

Northwest Regional Office CLEAN WATER PROGRAM

Application Type
Facility Type
Major / Minor

Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

 Application No.
 PA0252760

 APS ID
 1028256

 Authorization ID
 1335830

Name Pine Township STP Address 115 5 th Street
Address 115.5 th Street
1100 011001
Templeton, PA 16259-0111
Contact Spurgeon Schilling
Phone (814) 229-3955
253313
pality Pine Township
Armstrong
/aived? Yes
Reason
i

Summary of Review

Act 14 – Proof of Notification was submitted and received.

Pine Township STP is currently registered to use the Departments eDMR system for reporting

There are no open violations for subject client no. 87724 as of 2/11/2022.

Sludge use and disposal description and location(s): Septage must be pumped and hauled off-site by a septage hauler for land application under a general permit authorized by DEP or disposal at an STP.

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

A	pprove	Deny	Signatures	Date
	Χ		Jon F. Bucha Jonathan F. Bucha / Civil Engineer General	March 16, 2022
	Х		Justin C. Dickey Justin C. Dickey, P.E. / Environmental Engineer Manager	March 16, 2022

scharge, Receiving	g Waters and Water Supply Info	ormation			
Outfall No. 001		Design Flow (MGD)	.06		
Latitude 40° 5	4' 50.43"	Longitude	-79° 27' 44.94"		
Quad Name Te	mpleton	Quad Code	1110		
Wastewater Descrip	ption: Sewage Effluent				
Receiving Waters	Allegheny River (WWF)	Stream Code	42122		
NHD Com ID	123864270	RMI	54.26		
Drainage Area	8840 (Streamstats)	Yield (cfs/mi²)	0.11		
Q ₇₋₁₀ Flow (cfs)	972.4	Q ₇₋₁₀ Basis	US Army Corps of Engineers Franklin, PA		
Elevation (ft)	801	Slope (ft/ft)			
Watershed No.	17-D	Chapter 93 Class.	WWF		
Existing Use	-	Existing Use Qualifier	-		
Exceptions to Use		Exceptions to Criteria	-		
Assessment Status	Attaining Use(s)				
Cause(s) of Impairr	ment <u>-</u>				
Source(s) of Impair	ment -				
TMDL Status	. -	Name			
Background/Ambie	nt Data	Data Source			
pH (SU)	7.0	Default			
Temperature (°C)	25	Default (WWF)			
Hardness (mg/L)	<u>-</u>	-			
Other: NH ₃ -N	0.1	Default			
Nearest Downstrea	m Public Water Supply Intake	Kittanning Suburban Joint Wa	iter Authority		
PWS Waters	Allegheny River	Flow at Intake (cfs)	987		
PWS RMI	45.6	Distance from Outfall (mi) 8.66			

Changes Since Last Permit Issuance: None

Other Comments: This treatment facility is capable of meeting effluent requirements.

	Tre	eatment Facility Summar	у	
Treatment Facility Na	me: Pine Township STP			
WQM Permit No.	Issuance Date			
0305401	4/23/2013			
Waste Type	Degree of Treatment	Process Type	Disinfection	Avg Annual Flow (MGD)
Sewage	Tertiary	Extended Aeration With Solids Removal	Chlorination	0.06
_	·			
Hydraulic Capacity	Organic Capacity			Biosolids
(MGD)	(lbs/day)	Load Status	Biosolids Treatment	Use/Disposal
0.06	110	Not Overloaded	None	Combination of methods

Changes Since Last Permit Issuance: None

Other Comments: Treatment consists of sewer systems, pump stations, force mains, comminutor, bar screen, 21,000-gallon equalization tank, two 30,000-gallon aeration tanks, two 9,023-gallon final settling tanks, chlorination, dichlorination, two 11,000-gallon aerobic digestion tanks, sludge dewatering unit, two sludge drying beds, and a flow meter located in the dichlorination basin. Soda ash is used to ensure proper ammonia nitrification.

Compliance History

DMR Data for Outfall 001 (from January 1, 2019 to December 31, 2021)

Parameter	DEC-21	NOV-21	OCT-21	SEP-21	AUG-21	JUL-21	JUN-21	MAY-21	APR-21	MAR-21	FEB-21	JAN-21
Flow (MGD)												
Average Monthly	0.006	0.007	0.008	0.0094	0.0143	0.0151	0.013	0.013	0.0113	0.0114	0.0112	0.0125
Flow (MGD)												
Weekly Average	0.008	0.008	0.008	0.0103	0.0186	0.0164	0.016	0.016	0.0134	0.0136	0.0113	0.0173
pH (S.U.)												
Minimum	7.4	7.32	7.4	7.93	7.87	7.81	7.7	7.69	7.56	7.4	7.46	7.38
pH (S.U.)												
Maximum	7.65	7.62	7.95	8.02	8.05	8.0	7.85	7.75	7.72	7.63	7.59	7.64
DO (mg/L)												
Minimum	5.0	4.76	4.86	4.21	4.19	4.03	4.08	4.66	5.03	5.38	5.43	5.12
TRC (mg/L)												
Average Monthly	0.11	0.1	0.09	0.16	0.12	0.02	0.23	0.3	0.13	0.16	0.15	0.19
TRC (mg/L)	0.00	0.00	0.00	0.55	0.00	0.00	4.40	0.50	0.00	0.00	0.00	0.40
Instantaneous Maximum	0.23	0.28	0.23	0.55	0.23	0.32	1.16	0.56	0.36	0.29	0.33	0.46
CBOD5 (lbs/day)	0.4	0.4	0.0	0.4	0.4	0.0	0.0	0.0	0.0	0.0	0.0	0.4
Average Monthly	0.1	0.1	0.2	0.1	0.4	0.3	0.2	0.2	0.3	0.2	0.3	0.4
CBOD5 (mg/L)	2.4	2.0	0.6	2.4	2.0	2.0	2.4	2.0	2.2	2.0	2.4	F.C.
Average Monthly	3.1	2.0	2.6	2.1	2.9	2.8	2.1	2.0	3.3	2.8	3.4	5.6
CBOD5 (mg/L) Instantaneous Maximum	4.2	2.0	3.1	2.2	3.8	3.5	2.1	2.0	4.0	3.0	3.7	8.2
BOD5 (mg/L)	4.2	2.0	3.1	2.2	3.0	3.5	2.1	2.0	4.0	3.0	3.1	0.2
Raw Sewage Influent												
<pre> Average Monthly</pre>	148	369	167	117	88	92	141	106	113	128	99	103
TSS (lbs/day)	140	000	107	117	- 00	- 52	171	100	110	120	- 00	100
Average Monthly	0.2	0.4	1.0	0.4	1.0	0.5	1.0	0.6	1.0	0.7	0.4	0.9
TSS (mg/L)		<u> </u>		<u> </u>		0.0		0.0				0.0
Average Monthly	5.0	7.0	21	8.0	8.0	5.0	11	8.0	10	10.0	6.0	14
TSS (mg/L)												
Raw Sewage Influent												
 Average Monthly	216	653	212	108	124	106	200	164	112	180	95	122
TSS (mg/L)												
Instantaneous Maximum	5.0	8.0	30	10	11.0	5.0	16	10	13	11.0	6.0	19
Fecal Coliform (CFU/100												
ml)												
Geometric Mean	37	< 10	369	35	371	429	96	120	617	136	60	131
Fecal Coliform (CFU/100												
ml)												
Instantaneous Maximum	135	< 10	1527	122	1600	18400	161	287	1188	186	130	200

Compliance History

Effluent Violations for Outfall 001, from: February 1, 2021 To: December 31, 2021

Parameter	Date	SBC	DMR Value	Units	Limit Value	Units
Fecal Coliform	07/31/21	Geo Mean	429	CFU/100 ml	200	CFU/100 ml
Fecal Coliform	08/31/21	Geo Mean	371	CFU/100 ml	200	CFU/100 ml
Fecal Coliform	08/31/21	IMAX	1600	CFU/100 ml	1000	CFU/100 ml
Fecal Coliform	07/31/21	IMAX	18400	CFU/100 ml	1000	CFU/100 ml
Fecal Coliform	07/31/20	Geo Mean	431	CFU/100 ml	200	CFU/100 ml
Fecal Coliform	01/31/20	IMAX	23,200	CFU/100 ml	10000	CFU/100 ml
Fecal Coliform	12/31/19	Geo Mean	2634	CFU/100 ml	2000	CFU/100 ml

Summary of Inspections: An inspection occurred on 5/16/2019, where no violations were noted. As of the date of this inspection, the plant was running at half capacity due to flows being approximately 0.02 mgd of the permitted 0.06 mgd. There appeared to be some sludge build-up below the outfall. One blower had been replaced and the other was not operable at the time of inspection. Butterfly valves on the sludge return and wasting lines caused problems with them becoming clogged with grit and garbage. It was recommended to replace these valves to eliminate future problems.

Other Comments: Multiple violations for fecal coliform have occurred over the past 3 years. This system uses a tablet system, which can be difficult to control the rate of erosion of the tablets. It is essential that the operator checks the tablet system daily to ensure the treatment system operates properly.

The chapter 94 report for 2020 showed the treatment system was not overloaded, nor is it expected to be in the next 5 years.

	Development of Effluent Limitations										
Outfall No.	001	Design Flow (MGD)	.06								
Latitude	40° 54' 50.43"	Longitude	-79° 27' 44.94"								
Wastewater D	escription: Sewage E	fluent									

Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
CBOD ₅	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD5	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
рН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform				
(5/1 - 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform				
(5/1 - 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform				
(10/1 - 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform				
(10/1 - 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)

Water Quality-Based Limitations

The following limitations were determined through water quality modeling (output files attached):

Parameter	Limit (mg/l)	SBC	Model
CBOD5	25	Avg mo.	WQM 7.0
NH ₃ -N	25	Avg mo.	WQM 7.0
Dissolved Oxygen	4	Avg mo.	WQM 7.0
TRC	1.6	imax	TRC Calc Spreadsheet

Comments: Water quality modeling was completed using WQM 7.0. Modeling determined that the minimum technology and BPJ standards for CBOD₅, NH₃-N, DO, and TRC are adequate to protect the stream quality of the Allegheny River.

Best Professional Judgment (BPJ) Limitations

Comments: Total Nitrogen, Total Phosphorus, and E. Coli monitoring is based on Ch. 92a.61 and the Departments SOP for Establishing Effluent Limitations for Individual Sewage Permits (SOP No. BPNPSM-PMT-033). Total Nitrogen and Total Phosphorus monitoring frequency will remain at 1/year, based on past eDMR data and the receiving stream not being nutrient impaired. E. Coli monitoring is a new addition to this permit renewal and will have a monitoring frequency of 1/quarter.

Ammonia Nitrogen (NH₃-N) limitations were not applied to the previous NPDES permits. An ammonia nitrogen limit of 25 mg/L average monthly and 50 mg/L imax are being incorporated into this permit renewal as a minimum technology-based BPJ limit required by the SOP titled "Establishing Effluent Limitations for Individual Sewage Permits (SOP No. BPNPSM-PMT-033)".

POTWs with a discharge greater than 2,000 gpd require raw sewage influent monitoring, and therefore will remain in the permit renewal as recommended by the SOP (No. BPNPSM-PMT-033) for parameters BOD₅ and Total Suspended Solids (TSS), at the same frequency and sample type as the effluent.

NPDES Permit Fact Sheet Pine Township STP

Monitoring for pH, TRC, and Dissolved Oxygen is being increased from 5/week to 1/day based on Table 6-3 of the Permit Writers Manual. This change should help with ensuring the tablet erosion system is monitored daily and operating properly.

Mass Loading Limitations

For POTWs, mass loading limits (lbs/day) are to be established for CBOD₅, TSS, and NH₃-N, which are determined by the formula (design flow)*(conc. limit (mg/L))*(conversion factor 8.34). Mass loading limits for CBOD₅, and TSS are remaining at 12.5 lbs/day, and 15.0 lbs/day respectively, while a mass loading limit of 12.5 lbs/day for NH₃-N will be newly added to this permit renewal.

Also, reporting of average monthly mass loadings for raw sewage influent parameters BOD₅, and TSS has been included on this permit renewal.

Anti-Backsliding

Anti-Backsliding considerations do not apply since the effluent limitations are all remaining the same as in the previous permit renewal.

Threatened and Endangered Mussel Species Concerns and Considerations

The Allegheny River is known to contain state and federally listed threatened and endangered mussel species. Due to this being a direct discharge to the Allegheny River, potential impacts were evaluated.

The USFWS has indicated in comment letters and email correspondence on other NPDES permits, that to protect threatened and endangered mussel species, wastewater discharges containing ammonia-nitrogen (NH₃-N), chloride (Cl⁻) dissolved nickel, and dissolved zinc, where mussels or their habitat exist, can be no more than 1.9 mg/l, 78 mg/l, 7.3 µg/l, and 13.18 µg/l respectively.

Although the application form associated with the subject NPDES permit renewal does require sampling for ammonianitrogen, NPDES permits for sewage facilities of this nature do not, generally, include routine monitoring requirements for pollutants such as chloride, nickel and zinc (The facility is less than 0.1 MGD and does not have any industrial users so the renewal application does not require sampling for chloride, nickel, or zinc). The Department has historically lacked sufficient data to support its assumption that a properly constructed, operated and maintained minor sewage facility of this size is expected to produce an effluent that would be protective of all the uses of the receiving stream including threatened and endangered mussels.

A summary of the sampling and effluent quality data for the Pine Township STP is as follows:

Sampling and Effluent Quality Data for USFWS Parameters of Concern								
Parameter November 2020 NPDES Renewal Application Data								
Ammonia-Nitrogen (NH ₃ -N) (mg/L)	1.0 mg/l (maximum) / 0.28 mg/l (average) of 109 total samples							
Chloride (mg/L)	No Data							
Total Nickel (µg/L)	No Data							
Total Zinc (µg/L)	No Data							
NOTES:								

- 1. The application samples are all grab samples.
- 2. The current STP has chlorine disinfection.

The Department prepared the following calculations (included on the following pages) to determine the area of river that will be required to assimilate the maximum reported effluent concentrations of Ammonia-Nitrogen, Chloride, Nickel, and Zinc to achieve pollutant concentrations that at or below the USFWS criteria in the river.

Parameter Considerations:

Ammonia-Nitrogen

The facility has a sufficient dataset (109 samples) to evaluate potential impacts associated with ammonia-nitrogen. The calculated in-stream criteria for Ammonia-Nitrogen is 0.920 mg/L (see "Impact Area" calculations). The maximum reported concentration for Ammonia-Nitrogen in the effluent is 1.0 mg/L. Therefore, the Department would not anticipate there being any in-stream impact to threatened and endangered mussel species considering the size of the discharge and the assimilative capacity of the Allegheny River. However, considering that the maximum reported concentration does exceed the calculated in-stream chronic criteria, the Department has evaluated the potential "impact area" in the included "Impact Area" calculations.

Chloride

The Department has historically had limited chloride data for the effluent from sewage treatment plants. However, the Department has been incorporating monthly and quarterly monitoring for chloride in NPDES permits for publicly owned treatment plants that are discharging to waterways known to contain state and federally listed threatened and endangered mussel species since 2017. A summary of the data collected at the POTWs with chloride monitoring is as follows:

					CI	HLORIDE	SAMPLII	NG DATA	SUMMA	ARY					
		PA0103373	PA0023931	PA0239861	PA0026271	PA0101923	PA0025470	PA0037397	PA0047201	PA0027367	PA0023566	PA0222585	PA0029467	PA0025291	PA0027120
		FOXBURG STP	CAMBRIDGE AREA JT AUTH STP	COCHRANTON BORO STP	MEADVILLE AREA STP	SAEGERTOWN AREA STP	FREDERICKSBURG STP	WATERFORD BORO STP	TIONESTA BORO WWTP	GREENVILLE SANI AUTH	EMLENTON STP	BROKENSTRAW VALLEY AREA AUTH STP	NORTH WARREN MUNI STP	SOUTHWEST WARREN CNTY STP	WARREN CITY WWTP
L	INITS	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	ug/L	mg/L
	Nov														44.3 70.9
2018	Dec Jan					-			50.2	91.7					83
2010	Feb		145		351				86	122					143
	Mar			105	342				46.3	82.2					103
	Apr			84.5	269				55.1	81.8					125
0	May		112	97	262				41.9	82.6					112
	Jun			81.2	235				27.1	77.8					74.2
	Jul		I III	93.9	220.3				35.7	74					71.3
	Aug		81	87.9	251				64.1	84.7					81.4
	Sep	54.2		92.5	222			101	62.3	82.7					68.1
	Oct	84.5		95.7	224			65	57.6	76.8					50
\vdash	Nov	41.8	50	86.9	242		20.0	97.8	43.2	60.7			0.0		57 90.7
2019	Dec	48.8		95.8	242		89.3	69.8	59.9	75.4	-		210	40.0	89.1
2019	Jan Feb	40.6	141	96.6	258 300		79 142	12.5 87.6	37 91.4	57.2 139			146 395	46.9 46.9	167
	Mar	32.8	141	89.8	266		131	90.7	88.2	82.5	59.6		260	37	93.9
	Apr	32.8		93.6	236		75.7	30.7	57	75.7	64.3		181	29.6	100
	May	48.1	90.9	120	236		84.3	76	56.2	66.5	44.9		232	32.6	82.8
	Jun	63.1		83.5	221	193	93.5	83.75	38.7	71.3	48.8	120	166	28.6	73.4
	Jul	31.3		80.3	228	287	141	97.8	53.7	88.1	49.5	152	228	35.8	55.4
	Aug	63.3	84.4	84.6	220	259	71	84.4	67.5	64.7	41	119	204	25.6	61.4
	Sep	84		88.7	241	215	139	86.1	37.7	66.4	59.8	159	206	30.1	45.9
	Oct	82.5		86	210	249	224	85.95	51.8	84.5	55.9	99	279	29.1	48.7
	Nov	70	79.6	86.3	265	200	83.8	92.5	46.7	64.8	31.2	55	186	23.9	74
	Dec	57		88.7	242	173	71.7	83.5	45.9	67.9	43.3	106	197	38.3	69.74
2020	Jan	49		89.7	276	175	97	90.7	61.7	65.9	52.9	80	229	38.3	133
	Feb	63	149	89.5	300	195	127	77.15	131	82.1	49.7	89	299	68.9	103 122
$\vdash\vdash$	Mar Apr	49 40		108 103	235	183	62.1	113 96.2	140	94	49.6	78 104	231 248	32.8	79.7
\vdash	May	39	86	93.9	210 212	173 181	105 91.8	96.2 84.9	64 54	71 75	33.8 37.9	104 110	264	28.1 30	72.3
\vdash	Jun	63		93	225	194	85	76.5	66.5	75.6	46.5	112	228	26.8	65.8
	Jul	90		105	224	192	169	86.75	77	83.1	48.8	136	288	15	65
	Aug	129	85.2	89.8	242	198	217	86.9	62.6	72.4	46.6	132	226	29.7	78.6
10	Sep	92		80	212	237	196	84.6	68.6	72.5	51.4	142	59	27.4	62
	Oct	79	Libertee	99	222	205	228	83	52.6	81.4	27	142	230	26.7	58.5
9	Nov	78	96.9	87	206	220	98.6	95	56.7	66.3	48.9	142	222	21.4	117
2024	Dec	63		80.1	267	152	76.2	95.3	22	69	36.5	96	218	27.5	47.7
2021	Jan Feb	72	140	87.7	284	146	67.4	81.9	77.4	65.5	49.6	88	175	24.3	102 149
\vdash	Heb Mar	81 62	142	71 95.2	351 267	208	86.4 304	86.3 100	99.4 116	130 125	86.7 87.9	115 80.9	347 179	50.4 31.2	97.5
	Apr	60		78.1	247	162	94.9	86.6	72	84.8	54.7	131	241	21.2	86
\vdash	May	26	106	82.4	236	133	82.6	90.2	57.9	84.1	44.3	86.6	185	31.7	
	Jun	71		88.4	236	187	166	83.8	78.3	88.7	50.1	105	223	21.5	72.8
	Jul	76.1		71.2	228	202	201	104	64.5	88.1	53.6	81.6	263	51.6	74.4
10	Aug	74.5	82.5	73.3	226	224	157	79.3	64.4	82.5	52.7	78.4	222	15.9	77.1
	Sep	73.8		73	246	193	173	92.2	60.6	72	49.3	120	203	27.3	77.4
	Oct	95		79.7	205	166	143	87.7	51.8	86.9	46.2	85.7	255	11.9	61
Ш	Nov	53.5	81.5	94.1	213	130	81.9	82.55	35.3	74.9	46	88.3	124	17	76.8
	Dec	70.6		94	218	144	77.6	72.3	41.8	110	58	65.4	206	2.36	71.1
2022	Jan	47.7		90.6	252		81.1	69.45	43.5	65.6		80.9	154	17.9	72.3

As seen from this data, chloride concentrations are fairly consistent with sewage treatment plants. Although not confirmed, data submitted to the Department suggests that facilities with the higher concentrations are facilities that are largely serving residential areas with well water and water softeners. The highest reported value that appears to be an outlier was 395 mg/L at the North Warren Municipal STP in February 2019. As the USFWS indicated in a December 16, 2021 letter regarding the Eldred Borough STP, the USFWS supports the use of the 95% Upper Confidence Limit (UCL) for nickel calculations. Therefore, the Department calculated the 95% Upper Confidence limit from the data above and has used this value of 115.3 mg/l in the included "impact area" calculations for the Pine Township STP.

Additionally, the Department has issued NPDES permits to two facilities that require instream monitoring for Chloride (upstream and in the discharge plume). The Department has reviewed this data and it appears to support the assumption of "instantaneous mixing" and the associated "impact area" calculations. A summary of the data collected at the POTWs with chloride instream monitoring is as follows:

			PA0026271			PA0037397	
			VILLE ARE	.=		FORD BOI	
		Upstream	Effluent	Plume (~ 200-feet from outfall pipe)	Upstream	Effluent	Plume (~ 5-feet from outfall pipe)
UN	ITS	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
2018	Jan	-	-	-	-	19	-
	Feb	13.2	351	15.3	-	-	-
	Mar	21.3	342	12.5	-	-	
	Apr	< 20.0	269	< 20.0	-	376	-
	May	10.2	262	11.4	-	19	100
	Jun	< 20.0	235	< 20.0	-	16	-
	Jul	22.0	220.3	27.5	-	15	-
40	Aug	22.9	251	30.2	-	101	1
	Sep	< 20.0	222	20.4	-	65	-
	Oct	13.5	224	15.0	(=)	97.8	18
	Nov	11.3	242	12.4	-	69.8	
	Dec	74.1	242	17.3	-	12.5	-
2019	Jan	13.0	258	15.0	-	87.6	-
	Feb	19.4	300	23.5	-	90.7	-
	Mar	15.3	266	17.4	-	0	(#)
	Apr	16.4	236	18.0	-	76	-
	May	< 10.0	236	11.3	12.1	83.75	24.8
	Jun	8.08	221	9.46	15	97.8	15
4	Jul	15.0	228	21.0	11.1	84.4	16
	Aug	16.2	220	20.5	14	86.1	30.4
	Sep	11.6	241	12.1	9.07	85.95	9.88
	Oct	20.9	210	28.0	0.1	92.5	0.1
	Nov	13.0	265	16.6	-	83.5	<u> =</u>
	Dec	10.2	242	10.7	-	90.7	14
2020	Jan	2.43	276	2.99	-	77.15	-
	Feb	14.5	300	30.9	-	113	12
	Mar	12.8	235	13.8	-	96.2	
	Apr	< 10.0	210	< 10.0	-	84.9	-
	May	15.5	212	18.5	11.3	76.5	25.3
	Jun	17.3	225	19.0	10.4	86.75	22.3
	Jul	14.6	224	17.2	10.6	86.9	14.4
	Aug	4.92	242	30.7	< 0.3	84.6	18.4
	Sep	22.2	212	30.5	15.8	83	35.2
	Oct	25	222	48	17.5	95	23.2
	Nov	16.4	206	< 2	-	95.3	-
	Dec	15.0	267	16.7	-	81.9	-
2021	Jan	17.3	284	17.5	-	86.3	-
	Feb	38.8	351	28.7	-	100	-
	Mar	15.1	267	16.5	-	86.6	-
	Apr	18.1	247	20.1	-	90.2	-
	May	13.7	236	15.6	28.3	83.8	16.6
	Jun	14.9	236	19.1	17.3	104	0.3
	Jul	10.4	228	10.3	11.6	79.3	< 11.1
	Aug	16.7	226	17.1	12.7	92.2	22
	Sep	17.3	246	23.7	< 0.3	87.7	0.33
	Oct	14.0	205	16.3	12.5	82.55	20.2
	Nov	11.2	213	12.7	-	72.3	-
	Dec	12.3	218	13.4	S = 0	69.45	-

Nickel

The Department has limited dissolved nickel data for the effluent from sewage treatment plants. However, the Department has been incorporating quarterly monitoring for total nickel in NPDES permits for publicly owned treatment plants that are discharging to waterways known to contain state and federally listed threatened and endangered mussel species. A summary of the data collected at the POTWs with nickel monitoring is as follows:

					NICKE	L SAMPLI	ng data	SUMMAR	ťΥ				
		PA0103373	PA0023931	PA0239861	PA0026271	PA0101923	PA0025470	PA0047201	PA0027367	PA0222585	PA0029467	PA0025291	PA0027120
		FOXBURG STP	CAMBRIDGE AREA JT AUTH STP	COCHRANTON BORO STP	MEADVILLE AREA STP	SAEGERTOWN AREA STP	FREDERICKSBURG STP	TIONESTA BORO WWTP	GREENVILLE SANI AUTH	BROKENSTRAW VALLEY AREA AUTH STP	NORTH WARREN MUNI STP	SOUTHWEST WARREN CNTY STP	WARREN CITY WWTP
Ū	JNITS	ug/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	ug/L	mg/L
2017	4th QTR												0.05
2018	1st QTR		< 0.01	< 0.005	< 0.005			0.006	0.001				< 0.005
	2nd QTR		< 0.01	< 0.005	< 0.005			0.001	0.003				0.05
	3rd QTR		< 0.04	< 0.005	< 0.005			0.016	0.0001		le .		0.01
	4th QTR		< 0.04	< 0.005	< 0.005		< 0.005	0.003	0.001		0.00518		< 0.05
2019	1st QTR		< 0.007	< 0.005	< 0.005		< 0.005	0.001	0.001		< 0.00400	< 0.02	< 0.05
	2nd QTR		< 0.007	< 0.005	< 0.005	0.007	< 0.005	0.001	0.0009	< 0.005	0.007	< 0.02	< 0.05
	3rd QTR		< 0.007	< 0.005	< 0.005	0.009	< 0.005	0.0003	0.002	< 0.005	0.04	< 0.02	< 0.05
	4th QTR	0.005	< 0.007	< 0.005	< 0.005	0.008	< 0.005	0.019	0.002	< 0.005	< 0.007	< 0.02	< 0.05
2020	1st QTR	< 0.005	< 0.007	< 0.005	< 0.005	< 0.007	< 0.005	0.001	0.0009	< 0.005	< 0.007	< 0.02	< 0.05
	2nd QTR	0.007	< 0.007	< 0.005	< 0.005	< 0.007	< 0.005	0.002	0.0007	< 0.005	< 0.007	< 0.02	< 0.05
	3rd QTR	0.006	< 0.007	< 0.005	< 0.005	0.011	< 0.005	0.004	0.001	< 0.005	0.007	< 0.02	< 0.05
	4th QTR	< 0.005	< 0.007	< 0.005	< 0.005	0.012	< 0.005	0.003	0.003	< 0.005	0.007	< 0.02	< 0.05
2021	1st QTR	< 0.005	< 0.007	< 0.005	< 0.005	< 0.007	< 0.005	0.001	0.005	< 0.005	0.007	< 0.02	< 0.05
	2nd QTR	0.005	< 0.007	< 0.005	< 0.005	0.008	< 0.005	0.006	0.004	< 0.005	0.007	< 0.02	< 0.05
	3rd QTR	< 0.005	< 0.007	< 0.005	< 0.005	0.011	< 0.005	0.003	0.001	0.005	< 0.007	0.02	< 0.05

As seen from this data, nickel is rarely above the USFWS criteria of 7.5 ug/L. The highest reported value that appears to be an outlier was 19 ug/L at the Tionesta Borough WWTP in the fourth quarter of 2019. As the USFWS indicated in a December 16, 2021 letter regarding the Eldred Borough STP, the USFWS supports the use of the 95% Upper Confidence Limit (UCL) from the above dataset in the permit calculations to provide a robust and more realistic estimate of the potentially affected area. Therefore, the Department calculated the 95% Upper Confidence Interval from the data above and has used this value of 0.014 mg/l in the "impact area" calculations for the Pine Township STP included in this Fact Sheet.

NICKEL 95% UCL Calculations					
Mean	0.0116				
Standard Error	0.0012				
Median	0.005				
Mode	0.005				
Standard Deviation	0.0144				
Sample Variance	0.0002				
Kurtosis	2.5715				
Skewness	1.9851				
Range	0.0499				
Minimum	0.0001				
Maximum	0.05				
Sum	1.6481				
Count	142				
Confidence Level(95.0%)	0.0024				
Upper 95% Confidence Interval	0.014				
Lower 95% Confidence Interval	0.0092				

Zinc

The dissolved zinc criteria of 13.18 µg/l was provided to the Department in emails from the USFWS dated October 25, 2021 and November 8, 2021. The nickel criteria has been provided in numerous comment letters and other correspondence with the USFWS. As part of the October 25, 2021 correspondence and included as Attachment A to this document, the USFWS provided the Department with a "Hazard/Risk Assessment" for the "Evaluation of Acute and Chronic Toxicity of Nickel and Zinc to 2 Sensitive Freshwater Benthic Invertebrates Using Refined Testing Methods" as prepared by Ning Wang, James L. Kunz, Danielle M. Cleveland, Jeffery A. Steevens, Edward J. Hammer, Eric Van Genderen, Adam C. Ryan, and Christian E. Schlekat published in the Environmental Toxicology and Chemistry—Volume 39, Number 11—pp. 2256–2268, 2020, received May 11, 2020, revised June 3, 2020, and accepted July 30, 2020.

The Department has limited zinc data for the effluent from sewage treatment plants. Therefore, the Department used an effluent concentration of 20 ug/l in the included "impact area" calculations for the Pine Township STP.

"Impact Area" Calculations:

3/16/2022

Pine Township (Armstrong County)

Facility:		Pine Township STP						
The Approximation of the Control of		PA0252760	Effective: N/A Expiration: N/A					
Outfall N	lo:	001						
Location		Pine Township, Armstrong County						
Discharg		Allegheny River						
Site Spec	cific Mussel Survey Completed:	No						
Dischara	ge and Stream Characteristics		Comments					
Q _s	Stream Flow	628 MGD / 972.4 cfs	Fact Sheet					
Q_0	Discharge Flow	0.06 MGD / 0.09285 cfs	Fact Sheet					
C _{s(cl⁻)}	Instream chloride Concentration	15.6 mg/L	Average WQN data (2010 to 2021 - USGS-03036500)					
$C_{\epsilon(cl^{-})}$	Discharge chloride (existing)	115.3 mg/L	Upper 95% confidence interval of effluent data from 14 other facilities					
C _{P(CI} -)	Discharge chloride (proposed)	115.3 mg/L	Upper 95% confidence interval of effluent data from 14 other facilities					
C _{s(cl⁻)}	Instream nickel Concentration	5 μg/L	Assumed - No WQN data below the criteria of 7.3 μg/L (reported at < 50)					
C _{E(Ni)}	Discharge nickel (existing)	14 μg/L	Upper 95% confidence interval of effluent data from 10 other facilities					
C _{P(Ni)}	Discharge nickel (proposed)	14 μg/L	Upper 95% confidence interval of effluent data from 10 other facilities					
$C_{s(Zn)}$	Instream zinc Concentration	16.26 μg/L	Average WQN data (2010 to 2021 - USGS-03036500)					
$C_{E(Zn)}$	Discharge zinc (existing)	20 μg/L	Assumed - No data available					
Zn _{P(CIT)}	Discharge zinc (proposed)	20 μg/L	Assumed - No data available					
C _{s(NH3-N)}	Instream NH ³ -N	0.03 mg/L	Average WQN data (2010 to 2021 - USGS-03036500)					
C _{E(NH3-N)}	Discharge NH ³ -N (existing)	1 mg/L	From renewal application - Max of 109 grab samples					
C _{P(NH3-N)}	Discharge NH ³ -N (proposed)	1 mg/L	From renewal application - Max of 109 grab samples					
pH_s	Instream pH	7.6 S.U.	Average WQN data (2010 to 2021 - USGS-03036500)					
Ts	Instream Temp.	25 °C	Default value for a WWF					
C _{C(NH3-N)}	Ammonia criteria	0.920 mg/L	From ammonia criteria comparison spreadsheet -using instream pH and Temp					
C _{c(cl⁻)}	Chloride criteria	78 mg/L	USFWS criteria					
C _{C(Ni)}	Nickel criteria	7.3 μg/L	USFWS criteria					
$C_{C(Zn)}$	Zinc criteria	13.18 μg/L	USFWS criteria					
W_s	Stream width	266.8 meters	PaDEP eMAP					

ina Cinter	a Calculations:							
pH_s	7.6 S.U.	(Default value is .	7.0)					
Ts	25 °C (Default value is 20°)							
Acute	Acute Criteria							
	METHOD and UNITS	CRITERIA	13	Comments				
	Old CMC (mg TAN/L) =	3.577						
	EPA 2013 CMC (mg TAN/L) =	5.226	Oncorhynchus present	* formula on pg. 41 (plateaus at 15.7 C				
		5.226	Oncorhynchus absent	* formula on pg. 42 (plateaus at 10.2 C				
Chroni	c Criteria			-5.50				
	METHOD and UNITS	CRITERIA		COMMENTS				
	Old CMC (mg TAN/L) =	0.952						
C _{CINH3-N}	EPA 2013 CMC (mg TAN/L) =	0.920		* formula on pg. 46 (plateaus at 7 C)				

Endangered Mussel Species Impact Area Calculations:

Existing Area of Impact

✓ N/A - No Site Specific Mussel Survey Completed for this Discharger

Approximate Area of Impact Determined from Survey =	N/A m ²
Existing Mussel Density within Area of Impact =	
Rabbitsfoot (Quadrula cylindrical)	N/A per m ²
Northern Riffleshell (Epioblasma torulosa rangiana)	N/A per m ²
Rayed Bean (Villosa fabalis)	N/A per m ²
Clubshe II (Pleurobema clava)	N/A per m ²
Sheepnose (Plethobasus cyphyus)	N/A per m ²
Snuffbox (Epioblasma triquetra)	N/A per m²
TOTAL	0 per m ²

(Enter N/A if no site specific survey has been completed)

Method 1 - Utilizing Site Specific Mussel Survey Information

This method utilizes a simple comparison of the size of the existing area of impact as determined from a site specific mussel survey and the chlorides in the existing discharge compared to the chlorides in the proposed discharge after the facility upgrades treatment technologies. This method is only applicable to where the stream impairment is caused by TDS and/or chlorides as the plume has been delineated through conductivity measurements.

A. Area of Impact Determined from Survey:	N/A	m ²
B. Chlorides in Existing Discharge:		115 mg/L
C. Chlorides in Proposed Discharge after Treatment Facility Upgrades:		115.3 mg/L
D. Approximate Area of Impact after Treatment Facility Upgrades:		N/A m ²

A/B = D/C

Therefore, D = (A*C)/B

3/16/2022

Pine Township (Armstrong County)

Facility:	Pine Township STP		
Permit Number:	PA0252760	Effective: N/A	Expiration: N/A
Outfall No:	001		
Location:	Pine Township, Armstrong C	ounty	
Discharge to:	Allegheny River		
Site Specific Mussel Survey Completed:	No		_

Endangered Mussel Species Impact Area Calculations: (continued...)

Method 2 - Mass Balance Relationship of Loading and Assimilative Capacity of Stream

	$L_{S(Cl^{-})}$ = Available Chloride Loading in Stream = $C_{Cl^{-}} - C_{S(Cl^{-})} \times Q_{S}(MGD) \times 8.34 =$	326,821 lbs/Day
	L _{D-MAX(CIT)} = Current Maximium Discharge Chloride Loading exceeding criteria = (C _{E(CLT)} , C _{E(CLT)} , X Q _D (MGD) X 8.34 =	19 lbs/Day
<u>D</u>	$\Re_{E(Cl^+)}$ = Percent of Stream Capacity for Current Loading = $L_{D-MAX(Cl^+)}/L_{S(Cl^+)}$ =	0% of Stream Capacity
Nickel(Ni) Chloride	$L_{D(Cr)}$ = Proposed Discharge CI ⁺ Loading exceeding criteria after Treatment Facility Upgrades = $(C_{P(Cr)} - C_{P(Cr)}) \times Q_{D}(MGD) \times 8.34 =$	18.66492 lbs/Day
임		0.01% of Stream Capacity
0	Proposed Area of Impact due to Chloride * = $(\%_{P(Cl^{-})} X W_s)^2 X 0.5 =$	0.0001 m ²
	* assuming equal flow across transect and 90° spread at discharge	55500000
	$L_{S(N)}$ = Available Nickel Loading in Stream = $C_{C(N)} - C_{S(N)} \times Q_{S}(MGD) \times 8.34 =$	12,046 lbs/Day
	$L_{D-MAX(N)}$ = Current Maximium Discharge Nickel Loading exceeding criteria = $(C_{E(N)}, C_{E(N)}) \times Q_0(MGD) \times 8.34 =$	3 lbs/Day
kel(Ni)	$\%_{E(N)}$ = Percent of Stream Capacity for Current Loading = $L_{D-MAX(N)}/L_{S(N)}$ =	0% of Stream Capacity
kel($L_{O(N)}$ = Proposed Discharge Ni Loading exceeding criteria after Treatment Facility Upgrades = $(C_{P(N)} - C_{P(N)}) \times Q_0(MGD) \times 8.34 =$	3.35268 lbs/Day
Š	$\Re_{P(N)}$ = Percent of Stream Capacity for Proposed Loading = $L_{D(N)} / L_{S(N)}$ =	0.03% of Stream Capacity
	Proposed Area of Impact due to Nickel * = $(\%_{P(N)} \times W_3)^2 \times 0.5 =$	0.0028 m ²
	* assuming equal flow across transect and 90° spread at discharge	
	$L_{S(2n)}$ = Available Zinc Loading in Stream = $C_{C(2n)}$ - $C_{S(2n)}$ X $Q_S(MGD)$ X 8.34 =	-16,132 lbs/Day
	L _{D-MAX(Zn)} = Current Maximium Discharge Zinc Loading exceeding criteria = (C _{E(Zn)} , C _{E(Zn)}) X Q _D (MGD) X 8.34 =	3 lbs/Day
Ê	$\Re_{E(Zn)}$ = Percent of Stream Capacity for Current Loading = $L_{D-MAX(Zn)} / L_{S(Zn)}$ =	0% of Stream Capacity
C (Z	$L_{D(Z_0)}$ = Proposed Discharge Zn Loading exceeding criteria after Treatment Facility Upgrades = $(C_{P(Z_0)} - C_{P(Z_0)}) \times Q_0(MGD) \times 8.34 =$	3.412728 lbs/Day
Zin	$\Re_{P(Z_n)}$ = Percent of Stream Capacity for Proposed Loading = $L_{D(Z_n)} / L_{S(Z_n)}$ =	-0.02% of Stream Capacity
		0.0016 m ²
	* assuming equal flow across transect and 90° spread at discharge	
	$L_{S(NH3-N)}$ = Available NH3-N Loading in Stream = $C_{C(NH3-N)} - C_{S(NH3-N)} \times Q_{S}(MGD) \times 8.34 =$	4,661 lbs/Day
وَ م	$L_{D-MAX(NH3:N)}$ = Current Maximium Discharge NH3-N Loading = $C_{E(NH3:N)}$ X $Q_0(MGD)$ X 8.34 =	1 lbs/Day
9	$\%_{E(NH3-N)}$ = Percent of Stream Capacity for Current Loading = $L_{D-MAX(NH3-N)} / L_{S(NH3-N)}$ =	0% of Stream Capacity
Ŧ	$L_{D(NHB-N)}$ = Proposed Discharge NH3-N Loading after Treatment Facility Upgrades = $C_{P(NHB-N)}$ - $C_{C(NHB-N)}$ X $Q_D(MGD)$ X 8.34 =	0 lbs/Day
(NH3-N)	$\%_{P(NH3-N)}$ = Percent of Stream Capacity for Proposed Loading = $L_{D(NH3-N)}/L_{S(NH3-N)}$ =	0.00% of Stream Capacity
		0.0000 m ²
		And designation of the second

3/16/2022

Pine Township (Armstrong County)

Facility:	Pine Township STP		
Permit Number:	PA0252760	Effective: N/A	Expiration: N/A
Outfall No:	001		
Location:	Pine Township, Armstrong County		
Discharge to:	Allegheny River		
Site Specific Mussel Survey Completed:	No		

Endangered Mussel Species Impact Area Calculations: (continued...)

Method 3 - Mass Balance Relationship of Stream Flow, Proposed Effluent Quality, and Mussel Protection Criteria

	$Q_{A(Cl^{\gamma})}C_{S(Cl^{\gamma})} + Q_{D}C_{P(Cl^{\gamma})} = Q_{T}C_{C(Cl^{\gamma})}$	
	Q _{A(CIT)} = Assimilative Stream Flow Required to Achieve Criteria (cfs)	
	$Q_{\tau} = Q_{\varsigma} + Q_{\varsigma} (cfs)$	
_	$Q_{A(CI)}C_{S(CI)} + Q_{D}C_{P(CI)} = (Q_{D}+Q_{S})C_{C(CI)}$	
Chloride (Cl)	SOLVING FOR $Q_{A(cl^{-})} = [(Q_{D}C_{P(cl^{-})}/C_{C(cl^{-})} - Q_{D})]/(1 - C_{S(cl^{-})}/C_{C(cl^{-})}) =$	0.05550168 cfs
ride	% _{P/Cl⁻¹} = Percent of Stream Width Required to Assimilate Chlorides to Criteria	
old		0.0057%
0	$ \begin{array}{ll} Concentration &= Q_{A(G)^-}/Q_S(cfs) = \\ W_{I(G)^-} &= Proposed \ Width \ of \ Stream \ required \ to \ Assimilate \ Chlorides \ to \ Criteria $	
	Concentration = W _s X % _{P(Cl7)}	0.015228 meters
	Proposed Area of Impact due to Chloride * = $(W_{I(CI)})^2 \times 0.5 =$	0.0001 m ²
	* assuming equal flow across transect and 90° spread at discharge	
	$Q_{A(N)}C_{S(N)} + Q_DC_{P(N)} = Q_TC_{C(N)}$	
	Q _{A(Ni)} = Assimilative Stream Flow Required to Achieve Criteria (cfs)	
	$Q_{T} = Q_{S} + Q_{O} (cfs)$	
	$\mathbf{Q}_{A(N)}C_{S(N)} + \mathbf{Q}_{D}C_{P(N)} = (\mathbf{Q}_{D} + \mathbf{Q}_{S})C_{C(N)}$	
Nickel (Ni)	SOLVING FOR $Q_{A(N)} = [(Q_D C_{P(N)} / C_{C(N)}) - Q_D)] / (1 - C_{S(N)} / C_{C(N)}) =$	0.27047609 cfs
kel	% _{P(Cl⁻)} = Percent of Stream Width Required to Assimilate Nickel to Criteria	
ž	Concentration = $Q_{A(N)i}/Q_{S}(cfs)$ =	0.0278%
	W _{I(Ni)} = Proposed Width of Stream required to Assimilate Nickel to Criteria	W
	Concentration = $W_s X \%_{P(Ni)}$	0.074211 meters
	Proposed Area of Impact due to Nickel * = $(W_{i(N)})^2 \times 0.5$ =	0.0028 m²
	* assuming equal flow across transect and 90° spread at discharge	
	$Q_{A(2n)}C_{S(2n)} + Q_{C}C_{P(2n)} = Q_{T}C_{C(2n)}$	
	Q _{A(2n)} = Assimilative Stream Flow Required to Achieve Criteria (cfs)	
	$Q_{T} = Q_{S} + Q_{D} (cfs)$	
	$Q_{A(2n)}C_{S(2n)} + Q_{O}C_{P(2n)} = (Q_{O}+Q_{S})C_{C(2n)}$	
Zinc (Zn)	SOLVING FOR $Q_{A(2n)} = [(Q_DC_{P2n})/C_{C(2n)}) - Q_D)]/(1 - C_{S(2n)}/C_{C(2n)}) =$	-0.20559643 cfs
inc	% _{P(Cl*)} = Percent of Stream Width Required to Assimilate Zinc to Criteria	
2	Concentration = $Q_{A(Zn)} / Q_S(cfs)$ = $W_{I(Zn)}$ = Proposed Width of Stream required to Assimilate Zinc to Criteria	-0.0211%
		0.056410 motors
	Concentration = W _S X % _{P2n}	-0.056410 meters 0.0016 m ²
	Proposed Area of Impact due to Chloride *= $\{W_{i(cl)}\}^2 \times 0.5 =$ * assuming equal flow across transect and 90° spread at discharge	0.0016
	$Q_{A(NH3-N)}C_{S(NH3-N)} + Q_0C_{P(NH3-N)} = Q_1C_{C(NH3-N)}$	
	IQU/NHS.NIC(NHS.NIT QCC/NHS.NIT QCC/NHS.NIT	
(N-8	Q _{A(NH3-N)} = Assimilative Stream Flow Required to Achieve Criteria (cfs)	
NH3-N)	$Q_{A(NH3-N)}$ = Assimilative Stream Flow Required to Achieve Criteria (cfs) $Q_T = Q_S + Q_O \text{ (cfs)}$	
en (NH3-N)	$\begin{split} Q_{A(NH3-N)} &= \text{Assimilative Stream Flow Required to Achieve Criteria (cfs)} \\ Q_{T} &= Q_{S} + Q_{D} \text{ (cfs)} \\ Q_{A(NH3-N)} C_{S(NH3-N)} &+ Q_{D} C_{P(NH3-N)} = (Q_{D} + Q_{S}) C_{C(NH3-N))} \end{split}$	0.00045
rogen (NH3-N)	$\begin{split} Q_{A(NH3-N)} &= \text{Assimilative Stream Flow Required to Achieve Criteria (cfs)} \\ Q_T &= Q_S + Q_D \text{ (cfs)} \\ Q_{A(NH3-N)}C_{S(NH3-N)} + Q_DC_{P(NH3-N)} &= \left(Q_D + Q_S\right)C_{C(NH3-N))} \\ \text{SOLVING FOR } \mathbf{Q_{A(NH3-N)}} &= \left[\left(Q_DC_{P(NH3-N)} / C_{C(NH3-N)}\right) - Q_D\right] / \left(1 - C_{S(NH3-N)} / C_{C(NH3-N)}\right) = 0 \end{split}$	0.008346 cfs
-Nitrogen (NH3-N)	$\begin{split} Q_{A(NH3-N)} &= \text{Assimilative Stream Flow Required to Achieve Criteria (cfs)} \\ Q_T &= Q_S + Q_O \text{ (cfs)} \\ Q_{A(NH3-N)}C_{S(NH3-N)} &+ Q_OC_{P(NH3-N)} &= (Q_O+Q_S)C_{C(NH3-N))} \\ \text{SOLVING FOR } Q_{A(NH3-N)} &= \left[\left(Q_OC_{P(NH3-N)} / C_{C(NH3-N)} \right) - Q_O \right] / \left(1 - C_{S(NH3-N)} / C_{C(NH3-N)} \right) \\ & \%_{P(NH3-N)} &= \text{Percent of Stream Width Required to Assimilate NH3-N to Criteria} \end{split}$	Separation of the Conference o
onia-Nitrogen (NH3-N)	$\begin{split} Q_{A(NH3-N)} &= \text{Assimilative Stream Flow Required to Achieve Criteria (cfs)} \\ Q_T &= Q_S + Q_O \text{ (cfs)} \\ Q_{A(NH3-N)}C_{S(NH3-N)} &+ Q_OC_{P(NH3-N)} &= (Q_O+Q_S)C_{C(NH3-N))} \\ \text{SOLVING FOR } Q_{A(NH3-N)} &= \left[\left(Q_OC_{P(NH3-N)} / C_{C(NH3-N)} \right) - Q_O \right] / \left(1 - C_{S(NH3-N)} / C_{C(NH3-N)} \right) \\ & \%_{P(NH3-N)} &= \text{Percent of Stream Width Required to Assimilate NH3-N to Criteria} \end{split}$	0.008346 cfs 0.0009%
nmonia-Nitrogen (NH3-N)	$\begin{array}{c} Q_{A(NH3-N)} = Assimilative \ Stream \ Flow \ Required \ to \ Achieve \ Criteria \ (cfs) \\ Q_T = Q_S + Q_O \ (cfs) \\ Q_{A(NH3-N)} C_{S(NH3-N)} + Q_O C_{P(NH3-N)} = (Q_O + Q_S) C_{C(NH3-N)} \\ SOLVING \ FOR \ \mathbf{Q_{A(NH3-N)}} = [(Q_O C_{P(NH3-N)} / C_{C(NH3-N)}) - Q_O]] \ / \ (1 - C_{S(NH3-N)} / C_{C(NH3-N)}) = \\ \mathcal{S}_{P(NH3-N)} = Percent \ of \ Stream \ Width \ Required \ to \ Assimilate \ NH3-N \ to \ Criteria \\ Concentration = Q_{A(NH3-N)} \ / \ Q_S \ (cfs) = \\ W_{I(NH3-N)} = Proposed \ Width \ of \ Stream \ required \ to \ Assimilate \ NH3-N \ to \ Criteria \\ \end{array}$	0.0009%
Ammonia-Nitrogen (NH3-N)	$\begin{split} Q_{A(NH3-N)} &= \text{Assimilative Stream Flow Required to Achieve Criteria (cfs)} \\ Q_T &= Q_S + Q_O \text{ (cfs)} \\ Q_{A(NH3-N)}C_{S(NH3-N)} &+ Q_OC_{P(NH3-N)} &= (Q_O+Q_S)C_{C(NH3-N))} \\ \text{SOLVING FOR } Q_{A(NH3-N)} &= \left[\left(Q_OC_{P(NH3-N)} / C_{C(NH3-N)} \right) - Q_O \right] / \left(1 - C_{S(NH3-N)} / C_{C(NH3-N)} \right) \\ & \%_{P(NH3-N)} &= \text{Percent of Stream Width Required to Assimilate NH3-N to Criteria} \end{split}$	Specification (Control Control

Conclusions:

Based on the Ammonia-Nitrogen sampling data, the existing discharge from the Pine Township STP is not believed to be having any adverse effects on threatened or endangered mussel species in the Allegheny River considering that the discharge appears to be consistently meeting effluent concentrations that are well below the criteria established by the USFWS at the end of pipe. Additionally, the Department did consider what impacts, if any, nickel, chloride, and zinc potentially in the discharge effluent will have on threatened and endangered mussel species. The Department determined that the discharge is not expected to have any adverse effects on threatened or endangered mussel species in the Allegheny River considering the size of the proposed discharge and the instantaneous assimilative capacity of the river. This existing discharge (0.06 MGD) and its associated pollutants of concern, are not expected to be measurable at levels that would impact mussels once it mixes with the river. As shown on the "impact area" calculations, the subject discharge is expected to almost instantaneously dilute with the river for Chlorides, Ammonia-Nitrogen, Nickel, and Zinc. All of the "impact area" calculations are based on the worst-case stream condition scenario of the stream being at low flow (Q₇₋₁₀) flow conditions and the discharge from the treatment plant being at the design capacity. The likelihood of these conditions being at the "worst-case" scenario is not anticipated and, even if so, there does not appear to be any likelihood of there being any adverse impacts to threatened or endangered mussel species..

However, the Department will implement the following in this NPDES permit renewal for the Pine Township STP:

- Twice per month effluent monitoring for Ammonia-Nitrogen
- Monthly effluent monitoring for Chloride.
- Quarterly effluent monitoring for Nickel.
- Quarterly effluent monitoring for Zinc.

This monitoring will provide a dataset as a means of further evaluating potential impacts in the upcoming permit term. This data will also allow the Department to evaluate the need for pollutant reduction evaluations in future NPDES permit renewals for some or all of these pollutants.

OUTFALL AND STP LOCATIONS - Pa DEP eMap

OUTFALL AND STP LOCATIONS - Pa DEP eMap with Aerial Imagery

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

			Effluent L	imitations			Monitoring Red	quirements
Parameter	Mass Units	(lbs/day) (1)		Concentrations	(mg/L)		Minimum ⁽²⁾	Required
Farameter	Average Monthly	Average Weekly	Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report Wkly Avg	XXX	XXX	XXX	XXX	2/month	Measured
pH (S.U.)	XXX	XXX	6.0 Daily Min	XXX	XXX	9.0	1/day	Grab
DO	XXX	XXX	4.0 Daily Min	XXX	XXX	XXX	1/day	Grab
TRC	XXX	XXX	XXX	0.5	XXX	1.6	1/day	Grab
CBOD5	12.5	XXX	XXX	25.0	XXX	50.0	2/month	Grab
CBOD5 Raw Sewage Influent	Report	XXX	XXX	Report	XXX	XXX	2/month	Grab
TSS Raw Sewage Influent	Report	XXX	XXX	Report	XXX	XXX	2/month	Grab
TSS	15.0	XXX	XXX	30.0	XXX	60.0	2/month	Grab
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2000 Geo Mean	XXX	10000	2/month	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	XXX	XXX	200 Geo Mean	XXX	1000	2/month	Grab
E. Coli (No./100 ml)	XXX	XXX	XXX	XXX	XXX	Report	1/quarter	Grab
Total Nitrogen	XXX	XXX	XXX	Report Daily Max	XXX	XXX	1/year	Grab
Ammonia	12.5	XXX	XXX	25.0	XXX	50.0	2/month	Grab
Total Phosphorus	XXX	XXX	XXX	Report Daily Max	XXX	XXX	1/year	Grab
Chloride	XXX	XXX	XXX	Report	XXX	XXX	1/month	Grab
Total Nickel	XXX	XXX	XXX	Report Avg Qrtly	XXX	XXX	1/quarter	Grab
Total Zinc	XXX	XXX	XXX	Report Avg Qrtly	XXX	XXX	1/quarter	Grab

Compliance Sampling Location: Outfall 001 after disinfection.

Attachment A – eMAP Stream Designation

Attachment B – Streamstats Drainage Area (Discharge Point)

Attachment C - WQM 7.0 Modeling

WQM 7.0 Effluent Limits

		am Code 2122		Stream Name	_		
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
54.260	Pine Twp STP	PA0252760	0.060	CBOD5	25		
				NH3-N	25	50	
				Dissolved Oxygen			4

WQM 7.0 D.O.Simulation

SWP Basin S	tream Code			Stream Na	<u>me</u>	
18A	42122		AL	LEGHENY	RIVER	
RMI	Total Discharge	Flow (mgd) Anal	ysis Temper	ature (°C)	Analysis pH
54.260	0.06	0		25.000		7.000
Reach Width (ft)	Reach De	pth (ft)		Reach WDF	Ratio	Reach Velocity (fps)
713.574	1.15	3		618.757	7	1.182
Reach CBOD5 (mg/L)	Reach Kc (1/days)	<u>R</u>	each NH3-N	(mg/L)	Reach Kn (1/days)
2.00	0.003			0.10		1.028
Reach DO (mg/L)	Reach Kr (Kr Equati		Reach DO Goal (mg/L)
7.540	0.78	4		Tsivoglo	u	5
Reach Travel Time (days)		Subreach	Results			
0.078	TravTime	CBOD5	NH3-N	D.O.		
	(days)	(mg/L)	(mg/L)	(mg/L)		
	0.008	2.00	0.10	7.54		
	0.016	2.00	0.10	7.54		
	0.023	2.00	0.10	7.54		
	0.031	2.00	0.10	7.54		
	0.039	2.00	0.10	7.54		
	0.047	2.00	0.10	7.54		
	0.054	2.00	0.10	7.54		
	0.062	2.00	0.10	7.54		
	0.070	2.00	0.10	7.54		
	0.078	2.00	0.10	7.54		

Input Data WQM 7.0

	SWP Basin			Stre	eam Name		RMI	Ele	evation (ft)	Drainage Area (sq mi)		Wi	PWS thdrawal (mgd)	Apply FC
	18A	421	122 ALLEC	SHENY R	IVER		54.26	0	801.00	8840.0	0.0	0000	0.00	✓
					St	ream Dat	a							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	Tributary p p	Н	Stre Temp	eam pH	
Cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C)		
Q7-10 Q1-10 Q30-10	0.110	0.00 0.00 0.00	0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00	0.0	00 2	5.00	7.00	0.00	0.00	
					Di	scharge [Data							
			Name	Per	mit Numbe	Disc	Permitte Disc Flow (mgd)	Dis Flo	c Res	erve T ctor	Disc emp (°C)	Disc pH		
		Pine	Twp STP	PA	0252760	0.0600	0.060	0.0	0600	0.000	20.00	7.6	0	
					Pá	arameter l	Data							
				Paramete	r Namo			rib onc	Stream Conc	Fate Coef				
				aramete	i ivallie	(m	g/L) (m	ng/L)	(mg/L)	(1/days)				
			CBOD5				25.00	2.00	0.00	1.50				
			Dissolved	Oxygen			4.00	7.54	0.00	0.00				
			NH3-N			:	25.00	0.10	0.00	0.70				

Input Data WQM 7.0

	SWP Basin			Stre	eam Name		RMI		vation (ft)	Drainage Area (sq mi)		With	WS ndrawal ngd)	Apply FC
	18A	421	122 ALLEC	SHENY R	IVER		52.76	0	800.00	8841.0	0.0	0000	0.00	✓
					St	ream Da	a							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth		Tributary p p	Н	Strea Temp	am pH	
Cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C)		
Q7-10 Q1-10 Q30-10	0.110	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000		0.0	0.00	0.0	00 2	5.00	7.00	0.00	0.00	
					D	ischarge	Data							
			Name	Per	mit Numbe	Disc	Permitte Disc Flow (mgd)	Dis Flo	c Res	erve T	Disc emp (°C)	Disc pH		
						0.000	0.000	0.0	0000	0.000	25.00	7.00		
					P	arameter	Data							
				Paramete	r Nama			rib	Stream Conc	Fate Coef				
				aramete	Name	(m	ng/L) (m	ng/L)	(mg/L)	(1/days)				
			CBOD5				25.00	2.00	0.00	1.50				
			Dissolved	Oxygen			3.00	8.24	0.00	0.00)			
			NH3-N				25.00	0.00	0.00	0.70)			

WQM 7.0 Wasteload Allocations

SWP Basin	Stream Code	Stream Name
18A	42122	ALLEGHENY RIVER

RMI	Acute Allocation Discharge Name	Baseline	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
54.26	0 Pine Twp STP	11.07	50	11.07	50	0	0
H3-N C	Chronic Allocati	ons					
RMI	Discharge Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
	0 Pine Twp STP	1.37	25	1.37	25	0	0

Dissolved Oxygen Allocations

		CBC	DD5	NH	3-N	Dissolved	d Oxygen	Critical	Percent
RMI	Discharge Name	Baseline (mg/L)		Baseline (mg/L)	Multiple	Baseline	Multiple	Reach	Reduction
54.26 Pi	ine Twp STP	25	25	25	25	4	4	0	0

WQM 7.0 Hydrodynamic Outputs

	SW	P Basin	Strea	m Code				Stream	<u>Name</u>			
		18A	42	2122			AL	LEGHEN	IY RIVER			
RMI	Stream Flow	PWS With	Net Stream	Disc Analysis	Reach Slope	Depth	Width	W/D Ratio	Velocity	Trav	Analysis Temp	Analysis pH
	(cfs)	(cfs)	Flow (cfs)	Flow (cfs)	(ft/ft)	(ft)	(ft)		(fps)	Time (days)	(°C)	
Q7-1	0 Flow											
54.260	972.40	0.00	972.40	.0928	0.00013	1.153	713.57	618.76	1.18	0.078	25.00	7.00
Q1-1	0 Flow											
54.260	622.34	0.00	622.34	.0928	0.00013	NA	NA	NA	0.92	0.100	25.00	7.00
Q30-	10 Flow											
54.260	1322.46	0.00	1322.46	.0928	0.00013	NA	NA	NA	1.40	0.065	25.00	7.00

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	✓
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	✓
D.O. Saturation	90.00%	Use Balanced Technology	✓
D.O. Goal	5		

Attachment D - Discharge pH

Pine Twp STP							
Pine Twp, Arms	trong Count	У				-	-
PA0252760			Discharge p	Н			
Date	pH min	pH max		10^ -pH min	10^ -pH max	& pH max)	-Log (Ave pH)
Sep-21	7.93	8.02		1.1749E-08	9.5499E-09	1.0649E-08	8.0
Aug-21	7.87	8.05		1.34896E-08	8.9125E-09	1.1201E-08	8.0
Jul-21	7.81	8		1.54882E-08	0.00000001	1.2744E-08	7.9
Sep-20	7.83	8		1.47911E-08	0.0000001	1.2396E-08	7.9
Aug-20	7.34	7.86		4.57088E-08	1.3804E-08	2.9756E-08	7.5
Jul-20	7.49	7.86		3.23594E-08	1.3804E-08	2.3082E-08	7.6
Sep-19	6.97	7.39		1.07152E-07	4.0738E-08	7.3945E-08	7.1
Aug-19	7.16	7.98		6.91831E-08	1.0471E-08	3.9827E-08	7.4
Jul-19	7.11	7.54		7.76247E-08	2.884E-08	5.3233E-08	7.3
Sep-18	7.04	7.35		9.12011E-08	4.4668E-08	6.7935E-08	7.2
						Median:	7.6

Attachment E – TRC CALC Spreadsheet

Input approprie	to values is	A2:A0 and D2:D0			
		A3:A9 and D3:D9	0.5	- OV D-:1-	
	= Q stream			= CV Daily	
	= Q discha		0.5	= CV Hourly	
	= no. samp		1	= AFC_Partia	
		Demand of Stream		= CFC_Partia	
		Demand of Discharge			ria Compliance Time (min)
0.5	= BAT/BPJ		720		ria Compliance Time (min)
0		of Safety (FOS)		=Decay Coef	
Source	Reference	AFC Calculations	0040 540	Reference	CFC Calculations
TRC	1.3.2.iii	WLA afc =		1.3.2.iii	WLA cfc = 3256.766
PENTOXSD TRG PENTOXSD TRG		LTAMULT afc =		5.1c 5.1d	LTAMULT cfc = 0.581
PENTOXSDIRG	5.1B	LIA_atc=	1244.768	5.10	LTA_cfc = 1893.331
Source		Efflue	nt Limit Calcu	ations	
PENTOXSD TRG	5.1f		AML MULT =	1.288	
PENTOXSD TRG	5.1g	AVG MON I	LIMIT (mg/l) =	0.500	BAT/BPJ
		INST MAX I	LIMIT (mg/l) =	1.563	
WLA afc	+ Xd + (A	AFC_tc)) + [(AFC_Yc*Qs \FC_Yc*Qs*Xs/Qd)]*(1-F	OS/100)	-k*AFC_tc))	
LTAMULT afc LTA_afc WLA_cfc LTAMULT_cfc LTA_cfc	+ Xd + (A EXP((0.5*LN: wla_afc*LTA (.011/e(-k* + Xd + (C EXP((0.5*LN: wla_cfc*LTA	AFC_Yc*Qs*Xs/Qd)]*(1-F (cvh^2+1))-2.326*LN(cvh^2- MULT_afc CFC_tc) + [(CFC_Yc*Qs* CFC_Yc*Qs*Xs/Qd)]*(1-F (cvd^2/no_samples+1))-2.33 MULT_cfc	*.011/Qd*e(- *05/100) *.011/Qd*e(- *.05/100) 26*LN(cvd^2/	· k*CFC_tc)). . no_samples+1)	 ^0.5)
LTAMULT afc LTA_afc WLA_cfc LTAMULT_cfc LTA_cfc AML MULT	+ Xd + (A EXP((0.5*LN) wla_afc*LTA (.011/e(-k*) + Xd + (C EXP((0.5*LN) wla_cfc*LTA EXP(2.326*L	AFC_Yc*Qs*Xs/Qd)]*(1-F (cvh^2+1))-2.326*LN(cvh^2- MULT_afc CFC_tc) + [(CFC_Yc*Qs* CFC_Yc*Qs*Xs/Qd)]*(1-F (cvd^2/no_samples+1))-2.32 MULT_cfc N((cvd^2/no_samples+1)^0	*.011/Qd*e(- *.011/Qd*e(- *OS/100) 26*LN(cvd^2/-	· k*CFC_tc)). . no_samples+1)	 ^0.5)
LTAMULT afc LTA_afc WLA_cfc LTAMULT_cfc LTA_cfc AML MULT AVG MON LIMIT	+ Xd + (A EXP((0.5*LN) wla_afc*LTA (.011/e(-k* + Xd + (C EXP((0.5*LN) wla_cfc*LTA EXP(2.326*L MIN(BAT_BI	AFC_Yc*Qs*Xs/Qd)]*(1-F (cvh^2+1))-2.326*LN(cvh^2- MULT_afc CFC_tc) + [(CFC_Yc*Qs* CFC_Yc*Qs*Xs/Qd)]*(1-F (cvd^2/no_samples+1))-2.33 MULT_cfc N((cvd^2/no_samples+1)^0 PJ,MIN(LTA_afc,LTA_cfc)*A	*.011/Qd*e(- *.011/Qd*e(- *.05/100) 26*LN(cvd^2/- .5)-0.5*LN(cvd	- k*CFC_tc)) no_samples+1) d^2/no_sample	 ^0.5)
LTAMULT afc LTA_afc WLA_cfc LTAMULT_cfc LTA_cfc AML MULT	+ Xd + (A EXP((0.5*LN) wla_afc*LTA (.011/e(-k* + Xd + (C EXP((0.5*LN) wla_cfc*LTA EXP(2.326*L MIN(BAT_BI	AFC_Yc*Qs*Xs/Qd)]*(1-F (cvh^2+1))-2.326*LN(cvh^2- MULT_afc CFC_tc) + [(CFC_Yc*Qs* CFC_Yc*Qs*Xs/Qd)]*(1-F (cvd^2/no_samples+1))-2.32 MULT_cfc N((cvd^2/no_samples+1)^0	*.011/Qd*e(- *.011/Qd*e(- *.05/100) 26*LN(cvd^2/- .5)-0.5*LN(cvd	- k*CFC_tc)) no_samples+1) d^2/no_sample	 ^0.5)
LTAMULT afc LTA_afc WLA_cfc LTAMULT_cfc LTA_cfc AML MULT AVG MON LIMIT	+ Xd + (A EXP((0.5*LN) wla_afc*LTA (.011/e(-k* + Xd + (C EXP((0.5*LN) wla_cfc*LTA EXP(2.326*L MIN(BAT_BI	AFC_Yc*Qs*Xs/Qd)]*(1-F (cvh^2+1))-2.326*LN(cvh^2- MULT_afc CFC_tc) + [(CFC_Yc*Qs* CFC_Yc*Qs*Xs/Qd)]*(1-F (cvd^2/no_samples+1))-2.33 MULT_cfc N((cvd^2/no_samples+1)^0 PJ,MIN(LTA_afc,LTA_cfc)*A	*.011/Qd*e(- *.011/Qd*e(- *.05/100) 26*LN(cvd^2/- .5)-0.5*LN(cvd	- k*CFC_tc)) no_samples+1) d^2/no_sample	 ^0.5)
LTAMULT afc LTA_afc WLA_cfc LTAMULT_cfc LTA_cfc AML MULT AVG MON LIMIT	+ Xd + (A EXP((0.5*LN) wla_afc*LTA (.011/e(-k* + Xd + (C EXP((0.5*LN) wla_cfc*LTA EXP(2.326*L MIN(BAT_BI	AFC_Yc*Qs*Xs/Qd)]*(1-F (cvh^2+1))-2.326*LN(cvh^2- MULT_afc CFC_tc) + [(CFC_Yc*Qs* CFC_Yc*Qs*Xs/Qd)]*(1-F (cvd^2/no_samples+1))-2.33 MULT_cfc N((cvd^2/no_samples+1)^0 PJ,MIN(LTA_afc,LTA_cfc)*A	*.011/Qd*e(- *.011/Qd*e(- *.05/100) 26*LN(cvd^2/- .5)-0.5*LN(cvd	- k*CFC_tc)) no_samples+1) d^2/no_sample	 ^0.5)
LTAMULT afc LTA_afc WLA_cfc LTAMULT_cfc LTA_cfc AML MULT AVG MON LIMIT INST MAX LIMIT	+ Xd + (#EXP((0.5*LNi) wla_afc*LTA (.011/e(-k*)+ Xd + (0 EXP((0.5*LNi) wla_cfc*LTA EXP(2.326*L MIN(BAT_BI 1.5*((av_m	AFC_Yc*Qs*Xs/Qd)]*(1-F (cvh^2+1))-2.326*LN(cvh^2- MULT_afc CFC_tc) + [(CFC_Yc*Qs* CFC_Yc*Qs*Xs/Qd)]*(1-F (cvd^2/no_samples+1))-2.33 MULT_cfc N((cvd^2/no_samples+1)^0 PJ,MIN(LTA_afc,LTA_cfc)*A	*.011/Qd*e(- *.011/Qd*e(- *.05/100) 26*LN(cvd^2/5)-0.5*LN(cvd	- k*CFC_tc)) no_samples+1) d^2/no_sample	 ^0.5)