

Southwest Regional Office CLEAN WATER PROGRAM

 Application Type
 Renewal

 Facility Type
 Industrial

 Major / Minor
 Minor

NPDES PERMIT FACT SHEET INDIVIDUAL INDUSTRIAL WASTE (IW) AND IW STORMWATER

 Application No.
 PA0253120

 APS ID
 1080332

 Authorization ID
 1425940

Applicant and Facility Information

Applicant Name	Tri County Joint Municipal Authority	Facility Name	Tri County Joint Municipal Authority Water Treatment Plant
Applicant Address	PO Box 758	Facility Address	26 Monongahela Avenue
	Fredericktown, PA 15333-0758	-	Fredericktown, PA 15333
Applicant Contact	Keith Marucci	Facility Contact	Keith Marucci
Applicant Phone	(724) 377-2211	Facility Phone	(724) 377-2211
Client ID	75368	Site ID	246567
SIC Code	4941	Municipality	East Bethlehem Township
SIC Description	Trans. & Utilities - Water Supply	County	Washington
Date Application Recei	ived January 31, 2023	EPA Waived?	Yes
Date Application Accept	ted February 23, 2023	If No, Reason	
Purpose of Application	Renewal of NPDES Permit PA	0253120.	

Summary of Review

The Department received a timely renewal NPDES permit application from Tri County Joint Municipal Authority (TCJMA) for the Water Treatment Plant located in East Bethlehem Township of Washington County on January 31, 2023. The facility is a potable public water treatment plant (WTP) with an SIC Code of 4941. The facility's existing permitted discharges consist of supernatant from the sludge thickener holding tank, which is discharged back to the Monongahela River. The sludge thickener holding tank processes wastewaters from treated filter backwash and blowdown sludge from the clarifier and settling basin.

The TCJMA Facility purifies water withdrawn from the Monongahela River (via gravity flow to the intake wetwell) for public consumption. The raw water is treated with the following chemicals: Poly Aluminum Chloride, Potassium Permanganate, Coagulant Aid, and Chlorine prior to being routed to the solids contact clarifier. The water is then routed to the sedimentation basin and then to the four (4) dual media sand-anthracite filters via an overflow weir. Finished water then flows to the clearwell where the water is further treated with the following chemicals are added as needed: Chlorine, Fluoride and Caustic Soda. From the clearwell, finished water is pumped into the TCJMA distribution system.

Blowdown sludge from the solids contact clarifier, sedimentation basin flow along with filter backwash water all gravity flow to the wastewater pump station to be pumped to the sludge thickener. Supernatant from the sludge thickener then is discharged at Outfall 001 back into the Monongahela River.

Residual waste disposal must meet solid waste regulations.

Part C language in the draft permit provides controls on floating solids, chemical additives, residual solids, Total Residual Chlorine and Sedimentation Basin Cleaning.

Approve	Deny	Signatures	Date
х		Curtis Holes, P.E. / Environmental Engineer	February 24, 2023
х		Michael E. Fifth, P.E. / Environmental Engineer Manager	March 3, 2023

Summary of Review

The facility does not have any open violations with the Clean Water Program.

It is recommended that a draft permit be published for public comment in response to this application.

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

ischarge, Recei	ving Wate	rs and Water Supply Info	ormation	
Outfall No. 0	01		Design Flow (MGD)	0.0346
Latitude 3	9º 59' 26"		Longitude	-79º 59' 36"
Quad Name	Carmicha	els	Quad Code	1906
Wastewater De	scription:	Supernatant from treated settling basin.	d filter backwash and blowdown s	udge from the clarifier and
Receiving Wate	rs <u>Mono</u>	ongahela River (WWF)	Stream Code	37185
NHD Com ID	9941	2970	RMI	65.26
Drainage Area	4,950)	Yield (cfs/mi ²)	0.107
Q7-10 Flow (cfs)	530		Q ₇₋₁₀ Basis	US Army Cop of Engineers
Elevation (ft)	765		Slope (ft/ft)	
Watershed No.	19-C		Chapter 93 Class.	WWF
Existing Use			Existing Use Qualifier	
Exceptions to U	se		Exceptions to Criteria	
Assessment Sta	atus	Attaining Use(s)		
Cause(s) of Imp	airment	PCB and Chlordane		
Source(s) of Im	pairment	Runoff through contamir	nated ground water and surface w	ater.
TMDL Status		Final	Name Monongahe	la River TMDL
Nearest Downs	ream Publ	ic Water Supply Intake	PAWAC – Brownsville (3 MGI)
PWS Waters	Monong	gahela River	Flow at Intake (cfs)	530
PWS RMI	57.54		Distance from Outfall (mi)	7.72

Changes Since Last Permit Issuance: None

Figure 1: Basin Delineation for Outfall 001

Compliance History				
Summary of DMRs:	All monitoring data shows that discharges have been below effluent limits.			
Summary of Inspections:	The last inspection conducted by the Department was on September 17, 2021 by Howard Dunn and no violations were noted.			

Other Comments: None

Compliance History

DMR Data for Outfall 001 (from January 1, 2022 to December 31, 2022)

Parameter	Limit	DEC-22	NOV-22	OCT-22	SEP-22	AUG-22	JUL-22	JUN-22	MAY-22	APR-22	MAR-22	FEB-22
Flow (MGD)												
Average Monthly	Report	0.048	0.049	0.036	0.035	0.033	0.029	0.034	0.039	0.0348	0.033	0.042
Flow (MGD)												
Daily Maximum	Report	0.249	0.181	0.127	0.152	0.176	0.113	0.119	0.121	0.151	0.218	0.100
pH (S.U.)												
Daily Minimum	6.0	7.51	7.31	7.38	7.35	7.11	7.24	7.10	7.39	7.39	7.38	7.14
pH (S.U.)												
Daily Maximum	9.0	7.55	7.49	7.41	7.39	7.13	7.27	7.28	7.56	7.49	7.41	7.15
TRC (mg/L)												
Average Monthly	0.5	0.10	0.10	0.10	0.10	0.10	0.10	0.15	0.10	0.10	0.05	0.15
TRC (mg/L)												
Daily Maximum	1.0	0.10	0.10	0.11	0.10	0.10	0.10	0.19	0.10	0.10	0.11	0.20
TSS (mg/L)												
Average Monthly	30.0	3.0	5.5	3.0	3.0	6.0	3.0	6.0	3.0	3.0	3.0	3.0
TSS (mg/L)												
Daily Maximum	60.0	3.0	8.0	3.0	3.0	8.0	3.0	8.0	3.0	3.0	3.0	3.0
I otal Aluminum												
(mg/L)	4.0	0.00	0.40	0.00	0.40	0.00	0.00	0.00	0.47	0.40	0.04	0.40
	4.0	0.22	0.42	0.23	0.18	0.39	0.28	0.29	0.17	0.10	0.21	0.10
(mg/L)		0.24	0.74	0.21	0.10	0.50	0.44	0.47	0.24	0.10	0.25	0.10
	0.0	0.34	0.74	0.31	0.19	0.50	0.41	0.47	0.24	0.10	0.25	0.10
Average Monthly	2.0	0.04	0.02	0.06	0.03	0.05	0.02	0.03	0.02	0.02	0.07	0.02
Total Iron (mg/L)	2.0	0.04	0.02	0.00	0.03	0.05	0.02	0.03	0.02	0.02	0.07	0.02
Daily Maximum	40	0.06	0.07	0.07	0.04	0.06	0.04	0.06	0.09	0.02	0.06	0.02
Total Manganese	-110	0.00	0.07	0.07	0.01	0.00	0.01	0.00	0.00	0.02	0.00	0.02
(ma/L)												
Average Monthly	1.0	0.05	0.12	0.09	0.07	0.11	0.10	0.10	0.04	0.06	0.12	0.03
Total Manganese												
(mg/L)												
Daily Maximum	2.0	0.08	0.20	0.11	0.07	0.14	0.12	0.13	0.05	0.09	0.18	0.03

Development of Effluent Limitations

Outfall No.	001	Design Flow (MGD)	0.0346
Latitude	39º 59' 26"	Longitude	-79º 59' 36"
		Supernatant from treated filter backwash and blowdown sl	udge from the clarifier and settling

Wastewater Description: basin.

Technology-Based Limitations

The TCJMA WTP is not subject to Federal Effluent Limitation Guidelines (ELGs) as the SIC code is not listed under 40 CFR parts 405 through 471.

Regulatory Effluent Standards and Monitoring Requirements

The pH effluent range for all Industrial waste process and non-process discharges pursuant of 25 Pa. Code § 92a.48(a)(2) and 25 Pa. Code § 95.2 is indicated in Table 1 below.

Flow monitoring is required pursuant to 25 Pa. Code § 92a.61(d)(1) and 25 Pa. Code § 95.2(1) as indicated in Table 1 below.

Pursuant to 25 Pa. Code § 95.2(4) effluent standards for industrial wastes may not contain more than 7 mg/l of dissolved iron as indicated in Table 1 below.

Pursuant to 25 Pa. Code § 92a.48(b) the imposition of technology-based TRC limits for facilities that use chlorination and that are not already subject to TRC limits based on applicable federal ELG's or a facility specific BPJ evaluation as indicated in Table 1 below.

Table 1. Regulatory Effluent Standards

Parameter	Monthly Avg.	Daily Max	IMAX
Flow (MGD)	Monitor	Monitor	
Iron, Dissolved			7.0 mg/l
pH (S.U.)	6-9 at all times		
TRC	0.5 mg/l		1.6 mg/l

Total Dissolved Solids

Integral to the implementation of 25 Pa. Code § 95.10 is the principle that existing, authorized mass loadings of TDS are exempt from any treatment requirements under these provisions. Existing mass loadings of TDS up to and including the maximum daily discharge loading for any existing discharge, provided that the loading was authorized prior to August 21, 2010 are exempt. Discharge loadings of TDS authorized by the Department are typically exempt from the treatment requirements of Chapter 95.10 until the net TDS loading is increased, an existing discharge proposes a hydraulic expansion or a change in the waste stream. If there are existing mass or production-based TDS effluent limits, then these are used as the basis for the existing mass loading. The facility is not new or expanding waste loading of TDS, therefore, the facility is exempt from 25 Pa. Code § 95.10 treatment requirements.

Best Practicable Control Technology Currently Achievable (BPT)

The Department's reference document *Technology-Based Control Requirements for Water Treatment Plant Wastes* (DEP-ID 362-2183-003) established BPT for discharges of WTPs wastewater, which are illustrated in Table 2 below.

Table 2. BPT Limits for WTP Filter Backwash Wastewater

Parameter	Monthly Avg. (mg/l)	Daily Max (mg/l)
Total Suspended solids	30.0	60.0
Iron (total)	2.0	4.0
Aluminum (total)	4.0	8.0
Manganese (total)	1.0	2.0
Flow	Monitor	
pH (S.U.)	6-9 at a	III times
Total Residual Chlorine	0.5	1.0

Water Quality-Based Limitations

Toxics Management Analysis

The Department's Toxics Management Spreadsheet (TMS) was utilized to facilitate calculations necessary for completing a reasonable potential analysis and determine Water Quality-Based Effluent Limitations (WQBELs) for discharges containing toxic pollutant concentrations. TMS combines the functionality of two (2) of the Department's analysis tools, Toxics Screening Analysis Spreadsheet and PENTOXSD water quality model.

DEP's procedures for evaluating reasonable potential are as follows:

- 1. For IW discharges, the design flow to use in modeling is the average flow during production or operation and may be taken form the permit application.
- 2. Perform a Toxics Screening Analysis to identify toxic pollutants of concern. All toxic pollutants, as reported in the permit application or on DMRs, are modeled by the TMS to determine the parameters of concern. [This includes pollutants reported as "Not Detectable" or as "<MDL" where the method detection limit for the analytical method used by the applicant is greater than the most stringent water quality criterion].
 - Establish limits in the draft permit where the maximum reported concentration equals or exceeds 50% of the WQBEL. Use the average monthly and maximum daily limits for the permit as recommended by TMS. Establish an IMAX limit at 2.5 times the average monthly limit.
 - For non-conservative pollutants, establish monitoring requirements where the maximum reported concentration is between 25% 50% of the WQBEL.
 - For conservative pollutants, establish monitoring requirements where the maximum reported concentration is between 10% 50% of the WQBEL.

Discharges from Outfall 001 are evaluated based on concentrations reported on the application and contained in the DMRs; data from those sources are used as inputs into the TMS. A summary of TMS Inputs is contained in Table 3 below.

Table 3. TMS Inputs	
Parameter	Value
Discharge Inputs	
Facility	TCJMA WTP
Evaluation Type	Industrial
NPDES Permit No.	PA0253120
Wastewater Description	Filter Backwash
Outfall ID	001
Design Flow (MGD)	0.0346
Hardness (^{mg/L})	88
pH (S.U.)	7
Partial Mix Factors	Unknown – Calculated by TMS
Complete Mix Times	
Q ₇₋₁₀ (min)	
Q _h (min)	
Stream Inputs	
Receiving Surface Water	Monongahela River
Number of Reaches to Model	1
Stream Code	037185
RMI	65.2
Elevation (ft)	765/764*
Drainage Area (mi ²)	4,950
Slope (ft/ft)	
PWS Withdrawal (MGD)	3
Apply Fish Criteria	Yes
Low Flow Yield (cfs/mi ²)	
Flows	
Stream (cfs)	530
Tributary (cfs)	N/A
Width (ft)	
Stream Hardness (mg/L)	100
Stream pH (S.U.)	7.0

* Denotes discharge location/downstream location values.

NPDES Permit Fact Sheet Tri County Joint Municipal Authority

Based on the recommendations of the TMS, one WQBEL is recommended at Outfall 001 for monitor and report of total aluminum. Analysis Report from the TMS run is included in Attachment A.

Total Maximum Daily Load (TMDL)

Wastewater discharges from TCJMA WTP are located within the Monongahela River Watersheds for which the Department has developed a TMDL. The TMDL was finalized on March 1, 1999 and establishes waste load allocations for the discharge of PCBs and Chlordane within the Monongahela River Watersheds. Section 303(d) of the Clean Water Act and the U.S. Environmental Protection Agency's Water Quality Planning and Management Regulations (codified at Title 40 of the *Code of Federal Regulations* Part 130) require states to develop a TMDL for impaired water bodies. A TMDL establishes the amount of a pollutant that a water body can assimilate without exceeding the water quality criteria for that pollutant. TMDLs provide the scientific basis for a state to establish water quality-based controls to reduce pollution from both point and non-point sources to restore and maintain the quality of the state's water resources (USEPA 1991a). The reduction needed to meet the minimum water quality standards is then divided between each known point and non-point pollutant source in the form of a watershed allocation. TMDLs prescribe allocations that minimally achieve water quality criteria (i.e., 100 percent use of a stream's assimilative capacity).

The TMDLs for the Monongahela River are summarized below in Table 4.

Pollutant	TMDL	WLA	LA	MOS			
PCB	0.0003033 lbs/day	0	0.0002730 lbs/day	0.00003033 lbs/day			
Chlordane	0.0037912 lbs/day	0	0.0034121 lbs/day	0.00037912 lbs/day			

Table 4: Monongahela River TMDL Summary

TCJMA does not generate or discharge wastewaters containing PCBs or Chlordane; accordingly, the Monongahela River TMDLs are not imposed on TCJMA.

WQM 7.0 Model

In general, WQM 7.0 Model is run if the maximum $BOD_5/CBOD_5$ concentrations exceeds 30/25 mg/L respectively in the permit application or the DMRs. The permit application reports $BOD_5/CBOD_5$ concentrations of <3/<10 mg/L respectively, therefore, WQM 7.0 Model is not required to be run.

Total Residual Chlorine

To determine if WQBELs are required for discharges containing total residual chlorine (TRC), a discharge evaluation is performed using a DEP program called TRC_CALC created with Microsoft Excel for Windows. TRC_CALC calculates TRC Waste Load Allocations (WLAs) through the application of a mass balance model which considers TRC losses due to stream and discharge chlorine demands and first-order chlorine decay. Input values for the program include flow rates and discharge chlorine demands for the receiving stream, the number of samples taken per month, coefficients of TRC variability, partial mix factors, and an optional factor of safety. The mass balance model calculates WLAs for acute and chronic criteria that are then converted to long term averages using calculated multipliers. The multipliers are functions of the number of samples taken per month and the TRC variability coefficients (normally kept at default values unless site specific information is available). The most stringent limitation between the acute and chronic long-term averages is converted to an average monthly limit for comparison to the BAT average monthly limit of 0.5 mg/l from 25 Pa. Code § 92a.48(b)(2). The more stringent of these average monthly TRC limitations is then proposed. The results of the modeling, included in Attachment B, indicate that no WQBELs are required for TRC.

Anti-Backsliding

Section 402(o) of the Clean Water Act (CWA), enacted in the Water Quality Act of 1987, establishes anti-backsliding rules governing two situations. The first situation occurs when a permittee seeks to revise a Technology-Based effluent limitation based on BPJ to reflect a subsequently promulgated effluent guideline which is less stringent. The second situation addressed by Section 402(o) arises when a permittee seeks relaxation of an effluent limitation which is based upon a State treatment standard of water quality standard.

Previous limits can be used pursuant to EPA's anti-backsliding regulation 40 CFR 122.44 (I) Reissued permits. (1) Except as provided in paragraph (I)(2) of this section when a permit is renewed or reissued. Interim effluent limitations, standards or conditions must be at least as stringent as the final effluent limitations, standards, or conditions in the previous permit

NPDES Permit Fact Sheet Tri County Joint Municipal Authority

(unless the circumstances on which the previous permit was based have materially and substantially changed since the time the permit was issued and would constitute cause for permit modification or revocation and reissuance under §122.62). (2) In the case of effluent limitations established on the basis of Section 402(a)(1)(B) of the CWA, a permit may not be renewed, reissued, or modified on the basis of effluent guidelines promulgated under section 304(b) subsequent to the original issuance of such permit, to contain effluent limitations which are less stringent than the comparable effluent limitations in the previous permit.

The facility is not seeking to revise the previously permitted effluent limits.

Effluent Limitations and Monitoring Requirements for Outfall 001

Effluent limits applicable at Outfall 001 are the more stringent of TBELs, WQBELs, regulatory effluent standards, and monitoring requirements as summarized in Table 5. The applicable limits and monitoring requirements provided below are based on those in Tables 1 and 2 of this Fact Sheet.

	Mass (pounds)		Cond	entration (m		
Parameter	Average Monthly	Daily Maximum	Average Monthly	Daily Maximum	Instant Maximum	Basis
Flow (MGD)	Report	Report	—	—		25 Pa. Code § 92a.61(b)
Total Residual Chlorine	—	—	0.5	1.0	1.6	25 Pa. Code § 92a.48(b)
Total Suspended Solids	—	—	30.0	60.0	—	40 CFR § 125.3
Iron (total)		—	2.0	4.0	—	40 CFR § 125.3
Aluminum (total)	_	—	4.0	8.0	—	40 CFR § 125.3
Manganese (total)		—	1.0	2.0	—	40 CFR § 125.3
рН (S.U.)		Within	25 Pa. Code § 92a.48(a)(2) & 25 Pa. Code § 95.2			

Table 5. Effluent limits and monitoring requirements for Outfall 001

Monitoring Frequency for Outfall 001

Monitoring requirements are based on the previous permits monitoring requirements for TCJMA WTF and displayed in Table 6 below.

Table 6. Monitoring Requirements for Outfall 001

Parameter	Sample Type	Minimum Sample Frequency
Flow (MGD)	Meter	2/Month
TRC	Grab	2/Month
TSS	Grab	2/Month
Iron (total)	Grab	2/Month
Aluminum (total)	Grab	2/Month
Manganese (total)	Grab	2/Month
pH (S.U.)	Grab	2/Month

	Tools and References Used to Develop Permit
	WQM for Windows Model (see Attachment)
\square	Toxics Management Spreadsheet (see Attachment C)
\boxtimes	TRC Model Spreadsheet (see Attachment D)
	Temperature Model Spreadsheet (see Attachment)
	Water Quality Toxics Management Strategy, 361-0100-003, 4/06.
	Technical Guidance for the Development and Specification of Effluent Limitations, 362-0400-001, 10/97.
	Policy for Permitting Surface Water Diversions, 362-2000-003, 3/98.
	Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 362-2000-008, 11/96.
	Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97.
	Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 362-2183-004, 12/97.
	Pennsylvania CSO Policy, 385-2000-011, 9/08.
	Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.
	Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 391-2000-002, 4/97.
	Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97.
	Implementation Guidance Design Conditions, 391-2000-006, 9/97.
	Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004.
	Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 391-2000-008, 10/1997.
	Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 391-2000-010, 3/99.
	Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 391-2000-011, 5/2004.
	Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97.
	Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 391-2000-014, 4/2008.
	Implementation Guidance Total Residual Chlorine (TRC) Regulation, 391-2000-015, 11/1994.
	Implementation Guidance for Temperature Criteria, 391-2000-017, 4/09.
	Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/97.
	Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97.
	Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 391-2000-021, 3/99.
	Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/1999.
	Design Stream Flows, 391-2000-023, 9/98.
	Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 391-2000-024, 10/98.
	Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97.
	Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.
	SOP:
	Other:

Attachment A – Facility Location Map

Attachment B – Treatment Pant Process Flow Schematic

Attachment C – TMS Output for Outfall 001

Attachment D – TRC Model

Attachment A – Facility Location Map

NPDES Permit Fact Sheet Tri County Joint Municipal Authority

Entech Engineering - Printed: Sep. 5, 2017 H:\0004625.03\04-CAD\Exhibits\EXH-1A.dwg

Attachment B – Treatment Pant Process Flow Schematic

<u>Tri-County Joint Municipal Authority (TCJMA) Water</u> <u>Treatment Plant Process Flow Schematic</u>

Attachment C – TMS Output for Outfall 001

Pennsylvania DEPARTMENT OF ENVIRONMENTAL PROTECTION										
Model Results TCIMA WTP, NPDES Permit No. PA0253120, Outfall 001										
Instructions Results	RETURN	TO INPU	пз)	SAVE AS	PDF	PRIN	т —) 🖲 А	VI 🔿 Inputs	O Results	O Limits
Hydrodynamics										
Wasteload Allocations										
AFC CC	T (min):	15	PMF:	0.047	Ana	lysis Hardne	ss (mg/l):	99.974	Analysis pH:	7.00
Pollutants	Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)		с	omments
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A			
Chloride (PWS)	0	0		0	N/A	N/A	N/A			
Sulfate (PWS)	0	0		0	N/A	N/A	N/A			
Fluoride (PWS)	0	0		0	N/A	N/A	N/A			
Total Aluminum	0	0		0	750	750	352,917			
Total Antimony	0	0		0	1,100	1,100	517,612			
Total Arsenic	0	0		0	340	340	159,989		Chem Trar	nslator of 1 applied
Total Barium	0	0		0	21,000	21,000	9,881,677			
Total Boron	0	0		0	8,100	8,100	3,811,504			
Total Cadmium	0	0		0	2.013	2.13	1,004		Chern Transl	ator of 0.944 applied
Total Chromium (III)	0	0		0	569.644	1,803	848,258		Chern Transl	ator of 0.316 applied
Hexavalent Chromium	0	0		0	16	16.3	7,667		Chern Transl	ator of 0.982 applied
Total Cobalt	0	0		0	95	95.0	44,703			
Total Copper	0	0		0	13.436	14.0	6,586		Chem Trans	lator of 0.96 applied
Dissolved Iron	0	0		0	N/A	N/A	N/A			
Total Iron	0	0		0	N/A	N/A	N/A			
Total Lead	0	0		0	64.563	81.6	38,406		Chern Transl	ator of 0.791 applied
Total Manganese	0	0		0	N/A	N/A	N/A			
Total Mercury	0	0		0	1.400	1.65	775		Chern Trans	lator of 0.85 applied
Total Nickel	0	0		0	468.135	469	220,725		Chem Transl	ator of 0.998 applied
Total Phenols (Phenolics) (PWS)	0	0		0	N/A	N/A	N/A			
Total Selenium	0	0		0	N/A	N/A	N/A		Chern Transl	ator of 0.922 applied
Total Silver	0	0		0	3.215	3.78	1,780		Chem Trans	lator of 0.85 applied
Total Thallium	0	0		0	65	65.0	30,586			
Total Zinc	0	0		0	117.155	120	56,368		Chem Transl	ator of 0.978 applied

Model Results

2/23/2023

NPDES Permit No. PA0253120

NPDES Permit Fact Sheet Tri County Joint Municipal Authority

CFC C	CT (min): 7	20	PMF:	0.329	Ana	alysis Hardne	ess (mg/l):	99.996 Analysis pH: 7.00
Pollutants	Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Fluoride (PWS)	0	0		0	N/A	N/A	N/A	
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Antimony	0	0		0	220	220	715,920	
Total Arsenic	0	0		0	150	150	488,127	Chem Translator of 1 applied
Total Barium	0	0		0	4,100	4,100	13,342,137	
Total Boron	0	0		0	1,600	1,600	5,206,688	
Total Cadmium	0	0		0	0.246	0.27	881	Chem Translator of 0.909 applied
Total Chromium (III)	0	0		0	74.112	86.2	280,436	Chem Translator of 0.86 applied
Hexavalent Chromium	0	0		0	10	10.4	33,827	Chem Translator of 0.962 applied
Total Cobalt	0	0		0	19	19.0	61,829	
Total Copper	0	0		0	8.955	9.33	30,357	Chem Translator of 0.96 applied
Dissolved Iron	0	0		0	N/A	N/A	N/A	
Total Iron	0	0		0	1,500	1,500	14,854,040	WQC = 30 day average; PMF = 1
Total Lead	0	0		0	2.517	3.18	10,353	Chem Translator of 0.791 applied
Total Manganese	0	0		0	N/A	N/A	N/A	
Total Mercury	0	0		0	0.770	0.91	2,948	Chem Translator of 0.85 applied
Total Nickel	0	0		0	52.005	52.2	169,743	Chem Translator of 0.997 applied
Total Phenols (Phenolics) (PWS)	0	0		0	N/A	N/A	N/A	
Total Selenium	0	0		0	4.600	4.99	16,236	Chem Translator of 0.922 applied
Total Silver	0	0		0	N/A	N/A	N/A	Chem Translator of 1 applied
Total Thallium	0	0		0	13	13.0	42,304	
Total Zinc	0	0		0	118.135	120	389,892	Chem Translator of 0.986 applied
⊡ тнн с о	CT (min): 7	20	PMF:	0.329	Ana	alysis Hardne	ess (mg/l):	N/A Analysis pH: N/A
Pollutants	Conc	Stream	Trib Conc	Fate	WQC	WQ Obj	WLA (ug/L)	Comments
	(und)	CV	(µg/L)	Coef	(µg/L)	(µg/L)		
Total Dissolved Solids (PWS)	0	0		0	500,000	500,000	N/A	
Chloride (PWS)	0	0		0	250,000	250,000	N/A	
Sulfate (PWS)	0	0		0	250,000	250,000	N/A	
Fluoride (PWS)	0	0		0	2,000	2,000	N/A	
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Antimony	0	0		0	5.6	5.6	18,223	
Total Arsenic	0	0		0	10	10.0	32,542	
Total Barium	0	0		0	2,400	2,400	7,810,031	
Total Boron	0	0		0	3,100	3,100	10,087,957	
Total Cadmium	0	0		0	N/A	N/A	N/A	
Total Chromium (III)	0	0		0	N/A	N/A	N/A	

Model Results

2/23/2023

NPDES Permit No. PA0253120

NPDES Permit Fact Sheet Tri County Joint Municipal Authority

Hexavalent Chromium	0	0		0	N/A	N/A	N/A	
Total Cobalt	0	0		0	N/A	N/A	N/A	
Total Copper	0	0		0	N/A	N/A	N/A	
Dissolved Iron	0	0		0	300	300	976,254	
Total Iron	0	0		0	N/A	N/A	N/A	
Total Lead	0	0		0	N/A	N/A	N/A	
Total Manganese	0	0		0	1,000	1,000	3,254,180	
Total Mercury	0	0		0	0.050	0.05	163	
Total Nickel	0	0		0	610	610	1,985,050	
Total Phenols (Phenolics) (PWS)	0	0		0	5	5.0	N/A	
Total Selenium	0	0		0	N/A	N/A	N/A	
Total Silver	0	0		0	N/A	N/A	N/A	
Total Thallium	0	0		0	0.24	0.24	781	
Total Zinc	0	0		0	N/A	N/A	N/A	
CRL CC	T (min): 7	20	PMF:	0.491	Ana	alysis Hardne	xss (mg/l):	N/A Analysis pH: N/A
		<u> </u>						
Ballytanta	Geee	Stream	Trib Conc	Fate	WQC	WQ Obj	100 0 (1000 1)	Community
Poliutants	(upl)	CV	(µg/L)	Coef	(µg/L)	(µg/L)	WEA (pg/E)	Comments
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Fluoride (PWS)	0	0		0	N/A	N/A	N/A	
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Antimony	0	0		0	N/A	N/A	N/A	
Total Arsenic	0	0		0	N/A	N/A	N/A	
Total Barium	0	0		0	N/A	N/A	N/A	
Total Boron	0	0		0	N/A	N/A	N/A	
Total Cadmium	0	0		0	N/A	N/A	N/A	
Total Chromium (III)	0	0		0	N/A	N/A	N/A	
Hexavalent Chromium	0	0		0	N/A	N/A	N/A	
Total Cobalt	0	0		0	N/A	N/A	N/A	
Total Copper	0	0		0	N/A	N/A	N/A	
Dissolved Iron	0	0		0	N/A	N/A	N/A	
Total Iron	0	0		0	N/A	N/A	N/A	
Total Lead	0	0		0	N/A	N/A	N/A	
Total Manganese	0	0		0	N/A	N/A	N/A	
Total Mercury	0	0		0	N/A	N/A	N/A	
Total Nickel	0	0		0	N/A	N/A	N/A	
Total Phenols (Phenolics) (PWS)	0	0		0	N/A	N/A	N/A	
Total Selenium	0	0		0	N/A	N/A	N/A	
Total Silver	0	0		0	N/A	N/A	N/A	
Total Thallium	0	0		0	N/A	N/A	N/A	
Total Zinc	0	0		0	N/A	N/A	N/A	
T STAT BUT D	- · ·			• •				

Model Results

2/23/2023

Recommended WQBELs & Monitoring Requirements

No. Samples/Month: 4

	Mass	Limits		Concentra	tion Limits				
Pollutants	AML (lbs/day)	MDL (lbs/day)	AML	MDL	IMAX	Units	Governing WQBEL	WQBEL Basis	Comments

Other Pollutants without Limits or Monitoring

The following pollutants do not require effluent limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharge concentration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <- Target QL).

Pollutants	Governing WQBEL	Units	Comments
Total Dissolved Solids (PWS)	N/A	N/A	PWS Not Applicable
Chloride (PWS)	N/A	N/A	PWS Not Applicable
Bromide	N/A	N/A	No WQS
Sulfate (PWS)	N/A	N/A	PWS Not Applicable
Fluoride (PWS)	N/A	N/A	Discharge Conc < TQL
Total Aluminum	226,206	µg/L	Discharge Conc ≤ 10% WQBEL
Total Antimony	N/A	N/A	Discharge Conc < TQL
Total Arsenic	32,542	µg/L	Discharge Conc ≤ 10% WQBEL
Total Barium	6,333,756	µg/L	Discharge Conc ≤ 10% WQBEL
Total Beryllium	N/A	N/A	No WQS
Total Boron	2,443,020	µg/L	Discharge Conc < TQL
Total Cadmium	643	µg/L	Discharge Conc < TQL
Total Chromium (III)	280,436	µg/L	Discharge Conc < TQL
Hexavalent Chromium	4,914	µg/L	Discharge Conc < TQL
Total Cobalt	28,653	µg/L	Discharge Conc < TQL
Total Copper	4,221	µg/L	Discharge Conc ≤ 10% WQBEL
Total Cyanide	N/A	N/A	No WQS
Dissolved Iron	976,254	µg/L	Discharge Conc < TQL
Total Iron	14,854,040	µg/L	Discharge Conc ≤ 10% WQBEL
Total Lead	10,353	µg/L	Discharge Conc < TQL
Total Manganese	3,254,180	µg/L	Discharge Conc ≤ 10% WQBEL
Total Mercury	163	µg/L	Discharge Conc < TQL
Total Nickel	141,476	µg/L	Discharge Conc < TQL
Total Phenols (Phenolics) (PWS)		µg/L	Discharge Conc < TQL
Total Selenium	16,236	µg/L	Discharge Conc < TQL
Total Silver	1,141	µg/L	Discharge Conc < TQL
Total Thallium	781	µg/L	Discharge Conc < TQL
Total Zinc	36,130	µg/L	Discharge Conc < TQL

Model Results

2/23/2023

Attachment D – TRC Model

TCJMA TRC_CALC

TRC EVALUATION

381	= Q stream (d	cfs)	0.5	= CV Daily					
0.0346	= Q discharg	e (MGD)	0.5	0.5 = CV Hourly					
4	= no. sample	s	0.705	705 = AFC_Partial Mix Factor					
0.3	= Chlorine D	emand of Stream	1 = CFC_Partial Mix Factor						
0	= Chlorine D	emand of Discharge	15	= AFC Criteria	Compliance Time (min)				
0.5	= BAT/BPJ V	alue	720	20 = CFC_Criteria Compliance Time (min)					
	= % Factor o	of Safety (FOS)	=Decay Coefficient (K)						
Source	Reference	AFC Calculations		Reference	CFC Calculations				
TRC	1.3.2.iii	WLA afc =	1600.824	1.3.2.iii	WLA cfc = 2213.712				
PENTOXSD TRG	5.1a	LTAMULT afc =	0.373	5.1c	LTAMULT cfc = 0.581				
PENTOXSD TRG	5.1b	LTA_afc=	596.505	5.1d	LTA_cfc = 1286.948				
Source		Efflue	nt Limit Calcu	ations					
PENTOXSD TRG	5.1f		AML MULT =	1.720					
PENTOXSD TRG	5.1g	AVG MON I	LIMIT (mg/l) =	0.500	BAT/BPJ				
		INST MAX I	LIMIT (mg/l) =	1.170					
WLA afc	(.019/e(-k*AF	C_tc)) + [(AFC_Yc*Qs	".019/Qd*e(-k"	AFC_tc))					
	+ X0 + (AFC_YC*Q\$^X\$/Q0)]*(1-FO\$/100)								
LTAMULT afc	EXP((0.5*LN(cvn^2+1))-2.326*LN(cvn^2+1)^0.5)								
LTA_afc	wia_afc*LTAN	NULT_afc							
			044/Odta/ htt						
WLA_CIC	LOTT/e(-K°CF	C_(C) + [(CFC_YC*QS*)	.011/Q0^e(-K^	UFC_(C))					
	+ X0 + (UFU_TCTQSTXS/Q0)]*(1-FUS/100)								
LTAMULT_ctc	EXP((U.5*LN(cvo*2/no_samples+1))-2.325*LN(cvo*2/no_samples+1)*0.5)								
	wia_cic=LTAN								
	EVD/2 226*1	V/(cvd/2/no_somplos+1	W0 51-0 5*LN	(cvd/\2/no_sample	06+1))				
	MIN/RAT PD	IMIN/ITA afe ITA efe	**************************************	(cvu··2/no_sample	ss+1))				
INST MAX LIMIT	1.5*((av mon		AMULT afc)	/					
ING FIMAA LIMIT	1.5 ((dv_iii))								