

Northwest Regional Office CLEAN WATER PROGRAM

 Application Type
 Renewal

 Facility Type
 Industrial

 Major / Minor
 Minor

NPDES PERMIT FACT SHEET INDIVIDUAL INDUSTRIAL WASTE (IW) AND IW STORMWATER

 Application No.
 PA0253006

 APS ID
 1014683

 Authorization ID
 1311125

Applicant and Facility Information

Applicant Name	Cook, Inc.	Facility Name	Cook Vandergrift
Applicant Address	1186 Montgomery Lane	Facility Address	1186 Montgomery Lane
	Vandergrift, PA 15690	_	Vandergrift, PA 15690
Applicant Contact	Andrew Clevenger	Facility Contact	Andrew Clevenger
Applicant Phone	(724) 845-8621	Facility Phone	(724) 845-8621
Client ID	307309	Site ID	655285
SIC Code	3841	Municipality	Parks Township
SIC Description	Manufacturing - Surgical and Medical Instruments	County	Armstrong County
Date Application Rec	eived March 31, 2020	EPA Waived?	Yes
Date Application Acce	epted April 15, 2020	If No, Reason	-

Summary of Review

Act 14 - Proof of Notification was submitted and received.

This facility is not subject to any ELGs.

A Part II Water Quality Management permit is not required at this time.

The applicant should be able to continue to meet the limits of this permit, which will protect the uses of the receiving stream.

I. OTHER REQUIREMENTS:

- A. Right of Way
- B. Solids Handling
- C. NPDES Permit Supersedes WQM Permits

SPECIAL CONDITIONS:

- II. Requirements Applicable to Stormwater Outfalls
- III. Groundwater Cleanup Granular Activated Carbon (GAC) Adsorption of Organic Pollutants
- D. Modification or Revocation for Changes to BAT or BCT

There are no open violations in efacts associated with the subject Client ID (307309) as of 3/19/2021.

Approve	Deny	Signatures	Date		
×		Stephen A. McCauley	2/10/2021		
Х		Stephen A. McCauley, E.I.T. / Environmental Engineering Specialist	3/19/2021		
V		Justin C. Dickey	2/22/2024		
Х		Justin C. Dickey, P.E. / Environmental Engineer Manager	3/22/2021		

NPDES Permit Fact Sheet Cook Vandergrift

Discharge, Receiving Water	rs and Water Supply Infor	mation	
Outfall No. 001		Design Flow (MGD)	0.036
Latitude 40° 37' 44.0'	"	Longitude	-79º 35' 8.0"
Quad Name		Quad Code	
Wastewater Description:	Groundwater Cleanup Dis	scharge	
Receiving Waters Kiskir	minetas River (WWF)	Stream Code	42816
NHD Com ID 12529	90358	RMI	7.86
Drainage Area 1560		Yield (cfs/mi²)	0.13
Q7-10 Flow (cfs) 249		Q7-10 Basis	USGS StreamStats
Elevation (ft) 820		Slope (ft/ft)	0.00161
Watershed No. 18-B		Chapter 93 Class.	WWF
Existing Use		Existing Use Qualifier	-
Exceptions to Use		Exceptions to Criteria	-
Assessment Status	Impaired*		
Cause(s) of Impairment	Metals, Total Suspended	Solids (TSS)	
Source(s) of Impairment	Acid Mine Drainage		
	-		-Conemaugh River
TMDL Status	Final, 1/29/2010	Name Watersheds	TMDL
Background/Ambient Data		Data Source	
pH (SU)	_	-	
Temperature (°F)			
Hardness (mg/L)	-		
Other:			
Other.			
Nearest Downstream Publi	ic Water Supply Intake	Buffalo Township Municipal W	/ater Authority - Freeport
	ny River	Flow at Intake (cfs)	2576
PWS RMI 30.0	<u> </u>	Distance from Outfall (mi)	8.5

* - The metals impairment was addressed previously, with the result being monitoring for Total Manganese which will be retained. The Total Suspended Solids (TSS) impairment is not an issue as the groundwater is treated using Granular Activated Carbon (GAC) which removes the majority of solids prior to discharge.

The stormwater at Outfall 001 continues to be covered under a No Exposure Certification.

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be

published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Narrative: This Fact Sheet details the determination of draft NPDES permit limits for an existing discharge of 0.036 MGD of treated groundwater, and stormwater in Parks Township, Armstrong County.

Existing treatment permitted under WQM 0306201 consists of: A collection manhole, a 20 gpm self-priming pump, and two liquid phase activated carbon vessels containing Granular Activated Carbon (GAC) for carbon adsorption.

Streamflow: Kiskiminetas River (USGS Gage 03048500) @ Outfall 001:

Q7-10:	<u>249</u>	cfs	USGS StreamStats
Drainage Area:	<u>1860</u>	sq. mi.	USGS StreamStats
% of stream allocated:	<u>100%</u>	Basis:	No nearby discharges
Yieldrate:	<u>0.13</u>	cfsm	calculated

2. Wasteflow: Outfall 001

Maximum discharge:	<u>0.036</u>	MGD =	<u>0.055</u>	cfs
Runoff flow period:	<u>24</u> ho	urs	Basis:	Continuous groundwater treatment

The calculated stream flow is more than 3 parts to the discharge flow. Therefore, in accordance with the SOP, no treatment requirements will be required from document number 391-2000-014, titled, "Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers", dated April 12, 2008.

Flow will continue to be monitored as authorized under Chapter 92a.61, and as recommended in the SOP.

3. Parameters evaluated:

a. <u>pH</u>

Between 6.0 and 9.0 at all times

Basis: Application of Chapter 95.2 technology-based limits.

b. <u>Total Suspended Solids (TSS)</u>

No TSS limits are necessary with this renewal.

Basis: <u>Since Granular Activated Carbon (GAC) is used, the majority of solids are removed prior to</u> <u>discharge.</u>

4. Reasonable Potential Analysis:

A Reasonable Potential Analysis was performed in accordance with State practices for Outfall 001 through the use of the Department's Toxics Management Spreadsheet (see Attachment 1). Based on the spreadsheet, none of the parameters sampled in the renewal application will be required to be monitored or will be given limits.

Result: No WQBELs are necessary for this renewal.

However, due to the existing groundwater contamination, the previous monitoring for Total Manganese and cis-1,2-Dichloroethylene will be retained with this renewal. The previous concentration limits for Trichloroethylene will also be retained with this renewal as the limits are attainable.

5. NO₂-NO₃, Fluoride, Phenolics, Sulfates, Chlorides, and TDS:

Nearest Downstream potable water supply (PWS): Buffalo Township Municipal Water Authority - Freeport

Distance downstream from the point of discharge: <u>8.5</u> miles (approximate)

- No limits necessary
- Limits needed
 - Basis: <u>Significant dilution is available</u>. While none of the PWS parameters were sampled in the renewal application, the ratio of the downstream PWS flow to the discharge flow is greater than 4500:1.

6. Anti-Backsliding

Since all the permit limits in this renewal are the same or more restrictive than the previous NPDES Permit, anti-backsliding is not applicable.

7. Attachment List:

Attachment 1 - Toxics Management Spreadsheet

(The Attachments above can be found at the end of this document)

Compliance History

DMR Data for Outfall 001 (from February 1, 2020 to January 31, 2021)

Parameter	JAN-21	DEC-20	NOV-20	OCT-20	SEP-20	AUG-20	JUL-20	JUN-20	MAY-20	APR-20	MAR-20	FEB-20
Flow (MGD)												
Average Monthly	0.0072	0.0067	0.0059	0.0064	0.0063	0.0068	0.0069	0.0076	0.0089	0.0097	0.0099	0.010
Flow (MGD)												
Daily Maximum	0.010	0.010	0.0095	0.012	0.0096	0.0093	0.0080	0.0098	0.011	0.014	0.015	0.014
pH (S.U.)												
Minimum	6.5	6.2	6.3	6.1	6.12	6.24	6.39	6.46	5.9	6.1	6.0	6.35
pH (S.U.)												
Maximum	6.2	6.3	6.0	6.0	6.12	6.0	6.15	6.46	5.9	6.1	6.0	6.14
Total Manganese												
(mg/L)												
Instantaneous												
Maximum		< 0.0040			0.0045			0.0040			0.0096	
cis-1,2-												
Dichloroethylene												
(mg/L)	0.004	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.004
Average Monthly	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
cis-1,2-												
Dichloroethylene												
(mg/L) Instantaneous	<	<	<	<		<	<	<	<	<	<	<
Maximum	0.00025	0.00025	0.00025	0.00025	0.00037	0.00025	0.00025	0.00025	0.00025	0.00025	0.00025	0.00025
Trichloroethylene	0.00023	0.00025	0.00025	0.00023	0.00007	0.00025	0.00023	0.00023	0.00023	0.00023	0.00025	0.00023
(mg/L)												
Average Monthly	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
Trichloroethylene												
(mg/L)												
Instantaneous												
Maximum	< 0.012	< 0.012	< 0.012	< 0.012	< 0.012	< 0.012	< 0.012	< 0.012	< 0.012	< 0.012	< 0.012	< 0.012

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

		Effluent Limitations										
Parameter	Mass Units	; (lbs/day) ⁽¹⁾		Concentrat	Minimum ⁽²⁾	Required						
Faiameter	Average Monthly	Average Weekly	Average Monthly	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type				
Flow (MGD)	Report	Report Daily Max	XXX	xxx	XXX	XXX	2/month	Measured				
pH (S.U.)	XXX	XXX	6.0 Inst Min	XXX	XXX	9.0	2/month	Grab				
Total Manganese	XXX	XXX	XXX	XXX	XXX	Report	1/quarter	Grab				
cis-1,2-Dichloroethylene	xxx	xxx	Report	xxx	xxx	Report	2/month	Grab				
Trichloroethylene	XXX	xxx	XXX	0.005	XXX	0.012	2/month	Grab				

Compliance Sampling Location: Outfall 001, prior to mixing with any other waters.

Flow, Total Manganese, and cis-1,2-Dichloroethylene are monitor only based on Chapter 92a.61. The limits for pH are technology-based on Chapter 95.2. The limits for Trichloroethylene (TCE) are water quality-based on the US EPA MCL for drinking water.

Attachment 1

Toxics Management Spreadsheet Version 1.2, February 2021

Discharge Information

nstructions Dis	charge Stream	
acility: <mark>Cook</mark>	Vandergrift	NPDES Permit No.: PA0253006 Outfall No.: 001
Evaluation Type:	Major Sewage / Industrial Waste	Wastewater Description: Groundwater Cleanup

			Discharge	Characteris	tics						
Design Flow	Hardness (mg/l)*	pH (SU)*	F	Partial Mix Factors (PMFs) Complete Mix T							
(MGD)* Hardness (m	Haluliess (lligh)	рн (30)	AFC	CFC	THH	CRL	Q ₇₋₁₀	Q _h			
0.036	100	6.4				-					

					0 if let	t blank	0.5 if le	eft blank	0	if left blan	k	1 if left blank	
	Discharge Pollutant	Units	Ma	x Discharge Conc	Trib Conc	Stream Conc	Daily CV	Hourly CV	Strea m CV	Fate Coeff	FOS	Criteri a Mod	Chem Transl
	Total Dissolved Solids (PWS)	mg/L											
12	Chloride (PWS)	mg/L											
Group 1	Bromide	mg/L											
15	Sulfate (PWS)	mg/L		-									
[Fluoride (PWS)	mg/L		-			-						
	Total Aluminum	µg/L		-			-						
l F	Total Antimony	µg/L											
	Total Arsenic	µg/L											
	Total Barium	µg/L						T					
	Total Beryllium	µg/L											
	Total Boron	µg/L											
1 1	Total Cadmium	µg/L		-									
	Total Chromium (III)	µg/L		-									
	Hexavalent Chromium	µg/L		- -						1			
	Total Cobalt	µg/L		- 2						1			
	Total Copper	µg/L		24 2						1	-		
	Free Cyanide	µg/L					-	-	-				
	Total Cyanide	µg/L		-			-	-	-				
181	Dissolved Iron	µg/L	7				-						
	Total Iron	µg/L		-			-						
	Total Lead	µg/L											
	Total Manganese	µg/L		9.6		0	-		-				1
	Total Mercury	µg/L		0.0			-						
	Total Nickel	µg/L		-				-	-				
	Total Phenols (Phenolics) (PWS)	µg/L	-	2				-	-		-		
	Total Selenium	μg/L		2			-	-	-				
	Total Silver	µg/L	-	-			-	-					
	Total Thallium	μg/L		-			-	-		1			
	Total Zinc	µg/L		-			-	-					
	Total Molybdenum	µg/L µg/L		-			-	-	-				
\rightarrow	Acrolein	µg/L µg/L	<	-			-	-					
I H	Acrylamide	µg/L µg/L	<	-			-						
	Acrylonitrile	µg/L µg/L	\ <	-			-					-	
	Benzene		<				-						
I H		µg/L		-			-	-	-				
	Bromoform	µg/L	<	-			-						
1 1	Carbon Tetrachloride	µg/L	<				-		2				

1	Chlorobenzene	µg/L								-	
	Chlorodibromomethane	µg/L µg/L	<					-			
	Chloroethane	µg/L µg/L	<								
			< <					-			
	2-Chloroethyl Vinyl Ether	µg/L						-	 		
	Chloroform	µg/L	<					-	 		
	Dichlorobromomethane	µg/L	<								
	1,1-Dichloroethane	µg/L	<								
	1,2-Dichloroethane	µg/L	<			-		-			
	1,1-Dichloroethylene	µg/L	<			-					
5	1,2-Dichloropropane	µg/L	<			-					
C255	1,3-Dichloropropylene	µg/L	<								
	1,4-Dioxane	µg/L	<								
	Ethylbenzene	µg/L	<								
	Methyl Bromide	µg/L	<		 	_					
	Methyl Chloride	µg/L	<			_					
	Methylene Chloride	µg/L	<			_					
	1,1,2,2-Tetrachloroethane	µg/L	<								
	Tetrachloroethylene	µg/L	<					_			
	Toluene	µg/L	<								
	1,2-trans-Dichloroethylene	µg/L	<								
	1,1,1-Trichloroethane	µg/L	<								
	1,1,2-Trichloroethane	µg/L	<								
	Trichloroethylene	µg/L	<	12	0						
	Vinyl Chloride	µg/L	<								
	2-Chlorophenol	µg/L	<								
	2,4-Dichlorophenol	µg/L	<								
	2,4-Dimethylphenol	µg/L	<								
	4,6-Dinitro-o-Cresol	µg/L	<								
4	2,4-Dinitrophenol	µg/L	<								
Group	2-Nitrophenol	µg/L	<								
5	4-Nitrophenol	µg/L	<								
873.	p-Chloro-m-Cresol	µg/L	<								
	Pentachlorophenol	µg/L	<								
	Phenol	µg/L	<								
	2,4,6-Trichlorophenol	µg/L	<								
	Acenaphthene	µg/L	<								
	Acenaphthylene	µg/L	<								
	Anthracene	µg/L	<								
	Benzidine	µg/L	<								
	Benzo(a)Anthracene	µg/L	<								
	Benzo(a)Pyrene	µg/L	<								
	3,4-Benzofluoranthene	µg/L	<					-			
	Benzo(ghi)Perylene	µg/L	<								
	Benzo(k)Fluoranthene	µg/L	<				1	-			
-	Bis(2-Chloroethoxy)Methane	µg/L	<					-			
	Bis(2-Chloroethyl)Ether	µg/L	<					-			
	Bis(2-Chloroisopropyl)Ether	µg/L	<					-			
	Bis(2-Ethylhexyl)Phthalate	µg/L	<	-							
	4-Bromophenyl Phenyl Ether	µg/L	<	-							
	Butyl Benzyl Phthalate	µg/L	<	-				-			
	2-Chloronaphthalene	µg/L	<					-			
	4-Chlorophenyl Phenyl Ether	µg/L	<					-			
1		µg/L	<								
	Dibenzo(a,h)Anthrancene	µg/L	<								
	1.2-Dichlorobenzene	µg/L µg/L	<								
	1,3-Dichlorobenzene	µg/L µg/L	<								
1940	1,4-Dichlorobenzene	µg/L µg/L	< <					-			
p 5	3,3-Dichlorobenzidine	µg/L µg/L	< <					-			
_	Diethyl Phthalate	µg/L µg/L	< <					-		-	
ō	-	177.6	< <					-			
czał	Dimethyl Phthalate Di-n-Butyl Phthalate	μg/L μg/L	< <					-		-	
	2,4-Dinitrotoluene		< <					-			
	2,4-Dinitrotoluene	µg/L	< <					-			
I I	2,0 Dimitiotoidene	µg/L									

1	Dia Oakd Dhihalata	1.001			-				1		
	Di-n-Octyl Phthalate	µg/L	v v						-		
	1,2-Diphenylhydrazine	µg/L									
	Fluoranthene	µg/L	<								
	Fluorene	µg/L	<								
	Hexachlorobenzene	µg/L	<								
	Hexachlorobutadiene	µg/L	<								
	Hexachlorocyclopentadiene	µg/L	<								
	Hexachloroethane	µg/L	<								
	Indeno(1,2,3-cd)Pyrene	µg/L	<								
	Isophorone	µg/L	<								
	Naphthalene	µg/L	<								
	Nitrobenzene	µg/L	۷								
	n-Nitrosodimethylamine	µg/L	<								
	n-Nitrosodi-n-Propylamine	µg/L	<								
	n-Nitrosodiphenylamine	µg/L	<								
	Phenanthrene	µg/L	<								
	Pyrene	µg/L	<								
	1,2,4-Trichlorobenzene	µg/L	<					-			
	Aldrin	µg/L	<					-			
	alpha-BHC	µg/L	<								
	beta-BHC	µg/L	<pre>/</pre>								
	gamma-BHC	µg/L µg/L	/								
	delta BHC	µg/L µg/L	/ /								
	Chlordane		/ V								
		µg/L	v v								
	4,4-DDT	µg/L				-				 -	
	4,4-DDE	µg/L	<	-							
	4,4-DDD	µg/L	<		 			-		 	
	Dieldrin	µg/L	<								
	alpha-Endosulfan	µg/L	۷								
10	beta-Endosulfan	µg/L	<				1				
p 6	Endosulfan Sulfate	µg/L	<								
	Endrin	µg/L	<								
ษ	Endrin Aldehyde	µg/L	<								
0.2.6	Heptachlor	µg/L	<								
	Heptachlor Epoxide	µg/L	۷								
	PCB-1016	µg/L	<				1				
	PCB-1221	µg/L	<								
	PCB-1232	µg/L	<								
	PCB-1242	µg/L	<								
	PCB-1248	µg/L	<								
	PCB-1254	µg/L	<								
	PCB-1260	µg/L	<								
	PCBs, Total	µg/L	<								
	- 1	μg/L	' V					-			
	2,3,7,8-TCDD	ng/L	/								
_	Gross Alpha	pCi/L									
	Total Beta	pCi/L pCi/L	<								
0 7	Radium 226/228	pCi/L pCi/L	v v					-			
-		A CHARGE AND A COMPANY									
5	Total Strontium	µg/L	۷ .								
87	Total Uranium	µg/L	۷								
	Osmotic Pressure	mOs/kg								 	
										1	
										1	

Stream / Surface Water Information

Toxics Management Spreadsheet Version 1.2, February 2021

Cook Vandergrift, NPDES Permit No. PA0253006, Outfall 001

Instructions Discharge Stream

Receiving Surface Water Name: Kiskiminetas River

Location	Stream Code*	RMI*	Elevation (ft)*	DA (mi ²)*	Slope (ft/ft)	PWS Withdrawal (MGD)	Apply Fish Criteria*
Point of Discharge	042816	7.86	820	1560			Yes
End of Reach 1	042816	5.52	800	1570			Yes

Statewide Criteria
 Great Lakes Criteria
 ORSANCO Criteria

Q 7-10

Location	RMI	LFY	Flow	(cfs)	W/D	Width	Depth	Velocit	Time	Tributa	iry	Stream	n	Analys	sis
Location	rxivii	(cfs/mi ²)*	Stream	Tributary	Ratio	(ft)	(ft)	y (fps)	(days)	Hardness	pН	Hardness*	pH*	Hardness	pН
Point of Discharge	7.86	0.13							1			100	7		
End of Reach 1	5.52	0.13													

No. Reaches to Model:

1

Q,

Location	RMI	LFY	Flow	r (cfs)	W/D	Width	Depth	Velocit	Time	Tributa	агу	Stream	m	Analys	sis
Location	PCIVII	(cfs/mi ²)	Stream	Tributary	Ratio	(ft)	(ft)	y (fps)	(days)	Hardness	pН	Hardness	pН	Hardness	pН
Point of Discharge	7.86											·			
End of Reach 1	5.52														

Stream / Surface Water Information

3/18/2021

Page 4

NPDES Permit No. PA0253006

Toxics Management Spreadsheet Version 1.2, February 2021

DEPARTMENT OF ENVIRONMENTAL PROTECTION

Model Results	M	odel	Resu	Its
---------------	---	------	------	-----

Cook Vandergrift, NPDES Permit No. PA0253006, Outfall 001

Instruction	s Results	RETU	RN TO INPUTS		VE AS PDI	C C	PRINT		⊖ Inputs	⊖ Results	O Limits	
✓ Hydroc	lynamics											
Q 7-10												
RMI	Stream Flow (cfs)	PWS Withdrawal (cfs)	Net Stream Flow (cfs)	Discharge Flow (Slope (ft/ft)	Depth (ft	Width (ft)	W/D Ratio	Velocity (fps)	Time	Complete Mix Time (min)
7.86	202.80		202.80	0.05	56	0.002	1.156	239.354	207.092	0.733	0.195	1569.874
5.52	204.10		204.1									
-								15				
Qh								_			Haver	
RMI	Stream	PWS Withdrawal	Net Stream	Discharge		Slope (ft/ft)	Depth (ft	Width (ft)	W/D Ratio	Velocity	Time	Complete Mix Time
7.00	Flow (cfs)	(cfs)	Flow (cfs)	Flow (0.000	0.004	000.054	115.040	(fps)	(dave)	(min)
7.86 5.52	771.55 775.875		771.55 775.87	0.05	06	0.002	2.081	239.354	115.046	1.549	0.092	650.282
⊡ AF	Pollutants	CCT (min):	Stream	rib Conc F		NQC N	Hardness	(mg/l): 1	100	Analysis pH:	7.00	
		(1)(1)	CV			µg/L) (N/A	(µg/L)	N/A				
	otal Mangane richloroethyle		0					N/A 820,984				
CF	······	CCT (min):	720		.677		s Hardness		100	Analysis pH:	7.00	
	Pollutants	Conc	Stream II		2000 (A) 10 12		/Q Obj (µg/L) W	/LA (µg/L)		C	omments	
	otal Mangane	se O	0			N/A	N/A	N/A				
Т	richloroethyle	ne O	0		0	450	450 1	,110,191				
⊡ T H	н	CCT (min):	720	PMF: 0.	677	Analysi	s Hardness	(mg/l):	A/A	Analysis pH:	N/A	
	Pollutante	Stream		rib Conc F	ate \	WQC W	/Q Obj	// A (ua/l.)		0	ommonte	

Model Results

3/18/2021

Page 5

NPDES Permit Fact Sheet Cook Vandergrift

i oliutanta		CV	(µg/L)	Coef	(µg/L)	(µg/L)	**L~ (HA)F)	Commenta
Total Manganese	0	0		0	1,000	1,000	2,467,090	
Trichloroethylene	0	0		0	N/A	N/A	N/A	
CRL	CCT (min): ##	####	PMF:	1	An	alysis Hardne	ess (mg/l):	N/A Analysis pH: N/A
Pollutants	Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Manganese	0	0		0	N/A	N/A	N/A	
rotarmanganooo		10000						

☑ Recommended WQBELs & Monitoring Requirements

No. Samples/Month: 4

	Mass	Limits	<u></u>	Concentra	tion Limits				
Pollutants	AML (lbs/day)	MDL (Ibs/day)	AML	MDL	IMAX	Units	Governing WQBEL	WQBEL Basis	Comments

Other Pollutants without Limits or Monitoring

The following pollutants do not require effluent limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharge concentration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QL).

Pollutants	Governing WQBEL	Units	Comments
Total Manganese	2,467,090	µg/L	Discharge Conc ≤ 10% WQBEL
Trichloroethylene	34,637	µg/L	Discharge Conc ≤ 25% WQBEL

3/18/2021