted a NPDES renewal application for discharge of treated sewage from the Franklin Waste Water Treatment Facility located in Franklin Township, Adams County. The permit was last issued on January 22, 2014 and became effective on February 1, 2014. The existing permit expired on January 31, 2019, and the permit has been administratively extended since that time.

The Franklin Waste Water Treatment Facility has 70% sewers from Franklin Township and 30% sewer from Hamilton-Ban Township. The NPDES permit No. PA0248088 was amended on July 29, 2014 to correct the flow of 0.2 MGD while the hydraulic design flow of 0.5 MGD.

The Water Quality Management (WQM) Permit No. 016404 was issued on April 17, 2007, was amended on April 22, 2014 to change the ownership from the Franklin Township, Adams County to Pennsylvania American Water Company (#016404 T-1).

Changes from the previous permit: Unit of Fecal Coliform changed from CFU/100 ml to No./100 ml.

Based on the review outline in this fact sheet, it is recommended that the permit be drafted and publish in the Pennsylvania Bulletin for public comments for 30 days.

Approve	Deny	Signatures	Date
Х			
		Hilary H. Le / Environmental Engineering Specialist	December 10, 2019
		Daniel W. Martin, P.E. / Environmental Engineer Manager	
		Maria D. Bebenek, P.E. / Clean water Program Manager	

Discharge, Receiving Waters and Water Supply Informa	ation			
Outfall No. <u>001</u>	Design Flow (MGD)	<u>0.2</u> -77º 19' 1 73"		
Quad Name Eairfield	Quad Code			
Wastewater Description: Sewage Effluent				
Unnamed Tributary to Marsh Creek Receiving Waters (CWF) NHD Com ID 53319832	Stream Code RMI	59009 1.92 miles		
Drainage Area 1.71 mi. ²	Yield (cfs/mi ²)	See comments below		
Q ₇₋₁₀ Flow (cfs) See comments below	Q ₇₋₁₀ Basis	USGS StreamStats		
Elevation (ft) 584	Slope (ft/ft)			
Watershed No. 13-D	Chapter 93 Class.	CWF		
Existing Use	Existing Use Qualifier			
Exceptions to Use	Exceptions to Criteria			
Assessment Status Impaired				
Cause(s) of Impairment Source(s) of Impairment Source(s) of Impairment	TION, RUNOFF (NON-CONSTRUC	TION RELATED), RURAL		
TMDL Status	Name			
Nearest Downstream Public Water Supply Intake	Gettysburg Municipal Authorit	y, Adams County		
PWS Waters Marsh Creek	Flow at Intake (cfs)			
PWS RMI 8.12 miles	Distance from Outfall (mi)	Approximate 9 miles		
ainago Aroa				

Drainage Area

The discharge is to Tributary 59009 to Marsh Creek at RMI 1.92 miles. A drainage area upstream of the discharge is estimated to be 1.71 mi.², according to USGS PA StreamStats available at <u>https://streamstats.usgs.gov/ss/</u>.

Streamflow

The entire watershed of UNT 59009 is also too small. Therefore, the upper portion of Marsh Creek (until just after its confluence with Mummasburg Run) was chosen as a proper representative drainage area. According to USGS StreamStats, the Q_{7-10} at the exit point of this watershed is 1.11 cfs and the drainage area is 21.3 mi.² which results in a Q_{7-10} low flow yield of 0.052 cfs/mi.². This information is used to obtain a chronic or 30-day (Q_{30-10}), and an acute or 1-day (Q_{1-10}) exposure stream flow for the discharge point as follows (Guidance No. 391-2000-023):

Low Flow Yield = 1.11 cfs / 21.3 mi.² \approx 0.052 cfs/mi.² Q₇₋₁₀ = 0.052 cfs/mi.² * 1.71 mi.² \approx 0.089 cfs Q₃₀₋₁₀ = 1.36 * 0.089 cfs \approx 0.12 cfs Q₁₋₁₀ = 0.64 * 0.089 cfs \approx 0.057 cfs

The resulting dilution ratio (under Q_{7-10} conditions) is: $Q_{stream} / Q_{discharge} = 0.089$ cfs / [0.500 MGD * (1.55 cfs/MGD)] = 0.11:1

Unnamed Tributary to Marsh Creek

25 Pa Code § 93.9z classifies Tributaries 59009 to Marsh Creek as cold-water fishes. The eMap PA lists Unnamed Tributary to Marsh Creek as impaired due to small residential runoff and road runoff caused by flow regime modification. A TMDL does not currently exist for this stream segment.

Public Water Supply

The nearest downstream public water supply is Gettysburg Municipal Authority facility, Adams County on Marsh Creek Reservoir, approximately 9 miles downstream of the discharge point. Based on the nature of discharge, the discharge is not expected to impact the public water supply standards.

Treatment Facility Summary						
Treatment Facility Na	me: Franklin Waste Water	Treatment Plant				
WQM Permit No.	Issuance Date					
016404	4/17/2007					
016404 T-1	4/22/2014					
	Degree of			Avg Annual		
Waste Type	Treatment	Process Type	Disinfection	Flow (MGD)		
Sewage	Secondary With Ammonia And Phosphorus	Sequencing Batch Reactor	Hypochlorite	0.2		
Hydraulic Capacity	Organic Capacity			Biosolids		
(MGD)	(lbs/day)	Load Status	Biosolids Treatment	Use/Disposal		
0.5	459	Not Overloaded	Aerobic Digestion	Other WWTP		

The WWTP train is as follows:

Mechanical Screen (1) \Rightarrow Bar Screen (1) \Rightarrow SBR Tank (2) \Rightarrow Chlorine Contact Tank (1) \Rightarrow Dechlorination Feed (1) \Rightarrow Cascade (1) \Rightarrow Discharge

The SBR plant has four cycles per day; each with a 60 minute decant phase. The design decant rate is 926 gpm (1.33 MGD).

The system incorporates chemical addition in the form of sodium hypochlorite, sodium bisulfite, and alum. Two sludge holding tanks are used for solids storage.

Compliance History					
Summary of DMRs:	DMRs reported last 12 months from November 1, 2018 to October 31, 2019 are summarized in the Table below (Pages # 5 & 6).				
Summary of Inspections:	11/28/2017: Mr. Bowen, DEP WQS, conducted compliance evaluation inspection. The recommendations were revised September 2017 DMR to include 9/19/17 results for TP, TKN, and NO ₂ -NO ₃ ; include all test results on monthly and annual DMRs, and calibrate pH and DO meter daily. There was no violation noted during inspection.				
	2/24/2016: Mr. Haines, DEP WQS, conducted compliance evaluation inspection. The effluent was clear. The sample test results were within permitted range. There was no violation noted during inspection.				
Other Comments:	There are no open violations associated with this facility or permittee.				

Other Comments: DMRs for the past 12 months indicated operating satisfactorily.

NPDES Permit Fact Sheet Franklin Waste Water Treatment Plant Other Comments cont.

The table below summarizes the influent/effluent testing results submitted along with the application. Influent Testing Results Effluent Testing Results

Parameter	Min/Max Value	Average Value	Parameter	Min/Max Value	Average Value
BOD ₅ (mg/L)	118/444 mg/L	254 mg/L	pH (minimum)	6.4 S.U.	
BOD ₅ (lbs/day)	48/313 lbs/day	206 lbs/day	pH (maximum)	7.5 S.U.	
TSS (mg/L)	119/1038 mg/L	295 mg/L	D.O (minimum)	5.0/6.8 mg/L	5.9 mg/L
TSS (lbs/day)	48/545 lbs/day	137 lbs/day	TRC	0.01/0.09 mg/L	0.03 mg/L
TN (mg/L)	19.8 mg/L	19.8 mg/L	Fecal Coliform	2.0/520	74.2 No./100 mL
TN (lbs/day)	No Data Ibs/day	No Data lbs/day	CBOD ₅	3/16 mg/L	5.66 mg/L
TP (mg/L)	2.7 mg/L	2.7 mg/L	TSS	1/15 mg/L	4.57 mg/L
TP (lbs/day)	No Data Ibs/day	No Data lbs/day	NH ₃ -N	< 0.01/2.2 mg/L	0.276 mg/L
NH ₃ -N (mg/L)	17 mg/L	17 mg/L	TN	1.2/3.6 mg/L	2.57 mg/L
NH ₃ -N (lbs/day)	NO Data lbs/day	No Data lbs/day	ТР	3.6 mg/L	3.6 mg/L
TDS (mg/L)	452 mg/L	452 mg/L	Temp	No Data	No Data
TDS (lbs/day)	No Data Ibs/day	No Data lbs/day	TKN	0.65/1.6 mg/L	1.28 mg/L
TKN	19 mg/L	19 mg/L	NO2-N + NO3-N	< 0.4/1.6 mg/L	0.81 mg/L
NO ₂ -N + NO ₃ -N	< 0.8 mg/L	< 0.8 mg/L	TDS	1032 mg/L	1032 mg/L
			Chloride	85 mg/L	85 mg/L
			Bromide	0.60 mg/L	0.60 mg/L
			Sulfate	43 mg/L	43 mg/L

Oil and Grease

Total Copper

Total Lead

Total Zinc

No Data mg/L

Compliance History

DMR Data for Outfall 001 (from November 1, 2018 to October 31, 2019)

Parameter	OCT-19	SEP-19	AUG-19	JUL-19	JUN-19	MAY-19	APR-19	MAR-19	FEB-19	JAN-19	DEC-18	NOV-18
Flow (MGD)												
Average Monthly	0.0682	0.0674	0.062	0.0637	0.0687	0.1168	0.0919	0.0974	0.0959	0.1006	0.1073	0.1334
Flow (MGD)												
Daily Maximum	0.1104	0.0942	0.1089	0.0837	0.1174	0.3124	0.1982	0.1861	0.1912	0.1905	0.1703	0.2241
pH (S.U.)												
Minimum	6.8	7.0	7.1	7.2	6.9	6.9	7.0	6.9	6.9	7.1	6.8	7.0
pH (S.U.)	- 0		- 0				- 4			- 4		
Maximum	1.2	7.3	7.3	7.3	7.3	7.3	7.4	7.3	7.3	7.4	7.6	7.5
DO (mg/L)		F 4	5.4	F 4	F 4	5.4	<u> </u>	7.0	0.7	74	7.0	0.0
	5.5	5.4	5.1	5.1	5.1	5.4	6.8	1.2	6.7	7.1	7.0	0.0
IRC (mg/L)	0.020	0.020	0.020	0.010	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020
	0.020	0.020	0.020	0.010	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020
INC (IIIg/L)	0.030	0.020	0.020	0.030	0.040	0.030	0.030	0.030	0.030	0.030	0.030	0.030
	0.030	0.020	0.020	0.050	0.040	0.030	0.030	0.030	0.050	0.030	0.030	0.050
Average Monthly	< 2.5	< 1.6	14	< 2 1	< 1.6	< 3.0	< 21	< 2 1	24	< 2 2	< 2.0	< 4.0
CBOD ₅ (lbs/day)	12.0	1.0		- 2.1	1.0	0.0	· 2.1		2.1	· L.L	- 2.0	1.0
Weekly Average	6.0	24	15	28	18	48	< 2.8	< 2.6	30	27	< 3.0	50
CBOD ₅ (mg/L)	0.0	2.1	1.0	2.0			2.0	2.0	0.0	2.1	0.0	0.0
Average Monthly	< 4	< 4	3	< 4.0	3	< 3	< 3	< 3	3	< 3	3.0	3.0
CBOD ₅ (mg/L)				-	-							
Weekly Average	9	6	3	5.0	3	3	< 3	< 3	3	3	< 3.0	3
BOD ₅ (lbs/day)												
Raw Sewage Influent												
Average Monthly	135	123	86	106	170	120	317	90	120	142	90	144
BOD₅ (lbs/day)												
Raw Sewage Influent Daily												
Maximum	207	187	124	176	255	151	934	114	149	243	103	233
BOD₅ (mg/L)												
Raw Sewage Influent								100				
Average Monthly	259	280	186	190	340	197	229	133	155	189	119	118
TSS (lbs/day)	1.0		4.5	4.0	4 -	4.0				<u> </u>		
Average Monthly	1.0	2.0	1.5	1.6	4.5	4.0	2.9	0.9	1.4	2.5	2.0	2.0
TSS (Ibs/day)												
Raw Sewage Influent	100	100	107	107	171	100	242	00	100	200	07	010
	129	109	107	127	171	123	313	98	128	389	97	218
100 (IDS/08y) Dow Sowage Influent Doily												
Navinum	200	13/	211	224	265	165	1008	138	183	220	153	/18
	200	104	211	224	205	105	1000	150	105	223	100	410
Weekly Average	25	47	37	28	11 4	63	56	15	24	59	40	30
TSS (mg/L)	2.0	т.1	0.1	2.0	11.7	0.0	0.0	1.0	2 .T	0.0	т.ч	0.0
Average Monthly	2	5	3	3	8	6	4	1	2	3	3.0	2

NPDES Permit No. PA0248088

TSS (mg/L)												
Raw Sewage Influent												
Average Monthly	246	249	231	223	345	185	206	142	164	203	121	173
TSS (mg/L)												
Weekly Average	5	10	8	5	19	13	6	2	3	8	6.0	2
Fecal Coliform (CFU/100 ml)												
Geometric Mean	< 16	28	175	> 45	9	34	11	1	8	< 1	1.2	1.0
Fecal Coliform (CFU/100 ml)												
Instantaneous Maximum	961	183	600	196	104	100	140	3	172	2	2.0	1.0
Nitrate-Nitrite (mg/L)												
Average Monthly	8.5	1.31	0.93	< 2.7	< 0.95	0.62	3.12	< 9.2	5.96	6.0	< 3.3	< 5.5
Nitrate-Nitrite (lbs)												
Total Monthly	< 125	22	19	< 50	20	27	< 54	< 218	136	< 131	89	< 168
Total Nitrogen (mg/L)												
Average Monthly	< 9.04	< 2.62	3.29	< 3.69	< 3.49	< 3.14	< 3.98	< 9.84	< 12.42	< 6.6	< 4.99	< 6.1
Total Nitrogen (lbs)												
Total Monthly	< 133	< 35	48	< 70	< 51	< 78	< 63	< 235	< 315	< 144	< 106	< 186
Total Nitrogen (lbs)												
Other Annual Final Effluent												
Total Annual											1885	
Ammonia (lbs/day)												
Average Monthly	< 0.07	< 0.08	0.3	0.2	< 0.7	< 0.3	0.07	< 0.08	0.1	< 0.09	0.08	< 0.1
Ammonia (mg/L)												
Average Monthly	< 0.14	< 0.19	0.65	0.33	< 0.3	< 0.25	< 0.1	< 0.12	0.13	< 0.11	< 0.1	< 0.1
Ammonia (lbs)												
Total Monthly	< 2.2	< 2.4	9.3	5.0	< 10.1	< 8.5	< 2.1	< 2.6	2.9	< 2.7	< 2.4	< 3.6
Ammonia (lbs)												
Other Annual Final Effluent												
I otal Annual											55	
IKN (mg/L)	0 = 1									0.50		<u> </u>
Average Monthly	< 0.54	1	2	1.04	2.4	2.2	< 0.5	0.69	0.52	< 0.56	0.84	< 0.5
TKN (lbs)		10			0.5	- 4			10		10	
I otal Monthly	< 8	12	29	21	35	51	< 10	17	13	< 12	18	< 15
Total Phosphorus (Ibs/day)	0	0	0	<u> </u>	0		4	0	0	0	0	0
Average Monthly	2	2	2	3	2	1	4	2	2	2	2	2
Total Phosphorus (mg/L)			4.0		4.0	4.05					0.5	4.0
Average Monthly	3.8	4.9	4.8	4.1	4.8	1.95	4./	2.3	2.3	2.6	2.5	1.8
Total Phosphorus (lbs)	-0				- 4		407					
	53	66	69	79	/4	30	107	55	57	55	53	55
I otal Phosphorus (lbs)												
Other Annual Final Effluent											007	
i otal Annual				1				1		1	997	

Development of Effluent Limitations

Outfall No.	001		
Latitude	39º 51' 47.00)"	
Wastewater D	escription:	Sewage Effluent	

Design Flow (MGD) 0.2 Longitude -77

0.2 -77º 19' 2.00"

Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD5	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
рН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform				
(5/1 – 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform				
(5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform				
(10/1 – 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform				
(10/1 – 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)

Water Quality-Based Limitations

Carbonaceous Biochemical Oxygen Demand (CBOD₅):

The attached computer printout of the WQM 7.0 stream model indicates that a monthly average limit of 25 mg/L, or secondary treatment, is adequate to protect the water quality of the stream. The existing limits of 25 mg/L average monthly (AML), 40 mg/L average weekly limit (AWL), and 50 mg/L instantaneous maximum will remain in the proposed permit as per guidance document 391-2000-014. Recent DMRs and inspection reports show that the facility has been consistently achieving these limits. Mass limits are calculated as follows:

Average monthly mass limit: $25 \text{ mg/L} \times 0.200 \text{ MGD} \times 8.34 = 41.7$ (42.0) lbs/day Average weekly mass limit: $40 \text{ mg/L} \times 0.200 \text{ MGD} \times 8.34 = 66.7$ (67.0) lbs/day

Ammonia (NH₃-N):

NH₃-N calculations were first based on the Department's Implementation Guidance of Section 93.7 Ammonia Criteria, dated 11/4/97 (ID No. 391-2000-013). The following data is necessary to determine the in-stream NH₃-N criteria used in the attached computer model of the stream:

Discharge pH	=	7.0	(Default)
Discharge Temperature	=	20°C	(Default)
Stream pH	=	7.0	(Default)
Stream Temperature	=	20°C	(Default for CWF)
Background NH ₃ -N	=	0	(Default)

The model input data and results are attached. The printout of the WQM 7.0 output indicates that at a discharge of 0.200 MGD, limits (rounded according to the NPDES Technical Guidance 362-0400-001) of 2.5 mg/L NH₃-N as a monthly average and 5.0 mg/L NH₃-N instantaneous maximum are necessary to protect the aquatic life from toxicity effects. The existing summer limits of 2.5 mg/L and 5.0 mg/L will remain in the proposed permit. Mass limits are calculated as follows:

Average monthly summer mass limit: 2.5 mg/L x 0.200 MGD x 8.34 = 4.2 lbs/day

The winter effluent limit will be set at three-times the summer limits; therefore, the average monthly winter limit for NH₃-N will be 7.5 mg/L (2.5 mg/L x 3). For the same reason, the instantaneous maximum limit for the winter season will be 15 mg/L (5 mg/L x 3). Recent DMRs and inspection reports indicate that these limits are being attained easily.

Average monthly winter mass limit: 7.5 mg/L x 0.200 MGD x 8.34 = 12.5 lbs/day

NPDES Permit Fact Sheet Franklin Waste Water Treatment Plant Total Suspended Solids (TSS):

There is no water quality criterion for TSS. A limit of 30 mg/L AML will be required based on the minimum level of effluent quality attainable by secondary treatment as defined in 40 CFR 133.102b(1) and 25 PA § 92a.47(a)(1), and an AWL of 45 mg/L per 40CFR 133.102(b)(2) and 25 PA § 92a.47(a)(2). Past DMRs and inspection reports show that the facility has been consistently achieving these limits. Mass limits are calculated as follows:

Average monthly mass limit: 30 mg/L x 0.200 MGD x 8.34 = 50.0 lbs/day Average weekly mass limit: 45 mg/L x 0.200 MGD x 8.34 = 75.1 lbs/day

Dissolved Oxygen (DO):

A minimum D.O. of 5.0 mg/L is required per 25 Pa. Code § 93.7. This is consistent with the previous permit and current Department criteria.

pH:

The effluent discharge pH should remain above 6 and below 9 standard units according to 25 Pa Code § 95.2(2).

Fecal Coliform:

The recent coliform guidance in 25 Pa. Code § 92a.47.(a)(4) requires a summer technology limit of 200/100 ml as a geometric mean and an instantaneous maximum not greater than 1,000/100 ml and 25 Pa. Code § 92a.47.(a)(5) requires a winter limit of 2,000/100 ml as a geometric mean and an instantaneous maximum not greater than 10,000/100 ml.

Total Residual Chlorine (TRC):

Based on the attached TRC Excel Spreadsheet calculator, which uses the equations and calculations from the Department's May 1, 2003 Implementation Guidance for Total Residual Chlorine (ID No. 391-2000-015), the facility's discharge must meet a monthly average limit of 0.051 mg/L and an instantaneous maximum limit of 0.166 mg/L since 2/1/2017. Based on recent DMR data, the facility currently meets these limits. The existing limits will remain in the proposed permit.

Chesapeake Bay Strategy:

The Department formulated a strategy to comply with the EPA and Chesapeake Bay Foundation requirements by reducing point source loadings of Total Nitrogen (TN) and Total Phosphorus (TP). Sewage discharges have been prioritized by Central Office based on their delivered TN loadings to the Bay. The highest priority (Phases I, II, and III) dischargers will receive annual loading caps based on their design flow on August 29, 2005 and concentrations of 6 mg/L TN and 0.8 mg/L TP. These limits may be achieved through a combination of treatment technology, credits, or offsets. Phase IV (0.2 - 0.4 MGD) will be required to monitor and report TN and TP during permit renewal monthly and Phase V (below 0.2 MGD) will monitor during current permit renewal once a year. However, any facility in Phases IV and V that undergoes expansion is subjected to cap load right away. This plant is classified as phase IV, it will be required to monitor and TP "Monitor & Report" requirements will remain in the proposed permit.

Antidegradation (93.4)

The effluent limits for this discharge have been developed to ensure that existing in-stream water uses and the level of water quality necessary to protect the existing uses are maintained and protected. No High Quality Waters are impacted by this discharge. No Exceptional Value Waters are impacted by this discharge.

303d Listed Streams

eMap PA lists UNT Marsh Creek as impaired at the discharge point for "flow regime modification" due to small residential runoff and road runoff. A TMDL has not yet been developed.

Class A Wild Trout Fisheries

No Class A Wild Trout Fisheries are impacted by this discharge.

Additional Considerations

Flow Monitoring

The requirement to monitor the volume of effluent will remain in the proposed permit per 40 CFR § 122.44(i)(1)(ii).

Monitoring Frequency and Sample Type

The facility currently is required to collect daily effluent grab samples for D.O., TRC, and pH; one per week effluent 24-hr composite samples of CBOD₅, TSS, and Ammonia-Nitrogen; one per week effluent grab samples of Fecal Coliform; two per month effluent 24-hr composite samples of Nitrate-Nitrite as N, Total Kjeldahl Nitrogen, and TP; and two per month effluent calculation samples of TN. Based on the best professional judgement of the author, the existing monitoring frequencies are sufficient and necessary. Therefore, the existing monitoring frequencies will remain the same as those specified in the proposed permit.

WQM 7.0

Two nodes were incorporated in the modeling effort.

rsh Creek
584 ft (USGS National Map Viewer)
1.71 mi. ² (USGS PA StreamStats)
1.92 (PA DEP eMapPA)
0.052 cfs/mi. ²
0.200 MGD (NPDES Application)
with UNT Marsh Creek with Marsh Creek
539 ft (USGS National Map Viewer)
539 ft (USGS National Map Viewer) 2.8 mi. ² (USGS PA StreamStats)
539 ft (USGS National Map Viewer) 2.8 mi. ² (USGS PA StreamStats) 0.001 (PA DEP eMapPA)
539 ft (USGS National Map Viewer) 2.8 mi. ² (USGS PA StreamStats) 0.001 (PA DEP eMapPA) 0.052 cfs/mi. ²

Attachment is WQM 7.0 data.

TRC results.

TRC EVAL	UATION							
Input appropria	ate values ir	n A3:A9 and D3:D9						
0.089	= Q stream	n (cfs)	0.5	= CV Daily				
0.2	= Q discha	arge (MGD)	0.5	= CV Hourly				
30	= no. sam	oles	1	= AFC_Parti	al Mix Factor			
0.3	= Chlorine	Demand of Stream	1	= CFC_Partia	al Mix Factor			
0	= Chlorine	Demand of Discharge	15	= AFC_Crite	ria Compliance Time (min)			
0.5	= BAT/BPJ	l Value	720	= CFC_Crite	ria Compliance Time (min)			
0	= % Facto	r of Safety (FOS)		=Decay Coe	fficient (K)			
Source	Reference	AFC Calculations		Reference	CFC Calculations			
TRC	1.3.2.iii	WLA afc =	0.111	1.3.2.iii	WLA cfc = 0.100			
PENTOXSD TRO	6 5.1a	LTAMULT afc =	0.373	5.1c	LTAMULT cfc = 0.581			
PENTOXSD TRO	6 5.1b	LTA_afc=	0.041	5.1d	LTA_cfc = 0.058			
Source		Effluer	nt Limit Calcu	lations				
PENTOXSD TRO	9 5.1f		AML MULT =	1.231				
PENTOXSD TRO	€ 5.1g	AVG MON L	.IMIT (mg/l) =	0.051	AFC			
	INST MAX LIMIT (mg/l) = 0.166							
14/1 A - E-	(040/-(14	AFC 1-11 - MAFC V-10	-* 040/04*					
WLA aic	(.019/e(-k	AFU_(C)) + [(AFU_TC Q AFC_Va*Oa*Va/Od\]*/4	S .019/Qa (e(-k AFC_IC)				
I TAMULT afe	EVP((0.5*1.N	(cvh^2+1))-2 326*[N(cvh^2	2+1)^0 5)					
	wla afc*l T/	MIII T afc						
	wia_are Err							
WLA cfc	(.011/e(-k*	CFC tc) + [(CFC Yc*Qs	*.011/Qd*e	(-k*CFC_tc))				
	+ Xd + ((CFC_Yc*Qs*Xs/Qd)]*(1-	FOS/100)					
LTAMULT_cfc	EXP((0.5*LN	(cvd^2/no_samples+1))-2.3		2/no_samples+	1)^0.5)			
LTA_cfc	TA cfc wild cfc*LTAMULT cfc							
AML MULT	EXP(2.326*L	N((cvd^2/no_samples+1)^	0.5)-0.5*LN(c	vd^2/no_samp	les+1))			
AVG MON LIMIT	MIN(BAT_B	PJ,MIN(LTA_afc,LTA_cfc)*	AML_MULT)					
INST MAX LIMIT	1.5*((av_п	non_limit/AML_MULT)/L1	AMULT_af	c)				

Existing Effluent Limitations and Monitoring Requirements

			Effluent L	imitations			Monitoring Re	quirements
Parameter	Mass Units	(lbs/day) ⁽¹⁾		Concentrat	ions (mg/L)		Minimum ⁽²⁾	Required
Farameter	Average Monthly	Daily Maximum	Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report	xxx	xxx	XXX	xxx	Continuous	Measured
pH (S.U.)	XXX	XXX	6.0	xxx	XXX	9.0	1/day	Grab
DO	XXX	XXX	5.0	XXX	XXX	XXX	1/day	Grab
Total Residual Chlorine (8/1/2014 – 1/31/2017)	XXX	xxx	XXX	0.20	XXX	0.68	1/day	Grab
TRC (2/1/2017 – 1/31/2019)	XXX	xxx	xxx	0.051	xxx	0.166	1/day	Grab
BOD₅ Raw Sewage Influent	Report	Report	XXX	Report	xxx	xxx	1/week	24-Hr Composite
TSS Raw Sewage Influent	Report	Report	XXX	Report	XXX	xxx	1/week	24-Hr Composite
CBOD ₅	41.7	66.7 Wkly Avg	XXX	25.0	40.0	50	1/week	24-Hr Composite
TSS	50.0	75.1 Wkly Avg	XXX	30.0	45.0	60	1/week	24-Hr Composite
Fecal Coliform (CFU/100 ml) May 1 - Sep 30	XXX	XXX	XXX	200 Geo Mean	XXX	1.000	1/week	Grab
Fecal Coliform (CFU/100 ml) Oct 1 - Apr 30	xxx	xxx	xxx	2,000 Geo Mean	xxx	10,000	1/week	Grab
Ammonia May 1 - Oct 31	4.2	xxx	xxx	25	xxx	5.0	1/week	24-Hr Composite
Ammonia	12.5		XXX	7.5	XXX	15		24-Hr
Total Phosphorus	Report	XXX	XXX	Report	XXX	XXX	2/month	24-Hr Composite

Compliance Sampling Location:

Other Comments:

Existing Effluent Limitations and Monitoring Requirements, Cont.

		Monitoring Requirements						
Baramotor	Mass Units (Ibs/day) ⁽¹⁾		Concentrations (mg/L)				Minimum ⁽²⁾	Required
Faranieter				Monthly		Instant.	Measurement	Sample
	Monthly	Annual	Monthly	Average	Maximum	Maximum	Frequency	Туре
								24-Hr
AmmoniaN	Report	Report	XXX	Report	XXX	XXX	1/week	Composite
								24-Hr
KjeldahlN	Report	XXX	XXX	Report	XXX	XXX	2/month	Composite
								24-Hr
Nitrate-Nitrite as N	Report	XXX	XXX	Report	XXX	XXX	2/month	Composite
Total Nitrogen	Report	Report	XXX	Report	XXX	XXX	2/month	Calculation
								24-Hr
Total Phosphorus	Report	Report	XXX	Report	XXX	XXX	2/month	Composite

Compliance Sampling Location:

Other Comments:

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

	Effluent Limitations					Monitoring Requirements		
Deremeter	Mass Units	(lbs/day) ⁽¹⁾		Concentrat	ions (mg/L)		Minimum ⁽²⁾	Required
Parameter	Average Monthly	Daily Maximum	Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report	xxx	xxx	XXX	xxx	Continuous	Measured
pH (S.U.)	xxx	xxx	6.0	xxx	XXX	9.0	1/day	Grab
DO	XXX	xxx	5.0	xxx	XXX	xxx	1/day	Grab
TRC	XXX	xxx	xxx	0.051	XXX	0.166	1/day	Grab
BOD₅ Raw Sewage Influent	Report	Report	xxx	Report	XXX	xxx	1/week	24-Hr Composite
TSS	·	•		•				24-Hr
Raw Sewage Influent	Report	Report	XXX	Report	XXX	XXX	1/week	Composite
CBOD5	41 7	66.7 Wkly Avg	xxx	25.0	40.0	50	1/week	24-Hr Composite
	71.7	75.1	7000	20.0	40.0	00	1/ WOOK	24-Hr
TSS	50.0	Wkly Avg	XXX	30.0	45.0	60	1/week	Composite
Fecal Coliform (No./100 ml)		, j		200				
May 1 - Sep 30	XXX	XXX	XXX	Geo Mean	XXX	1,000	1/week	Grab
Fecal Coliform (No./100 ml)				2,000				
Oct 1 - Apr 30	XXX	XXX	XXX	Geo Mean	XXX	10,000	1/week	Grab
Ammonia								24-Hr
May 1 - Oct 31	4.2	XXX	XXX	2.5	XXX	5.0	1/week	Composite
Ammonia								24-Hr
Nov 1 - Apr 30	12.5	XXX	XXX	7.5	XXX	15	1/week	Composite
Total Phosphorus	Report	XXX	xxx	Report	XXX	xxx	2/month	24-Hr Composite

Compliance Sampling Location:

Other Comments: Composite samples may be taken before or after disinfection; grab samples shall be taken after disinfection

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

		Monitoring Requirements						
Parameter	Mass Units (Ibs/day) ⁽¹⁾		Concentrations (mg/L)				Minimum ⁽²⁾	Required
Falalletel				Monthly		Instant.	Measurement	Sample
	Monthly	Annual	Monthly	Average	Maximum	Maximum	Frequency	Туре
								24-Hr
AmmoniaN	Report	Report	XXX	XXX	XXX	XXX	1/week	Composite
								24-Hr
KjeldahlN	Report	XXX	XXX	Report	XXX	XXX	2/month	Composite
								24-Hr
Nitrate-Nitrite as N	Report	XXX	XXX	Report	XXX	XXX	2/month	Composite
Total Nitrogen	Report	Report	XXX	Report	XXX	XXX	2/month	Calculation
								24-Hr
Total Phosphorus	Report	Report	XXX	Report	XXX	XXX	2/month	Composite

Compliance Sampling Location:

Other Comments:

	Tools and References Used to Develop Permit
	WOM for Windows Model (and Attachment
	PENTOXSD for Windows Model (see Attachment
	TRC Model Spreadshoot (see Attachment
	Tomporature Model Spreadshoet (see Attachment
	Weter Quality Taxias Management Strategy, 261 0100 002, 4/06
	Technical Cuidence for the Development and Specification of Effluent Limitations, 262,0400,001, 10/07
	Pelicy for Development and Specification of Endent Limitations, 362-0400-001, 10/97.
	Policy for Conducting Technical Devices of Miner NDDES Denewal Applications, 262 2000,008, 11/06
	Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 362-2000-008, 11/96.
	Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97.
	12/97.
	Pennsylvania CSO Policy, 385-2000-011, 9/08.
	Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.
	Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 391- 2000-002, 4/97.
\square	Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97.
\boxtimes	Implementation Guidance Design Conditions, 391-2000-006, 9/97.
\boxtimes	Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004.
	Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 391-2000-008, 10/1997.
	Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments. 391-2000-010. 3/99.
	Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 391-2000-011, 5/2004.
\times	Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97.
	Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 391-2000-014, 4/2008.
	Implementation Guidance Total Residual Chlorine (TRC) Regulation, 391-2000-015, 11/1994.
	Implementation Guidance for Temperature Criteria, 391-2000-017, 4/09.
\boxtimes	Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/97.
	Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97.
	Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 391-2000-021, 3/99.
	Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/1999.
	Design Stream Flows, 391-2000-023, 9/98.
	Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 391-2000-024, 10/98.
	Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97.
\square	Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.
	SOP:
	Other: