

Northwest Regional Office CLEAN WATER PROGRAM

Application Type Renewal
Facility Type Municipal
Major / Minor Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

Application No. PA0252581

APS ID 1057963

Authorization ID 1387008

Applicant Name	Mahoni	ng Township	Facility Name	Distant STP	
Applicant Address	987 Stat	te Route 1025	Facility Address	100 McKay Road	
	New Be	thlehem, PA 16242-7033		New Bethlehem, PA 16242-7033	
Applicant Contact		chreckengost, Township Supervisor ngtwparm@gmail.com)	Facility Contact	Keith Schreckengost, Township Supervis (mahoningtwparm@gmail.com)	
Applicant Phone	(814) 275-4334		Facility Phone	(814) 275-4334	
Client ID	110501		Site ID	623678	
Ch 94 Load Status	Not Ove	rloaded	Municipality	Mahoning Township	
Connection Status	No Limit	ations	County	Armstrong	
Date Application Red	ceived	_February 2, 2022	EPA Waived?	Yes	
Date Application Acc	epted	February 22, 2022	If No, Reason	-	

Summary of Review

Act 14 - Proof of Notification was submitted and received.

A Part II Water Quality Management permit is not required at this time.

The applicant should be able to meet the limits of this permit, which will protect the uses of the receiving stream.

I. OTHER REQUIREMENTS:

- A. Stormwater into Sewers
- B. Right of Way
- C. Solids Handling
- D. Effluent Chlorine Optimization and Minimization
- E. Little or No Assimilative Capacity

SPECIAL CONDITIONS:

- II. Solids Management
- III. Requirements for Total Residual Chlorine (TRC)
- IV. TRC Effluent Limitations Below Quantitation Limits

There are no open violations in efacts associated with the subject Client ID (110501) as of 10/12/2023. 10/13/2023 CWY

Approve	Deny	Signatures	Date
V		Stephen A. McCauley	10/12/2023
^	Stephen A. McCauley, E.I.T. / Environmental	Stephen A. McCauley, E.I.T. / Environmental Engineering Specialist	10/12/2023
~		Chad W. Yurisic	10/13/2023
^		Chad W. Yurisic, P.E. / Environmental Engineer Manager	10/13/2023

Discharge, Receiving Waters and W	ater Supply Information		
Outfall No. 001		Design Flow (MGD)	0.09
Latitude 40° 58' 12.00"		Longitude	-79° 21' 41.00"
Quad Name		Quad Code	
Wastewater Description: Sewage	Effluent		
Unnamed Tribi		Stroom Codo	N/A (4940E)
Receiving Waters Redbank Cree	,	Stream Code	N/A (48195)
D :		RMI	N/A (0.5)
		Yield (cfs/mi²)	0.1 (default)
· · · · · · · · · · · · · · · · · · ·		Q ₇₋₁₀ Basis	calculated
		Slope (ft/ft)	0.0232
· · · · · · · · · · · · · · · · · · ·		Chapter 93 Class.	CWF
· · · · · · · · · · · · · · · · · · ·		Existing Use Qualifier	
· · · · · · · · · · · · · · · · · · ·		Exceptions to Criteria	-
	g Use(s)		
Source(s) of Impairment	<u> </u>		
TMDL Status -		Name -	
Background/Ambient Data	Data	Source	
pH (SU)			
	<u>-</u>		
Hardness (mg/L)			
Other: -			
Nearest Downstream Public Water S		pleton Water Company, Ir	•
PWS Waters Allegheny River		low at Intake (cfs)	1,768
PWS RMI 54.8	D	istance from Outfall (mi)	31.0

Sludge use and disposal description and location(s):

All sludge is hauled to the Allegheny Valley Joint Sewer Authority, where it is ultimately disposed of at an approved landfill.

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the Pennsylvania Bulletin in accordance with 25 Pa. Code § 92a.82. Upon publication in the Pennsylvania Bulletin, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the Pennsylvania Bulletin at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Narrative: This Fact Sheet details the determination of draft NPDES permit limits for an existing discharge of 0.09 of treated sewage from a municipal STP in Mahoning Township, Armstrong County.

Treatment permitted under WQM Permit 0303404 consists of the following: A bar screen, flow equalization tank, a splitter box, two aeration basins, two settling tanks for clarification, sludge holding tanks, a chlorination and dechlorination basin, and an effluent aeration tank.

1. Streamflow:

Unnamed Tributary to the Redbank Creek at Outfall 001:

Yieldrate: 0.1 cfsm (default)

Drainage Area: <u>0.05</u> sq. mi. (USGS StreamStats)

% of stream allocated: 100% Basis: No nearby discharges

 Q_{7-10} : 0.005 cfs (Calculated)

2. Wasteflow:

Maximum discharge: 0.09 MGD = 0.13 cfs

Runoff flow period: 24 hours Basis: Runoff flow for municipal STPs

The calculated stream flow (Q7-10) is much less than 3 times the permitted discharge flow. In accordance with the SOP, the treatment requirements in document number 391-2000-014, titled, "Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers", dated April 12, 2008, were evaluated with this renewal. Based on eDMR data, the treatment requirements are not attainable with the treatment technology in place so the requirements will not be implemented in this NPDES Permit renewal.

Flow will be required to be monitored as authorized under Chapter 92a.61, and as recommended in the SOP.

3. Parameters:

The following parameters were evaluated: pH, Total Suspended Solids, Fecal Coliform, E. Coli, Total Phosphorus, Total Nitrogen, NH₃-N, CBOD₅, Dissolved Oxygen, and Disinfection.

a. pH

Between 6.0 and 9.0 at all times

Basis: Application of Chapter 93.7 technology-based limits.

The measurement frequency will be set as 1/day as recommended in the SOP, based on Table 6-3 in the "Technical Guidance for the Development and Specification of Effluent Limitations" (362-0400-001).

b. Total Suspended Solids

Limits are 30.0 mg/l as a monthly average and 60.0 as an instantaneous maximum.

Basis: Application of Chapter 92a47 technology-based limits.

c. Fecal Coliform

05/01 - 09/30: <u>200/100ml</u> (monthly average geometric mean)

1,000/100ml (instantaneous maximum)

10/01 - 04/30: 2,000/100ml (monthly average geometric mean)

10,000/100ml (instantaneous maximum)

Basis: Application of Chapter 92a47 technology-based limits

d. E. Coli

Monitoring was added for E. Coli at a frequency of 1/quarter.

Basis: Application of Chapter 92a.61 as recommended by the SOP for flows greater than 0.05 MGD

and less than 1 MGD.

e. Phosphorus

Chapter 96.5 does not apply. Therefore, the previous monitoring for Total Phosphorus will be retained in accordance with the SOP, based on Chapter 92a.61.

f. <u>Total Nitrogen</u>

The previous monitoring for Total Nitrogen will be retained in accordance with the SOP, based on Chapter 92a.61.

g. <u>Ammonia-Nitrogen (NH₃-N)</u>

Median discharge pH to be used: 6.9 Standard Units (S.U.)

Basis: <u>eDMR data from previous 12 months</u>

Discharge temperature: <u>25°C</u> (default value used in the absence of data)

Median stream pH to be used: 7.0 Standard Units (S.U.)

Basis: <u>Default value used in the absence of data</u>

Stream Temperature: 20°C (default value used for CWF modeling)

Background NH₃-N concentration: <u>0.0</u> mg/l

Basis: Default value

Calculated NH₃-N Summer limits: 1.5 mg/l (monthly average)

3.0 mg/l (instantaneous maximum)

Calculated NH₃-N Winter limits: 4.5 mg/l (monthly average)

9.0 mg/l (instantaneous maximum)

Result: WQ modeling resulted in the summer NH3-N limits above (see Attachment 1). The winter limits are

calculated as three times the summer limits. The calculated summer limits are more restrictive than in the previous permit. Based on eDMR data, the more restrictive summer limits are attainable so they will be added with this renewal. The previous winter limits are more restrictive

and will be retained.

h. CBOD₅

Median discharge pH to be used: 6.9 Standard Units (S.U.)

Basis: eDMR data from previous 12 months

Discharge temperature: 25°C (default value used in the absence of data)

Median stream pH to be used: 7.0 Standard Units (S.U.)

Basis: Default value used in the absence of data

Stream Temperature: 20°C (default value used for CWF modeling)

Background CBOD₅ concentration: 2.0 mg/l

Basis: Default value

Calculated CBOD₅ limits: 25.0 mg/l (monthly average)

50.0 mg/l (instantaneous maximum)

Result: WQ modeling resulted in the calculated CBOD5 limits above (see Attachment 1). These limits are the

same as the previous permit and will be retained.

i. Influent Total Suspended Solids and BOD5

Monitoring for these two parameters will be retained as recommended in the SOP for POTWs, as authorized under Chapter 92a.61.

j. <u>Dissolved Oxygen (DO)</u>

The technology-based minimum of 6.0 mg/l is recommended by the WQ Model (see Attachment 1) and the SOP based on Chapter 93.7, under the authority of Chapter 92a.61. This limit is the same as the previous permit and will be retained.

The measurement frequency will be set as 1/day as recommended in the SOP, based on Table 6-3 in the "Technical Guidance for the Development and Specification of Effluent Limitations" (362-0400-001).

k. Disinfection

Ultraviolet (UV) light monitoring

☐ Total Residual Chlorine (TRC) limits: 0.01 mg/l (monthly average)

0.04 mg/l (instantaneous maximum)

Basis: The TRC limits above were calculated using the Department's TRC Calculation Spreadsheet

(see Attachment 2). The limits are more restrictive than the previous NPDES Permit. Based on eDMR data, the more restrictive limits are not attainable so a three year compliance

schedule will be added with this renewal.

The measurement frequency will be set as 1/day as recommended in the SOP, based on Table 6-3 in the "Technical Guidance for the Development and Specification of Effluent

Limitations" (362-0400-001).

4. Reasonable Potential Analysis for Receiving Stream:

A Reasonable Potential Analysis was not performed in accordance with State practices for Outfall 001 using the Department's Toxics Management Spreadsheet since no sampling other than sewage-related parameters was performed for this facility with the renewal application.

5. Reasonable Potential for Downstream Public Water Supply (PWS):

The Department's Toxics Management Spreadsheet does not calculate limits for parameters that are based on PWS criteria (TDS, Chloride, Bromide, and Sulfate).

Nearest Downstream potable water supply (PWS): <u>Templeton Water Company, Inc.</u>
Distance downstream from the point of discharge: <u>31.0</u> miles (approximate)

Result: No limits or monitoring are necessary as significant dilution is available.

6. Flow Information:

This facility receives 100% of flow from areas within and around Distant, PA.

All the sewers are separate sewers.

7. Anti-Backsliding:

Since all the permit limits in this renewal are the same or more restrictive than the previous NPDES Permit, anti-backsliding is not applicable.

8. Attachment List:

Attachment 1 - WQ Modeling Printouts

Attachment 2 - TRC_Calc Spreadsheet

(The Attachments above can be found at the end of this document)

Compliance History

DMR Data for Outfall 001 (from September 1, 2022 to August 31, 2023)

Parameter	AUG-23	JUL-23	JUN-23	MAY-23	APR-23	MAR-23	FEB-23	JAN-23	DEC-22	NOV-22	OCT-22	SEP-22
Flow (MGD)												
Average Monthly	0.03	0.03	0.0258	0.03	0.04	0.05	0.04	0.06	0.04	0.04	0.03	0.03
Flow (MGD)												
Daily Maximum	0.06	0.05	0.0325	0.04	0.06	0.06	0.07	0.11	0.09	0.07	0.04	0.03
pH (S.U.)												
Instantaneous Minimum	6.60	6.73	6.92	6.79	6.92	7.04	6.79	6.34	6.57	6.85	6.09	6.71
pH (S.U.)												
Instantaneous Maximum	8.82	7.10	7.03	7.08	8.08	7.45	7.16	7.09	7.20	7.08	7.11	7.70
DO (mg/L)												
Instantaneous Minimum	6.10	6.0	6.10	6.06	9.07	8.63	6.56	8.64	6.94	6.56	7.28	6.23
TRC (mg/L)												
Average Monthly	0.05	0.05	0.06	0.05	0.05	0.05	0.06	0.06	0.06	0.05	0.05	0.05
TRC (mg/L)												
Instantaneous Maximum	0.06	0.06	0.06	0.06	0.07	0.06	0.07	0.07	0.06	0.07	0.05	0.05
CBOD5 (lbs/day)												
Average Monthly	1.53	1.16	2.34	1.10	2.88	1.76	1.33	4.50	1.24	0.68	0.96	0.72
CBOD5 (mg/L)												
Average Monthly	17.0	3.0	9.0	5.0	10.0	5.0	6.0	9.0	4.0	3.0	3.0	3.0
CBOD5 (mg/L)			40.0		4.4.0			40.0				
Instantaneous Maximum	30.0	3.0	10.0	6.0	14.0	7.0	7.0	13.0	4.0	3.0	4.0	3.0
BOD5 (lbs/day)												
Raw Sewage Influent	00.47	50.00	70.70	44.77	F0 70	50.04	44.00	05.05	07.04	07.54	04.44	47.07
Average Monthly	29.47	59.08	72.78	44.77	58.70	59.01	41.20	85.95	67.31	67.54	81.44	47.07
BOD5 (mg/L)												
Raw Sewage Influent	200 50	45450	202.50	405.50	400	400.0	400.00	404.50	200.0	200 50	204.0	204.0
Average Monthly	290.50	154.50	293.50	185.50	193	168.0	182.00	181.50	208.0	306.50	284.0	201.0
TSS (lbs/day) Average Monthly	0.36	1.36	1.79	1.95	4.49	2.60	1.71	6.97	1.53	1.10	1.59	1.13
TSS (lbs/day)	0.30	1.30	1.79	1.95	4.49	2.00	1.71	6.97	1.55	1.10	1.59	1.13
Raw Sewage Influent												
Average Monthly	45.23	79.45	82.71	48.78	67.35	42.72	32.81	71.27	80.69	113.47	111.12	511.84
TSS (mg/L)	40.23	79.45	02.71	40.70	07.33	42.72	32.01	11.21	60.09	113.47	111.12	311.04
Average Monthly	3.0	4.0	8.0	8.0	12.0	8.0	8.0	12.0	5.0	5.0	6.0	5.0
TSS (mg/L)	3.0	4.0	0.0	0.0	12.0	6.0	0.0	12.0	5.0	5.0	0.0	5.0
Raw Sewage Influent												
Average Monthly	444.00	208.00	333.0	206.0	241	132.0	142.0	140.0	249.0	516	382.0	337.00
TSS (mg/L)	444.00	200.00	333.0	200.0	Z4 I	132.0	142.0	140.0	249.0	310	302.0	337.00
Instantaneous Maximum	3.0	4.0	12.0	10.0	17.0	9.0	8.0	16.0	6.0	7.0	6.0	7.0
motantaneous maximum	5.0	4.0	12.0	10.0	17.0	9.0	0.0	10.0	0.0	7.0	0.0	7.0

NPDES Permit Fact Sheet
Distant STP

Fecal Coliform (No./100 ml)												
Geometric Mean	1.0	1.0	1.0	1	1.0	1.0	1.0	1.0	1.0	1	11	1.0
Fecal Coliform (No./100 ml)												
Instantaneous Maximum	1.0	1.0	1.0	1	1.0	1.0	1.0	1.0	1.0	1	104	1.0
Total Nitrogen (mg/L)												
Daily Maximum									5.81			
Ammonia (lbs/day)												
Average Monthly	0.08	0.12	0.14	0.05	1.08	0.04	0.03	0.07	0.06	0.08	0.06	0.05
Ammonia (mg/L)												
Average Monthly	0.73	0.30	0.57	0.18	2.41	0.10	0.15	0.14	0.19	0.37	0.21	0.21
Ammonia (mg/L)												
Instantaneous Maximum	0.79	0.34	0.60	0.26	8.48	0.10	0.15	0.15	0.23	0.55	0.25	0.26
Total Phosphorus (mg/L)												
Daily Maximum									3.98			

NPDES Permit No. PA0252581

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (386-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through January 30, 2027.

			Effluent L	imitations			Monitoring Re	quirements
Parameter	Mass Units	(lbs/day) (1)		Concentrat	ions (mg/L)		Minimum (2)	Required
Farameter	Average Monthly	Average Weekly	Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
		Report						
Flow (MGD)	Report	Daily Max	XXX	XXX	XXX	XXX	2/month	Measured
pH (S.U.)	XXX	XXX	6.0 Daily Min	XXX	9.0 Daily Max	XXX	1/day	Grab
DO	XXX	XXX	6.0 Inst Min	XXX	XXX	XXX	1/day	Grab
TRC	XXX	XXX	XXX	0.08	XXX	0.2	1/day	Grab
CBOD5	18.8	XXX	XXX	25.0	XXX	50.0	2/month	Grab
TSS	22.5	XXX	XXX	30.0	XXX	60.0	2/month	Grab
BOD5 Raw Sewage Influent	Report	XXX	XXX	Report	XXX	XXX	2/month	Grab
TSS Raw Sewage Influent	Report	XXX	XXX	Report	XXX	XXX	2/month	Grab
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2000 Geo Mean	XXX	10000	2/month	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	XXX	XXX	200 Geo Mean	XXX	1000	2/month	Grab
E. Coli (No./100 ml)	XXX	XXX	XXX	XXX	XXX	Report	1/quarter	Grab
Ammonia Nov 1 - Apr 30	2.3	XXX	XXX	3.0	XXX	6.0	2/month	Grab
Ammonia May 1 - Oct 31	1.1	XXX	XXX	1.5	XXX	3.0	2/month	Grab
Total Nitrogen	XXX	XXX	XXX	XXX	Report Daily Max	XXX	1/year	Grab

NPDES Permit Fact Sheet Distant STP

Outfall 001, Continued (from Permit Effective Date through January 30, 2027)

			Effluent L	imitations			Monitoring Requirements	
Parameter	Mass Units (lbs/day) (1)			Concentrat	Minimum ⁽²⁾	Required		
Parameter	Average	Average		Average		Instant.	Measurement	Sample
	Monthly	Weekly	Minimum	Monthly	Maximum	Maximum	Frequency	Type
					Report			
Total Phosphorus	XXX	XXX	XXX	XXX	Daily Max	XXX	1/year	Grab

Compliance Sampling Location: at Outfall 001, after disinfection.

Flow is monitor only based on Chapter 92a.61. The limits for pH and Dissolved Oxygen are technology-based on Chapter 93.7. The Total Residual Chlorine (TRC) limits are water quality-based on Chapter 93.7. The limits for CBOD₅, Total Suspended Solids, and Fecal Coliforms are technology-based on Chapter 92a.47. Monitoring for influent BOD₅ and influent TSS is based on Chapter 92a.61. Monitoring for E. Coli, Total Nitrogen, and Total Phosphorus is based on Chapter 92a.61. The limits for Ammonia-Nitrogen are water quality-based on Chapter 93.7.

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (386-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: January 31, 2027 through Permit Expiration Date.

			Effluent L	imitations			Monitoring Re	quirements
Parameter	Mass Units	(lbs/day) (1)		Concentrat	ions (mg/L)		Minimum (2)	Required
rarameter	Average Monthly	Average Weekly	Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
		Report						
Flow (MGD)	Report	Daily Max	XXX	XXX	XXX	XXX	2/month	Measured
pH (S.U.)	XXX	XXX	6.0 Daily Min	XXX	9.0 Daily Max	XXX	1/day	Grab
DO	XXX	XXX	6.0 Inst Min	XXX	XXX	xxx	1/day	Grab
TRC	XXX	XXX	XXX	0.01	XXX	0.04	1/day	Grab
CBOD5	18.8	XXX	XXX	25.0	XXX	50.0	2/month	Grab
TSS	22.5	XXX	XXX	30.0	XXX	60.0	2/month	Grab
BOD5 Raw Sewage Influent	Report	XXX	XXX	Report	XXX	XXX	2/month	Grab
TSS Raw Sewage Influent	Report	XXX	XXX	Report	XXX	XXX	2/month	Grab
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2000 Geo Mean	XXX	10000	2/month	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	XXX	XXX	200 Geo Mean	XXX	1000	2/month	Grab
E. Coli (No./100 ml)	XXX	XXX	XXX	XXX	XXX	Report	1/quarter	Grab
Ammonia Nov 1 - Apr 30	2.3	XXX	XXX	3.0	XXX	6.0	2/month	Grab
Ammonia May 1 - Oct 31	1.1	XXX	XXX	1.5	XXX	3.0	2/month	Grab
Total Nitrogen	XXX	XXX	XXX	XXX	Report Daily Max	XXX	1/year	Grab

NPDES Permit Fact Sheet Distant STP

Outfall 001, Continued (from January 31, 2027 through Permit Expiration Date)

			Effluent L	imitations			Monitoring Requirements	
Parameter	Mass Units (lbs/day) (1)			Concentrat	Minimum ⁽²⁾	Required		
Parameter	Average	Average		Average		Instant.	Measurement	Sample
	Monthly	Weekly	Minimum	Monthly	Maximum	Maximum	Frequency	Type
					Report			
Total Phosphorus	XXX	XXX	XXX	XXX	Daily Max	XXX	1/year	Grab

Compliance Sampling Location: at Outfall 001, after disinfection.

Flow is monitor only based on Chapter 92a.61. The limits for pH and Dissolved Oxygen are technology-based on Chapter 93.7. The Total Residual Chlorine (TRC) limits are water quality-based on Chapter 93.7. The limits for CBOD₅, Total Suspended Solids, and Fecal Coliforms are technology-based on Chapter 92a.47. Monitoring for influent BOD₅ and influent TSS is based on Chapter 92a.61. Monitoring for E. Coli, Total Nitrogen, and Total Phosphorus is based on Chapter 92a.61. The limits for Ammonia-Nitrogen are water quality-based on Chapter 93.7.

Attachment 1

WQM 7.0 Effluent Limits

	SWP Basin Stre	am Code		Stream Name	<u>e</u>		
	17C	18195	1	Trib 48195 to Redbar	nk Creek		
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
0.500	Distant STP	PA0252581	0.090	CBOD5	25		
				NH3-N	1.5	3	
				Dissolved Oxygen			6

WQM 7.0 D.O.Simulation

SWP Basin St 17C	<u>ream Code</u> 48195		Trib 48	<u>Stream Name</u> 3195 to Redbank C	Creek
<u>RMI</u>	Total Discharge	Flow (mgd	l) <u>Ana</u>	lysis Temperature (°C) <u>Analysis pH</u>
0.500	0.09	0		24.827	6.903
Reach Width (ft)	Reach De	oth (ft)		Reach WDRatio	Reach Velocity (fps)
1.759	0.46	9		3.755	0.175
Reach CBOD5 (mg/L)	Reach Kc (1/days)	<u>R</u>	each NH3-N (mg/L	Reach Kn (1/days)
24.20	1.49			1.45	1.015
Reach DO (mg/L)	Reach Kr (Kr Equation	Reach DO Goal (mg/L)
6.078	30.76	9		Owens	6
Reach Travel Time (days)		Subreach			
0.175	TravTime (days)	CBOD5 (mg/L)	NH3-N (mg/L)	D.O. (mg/L)	
	0.017	23.43	1.43	6.05	
	0.035	22.68	1.40	6.07	
	0.052	21.95	1.38	6.11	
	0.070	21.25	1.35	6.16	
	0.087	20.56	1.33	6.22	
	0.105	19.90	1.31	6.28	
	0.122	19.27	1.28	6.34	
	0.140	18.65	1.26	6.40	
	0.157	18.05	1.24	6.46	
	0.175	17.47	1.22	6.52	

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	✓
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	✓
D.O. Saturation	90.00%	Use Balanced Technology	✓
D.O. Goal	6		

Input Data WQM 7.0

	SWP Basin	Strea Cod		Stre	eam Name		RMI	El	evation (ft)	Drainag Area (sq mi		lope t/ft)	PW Withd (mg	rawal	Apply FC
	17C	481	195 Trib 48	3195 to R	edbank Cre	ek	0.50	00	1264.00	C	0.05 0.0	00000		0.00	✓
					St	ream Dat	a								
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	n Ten	Tributar np	У pH	Tem	<u>Strean</u> p	<u>n</u> pH	
oona.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C	:)		(°C))		
Q7-10 Q1-10 Q30-10	0.100	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00	0.	00 2	0.00	7.00	(0.00	0.00	
					Di	scharge I	Data								
			Name	Per	mit Number	Disc	Permitt Disc Flow (mgd)	Di Fl	sc Res	serve ictor	Disc Temp (°C)	Di: P			
		Dista	nt STP	PA	0252581	0.0900	0.000	00 0.	0000	0.000	25.0	0	6.90		
					Pa	arameter I	Data								
			1	Paramete	r Name	Di Ce		Trib Conc	Stream Conc	Fate Coef					
						(m	g/L) (r	ng/L)	(mg/L)	(1/days	s)				
			CBOD5				25.00	2.00	0.00	1.5	50				
			Dissolved	Oxygen			4.00	8.24	0.00	0.0	00				
			NH3-N			;	25.00	0.00	0.00	0.7	70				

Input Data WQM 7.0

	SWF Basii			Stre	eam Name		RMI	Eleva		Drainage Area (sq mi)		fl/ft)	PW Withd (mg	rawal	Apply FC
	17C	481	195 Trib 48	3195 to R	edbank Cre	ek	0.0)0 10	19.00	0.	.22 0.	00000		0.00	✓
					St	ream Da	ta								
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Ten	<u>Tributary</u> np p	<u>/</u> oH	Tem	<u>Strean</u> p	<u>n</u> pH	
Cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C	·)		(°C)		
Q7-10	0.100	0.00	0.00	0.000	0.000	0.0	0.00	0.00	2	0.00	7.00	(0.00	0.00	
Q1-10		0.00		0.000											
Q30-10		0.00	0.00	0.000	0.000										
					Di	scharge	Data								
			Name	Per	mit Number	Disc	Permitt Disc Flow (mgd	Disc Flow	Res Fa	erve ctor	Disc Temp (°C)	Di: P			
						0.000	0.000	0.00	00	0.000	25.0	0	7.00		
					Pa	arameter	Data								
			1	Paramete	r Name				tream Conc	Fate Coef					
				aramete	i ivallic	(n	ng/L) (r	ng/L) (ı	mg/L)	(1/days))				
			CBOD5				25.00	2.00	0.00	1.50	0				
			Dissolved	Oxygen			3.00	8.24	0.00	0.00	0				
			NH3-N				25.00	0.00	0.00	0.70	0				

WQM 7.0 Hydrodynamic Outputs

	sw	P Basin	Strea	m Code			1	Stream	<u>Name</u>			
		17C	4	8195			Trib 481	95 to Re	edbank C	reek		
RMI	Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow	Reach Slope	Depth	Width	W/D Ratio	Velocity	Reach Trav Time	Analysis Temp	Analysis pH
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)	
Q7-1	Q7-10 Flow											
0.500	0.01	0.00	0.01	.1392	0.09280	.469	1.76	3.75	0.17	0.175	24.83	6.90
Q1-1	0 Flow											
0.500	0.00	0.00	0.00	.1392	0.09280	NA	NA	NA	0.17	0.176	24.89	6.90
Q30-	10 Flow	1										
0.500	0.01	0.00	0.01	.1392	0.09280	NA	NA	NA	0.18	0.173	24.77	6.90

WQM 7.0 Wasteload Allocations

SWP Basin	Stream Code	Stream Name
17C	48195	Trib 48195 to Redbank Creek

0.500 Die			(mg/L)	(mg/L)	(mg/L)		
0.500 DIS	tant STP	12.11	12.39	12.11	12.39	0	0
	onic Allocation	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
0.500 Dis	tant STP	1.43	1.5	1.43	1.5	1	0

1.5

1.5

6

0.50 Distant STP

Attachment 2

TRC EVALUATION										
Input appropriate values in A3:A9 and D3:D9										
0.005	= Q stream (cfs)	0.5	= CV Daily						
0.09	= Q discharg	je (MGD)	0.5	= CV Hourly						
30	= no. sample	8	1	= AFC_Partial I	Mix Factor					
0.3	= Chlorine D	emand of Stream	1	= CFC_Partial (Mix Factor					
0	= Chlorine D	emand of Discharge	15	= AFC_Criteria	Compliance Time (min)					
0.5	= BAT/BPJ V	alue	720	= CFC_Criteria	Compliance Time (min)					
0	= % Factor o	of Safety (FOS)	0	=Decay Coeffic	cient (K)					
Source	Reference	AFC Calculations		Reference	CFC Calculations					
TRC	1.3.2.iii	WLA afc =	0.030	1.3.2.iii	WLA cfc = 0.022					
PENTOXSD TRG	5.1a	LTAMULT afc =	0.373	5.1c	LTAMULT cfc = 0.581					
PENTOXSD TRG	5.1b	LTA_afc=	0.011	5.1d	$LTA_cfc = 0.013$					
particular per da tito overco	Source Effluent Limit Calculations									
	PENTOXSD TRG 5.1f AML MULT = 1.231									
PENTOXSD IRG	PENTOXSD TRG 5.1g AVG MON LIMIT (mg/l) = 0.014 AFC									
INST MAX LIMIT (mg/l) = 0.046										
WLA afc	(.019/e(-k*Al	FC tc)) + [(AFC Yc*Qs*.019	/Qd*e(-k*AFC	tc))						
	preside and appropriate the first and dis-	C_Yc*Qs*Xs/Qd)]*(1-FOS/10	DESCRIPTION OF STREET STREET,	//						
LTAMULT afc	The second secon	cvh^2+1))-2.326*LN(cvh^2+								
LTA_afc	wla_afc*LTA	MULT_afc								
WLA_cfc	(.011/e(-k*Cl	FC_tc) + [(CFC_Yc*Qs*.011/	Qd*e(-k*CFC	_tc))						
		C_Yc*Qs*Xs/Qd)]*(1-FOS/10	All the same of th		en 100					
LTAMULT_cfc	ACCOUNTS OF THE PASSAGE NOTICE AND AND	(cvd^2/no_samples+1))-2.32	6*LN(cvd^2/n	o_samples+1)^(0.5)					
LTA_cfc	wla_cfc*LTA	MULT_cfc								
AML MULT	EVD(2 326*1	N((cvd^2/no_samples+1)^0.	5)_0 5*I N/ava	A2/no camples	-4))					
AWL MULI AVG MON LIMIT	(X)	N((cvd^2/no_samples+1)^0.; J,MIN(LTA_afc,LTA_cfc)*AN		zino_samples-	(1))					
INST MAX LIMIT		o,wiin(LTA_aic,LTA_cic) Aiv 1_limit/AML_MULT)/LTAMUL	•							
INCT MAX LIMIT	1.5 ((84_1110)		a.o,							