

Southwest Regional Office CLEAN WATER PROGRAM

Application Type

Facility Type

Major / Minor

Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

Application No. PA0253171

APS ID 1033689

Authorization ID 1345551

Applicant Name	Mount Pleasant Township Municipal Authority	Facility Name	Mount Pleasant Township STF	
Applicant Address	PO Box 137, 208 Poker Road	Facility Address	Brinkerton Road	
	Mammoth, PA 15664	_	Brinkerton, PA 15601	
Applicant Contact	Charles Naggy	Facility Contact	Vance James	
Applicant Phone	(724) 424-5418	Facility Phone	(412) 965-4061	
Client ID	245381	Site ID	665452	
Ch 94 Load Status	Not Overloaded	Municipality	Mount Pleasant Township	
Connection Status	No Limitations	County	Westmoreland	
Date Application Rece	eived March 5, 2021	EPA Waived?	No	
Date Application Acce	pted March 11, 2021	If No, Reason	TMDL	

Summary of Review

The Mount Pleasant Township Municipal Authority (MPTMA) submitted an application dated March 1, 2021 to renew NPDES Permit PA0253171 for discharges from the Mount Pleasant Township Sewage Treatment Plant (Mount Pleasant Township STP). The application was received by DEP on March 5, 2021. The permit currently in effect was issued on August 26, 2016 with a September 1, 2016 effective date and an August 31, 2021 expiration date. The renewal application was ostensibly submitted 180 days before the permit expired (i.e., by March 4, 2021) despite being received a day late, so the terms and conditions of the 2016 permit will be automatically continued if the effective date of the renewed permit extends past August 31, 2021.

Effluent limits for ammonia-nitrogen in the renewed permit are updated to be consistent with new water quality criteria for ammonia-nitrogen.

Sludge use and disposal description and location(s): Landfill disposal via County Hauling Corporation.

Public Participation

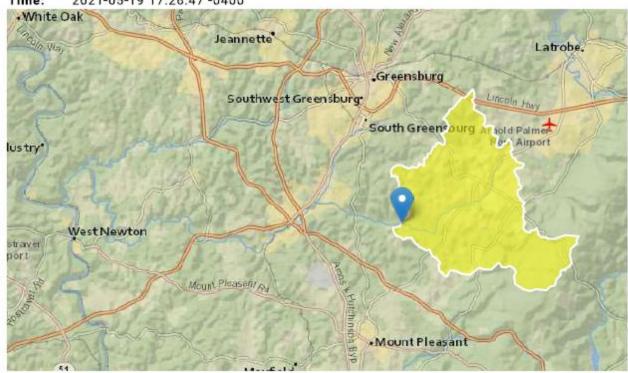
DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Approve	Deny	Signatures	Date
Х		Ryan C. Decker Ryan C. Decker, P.E. / Environmental Engineer	June 15, 2021
Х		James Vanek James Vanek, P.E. / Environmental Engineer	June 15, 2021

		Discharge, Receiving Wat	ers and Water Supply Informa	tion			
Outfall No. 00	1		Design Flow (MGD)	0.33			
Latitude 40	° 13' 6"		Longitude	-79° 31' 3"			
Quad Name	Mt. Pleasa	ant	Quad Code	1709			
Wastewater Des	cription:	Treated sewage effluent					
Receiving Water	s Sewi	ckley Creek (WWF)	Stream Code	37556			
NHD Com ID 69913055			River Mile Index (RMI)	23.88			
Drainage Area 28			Yield (cfs/mi²)	0.030			
Q ₇₋₁₀ Flow (cfs)	0.876	}	Q ₇₋₁₀ Basis	USGS StreamStats			
Elevation (ft)	964		Slope (ft/ft)	0.0012			
Watershed No.	19-D		Chapter 93 Class.	WWF			
Existing Use			Existing Use Qualifier				
Exceptions to Us	se		Exceptions to Criteria				
Assessment Sta	tus	Impaired					
Cause(s) of Impa	airment	Pathogens, pH, Siltation					
Source(s) of Imp	airment	Acid Mine Drainage; Agric	culture; Source Unknown				
TMDL Status		Final (March 12, 2009)	Name Sewickley C	reek Watershed TMDL			
Nearest Downsti	ream Publ	ic Water Supply Intake	Westmoreland County Munici	pal Authority - McKeesport			
PWS Waters	Youghio	gheny River	Flow at Intake (cfs)	510			
PWS RMI	1.30		Distance from Outfall (mi) 32.88				

Changes Since Last Permit Issuance: None

5/19/2021 StreamStats


StreamStats Report

Region ID: PA

Workspace ID: PA20210519212630811000

Clicked Point (Latitude, Longitude): 40.21822, -79.51771

Time: 2021-05-19 17:26:47 -0400

Parameter Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	28.9	square miles
ELEV	Mean Basin Elevation	1230	feet

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	28.9	square miles	2.26	1400

5/19/2021 StreamStats

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
ELEV	Mean Basin Elevation	1230	feet	1050	2580

Low-Flow Statistics Flow Report [99.9 Percent (28.9 square miles) Low Flow Region 4]

PII: Prediction Interval-Lower, Plu: Prediction Interval-Upper, SEp: Standard Error of Prediction, SE: Standard Error (other -- see report)

Statistic	Value	Unit	SE	SEp
7 Day 2 Year Low Flow	1.32	ft^3/s	43	43
30 Day 2 Year Low Flow	2.18	ft^3/s	38	38
7 Day 10 Year Low Flow	0.528	ft^3/s	66	66
30 Day 10 Year Low Flow	0.879	ft^3/s	54	54
90 Day 10 Year Low Flow	1.54	ft^3/s	41	41

Low-Flow Statistics Citations

Stuckey, M.H.,2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p. (http://pubs.usgs.gov/sir/2006/5130/)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Application Version: 4.5.3

StreamStats Services Version: 1.2.22

NSS Services Version: 2.1.2

			Trea	atment Facility Summar	у			
Treatment Facility: Mount Pleasant Township STP – 0.33 MGD average daily flow, 0.85 MGD peak hourly flow								
WQM Permit	WQM Permit No.							
6507403		January 16, 2009	se	ermit issued to Mount Fewage treatment plant co a mechanical bar scre two sequential batch depths of 15.5 feet) one 57,000-gallon accepted overflow to the house belt filter press to one UV disinfection swith emergency backs	nsisting of: een and man reactors (44 erobic diges head of the pl dewater diges system desig	ually cleaned based in the control of the control o	par screen backup um average water I sludge with high	
Waste Type	Deg	ree of Treatment		Process Type		Disinfection	Avg Annual Flow (MGD)	
Sewage		Secondary with nmonia-nitrogen removal		Sequential Batch Reactor Ultraviolet light 0.121			ht 0.121	
Hydraulic Capa (MGD)	acity	Organic Capacity (lbs/day)	у	Load Status	Biosolids	Treatment	Biosolids Use/Disposal	
0.33		606		Not Overloaded		gester and er press	Landfill	

Changes Since Last Permit Issuance: None

Compliance History

DMR Data for Outfall 001 (from April 1, 2020 to March 31, 2021)

Parameter	MAR-21	FEB-21	JAN-21	DEC-20	NOV-20	OCT-20	SEP-20	AUG-20	JUL-20	JUN-20	MAY-20	APR-20
Flow (MGD)												
Average Monthly	0.08	0.074	0.0630	0.072	0.05	0.045	0.045	0.047	0.048	0.044	0.057	0.073
Flow (MGD)												
Daily Maximum	0.156	0.130	0.0940	0.120	0.104	0.07	0.074	0.085	0.063	0.05	0.095	0.128
pH (S.U.)												
Instantaneous												
Minimum	6.8	6.8	6.8	6.8	6.9	6.8	6.8	6.7	6.7	6.8	6.8	6.8
pH (S.U.)												
Instantaneous												
Maximum	7.1	7.2	7.1	7.1	7.1	7.1	7.2	7.1	7.1	7.0	7.2	7.1
DO (mg/L)												
Minimum	6.4	6.2	6.09	5.9	5.8	5.7	5.6	5.0	5.2	5.7	5.6	6.0
CBOD5 (lbs/day)												
Average Monthly	7.0	4.6	4.3	4.0	< 2.9	< 1.3	< 1.4	< 1.1	< 1.7	< 1.8	< 2.3	< 3.2
CBOD5 (lbs/day)												
Weekly Average	10.4	7.1	7.8	5.7	4.9	1.7	1.8	< 1.3	2.7	2.5	< 4.5	4.0
CBOD5 (mg/L)												
Average Monthly	11.8	6.0	7.6	7.8	< 7.4	< 3.5	< 3.5	< 3.0	< 4.4	< 5.1	< 5.7	< 5.2
CBOD5 (mg/L)												
Weekly Average	19.3	7.3	12.4	13.7	13.3	4.8	4.5	< 3.0	7.5	6.4	< 12.0	6.3
BOD5 (lbs/day)												
Raw Sewage Influent												
Average Monthly	82.7	111.4	76.4	84.9	81.2	100.8	44.0	< 40.1	72.5	56.2	96.7	154.2
BOD5 (lbs/day)												
Raw Sewage Influent												
Daily Maximum	171.7	166.4	93.2	177.1	92.1	211.2	74.0	54.2	87.2	73.0	168.5	270.1
BOD5 (mg/L)												
Raw Sewage Influent												
Average Monthly	115.7	181	151.4	149.6	205.8	258.1	108.3	< 105.7	189.8	161.5	238.0	255.2
TSS (lbs/day)												
Average Monthly	< 3.6	< 3.6	2.6	< 3.4	< 2.4	< 1.9	< 2.1	< 1.9	< 2.0	< 1.7	< 2.1	< 3.0
TSS (lbs/day)												
Raw Sewage Influent												
Average Monthly	43.2	109.5	58.0	66.7	40.4	35.8	30.1	32.9	43.3	39.4	55.0	94.6
TSS (lbs/day)												
Raw Sewage Influent	07.0	000.0	00.0	400.4	0.4.4	00 -	40.0	5	00.0	50 -	00.1	100.0
Daily Maximum	97.6	269.9	80.8	120.1	61.1	66.7	46.6	54.2	69.6	56.7	66.1	129.3
TSS (lbs/day)			0.0		0.0	6.4	6.0	6.4	6.5	6.4		
Weekly Average	< 6.5	< 5.4	3.9	5.1	3.3	< 2.4	< 2.6	< 2.1	< 2.6	< 2.1	< 2.5	< 3.4
TSS (mg/L)	2.2							
Average Monthly	< 6.0	< 5.0	< 5.0	< 6.0	< 6.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0

NPDES Permit Fact Sheet Mount Pleasant Township STP

Parameter	MAR-21	FEB-21	JAN-21	DEC-20	NOV-20	OCT-20	SEP-20	AUG-20	JUL-20	JUN-20	MAY-20	APR-20
TSS (mg/L)												
Raw Sewage Influent												
 br/> Average												
Monthly	57	196	114.0	124	103	93	71	88	112	111	132	160
TSS (mg/L)												
Weekly Average	7.0	5.0	< 5.0	10.0	9.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	5.0
Fecal Coliform												
(CFU/100 ml)												
Geometric Mean	< 3	< 2	7	< 1	< 2	> 9	< 10	< 3	< 2	< 2	< 23	< 32
UV Transmittance (%)												
Minimum	1.7	1.9	1.8	1.8	1.9	1.9	1.8	1.7	1.7	1.9	1.2	1.7
UV Transmittance (%)												
Average Monthly	1.9	2.1	2.4	2.0	2.0	2.0	2.0	1.9	1.9	2.0	2.1	2.0
Total Nitrogen (mg/L)												
Daily Maximum				5.5								
Ammonia (lbs/day)												
Average Monthly	< 5.1	2.9	3.7	< 0.5	< 0.3	< 0.3	< 0.3	< 0.3	< 0.4	< 0.3	< 0.3	< 0.5
Ammonia (mg/L)												
Average Monthly	< 7.1	4.9	6.1	< 0.8	< 0.8	0.9	< 0.8	< 0.8	< 1.0	< 0.8	< 0.8	< 0.8
Total Phosphorus												
(mg/L)												
Daily Maximum				1.7								

Violation Summary

VIOL ID	VIOLATION DATE	VIOLATION TYPE	VIOLATION TYPE DESC	RESOLVED DATE	INSP ID	INSP CATEGORY	INSPECTED DATE	INSP TYPE	INSPECTOR
677092	09/03/2013	302.202	Failure to submit Operator Certification system fee	09/25/2013	2201619	PF	09/03/2013	Administrative/File Review	MOYER, GARY
677093	09/03/2013	302.1202	Failure to submit Operator Certification Available Operator Report (AOR)	09/25/2013	2201619	PF	09/03/2013	Administrative/File Review	MOYER, GARY
861677	08/30/2019	94.21	Wasteload Management - Failure to implement required measures for an existing overload	09/11/2019	2931287	PF	08/30/2019	Compliance Evaluation	MILSOP, LISA
861678	08/30/2019	92A.61(C)	NPDES - Failure to monitor pollutants as required by the NPDES permit	09/11/2019	2931287	PF	08/30/2019	Compliance Evaluation	MILSOP, LISA
867117	11/04/2019	92A.62	NPDES - Failure to pay annual fee	11/26/2019	2954442	PF	11/04/2019	Administrative/File Review	OPILA, TAMI

There are no open violations for the client.

Development of Effluent Limitations									
Outfall No	004	Decima Flow (MCD)	0.22						
Outfall No.	001	Design Flow (MGD)	0.33						
Latitude	40° 13' 6.00"	Longitude	-79° 31' 3.00"						
Wastewater D	Description: Treated sewage effluent								

001. Technology-Based Effluent Limitations (TBELs)

25 Pa. Code § 92a.47 – Sewage Permits

Regulations at 25 Pa. Code § 92a.47 specify TBELs and effluent standards that apply to sewage discharges. Section 92a.47(a) requires that sewage be given a minimum of secondary treatment with significant biological treatment that achieves the following:

Table 1. Regulatory TBELs for Sanitary Wastewaters

Parameter			Instant. Max (mg/L)	Basis
CBOD5	25	40 [†]	50 ^{††}	25 Pa. Code § 92a.47(a)(1), (a)(2) & 40 CFR §§ 133.102(a)(4)(i) & (ii)
Total Suspended Solids	30	45	60 [†]	25 Pa. Code § 92a.47(a)(1), (a)(2) & 40 CFR §§ 133.102(b)(1) & (b)(2)
Fecal Coliform (No./100 mL) May 1 – September 30	200 (Geometric Mean)	N/A	1,000	25 Pa. Code § 92a.47(a)(4)
Fecal Coliform (No./100 mL) October 1 – April 30	2,000 (Geometric Mean)	N/A	10,000	25 Pa. Code § 92a.47(a)(5)
Total Residual Chlorine	0.5 (or facility-specific)	N/A	1.00 (or facility-specific)	25 Pa. Code § 92a.47(a)(8) & § 92a.48(b)(2)
pH (s.u.)	not less th	an 6.0 and not great	25 Pa. Code § 92a.47(a)(7) & § 95.2(1), & 40 CFR § 133.102(c)	

[†] Outfall 001 is currently subject to a more stringent CBOD5 weekly average limit of 37.5 mg/L. That limit will be maintained pursuant to EPA's anti-backsliding regulation (40 CFR § 122.44(I)).

The CBOD5. TSS, and pH limits are the same as those in EPA's secondary treatment regulation (40 CFR § 133.102).

Average monthly and maximum daily flows must be reported pursuant to 25 Pa. Code § 92a.61(d)(1). The existing minimum dissolved oxygen limit of 4.0 mg/L will be maintained at Outfall 001 pursuant to 25 Pa. Code § 92a.61(b) (regarding reasonable monitoring requirements) and 40 CFR § 122.44(I) (regarding anti-backsliding).

In accordance with Section I of DEP's "Standard Operating Procedure for Clean Water Program Establishing Effluent Limitations for Individual Sewage Permits" [SOP No. BCW-PMT-033, Version 1.9, March 22, 2021] and under the authority of 25 Pa. Code § 92a.61(b), annual reporting for Total Nitrogen and Total Phosphorus is required for sewage discharges with design flows greater than 2,000 gpd to help evaluate treatment effectiveness and to monitor nutrient loading to the receiving watershed. Pursuant to that same SOP and under the authority of § 92a.61(b), a quarterly reporting requirement for *E.coli* will be added to Outfall 001.

MPTMA uses ultraviolet light for disinfection rather than chlorine, so the TBELs for TRC from 92a.47(a)(8) are replaced with minimum and average reporting requirements for ultraviolet light transmittance pursuant to § 92a.61(b).

Mass Limits

In accordance with Table 5-3 of DEP's "Technical Guidance for the Development and Specification of Effluent Limitations. and Other Permit Conditions in NPDES Permits" and Section IV of DEP's "Standard Operating Procedure for Clean Water Program Establishing Effluent Limitations for Individual Sewage Permits", mass limits are calculated for CBOD5 and TSS. Average monthly and average weekly mass limits (in units of pounds per day) are calculated using the concentration limits in Table 1 and the Mount Pleasant Township STP's 0.33 MGD design flow with the following formula:

^{††} Value is calculated as two times the monthly average in accordance with Chapter 2 of DEP's "Technical Guidance for the Development and Specification of Effluent Limitations. and Other Permit Conditions in NPDES Permits" [Doc. No. 362-0400-001].

Design flow (average annual) (MGD) \times concentration limit (mg/L) at design flow \times conversion factor (8.34) = mass limit (lb/day)

Table 2. Mass TBELs for Sanitary Wastewaters

Parameter	Average Monthly (mg/L)	Average Weekly (mg/L)
CBOD5	65.0	100.0
Total Suspended Solids	80.0	120.0

Pursuant to Chapter 5, Section C.2 of DEP's "Technical Guidance for the Development and Specification of Effluent Limitations and Other Permit Conditions in NPDES Permits" mass limits for conventional pollutants with a magnitude greater than 60.0 are rounded down to the nearest 5.0 mg/L (the mass limits in Table 2 account for this rounding convention).

Water Quality-Based Effluent Limitations (WQBELs)

Pursuant to EPA's approval of Pennsylvania's 2017 Triennial Review of Water Quality Standards and corresponding regulatory changes published in the *Pennsylvania Bulletin* on July 11, 2020, new water quality criteria for ammonianitrogen apply to waters of the Commonwealth. Therefore, WQBELs for CBOD-5 and ammonianitrogen are re-evaluated even though there have been no changes to the STP.

WQM 7.0 Water Quality Modeling Program

WQM 7.0 is a water quality modeling program for Windows that determines Waste Load Allocations ("WLAs") and effluent limitations for carbonaceous biochemical oxygen demand ("CBOD5"), ammonia-nitrogen, and dissolved oxygen ("DO") for single and multiple point-source discharge scenarios. To accomplish this, the model simulates two basic processes. In the ammonia-nitrogen module, the model simulates the mixing and degradation of ammonia-nitrogen in the stream and compares calculated instream ammonia-nitrogen concentrations to ammonia-nitrogen water quality criteria. In the DO module, the model simulates the mixing and consumption of DO in the stream due to the degradation of CBOD5 and ammonia-nitrogen, and compares calculated instream DO concentrations to DO water quality criteria. WQM 7.0 then determines the highest pollutant loadings that the stream can assimilate while still meeting water quality criteria under design conditions.

Water Quality Modeling with WQM 7.0

Table 3. 001 WQM 7.0 Inputs

Discharge Characteristics							
Parameter	Value						
River Mile Index	23.88						
Discharge Flow (MGD)	0.33						
Discharge Temp. (°C) (Summer)	20.0						
Discharge Temp. (°C) (Winter)	15.0						
Basin/Stream Characteristics							
Parameter	Value						
Area in Square Miles	28.9						
Q ₇₋₁₀ (cfs)	0.876						
Low-flow yield (cfs/mi ²)	0.030						
Elevation (ft)	964						
Slope	0.0012						
Stream Temp. (°C) (Summer)	25.0						
Stream Temp. (°C) (Winter)	5.0						
Stream pH (s.u.)	7.0						

The WQM 7.0 model is run for Outfall 001 to determine whether WQBELs are necessary for CBOD₅, ammonia-nitrogen, and/or dissolved oxygen. Input values for the WQM 7.0 model are shown in Table 3.

DEP's modeling for sewage discharges is a two-step process. First, a discharge is modeled for the summer period (May through October) using warm temperatures for the discharge and the receiving stream. Modeling for the summer period is done first because allowable ammonia concentrations in a discharge are lower at higher temperatures (i.e., warm temperatures are more likely to result in critical loading conditions). Reduced dissolved oxygen levels also appear to increase ammonia toxicity and the maximum concentration of dissolved oxygen in water is lower at higher temperatures.

The second step is to evaluate WQBELs for the winter period, but only if modeling shows that WQBELs are needed for the summer period. For the summer period, pursuant to DEP's "Implementation Guidance of Section 93.7 Ammonia Criteria" [Doc. No. 391-2000-013] (Ammonia Guidance) and in the absence of site-specific data, the discharge temperature is assumed to be 20°C and the design stream temperature and pH are assumed to be 25°C and 7.0 s.u., respectively, based on the recommendations for free stone warm water streams in DEP's Ammonia Guidance (Sewickley Creek is designated for warm water fishes). The flow used for modeling is the average design flow (0.33 MGD). Input discharge concentrations are the existing average monthly limits.

The Q_{7-10} flow of Sewickley Creek (0.876 cfs) estimated using USGS's StreamStats web application with an allowance for that application's 66% standard error [i.e., 0.528 cfs + (0.528 × 0.66) cfs]

The results of the WQM 7.0 modeling (see attachments) indicate that new WQBELs are needed for CBOD5 and ammonia-nitrogen. Consistent with Section IV.D of DEP's Ammonia Guidance, limits from WQM 7.0 greater than 10 mg/L are rounded down to the nearest whole number and limits less than 10 mg/L and greater than 1 mg/L are rounded down to the nearest 0.5 mg/L. Limits less than 1 mg/L are around down to the nearest 0.1 mg/L. Limits greater than 60.0 are rounded down to the nearest 5 mg/L.

The average monthly and instantaneous maximum ammonia-nitrogen WQBELs calculated by WQM 7.0 for the summer period are 3.0 mg/L and 6.0 mg/L, respectively (rounded down from 3.07 and 6.14 to the nearest 0.5 mg/L), and the average monthly WQBEL for CBOD5 is 10.0 mg/L (rounded down from 10.24 to the nearest 1.0 mg/L). IMAX limits for ammonia-nitrogen are calculated using an average monthly limit multiplier of 2.0. That limit will appear in the permit. However, IMAX limits are used by DEP sampling personnel, so MPTMA does not need to report results on DMRs for compliance with the ammonia-nitrogen IMAX limits.

Pursuant to Section IV.C.2 of DEP's Ammonia Guidance, average weekly and instantaneous maximum limits for CBOD5 are calculated using average monthly limit multipliers of 1.5 and 2.0, which results in average weekly and instantaneous maximum CBOD5 WQBELs of 15.0 mg/L and 20.0 mg/L, respectively.

Since WQBELs are calculated for the summer period, winter limits are evaluated also. Pursuant to DEP's Ammonia Guidance, WQBELs for the winter period are set by multiplying the summer limits by three, unless modeling indicates that more stringent WQBELs are needed for winter.

For winter period modeling, the low-flow yield (representing Q₇₋₁₀ flow) is doubled to 0.06 cfs/mi² consistent with DEP's Ammonia Guidance. Default stream and discharge temperatures of 5°C and 15°C, respectively, also are assumed based on the Ammonia Guidance. The results of the modeling (see attachments) indicate that winter limits for ammonia-nitrogen calculated using a summer limit multiplier of three (9.0 mg/L and 18.0 mg/L) are more stringent than the winter modeling results (16.5 mg/L and 33.0 mg/L—the existing winter limits for ammonia-nitrogen). Therefore, WQBELs calculated for ammonia-nitrogen using the summer limit multiplier of 3 will apply from November through April. Standard secondary limits are recommended by WQM 7.0 for CBOD5 (see Table 1) during the winter period. The WQBELs are summarized in the table below (after rounding). For comparison, the existing (old) limits also are shown.

Table 4.	WQBELs for	Outfall 001	versus Existing	J Limits
----------	------------	-------------	-----------------	----------

Parameter	Permit	Average Monthly (mg/L)	Average Weekly (mg/L)	Instant. Maximum (mg/L)	
CBOD5	Old	25.0	37.5	50.0	
May 1 – October 31	New	10.0 (rounded)	10.0 × 1.5 = 15.0	10.0 × 2.0 = 20.0	
CBOD5	Old	25.0	40.0	50.0	
November 1 – April 30	New	25.0	40.0	50.0	
Ammonia-Nitrogen	Old	5.5	N/A	11	
May 1 – October 31	New	3.0 (rounded)	N/A	6.0 (rounded)	
Ammonia-Nitrogen	Old	16.5	N/A	33	
November 1 – April 30	New	$3.0 \times 3.0 = 9.0$	N/A	9.0 × 2 = 18.0	

Mass Limits

Since CBOD5 limits during the summer period are more stringent than the TBELs in Table 1, mass limits for CBOD5 are recalculated. In accordance with Section IV of DEP's "Standard Operating Procedure for Clean Water Program Establishing Effluent Limitations for Individual Sewage Permits", only average monthly mass limits are calculated for ammonia-nitrogen (no average weekly mass limits).

Average monthly and average weekly mass limits (in units of pounds per day) are calculated using the concentration limits in Table 4 and the plant's 0.33 MGD design flow with the following formula:

Design flow (average annual) (MGD) \times concentration limit (mg/L) at design flow \times conversion factor (8.34) = mass limit (lb/day)

The calculated mass WQBELs are summarized in Table 5 (after rounding).

Table 5. Mass WQBELs for Sanitary Wastewaters

Parameter	Average Monthly (lb/day)	Average Weekly (lb/day)
CBOD5 May 1 – October 31	27.0 (rounded)	41.0 (rounded)
Ammonia-Nitrogen May 1 – October 31	8.0 (rounded)	_
Ammonia-Nitrogen November 1 – April 30	24.0 (rounded)	_

The technology-based mass limits for CBOD5 in Table 2 will apply from November 1 through April 30.

As explained previously, MPTMA does not use chlorine for disinfection, so no WQBELs are developed for total residual chlorine. However, a condition will be included in Part C of the permit requiring MPTMA to obtain approval from DEP prior to the use of chlorine and to minimize its use if it is used for disinfection or other purposes (e.g. cleaning).

The new WQBELs and 5-year average DMR results over the last five years are compared in Table 6. The effluent data indicate that MPTMA can comply with the new CBOD5 and ammonia-nitrogen limits without a compliance schedule.

Table 6. WQBELs and Five-Year Average DMR Results

		Load (I	bs/day)		Concentration (mg/L)					
Parameter	Avg. Mo. WQBEL	5-Year DMR Avg.	Avg. Wkly WQBEL	5-Year DMR Avg.	Avg. Mo. WQBEL	5-Year DMR Avg.	Avg. Wkly WQBEL	5-Year DMR Avg.		
CBOD5 May 1 – Oct 31	27.0	10.6	41.0	5.9	10.0	6.6	15.0	7.4		
CBOD5 Nov 1 – April 30	65.0	5.5	100.0	9.4	25.0	6.9	40.0	8.5		
Ammonia-Nitrogen May 1 – Oct 31	8.0	<0.75	_		3.0	<0.8	_	_		
Ammonia-Nitrogen Nov 1 – April 30	24.0	<1.5	_		9.0	<2.0	_	_		

Total Maximum Daily Load ("TMDL") for the Sewickley Creek Watershed

The aquatic life uses of Sewickley Creek and tributaries to Sewickley Creek including Jacks Run, Welty Run, Buffalo Run, and their tributaries are impaired by metals (aluminum, iron, and manganese) and pH from acid mine drainage ("AMD"). These streams were variously listed on Pennsylvania's 1996, 1998, 2002, and 2006 lists of impaired waters. On April 8, 2009, U.S. EPA approved a TMDL prepared by DEP addressing the AMD-based impairments in the watershed. The current NPDES permit was issued after the TMDL was finalized, but there was no discussion of the TMDL in the Fact Sheet for the previous permit.

No waste load allocations were assigned to the Mount Pleasant Township STP's discharges by the TMDL. Also, since the TMDL was not previously addressed by DEP, the effluent concentrations of AMD metals (aluminum, iron, and manganese) in the discharge are unknown and were not analyzed and reported to complete the permit application. The Mount Pleasant Township STP does not have industrial users and AMD metals are not expected to be present in significant concentrations in sewage. However, in the absence of any data, annual reporting requirements will be imposed at Outfall 001 for aluminum, iron, and manganese pursuant to 25 Pa. Code §§ 92a.61(b) and 96.4(i).

There is no TMDL for Sewickley Creek's pathogen-based recreational use impairment, but MPTMA's use of UV disinfection should prevent MPTMA from contributing to the pathogen-based impairment.

Influent Monitoring

Pursuant to Section IV.E.8 of DEP's "Standard Operating Procedure (SOP) for Clean Water Program New and Reissuance Sewage Individual NPDES Permit Applications" [SOP No. BCW-PMT-002, Version 1.9, January 6, 2020], for POTWs with design flows greater than 2,000 GPD, influent BOD₅ and TSS monitoring is established in the permit with the same sample frequency and sample type used for the effluent (1/week, 8-Hr Composite).

NPDES Permit Fact Sheet Mount Pleasant Township STP

Effluent Limits

In accordance with 25 Pa. Code §§ 92a.12 and 92a.61, effluent limits applicable at Outfall 001 are the more stringent of TBELs, WQBELs, regulatory effluent standards, and monitoring requirements as summarized in the tables on the following pages.

Monitoring frequencies and sample types are established pursuant to DEP's "Technical Guidance for the Development and Specification of Effluent Limitations. and Other Permit Conditions in NPDES Permits" and DEP's "Standard Operating Procedure for Clean Water Program Establishing Effluent Limitations for Individual Sewage Permits". Dissolved oxygen and pH must be sampled 1/day using grab sampling. UV transmittance must be recorded 1/day. CBOD5, TSS, and ammonia-nitrogen must be sampled 1/week using 8-hour composite sampling. Fecal coliform must be sampled 1/week using grab sampling. E.Coli must be sampled 1/quarter using grab sampling. Total nitrogen and total phosphorus must be sampled 1/year using grab sampling. Total aluminum, total iron, and total manganese must be sampled 1/year using 8-hour composite sampling. Flow must be recorded continuously.

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001) and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date

			Effluent L	imitations			Monitoring Re	quirements
Parameter	Mass Units	(lbs/day) ⁽¹⁾		Concentrat	ions (mg/L)		Minimum (2)	Required
Farameter	Average Monthly	Weekly Average	Instant. Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report Daily Max	XXX	XXX	XXX	XXX	Continuous	Recorded
рН	XXX	XXX	6.0	XXX	XXX	9.0	1/day	Grab
Dissolved Oxygen	XXX	XXX	4.0	XXX	XXX	XXX	1/day	Grab
Carbonaceous Biochemical Oxygen Demand (CBOD5) Nov 1 - Apr 30	65.0	100.0	XXX	25.0	37.5	50.0	1/week	8-Hr Composite
Carbonaceous Biochemical Oxygen Demand (CBOD5) May 1 - Oct 31	27.0	41.0	XXX	10.0	15.0	20.0	1/week	8-Hr Composite
Biochemical Oxygen Demand 5-day Raw Sewage Influent	Report	Report Daily Max	XXX	Report	XXX	XXX	1/week	8-Hr Composite
Total Suspended Solids Raw Sewage Influent	Report	Report Daily Max	XXX	Report	XXX	XXX	1/week	8-Hr Composite
Total Suspended Solids	80.0	120.0	XXX	30.0	45.0	60.0	1/week	8-Hr Composite
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2000 Geo Mean	XXX	10000	1/week	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	XXX	XXX	200 Geo Mean	XXX	1000	1/week	Grab
E. Coli (No./100 ml)	XXX	XXX	XXX	XXX	XXX	Report	1/quarter	Grab
Ultraviolet light transmittance (%)	XXX	XXX	Report	Report	XXX	XXX	1/day	Recorded
Total Nitrogen	XXX	XXX	XXX	XXX	Report Daily Max	XXX	1/year	Grab
Ammonia-Nitrogen Nov 1 - Apr 30	24.0	XXX	XXX	9.0	XXX	18.0	1/week	8-Hr Composite

Outfall 001 (continued), Effective Period: Permit Effective Date through Permit Expiration Date

			Effluent L	imitations			Monitoring Requirements		
Parameter	Mass Units	(lbs/day) (1)		Concentra	Minimum ⁽²⁾	Required			
Parameter	Average Monthly	Weekly Average	Instant. Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type	
Ammonia-Nitrogen								8-Hr	
May 1 - Oct 31	8.0	XXX	XXX	3.0	XXX	6.0	1/week	Composite	
					Report				
Total Phosphorus	XXX	XXX	XXX	XXX	Daily Max	XXX	1/year	Grab	
·					Report				
Aluminum, Total	XXX	XXX	XXX	XXX	Daily Max	XXX	1/year	Grab	
					Report				
Iron, Total	XXX	XXX	XXX	XXX	Daily Max	XXX	1/year	Grab	
					Report				
Manganese, Total	XXX	XXX	XXX	XXX	Daily Max	XXX	1/year	Grab	

Compliance Sampling Location: Outfall 001

Input Data WQM 7.0

	SWP Basin			Stre	eam Name		RMI		ation t)	Drainage Area (sq mi)		ope t/ft)	PW Withd (mg	rawal	Apply FC
	19D	37	556 SEWIC	CKLEY C	REEK		23.88	30	964.00	28.	.90 0.0	00120		0.00	✓
					St	ream Dat	a								
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	Tributary	, H	Tem	<u>Stream</u> p	pH	
Cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C)		
Q7-10 Q1-10 Q30-10	0.030	0.00 0.00 0.00	0.00	0.000 0.000 0.000		10.0	0.00	0.00) 2:	5.00	7.00	(0.00	0.00	
					Di	ischarge l	Data								
			Name	Per	mit Number	Disc	Permitte Disc Flow (mgd)	Disc Flow	Res Fa		Disc Temp (°C)		sc H		
		Outfa	all 001	PA	0253171	0.330	0.000	0.00	000	0.000	20.00	0	7.00		
					Pa	arameter l	Data								
			ı	Paramete	r Name				tream Conc	Fate Coef					
			T di difficio i Traffic		(m	g/L) (n	ng/L) ((mg/L)	(1/days))					
			CBOD5				25.00	2.00	0.00	1.50	0				
			Dissolved	Oxygen			4.00	8.38	0.00	0.0	0				
			NH3-N				5.50	0.00	0.00	0.70	0				

Input Data WQM 7.0

	SWP Basin	Strea		Stre	eam Name		RI	MI E	levation (ft)	1	Drainage Area (sq mi)	Slo (ft/	W	PWS ithdrawal (mgd)	Apply FC
	19D	375	556 SEWI	CKLEY C	REEK		20	880	944.	00	43.90	0.00	0120	0.00	V
					Str	ream Dat	a								
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rd Dep] Temp	<u>Fributary</u> D pH	ı	Str Temp	eam pH	
conu.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	9	(°C)			(°C)		
Q7-10 Q1-10	0.033	0.00	0.00	0.000		10.0	0.0	0 0	00.0	25	.00 7	.00	0.00	0.00	7
Q30-10		0.00	0.00	0.000	0.000										
					Di	scharge (Data							1	
			Name	Per	mit Number	Existing Disc Flow (mgd)	Pem Di: Flo (mg	w F		Rese Fac	tor	isc mp C)	Disc pH		
						0.000	0.0	000 0	0.0000	0	.000	0.00	7.0	0	
					Pa	rameter l	Data								
					- 11	177	sc onc	Trib Conc	Strea		Fate Coef				
				Paramete	rivame	(m	g/L)	(mg/L)	(mg/	L)	(1/days)				
			CBOD5				25.00	2.00) 0	.00	1.50				
			Dissolved	Oxygen			3.00	8.24	0	.00	0.00				
			NH3-N				25.00	0.00	0	.00	0.70				

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	✓
WLA Method	EMPR	Use Inputted W/D Ratio	✓
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	v
D.O. Saturation	90.00%	Use Balanced Technology	v
D.O. Goal	5		

WQM 7.0 Hydrodynamic Outputs

	sw	P Basin	Strea	m Code				Stream	Name			
		19D	3	7556			SEV	WICKLE	Y CREEK			
RMI	Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow	Reach Slope	Depth	Width	W/D Ratio	Velocity	Reach Trav Time	Analysis Temp	Analysis pH
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)	
Q7-10	0 Flow											
23.880	0.87	0.00	0.87	.5105	0.00120	1.137	11.37	10	0.11	1.721	23.15	7.00
Q1-1	0 Flow											
23.880	0.55	0.00	0.55	.5105	0.00120	NA	NA	NA	0.09	1.987	22.60	7.00
Q30-	10 Flow	,										
23.880	1.18	0.00	1.18	.5105	0.00120	NA	NA	NA	0.12	1.535	23.49	7.00

WQM 7.0 Wasteload Allocations

SWP Basin	Stream Code	Stream Name
19D	37556	SEWICKLEY CREEK

RMI	Discharge Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
23.8	80 Outfall 001	13.51	11	13.51	11	0	0
NH3-N RMI	Chronic Allocati Discharge Name	Ons Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
		(IIIgrE)	(mg/L)	(3/			

		CBC	DD5	NH	3-N	Dissolve	d Oxygen	Critical	Percent	
RMI	Discharge Name	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)		Baseline (mg/L)	Multiple (mg/L)	Reach	Reduction	
23.88 (Outfall 001	10.24	10.24	3.07	3.07	4	4	0	0	

WQM 7.0 D.O.Simulation

	Stream Code			Stream Name		
19D	37556		SE	WICKLEY CRE	EK	
RMI	Total Discharge	Flow (mgd) Ana	lysis Temperatur	e (°C)	Analysis pH
23.880	0.33	0		23.147		7.000
Reach Width (ft)	Reach De	pth (ft)		Reach WDRatio	<u> </u>	Reach Velocity (fps)
11.371	1.13	7		10.000		0.107
Reach CBOD5 (mq/L)	Reach Kc (1/days)	R	each NH3-N (mg	/L)	Reach Kn (1/days)
5.05	0.37	_		1.14		0.892
Reach DO (mg/L)	Reach Kr (Kr Equation		Reach DO Goal (mg/L)
6.757	1.30	9		Tsivoglou		5
Reach Travel Time (days)	Subreach	Results			
1.721	TravTime		NH3-N	D.O.		
	(days)	(mg/L)	(mg/L)	(mg/L)		
	0.172	4.69	0.98	5.99		
	0.344	4.35	0.84	5.50		
	0.516	4.03	0.72	5.22		
	0.688	3.74	0.62	5.11		
	0.860	3.47	0.53	5.10		
	1.033	3.21	0.45	5.17		
	1.205	2.98	0.39	5.30		
	1.377	2.76	0.33	5.46		
	1.549	2.56	0.29	5.64		
	1.721	2.38	0.25	5.83		

WQM 7.0 Effluent Limits

		am Code		Stream Name	_		
	19D 3	37556		SEWICKLEY CR	EEK		
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
23.880	Outfall 001	PA0253171	0.330	CBOD5	10.24		
				NH3-N	3.07	6.14	
				Dissolved Oxygen			4

Input Data WQM 7.0

	SWP Basin	Stre		Stre	eam Name		RMI		vation (ft)	Drainage Area (sq mi)		ope /ft)	PWS Withdrawa (mgd)	Apply I FC
	19D	37	556 SEWI	CKLEY C	REEK		23.88	30	964.00	28.	90 0.0	0120	0.0	00 🗹
					St	ream Data	1							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth		Tributary p p	H	Tem	<u>Stream</u> p pH	
cona.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C)		
Q7-10 Q1-10 Q30-10	0.060	0.00 0.00 0.00	0.00	0.000 0.000 0.000	0.000 0.000 0.000	10.0	0.00	0.0	00 \$	5.00	7.00	0	0.00 0.	00
					Di	scharge [Data							
			Name	Per	mit Number	Disc	Permitte Disc Flow (mgd)	Dis Flo	c Res w Fa	erve 7 ctor	Disc Temp (°C)	Dis ph		
		Outfa	all 001	PAG	0253171	0.3300	0.000	0.0	0000	0.000	15.00)	7.00	
					Pa	arameter [Data							
				Paramete	r Name	Di:		Trib Conc	Stream Conc	Fate Coef				
				ai ai i o i o		(m	g/L) (n	ng/L)	(mg/L)	(1/days))			
			CBOD5			-	25.00	2.00	0.00	1.50	0			
			Dissolved	Oxygen			4.00	12.80	0.00	0.00	D			
			NH3-N				16.50	0.00	0.00	0.70	0			

Input Data WQM 7.0

	SWP Basir			Stre	eam Name		RMI	Eleva (fi		Drainage Area (sq mi)	Slope (ft/ft)	PW Withd (mg	irawal	Apply FC
	19D	375	556 SEWI	CKLEY C	REEK		20.88	80 9	944.00	43.90	0.00120)	0.00	V
					St	ream Dat	a							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	Tributary p pH	Te:	<u>Strear</u> mp	n pH	
cona.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°0	C)		
Q7-10 Q1-10 Q30-10	0.066	0.00 0.00 0.00	0.00	0.000 0.000 0.000	0.000 0.000 0.000	10.0	0.00	0.00	5	5.00 7	7.00	0.00	0.00	
					Di	scharge	Data						Ī	
			Name	Per	mit Number	Disc	Permitte Disc Flow (mgd)	Disc Flow	Rese Fac	erve Te)isc pH		
						0.000	0.000	0.00	00 0	.000	0.00	7.00		
					Pa	arameter	Data							
				Paramete	r Name				tream Conc	Fate Coef				
				ar arrioto		(m	ıg/L) (n	ng/L) (mg/L)	(1/days)				
			CBOD5				25.00	2.00	0.00	1.50				
			Dissolved	Oxygen			3.00	8.24	0.00	0.00				
			NH3-N				25.00	0.00	0.00	0.70				

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	¥
WLA Method	EMPR	Use Inputted W/D Ratio	¥
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	v
D.O. Saturation	90.00%	Use Balanced Technology	✓
D.O. Goal	5		

WQM 7.0 Hydrodynamic Outputs

		P Basin 19D		m Code 7556				Stream WICKLE	<u>Name</u> Y CREEK	:		
RMI	Stream Flow	PWS With	Net Stream	Disc Analysis	Reach Slope	Depth	Width	W/D Ratio	Velocity	Trav	Analysis Temp	Analysis pH
	(cfs)	(cfs)	Flow (cfs)	Flow (cfs)	(ft/ft)	(ft)	(ft)		(fps)	Time (days)	(°C)	
Q7-10	0 Flow											
23.880	1.73	0.00	1.73	.5105	0.00120	1.266	12.66	10	0.14	1.309	7.27	7.00
Q1-1	0 Flow											
23.880	1.11	0.00	1.11	.5105	0.00120	NA	NA	NA	0.12	1.571	8.15	7.00
Q30-	10 Flow	•										
23.880	2.36	0.00	2.36	.5105	0.00120	NA	NA	NA	0.16	1.141	6.78	7.00

23.88 Outfall 001

Winter Modeling

WQM 7.0 Wasteload Allocations

SWP Basin	Stream Code	Stream Name
19D	37556	SEWICKLEY CREEK

(mg/L) (mg/L)

25

RMI	Discharge Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
23.880	Outfall 001	24.1	33	24.1	33	0	0
RMI	Chronic Allocati Discharge Name	Ons Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
23.880	Outfall 001	4.36	16.5	4.36	16.5	0	0

(mg/L)

16.5

25

(mg/L)

16.5

(mg/L)

(mg/L)

4

0

0

WQM 7.0 D.O.Simulation

SWP Basin S	tream Code		Stream Name					
19D	37556		SE	WICKLEY CRE	EK			
<u>RMI</u>	Total Discharge	Flow (mgd) Anal	ysis Temperatur	re (°C)	Analysis pH		
23.880	0.33		7.274	7.000				
Reach Width (ft)	Reach De	pth (ft)		Reach WDRatio	Reach Velocity (fps)			
12.661	1.26		10.000	0.140				
Reach CBOD5 (mg/L)	Reach Kc (1/days)	<u>R</u>	each NH3-N (mo	1/L)	Reach Kn (1/days)		
7.23	1.01	_		3.75		0.263		
Reach DO (mg/L)	Reach Kr (Kr Equation		Reach DO Goal (mg/L)		
10.798	1.18	181 Tsivoglo				5		
Reach Travel Time (days)	ime (days) Subreach Results							
1.309	TravTime	CBOD5	NH3-N	D.O.				
	(days)	(mg/L)	(mg/L)	(mg/L)				
	0.131	6.72	3.63	9.72				
	0.262	6.24	3.50	8.86				
	0.393	5.79	3.38	8.20				
	0.524	5.38	3.27	7.68				
	0.655	4.99	3.16	7.30				
	0.786	4.64	3.05	7.03				
	0.917	4.31	2.95	6.85				
	1.047	4.00	2.85	6.74				
	1.178	3.71	2.75	6.69				
	1.309	3.45	2.66	6.69				

WQM 7.0 Effluent Limits

	SWP Basin Str 19D	37556	SEWICKLEY CREEK					
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)	
23.880	Outfall 001	PA0253171	0.330	CBOD5	25			
				NH3-N	16.5	33		
				Dissolved Oxygen			4	