

Northwest Regional Office CLEAN WATER PROGRAM

Application Type

Facility Type

Major / Minor

Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

Application No. PA0253201

APS ID 1056314

Authorization ID 1384351

Applicant Name	East Franklin Township	Facility Name	Tarrtown STP
Applicant Address	106 Cherry Orchard Avenue	Facility Address	State Route 4023
	Kittanning, PA 16201		Tarrtown, PA 16210
Applicant Contact	Barry Peters, Chairman cscholl@eastfranklintownship.com	Facility Contact	Barry Peters, Chairman cscholl@eastfranklintownship.com
Applicant Phone	(724) 548-2310	Facility Phone	(724) 548-2310
Client ID	77287	Site ID	665621
Ch 94 Load Status	Not Overloaded	Municipality	East Franklin Township
Connection Status	No Limitations	County	Armstrong County
Date Application Rece	eived February 9, 2022	EPA Waived?	Yes
Date Application Acce	pted February 10, 2022	If No, Reason	-

Summary of Review

Act 14 - Proof of Notification was submitted and received.

A Part II Water Quality Management permit is not required at this time.

The applicant should be able to meet the limits of this permit, which will protect the uses of the receiving stream.

I. OTHER REQUIREMENTS:

SPECIAL CONDITIONS:

A. Stormwater into Sewers

II. Solids Management

- B. Right of Way
- C. Solids Handling
- D. Effluent Chlorine Optimization and Minimization
- E. Hauled-In Wastes

There are no open violations in efacts associated with the subject Client ID (77287) as of 2/22/2023. 3/29/2023 CWY

Approve	Deny	Signatures	Date	
V		Stephen A. McCauley	2/22/2022	
^	Stephen A. McCauley, E.I.T. / Environmental Engineering Specialist		2/22/2023	
Chad W. Yurisic		Chad W. Yurisic	3/29/2023	
_ ^		Chad W. Yurisic, P.E. / Environmental Engineer Manager	3/29/2023	

0.44 1.11 0.04			5 . 5 . (1405)	
Outfall No. 001			_ Design Flow (MGD)	0.045
	50' 59.00	"	Longitude	-79º 31' 17.00"
Quad Name			_ Quad Code	-
Wastewater Desc	ription:	Sewage Effluent		
Receiving Waters	Allegh	eny River (WWF)	Stream Code	42122
NHD Com ID	12386	60462	RMI	48.0
Drainage Area	8970		Yield (cfs/mi²)	0.23
Q ₇₋₁₀ Flow (cfs)	2063		Q ₇₋₁₀ Basis	calculated
Elevation (ft)	785		Slope (ft/ft)	0.000946
Watershed No.	17-E		Chapter 93 Class.	WWF
Existing Use			Existing Use Qualifier	
Exceptions to Use	· <u>-</u>		Exceptions to Criteria	_
Assessment Statu	S	Attaining Use(s)		
Cause(s) of Impai	rment	-		
Source(s) of Impa	irment	-		
TMDL Status		-	Name	
Background/Ambi	ent Data		Data Source	
pH (SU)				
Temperature (°F)		-	-	
Hardness (mg/L)		-		
Other:			-	
Nearest Downstre	am Publi	c Water Supply Intake	PA American Water Company	· - Kittanning District
PWS Waters	Allegher	• • •	Flow at Intake (cfs)	987
		•	Distance from Outfall (mi)	2.5

Sludge use and disposal description and location(s): All sludge is disposed of at an approved landfill.

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the Pennsylvania Bulletin in accordance with 25 Pa. Code § 92a.82. Upon publication in the Pennsylvania Bulletin, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the Pennsylvania Bulletin at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Narrative: This Fact Sheet details the determination of draft NPDES permit limits for an existing discharge of 0.045 MGD of treated sewage from an existing municipal STP in East Franklin Township, Armstrong County.

NPDES Permit Fact Sheet Tarrtown STP

Treatment permitted under Water Quality Management Permit No. 0309403 consists of the following:

An equalization tank, hydrated lime addition to raise pH, an extended aeration tank, a clarifier, tablet chlorine disinfection with a contact tank, tablet dechlorination, a final clarifier, and a post clarifier tank. Solids are wasted to an aerobic digester.

1. Streamflow: Allegheny River at Kittanning, PA - USGS Stream Gage 03036500 (1967-2008):

Q₇₋₁₀: <u>2070</u> cfs from USGS StreamStats

Drainage Area: 8973 sq. mi. from USGS StreamStats

Yieldrate: 0.23 cfsm calculated

Allegheny River at Outfall 001:

Yieldrate: 0.23 cfsm from above

Drainage Area: 8970 sq. mi.

% of stream allocated: 100% Basis: No nearby discharges

Q₇₋₁₀: <u>2063</u> cfs calculated

2. Wasteflow:

Maximum discharge: 0.045 MGD = 0.069 cfs

Runoff flow period: 24 hours Basis: Runoff flow with flow equalization

The calculated stream flow (Q7-10) is greater than 3 times the permitted discharge flow. In accordance with the SOP, the treatment requirements in document number 391-2000-014, titled, "Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers", dated April 12, 2008, do not need to be evaluated for this facility.

Flow will be required to be monitored as authorized under Chapter 92a.61, and as recommended in the SOP. Based on the SOP, weekly average flow monitoring was added with this renewal.

3. Parameters:

The following parameters were evaluated: pH, Total Suspended Solids, Fecal Coliform, E. Coli, Total Phosphorus, Total Nitrogen, NH₃-N, CBOD₅, Dissolved Oxygen, and Total Residual Chlorine.

a. pH

Between 6.0 and 9.0 at all times

Basis: Application of Chapter 93.7 technology-based limits.

The measurement frequency was previously set to 5/week, reduced from the 1/day as recommended in the SOP, based on Table 6-3 in the "Technical Guidance for the Development and Specification of Effluent Limitations" (362-0400-001), and will be retained.

b. Total Suspended Solids

Limits are 30.0 mg/l as a monthly average and 60.0 as an instantaneous maximum.

Basis: Application of Chapter 92a47 technology-based limits.

c. Fecal Coliform

05/01 - 09/30: 200/100ml (monthly average geometric mean)

1,000/100ml (instantaneous maximum)

10/01 - 04/30: <u>2,000/100ml</u> (monthly average geometric mean)

10,000/100ml (instantaneous maximum)

Basis: Application of Chapter 92a47 technology-based limits

d. E. Coli

Monitoring was added for E. Coli at a frequency of 1/year.

Basis: Application of Chapter 92a.61 as recommended by the SOP for flows greater than 0.002 MGD

but less than 0.05 MGD.

e. Phosphorus

Chapter 96.5 does not apply. However, the previous monitoring for Total Phosphorus will be retained in accordance with the SOP, based on Chapter 92a.61.

f. Total Nitrogen

The previous monitoring for Total Nitrogen will be retained in accordance with the SOP, based on Chapter 92a.61.

g. <u>Ammonia-Nitrogen (NH₃-N)</u>

Median discharge pH to be used: 7.2 Standard Units (S.U.)

Basis: eDMR data from previous 12 months

Discharge temperature: 25°C (default value used in the absence of data)

Median stream pH to be used: 7.0 Standard Units (S.U.)

Basis: default value used in the absence of data

Stream Temperature: 25°C (default value used for WWF modeling)

Background NH₃-N concentration: 0.1 mg/l

Basis: Default value

Calculated NH₃-N Summer limits: <u>25.0</u> mg/l (monthly average)

50.0 mg/l (instantaneous maximum)

Calculated NH₃-N Winter limits: <u>25.0</u> mg/l (monthly average)

50.0 mg/l (instantaneous maximum)

Result: WQ modeling resulted in the summer limits above (see Attachment 1). The winter limits are

calculated as three times the summer limits, but since the technology-based limits are more protective, they will be used. Per the SOP, monitoring for winter NH3-N will be retained with this

renewal.

h. CBOD₅

Median discharge pH to be used: 7.2 Standard Units (S.U.)

Basis: <u>eDMR data from previous 12 months</u>

Discharge temperature: 25°C (default value used in the absence of data)

Median stream pH to be used: 7.0 Standard Units (S.U.)

Basis: <u>default value used in the absence of data</u>

Stream Temperature: <u>25°C</u> (default value used for WWF modeling)

Background CBOD₅ concentration: <u>2.0</u> mg/l

Basis: Default value

Calculated CBOD₅ limits: 25.0 mg/l (monthly average)

50.0 mg/l (instantaneous maximum)

Result: WQ modeling resulted in the calculated limits above (see Attachment 1). The limits are the same as in

the previous permit and will be retained.

i. Influent Total Suspended Solids and BOD₅

Monitoring for these two parameters will be retained as recommended in the SOP for POTWs, as authorized under Chapter 92a.61.

j. <u>Dissolved Oxygen (DO)</u>

The Dissolved Oxygen minimum of 4.0 mg/l will be retained with this renewal. The technology-based minimum is recommended by the WQ Model (see Attachment 2) and the SOP based on Chapter 93.7, under the authority of Chapter 92a.61.

The measurement frequency was previously set to 5/day, reduced from the 1/day as recommended in the SOP, based on Table 6-3 in the "Technical Guidance for the Development and Specification of Effluent Limitations" (362-0400-001), and will be retained.

k. Total Residual Chlorine (TRC)

Ultraviolet (UV) light monitoring

TRC limits: 0.5 mg/l (monthly average)

1.6 mg/l (instantaneous maximum)

Basis: The TRC limits above were calculated using the Department's TRC Calculation Spreadsheet

(see Attachment 2). The limits are the same as in the previous NPDES Permit and will be

retained.

The measurement frequency was previously set to 5/day, reduced from the 1/day as recommended in the SOP, based on Table 6-3 in the "Technical Guidance for the

Development and Specification of Effluent Limitations" (362-0400-001), and will be retained.

4. Reasonable Potential Analysis for Receiving Stream:

A Reasonable Potential Analysis was not performed in accordance with State practices for Outfall 001 using the Department's Toxics Management Spreadsheet since no sampling other than sewage-related parameters was performed for this facility with the renewal application.

5. Reasonable Potential for Downstream Public Water Supply (PWS):

The Department's Toxics Management Spreadsheet does not calculate limits for parameters that are based on PWS criteria (TDS, Chloride, Bromide, and Sulfate). Since no relevant sampling was provided, mass-balance calculations were not performed.

Nearest Downstream potable water supply (PWS): PA American Water Company - Kittanning District
Distance downstream from the point of discharge: 2.5 miles (approximate)

Result: No limits or monitoring is necessary as there is significant dilution available.

6. Anti-Backsliding:

Since all the permit limits in this renewal are the same or more restrictive than the previous NPDES Permit, anti-backsliding is not applicable.

7. Attachment List:

Attachment 1 - WQ Modeling Printouts

Attachment 2 - TRC_Calc Spreadsheet

Attachment 3 - WMS Open Violations by Client

(The Attachments above can be found at the end of this document)

Compliance History

DMR Data for Outfall 001 (from January 1, 2022 to December 31, 2022)

Parameter	DEC-22	NOV-22	OCT-22	SEP-22	AUG-22	JUL-22	JUN-22	MAY-22	APR-22	MAR-22	FEB-22	JAN-22
Flow (MGD)												
Average Monthly	0.005	0.004	0.004	0.004	0.003	0.003	0.003	0.004	0.004	0.003	0.006	0.005
pH (S.U.)												
Minimum	7.10	7.07	7.20	7.14	7.32	7.34	7.11	7.23	7.31	6.73	6.63	6.45
pH (S.U.)												
Maximum	7.68	7.46	7.42	7.88	7.69	7.55	7.87	7.90	7.88	7.69	7.46	7.47
DO (mg/L)												
Minimum	10.09	10.02	10.08	10.08	9.84	9.89	9.86	9.6	10.03	10.0	10.03	10.10
TRC (mg/L)												
Average Monthly	0.14	0.17	0.16	0.18	0.18	0.18	0.18	0.16	0.19	0.17	0.15	0.13
TRC (mg/L)												
Instantaneous Maximum	0.22	0.26	0.20	0.24	0.26	0.26	0.26	0.22	0.28	0.27	0.22	0.19
CBOD5 (lbs/day)												
Average Monthly	< 0.18	< 0.08	< 0.07	< 0.09	< 0.09	< 0.07	< 0.08	< 0.06	0.18	0.21	< 0.48	0.65
CBOD5 (mg/L)												
Average Monthly	< 4.25	< 3.35	< 3.00	< 3.00	< 3.0	< 3.0	< 3.45	< 3.0	6.90	8.75	< 7.70	15.85
CBOD5 (mg/L)												
Weekly Average	5.50	3.70	< 3.00	< 3.00	< 3.0	< 3.0	3.90	< 3.0	8.40	11.30	12.40	17.10
CBOD5 (mg/L)												
Instantaneous Maximum	5.50	3.70	< 3.00	< 3.00	< 3.0	< 3.0	3.90	< 3.0	8.40	11.30	12.40	17.10
BOD5 (lbs/day)												
Raw Sewage Influent												
Average Monthly	16.43	3.34	3.46	4.84	5.13	6.92	4.49	4.16	6.83	3.56	14.44	17.68
TSS (lbs/day)												
Average Monthly	1.10	0.26	< 0.15	< 0.09	< 0.09	< 0.11	0.08	0.14	0.34	0.35	0.70	2.15
TSS (lbs/day)												
Raw Sewage Influent	40.40						4.0=		2.22		40.00	
Average Monthly	49.48	4.77	5.03	5.18	7.91	34.65	4.35	7.10	9.28	8.22	16.83	28.36
TSS (mg/L)		44.0					4.0		4.4.0	4= 0	44.0	4= 0
Average Monthly	27.0	11.0	< 7.0	< 3.0	< 3.0	< 5.0	4.0	8.0	14.0	15.0	11.0	45.0
TSS (mg/L)	0.4.0	4= 0	44.0				4.0	40.0	4 = 0	0.4.0	4= 0	o= o
Weekly Average	31.0	15.0	11.0	< 3.0	3.0	6.0	4.0	10.0	15.0	21.0	15.0	67.0
TSS (mg/L)	24.2	45.0	44.0		0.0	0.0	1 40	40.0	45.0	04.0	45.0	07.0
Instantaneous Maximum	31.0	15.0	11.0	< 3.0	3.0	6.0	4.0	10.0	15.0	21.0	15.0	67.0
Fecal Coliform (No./100 ml)							50		45	70	07	
Geometric Mean	< 1	< 2	< 1	< 5	4	< 2	50	< 1	15	78	27	< 30
Fecal Coliform (No./100 ml)				00	6		0.400		400	4007	65	007
Instantaneous Maximum	< 1	2	1	23	6	2	> 2420	< 1	199	1987	65	867

NPDES Permit Fact Sheet Tarrtown STP

NPDES Permit No. PA0253201

Ammonia (mg/L)												
Average Monthly	3.57	< 0.15	0.18	< 0.15	< 0.14	0.18	0.24	0.19	0.32	0.64	3.42	7.45
Ammonia (mg/L)												
Instantaneous Maximum	4.33	0.19	0.24	0.19	0.18	0.23	0.26	0.20	0.36	0.87	6.50	10.80

Threatened and Endangered Mussel Species Concerns and Considerations

The Allegheny River is known to contain state and federally listed threatened and endangered mussel species. Due to this being a direct discharge to the Allegheny River, potential impacts were evaluated.

The USFWS has indicated in comment letters and email correspondence on other NPDES permits, that to protect threatened and endangered mussel species, wastewater discharges containing ammonia-nitrogen (NH₃-N), chloride (Cl⁻) dissolved nickel, and dissolved zinc, where mussels or their habitat exist, can be no more than 1.9 mg/l, 78 mg/l, 7.3 µg/l, and 13.18 µg/l respectively.

Although the application form associated with the subject NPDES permit renewal does require sampling for ammonianitrogen, NPDES permits for sewage facilities of this nature do not, generally, include routine monitoring requirements for pollutants such as chloride, nickel and zinc. Therefore, the Department lacked sufficient data to support its assumption that a properly constructed, operated and maintained minor sewage facility of this size is expected to produce an effluent that would be protective of all the uses of the receiving stream including threatened and endangered mussels.

A summary of the sampling and effluent quality data for the Tarrtown STP is as follows:

Sampling and Effluent Quality Data for USFWS Parameters of Concern							
Parameter	Parameter Sample Data						
Ammonia-Nitrogen	,	1	age monthly va	· · · · · · · · · · · · · · · · · · ·		,	
(NH ₃ -N)	OCT-22	SEP-22	AUG-22	JUL-22	JUN-22	MAY-22	
(mg/L)	0.18	< 0.15	< 0.14	0.18	0.24	0.19	
	APR-22	MAR-22	FEB-22	JAN-22	DEC-21	NOV-21	
	0.32	0.64	3.42	7.45	0.32	0.25	
Chloride							
Total Nickel (µg/L)	Total Nickel (µg/L)						
Total Zinc (µg/L)				-			

NOTES:

- 1. The DMR samples are all grab samples.
- 2. The STP utilizes chlorine disinfection.

The Department prepared the following calculations (included on the following pages) to determine the area of river that will be required to assimilate the maximum reported effluent concentrations of Ammonia-Nitrogen, Chloride, Nickel, and Zinc to achieve pollutant concentrations that at or below the USFWS criteria in the river.

Notes:

- 1. The dissolved zinc criteria of 13.18 µg/l was provided to the Department in emails from the USFWS dated October 25, 2021 and November 8, 2021. The nickel criteria has been provided in numerous comment letters and other correspondence with the USFWS. As part of the October 25, 2021 correspondence, the USFWS provided the Department with a "Hazard/Risk Assessment" for the "Evaluation of Acute and Chronic Toxicity of Nickel and Zinc to 2 Sensitive Freshwater Benthic Invertebrates Using Refined Testing Methods" as prepared by Ning Wang, James L. Kunz, Danielle M. Cleveland, Jeffery A. Steevens, Edward J. Hammer, Eric Van Genderen, Adam C. Ryan, and Christian E. Schlekat published in the Environmental Toxicology and Chemistry—Volume 39, Number 11—pp. 2256–2268, 2020, received May 11, 2020, revised June 3, 2020, and accepted July 30, 2020.
- 2. The Department has limited dissolved nickel data for the effluent from sewage treatment plants. However, the Department has been incorporating quarterly monitoring for total nickel in NPDES permits for publicly owned treatment plants that are discharging to waterways known to contain state and federally listed threatened and endangered mussel species. A summary of the data collected at the POTWs with nickel monitoring is as follows:

		PA0103373	PA0023931	PA0239861	PA0026271	PA0101923	PA0025470	PA0047201	PA0027367	PA0222585	PA0029467	PA0025291	PA0027120
		FOXBURG STP	CAMBRIDGE AREA JT AUTH STP	COCHRANTON BORO STP	MEADVILLE AREA STP	SAEGERTOWN AREA STP	FREDERICKSBURG STP	TIONESTA BORO WWTP	GREENVILLE SANI AUTH	BROKENSTRAW VALLEY AREA AUTH STP	NORTH WARREN MUNI STP	SOUTHWEST WARREN CNTY STP	WARREN CITY WMTP
L	JNITS	ug/L	mg/L					mg/L	mg/L	mg/L	mg/L	ug/L	mg/L
2017	4th QTR							3					0.05
2018	1st QTR		< 0.01	< 0.005	< 0.005			0.006	0.001				< 0.005
	2nd QTR		< 0.01	< 0.005	< 0.005			0.001	0.003				0.05
	3rd QTR		< 0.04	< 0.005	< 0.005			0.016	0.0001				0.01
	4th QTR		< 0.04	< 0.005	< 0.005		< 0.005	0.003	0.001		0.00518		< 0.05
2019	1st QTR		< 0.007	< 0.005	< 0.005		< 0.005	0.001	0.001		< 0.00400	< 0.02	< 0.05
	2nd QTR		< 0.007	< 0.005	< 0.005	0.007	< 0.005	0.001	0.0009	< 0.005	0.007	< 0.02	< 0.05
	3rd QTR		< 0.007	< 0.005	< 0.005	0.009	< 0.005	0.0003	0.002	< 0.005	0.04	< 0.02	< 0.05
	4th QTR	0.005	< 0.007	< 0.005	< 0.005	0.008	< 0.005	0.019	0.002	< 0.005	< 0.007	< 0.02	< 0.05
2020	1st QTR	< 0.005	< 0.007	< 0.005	< 0.005	< 0.007	< 0.005	0.001	0.0009	< 0.005	< 0.007	< 0.02	< 0.05
	2nd QTR	0.007	< 0.007	< 0.005	< 0.005	< 0.007	< 0.005	0.002	0.0007	< 0.005	< 0.007	< 0.02	< 0.05
	3rd QTR	0.006	< 0.007	< 0.005	< 0.005	0.011	< 0.005	0.004	0.001	< 0.005	0.007	< 0.02	< 0.05
	4th QTR	< 0.005	< 0.007	< 0.005	< 0.005	0.012	< 0.005	0.003	0.003	< 0.005	0.007	< 0.02	< 0.05
2021	1st QTR	< 0.005	< 0.007	< 0.005	< 0.005	< 0.007	< 0.005	0.001	0.005	< 0.005	0.007	< 0.02	< 0.05
	2nd QTR	0.005	< 0.007	< 0.005	< 0.005	0.008	< 0.005	0.006	0.004	< 0.005	0.007	< 0.02	< 0.05
	3rd QTR	< 0.005	< 0.007	< 0.005	< 0.005	0.011	< 0.005	0.003	0.001	0.005	< 0.007	0.02	< 0.05

As seen from this data, nickel is rarely above the USFWS criteria of 7.5 ug/L. The highest reported value that does not appear to be an outlier was 19 ug/L at the Tionesta Borough WWTP in the fourth quarter of 2019. Therefore, this value is used in the following calculations for the Tarrtown STP.

Facility:		Tarrtown STP							
Permit N	lumber:	PA0253201	Effective: N/A Expiration: N/A						
Outfall N	lo:	001							
Location	:	East Franklin Township, Armstrong (County						
Discharg		Allegheny River							
Site Spec	ific Mussel Survey Completed:	No							
District and			Community						
	e and Stream Characteristics	1	Comments						
Q_s	Stream Flow	1333 MGD / 2063 cfs	Fact Sheet						
Q_D	Discharge Flow	0.045 MGD / 0.06964 cfs	Fact Sheet						
C _{S(Cl⁻)}	Instream chloride Concentration	15.6 mg/L	Average WQN data (2010 to 2021 - USGS-03036500)						
C _{E(CI*)}	Discharge chloride (existing)	0 mg/L	From renewal application - Max of 3 grab samples						
C _{P(Cl⁻)}	Discharge chloride (proposed)	0 mg/L	From renewal application - Max of 3 grab samples						
C _{S(CI*)}	Instream nickel Concentration	5 μg/L	Assumed - No WQN data below the criteria of 7.3 µg/L (reported at < 50)						
C _{E(Ni)}	Discharge nickel (existing)	0 μg/L	From renewal application - Max of 3 grab samples						
C _{P(Ni)}	Discharge nickel (proposed)	0 μg/L	From renewal application - Max of 3 grab samples						
C _{S(Zn)}	Instream zinc Concentration	16.26 μg/L	Average WQN data (2010 to 2021 - USGS-03036500)						
C _{E(Zn)}	Discharge zinc (existing)	0 μg/L	From renewal application - Max of 3 grab samples						
Zn _{P(Cl*)}	Discharge zinc (proposed)	0 μg/L	From renewal application - Max of 3 grab samples						
C _{S(NH3-N)}	Instream NH ³ -N	0.03 mg/L	Average WQN data (2010 to 2021 - USGS-03036500)						
C _{E(NH3-N)}	Discharge NH ³ -N (existing)	7.45 mg/L	From renewal application - Max of 15 grab samples						
C _{P(NH3-N)}	Discharge NH ³ -N (proposed)	7.45 mg/L	From renewal application - Max of 15 grab samples						
pH_S	Instream pH	7.6 S.U.	Average WQN data (2010 to 2021 - USGS-03036500)						
Ts	Instream Temp.	25 °C	Default value for a WWF						
C _{C(NH3-N)}	Ammonia criteria	0.920 mg/L	From ammonia criteria comparison spreadsheet -using instream $p \ensuremath{H}$ and \ensuremath{Temp}						
C _{C(Cl} -)	Chloride criteria	78 mg/L	USFWS criteria						
C _{C(Ni)}	Nickel criteria	7.3 μg/L	USFWS criteria						
C _{C(Zn)}	Zinc criteria	13.18 μg/L	USFWS criteria						
Ws	Stream width	307 meters	Google Earth						

nia Criter	ria Calculations:			
pΗς	7.6 S.U.	(Default value is 7	7.0)	
Ts	25 °C	(Default value is 2	20°)	
Acute	Criteria			
	METHOD and UNITS	CRITERIA		Comments
	Old CMC (mg TAN/L) =	3.577		
	EPA 2013 CMC (mg TAN/L) =	5.226	Oncorhynchus present	* formula on pg. 41 (plateaus at 15.7 C
		5.226	Oncorhynchus absent	* formula on pg. 42 (plateaus at 10.2 C
Chroni	ic Criteria			
	METHOD and UNITS	CRITERIA		COMMENTS
	Old CMC (mg TAN/L) =	0.952		
C _{C(NH3-N}	N) EPA 2013 CMC (mg TAN/L) =	0.920		* formula on pg. 46 (plateaus at 7 C)

Endangered Mussel Species Impact Area Calculations:

Existing Area of Impact

☑ N/A - No Site Spedfic Mussel Survey Completed for this Discharger

Approximate Area of Impact Determined from Survey =	N/A m ²
Existing Mussel Density within Area of Impact =	
Rabbitsfoot (Quadrula cylindrical)	N/A per m²
Northern Riffleshell (Epioblasma torulosa rangiana)	N/A per m ²
Rayed Bean (Villosa fabalis)	N/A per m ²
Clubshell (Pleurobema clava)	N/A per m ²
Sheepnose (Plethobasus cyphyus)	N/A per m ²
Snuffbox (Epioblasma triquetra)	N/A per m ²
TOTAL	0 per m ²

(Enter N/A if no site specific survey has been completed)

Method 1 - Utilizing Site Specific Mussel Survey Information

☑ N/A - No Site Specific Mussel Survey Completed for this Discharger

This method utilizes a simple comparison of the size of the existing area of impact as determined from a site specific mussel survey and the chlorides in the existing discharge compared to the chlorides in the proposed discharge after the facility upgrades treatment technologies. This method is only applicable to where the stream impairment is caused by TDS and/or chlorides as the plume has been delineated through conductivity measurements.

Α.	Area of Impact Determined from Survey:	N/A	m²
В.	Chlorides in Existing Discharge:		0 mg/L
C.	Chlorides in Proposed Discharge after Treatment Facility Upgrades:		0 mg/L
D.	Approximate Area of Impact after Treatment Facility Upgrades:		N/A m ²

A/B = D/C Therefore, D = (A*C)/B

Endangered Mussel Species Impact Area Calculations: (continued...)

Method 2 - Mass Balance Relationship of Loading and Assimilative Capacity of Stream

	$L_{S(Cl^{-})}$ = Available Chloride Loading in Stream = $C_{C(Cl^{-})}$ - $C_{S(Cl^{-})}$ X Q_{S} (MGD) X 8.34 =	693,715 lbs/Day
_	L _{D-MAX(CL*)} = Current Maximium Discharge Chloride Loading exceeding criteria = {C _{E(CL*)} - C _{E(CL*)} } X Q _G (MGD) X 8.34 =	-29 lbs/Day
Chloride (CI)	$%_{E(Cl^{+})}$ = Percent of Stream Capacity for Current Loading = $L_{D-MAX(Cl^{+})} / L_{S(Cl^{+})}$ =	0% of Stream Capacity
ride	L _{D(CT)} = Proposed Discharge Cl ⁻ Loading exceeding criteria after Treatment Facility Upgrades = (C _{P(CT)} - C _{P(CT)}) X Q _D (MGD) X 8.34 =	-29.2734 lbs/Day
이넊	$%_{P(Cl^{-})}$ = Percent of Stream Capacity for Proposed Loading = $L_{D(Cl^{-})} / L_{S(Cl^{-})}$ =	0.00% of Stream Capacity
0	Proposed Area of Impact due to Chloride * = $(%_{P(Cl^{-})} X W_s)^2 X 0.5 =$	0.0001 m ²
	* assuming equal flow across transect and 90° spread at discharge	
	$L_{S(N)}$ = Available Nickel Loading in Stream = $C_{C(N)}$ - $C_{S(N)}$ X $Q_{S}(MGD)$ X 8.34 =	25,570 lbs/Day
	$L_{D-MAX[N]}$ = Current Maximium Discharge Nickel Loading exceeding criteria = $(C_{E(N)} - C_{E(N)}) \times Q_D(MGD) \times 8.34 =$	-3 lbs/Day
(E	$\%_{E(N)}$ = Percent of Stream Capacity for Current Loading = $L_{D-MAX(N)} / L_{S(N)}$ =	0% of Stream Capacity
Níckel(Ni)	$L_{D(N)}$ = Proposed Discharge Ni Loading exceeding criteria after Treatment Facility Upgrades = $(C_{P(N)} - C_{P(N)}) \times Q_D(MGD) \times 8.34 =$	-2.73969 lbs/Day
Nic	$%_{P(Ni)}$ = Percent of Stream Capacity for Proposed Loading = $L_{D(Ni)} / L_{S(Ni)}$ =	-0.01% of Stream Capacity
	Proposed Area of Impact due to Nickel * = $(\%_{P(N)} X W_s)^2 X 0.5 =$	0.0005 m ²
	* assuming equal flow across transect and 90° spread at discharge	
	$L_{S(Zn)}$ = Available Zinc Loading in Stream = $C_{C(Zn)}$ - $C_{S(Zn)}$ X $Q_{S}(MGD)$ X 8.34 =	-34,241 lbs/Day
	$L_{D-MAX(Zn)}$ = Current Maximium Discharge Zinc Loading exceeding criteria = $(C_{E(Zn)}, C_{E(Zn)})$ X $Q_D(MGD)$ X 8.34 =	-5 lbs/Day
(C)	$\Re_{E(Zn)}$ = Percent of Stream Capacity for Current Loading = $L_{D-MAX(Zn)} / L_{S(Zn)}$ =	0% of Stream Capacity
Zinc (Zn)	$L_{D(Zn)}$ = Proposed Discharge Zn Loading exceeding criteria after Treatment Facility Upgrades = $\{C_{P(Zn)} - C_{P(Zn)}\}$ X $Q_0(MGD)$ X 8.34 =	-4.946454 lbs/Day
Zir	$\Re_{P(2n)}$ = Percent of Stream Capacity for Proposed Loading = $L_{D(2n)} / L_{S(2n)}$ =	0.01% of Stream Capacity
	Proposed Area of Impact due to Zinc * = $(\%_{P(Zn)} \times W_s)^2 \times 0.5 =$	0.0010 m ²
	* assuming equal flow across transect and 90° spread at discharge	
12	$L_{S(NH3-N)}$ = Available NH3-N Loading in Stream = $C_{C(NH3-N)}$ - $C_{S(NH3-N)}$ X Q _S (MGD) X 8.34 =	9,894 lbs/Day
ger	$L_{D-MAX(NH3-N)}$ = Current Maximium Discharge NH3-N Loading = $C_{E(NH3-N)}$ X Q_0 (MGD) X 8.34 =	3 lbs/Day
E Etro	$\Re_{E(NH3-N)}$ = Percent of Stream Capacity for Current Loading = $L_{D-MAX(NH3-N)}/L_{S(NH3-N)}$ =	0% of Stream Capacity
onia-Nitr (NH3-N)	L _{D(NH3-N)} = Proposed Discharge NH3-N Loading after Treatment Facility Upgrades = C _{P(NH3-N)} - C _{C(NH3-N)} X Q ₀ (MGD) X 8.34 =	2 lbs/Day
Ammonia-Nitrogen (NH3-N)	$%_{P(NH3-N)}$ = Percent of Stream Capacity for Proposed Loading = $L_{D(NH3-N)}$ / $L_{S(NH3-N)}$ =	0.02% of Stream Capacity
l iii	Proposed Area of Impact due to NH3-N * = $(\%_{P(NH3-N)} X W_s)^2 X 0.5 =$	0.0019 m ²
4	* assuming equal flow across transect and 90° spread at discharge	

Endangered Mussel Species Impact Area Calculations: (continued...)

Method 3-Mass Balance Relationship of Stream Flow, Proposed Effluent Quality, and Mussel Protection Criteria

	$\mathbf{Q}_{A(C ^{\gamma})}C_{S(C ^{\gamma})} + \mathbf{Q}_{D}C_{P(C ^{\gamma})} = \mathbf{Q}_{T}C_{C(C ^{\gamma})}$	
	Q _{A(Cl')} = Assimilative Stream Flow Required to Achieve Criteria (cfs)	
	$Q_T = Q_S + Q_D(cfs)$	
_	$Q_{A(Cl^{-})}C_{S(Cl^{-})} + Q_{D}C_{P(Cl^{-})} = (Q_{D}+Q_{S})C_{C(Cl^{-})}$	
Chloride (CI)	SOLVING FOR $Q_{A(Cl^{-})} = [(Q_DC_{P(Cl^{-})}/C_{C(Cl^{-})}) - Q_D)] / (1 - C_{S(Cl^{-})}/C_{C(Cl^{-})}) =$	-0.08705 cfs
prid	% _{P(Cl⁻)} = Percent of Stream Width Required to Assimilate Chlorides to Criteria	
훒	Concentration = $Q_{A(Cl^2)}/Q_S(cfs)$ =	-0.0042%
	W _{I(Cl')} = Proposed Width of Stream required to Assimilate Chlorides to Criteria	
	Concentration = W _s X % _{P(Cl⁻)}	-0.012954 meters
	Proposed Area of Impact due to Chloride * = $(W_{I(Cl)})^2 \times 0.5$ =	0.0001 m ²
	* assuming equal flow across transect and 90° spread at discharge	
	$Q_{A(Ni)}C_{S(Ni)} + Q_DC_{P(Ni)} = Q_TC_{C(Ni)}$	
	Q _{A(NI)} = Assimilative Stream Flow Required to Achieve Criteria (cfs)	
	$Q_T = Q_S + Q_D(cfs)$	
_	$Q_{A(N)}C_{S(N)} + Q_DC_{P(N)} = (Q_D + Q_S)C_{Q(N)}$	
Vickel (Ni)	SOLVING FOR $Q_{A[Ni]} = [(Q_DC_{P(Ni)} / C_{C(Ni)}) - Q_D)] / (1 - C_{S(Ni)} / C_{C(Ni)}) =$	-0.2210313 cfs
ike	% _{P(CI⁻)} = Percent of Stream Width Required to Assimilate Nickel to Criteria	
ž	Concentration = Q _{A(Ni)} / Q _S (cfs) =	-0.0107%
	W _{I(Ni)} = Proposed Width of Stream required to Assimilate Nickel to Criteria	0.0000000000000000000000000000000000000
	Concentration = W _S X % _{P(Ni)}	-0.032892 meters
	Proposed Area of Impact due to Nickel * = $(W_{I(N)})^2 \times 0.5$ =	0.0005 m ²
	* assuming equal flow across transect and 90° spread at discharge	1
	$Q_{A(Zn)}C_{S(Zn)} + Q_DC_{P(Zn)} = Q_TC_{C(Zn)}$	
	Q _{A(Zn)} = Assimilative Stream Flow Required to Achieve Criteria (cfs)	
	$Q_T = Q_S + Q_D(cfs)$	
	$Q_{A(Zn)}C_{S(Zn)} + Q_DC_{P(Zn)} = (Q_D+Q_S)C_{C(Zn)}$	
(uz	SOLVING FOR $\mathbf{Q}_{A(2n)} = [(Q_D C_{PZn}) / C_{C(2n)}) - Q_D)] / (1 - C_{S(2n)} / C_{C(2n)}) =$	0.29800494 cfs

Zinc ($\%_{P(G')}$ = Percent of Stream Width Required to Assimilate Zinc to Criteria Concentration = $Q_{A(Zn)}/Q_S$ (cfs) =	0.0144%
	$W_{i(2n)}$ = Proposed Width of Stream required to Assimilate Zinc to Criteria Concentration = $W_s X \%_{P2n]}$	0.044347 meters
	Proposed Area of Impact due to Chloride * = $(W_{I(CF)})^2 \times 0.5$ = * assuming equal flow across transect and 90* spread at discharge	0.0010 m ²
	$Q_{A(NH3-N)}C_{S(NH3-N)} + Q_DC_{P(NH3-N)} = Q_TC_{C(NH3-N)}$	
-	Q _{A(NH3-N)} = Assimilative Stream Flow Required to Achieve Criteria (cfs)	
13-1	$Q_T = Q_S + Q_D(cfs)$	
Ž	$Q_{A(NH3-N)}C_{S(NH3-N)} + Q_DC_{P(NH3-N)} = (Q_D+Q_S)C_{C(NH3-N)}$	
gen	SOLVING FOR $Q_{A(NH3-N)} = [(Q_DC_{P(NH3-N)} / C_{C(NH3-N)}) - Q_D)] / (1 - C_{S(NH3-N)} / C_{C(NH3-N)}) =$	0.510954 cfs
<u>=</u>	% _{P(NH3-N)} = Percent of Stream Width Required to Assimilate NH3-N to Criteria	
a-F	Concentration = $Q_{A(NH3-N)}/Q_{S}(cfs)$ =	0.0248%
Ammonia-Nitrogen (NH3-N)	W _{I(NH3-N)} = Proposed Width of Stream required to Assimilate NH3-N to Criteria Concentration = W _S X % _{P(NH3-N)}	0.076036 meters
Ą	Proposed Area of Impact due to NH3-N * = $(W_{I(NH3-N)})^2 \times 0.5$ =	0.0029 m ²
	* assuming equal flow across transect and 90° spread at discharge	0.0029 111

Based on this sampling data, the existing discharge from the Tarrtown STP is not believed to be having any adverse effects on threatened or endangered mussel species in the Allegheny River considering that the discharge appears to generally be meeting the criteria established by the USFWS at the end of pipe. Additionally, the Department did consider what impacts, if any, the reported slight exceedances of the USFWS criteria in the discharge effluent will have on threatened and endangered mussel species. The Department determined that the discharge is not expected to have any adverse effects on threatened or endangered mussel species in the Allegheny River considering the size of the proposed discharge and the instantaneous assimilative capacity of the river. This existing discharge (0.045 MGD), and its associated pollutants of concern, are not expected to be measurable at levels that would impact mussels once it mixes with the river. As shown on the "impact area" calculations, the subject discharge is expected to almost instantaneously dilute with the river for Chlorides, Nickel, Zinc, and Ammonia-Nitrogen.

Please note that the nickel impact area is based on assumptions and a worst-case scenario for both the in-stream concentration as well as the effluent concentration. All of the "impact area" calculations are based on the worst-case scenario of the stream being at low flow (Q₇₋₁₀) flow conditions and the discharge from the treatment plant being at the design capacity. The likelihood of all of these conditions being at the "worst-case" scenario is not anticipated. Please also note that as discussed below, the Department will be able to further evaluate nickel concentrations in the effluent through proposed effluent monitoring. The Department may also collect in-stream nickel data over the course of the upcoming permit cycle at various facilities to be able to better evaluate the associated "impact areas".

However, the Department will consider the following in the Tarrtown STP draft NPDES permit:

- 2/month effluent monitoring for Ammonia-Nitrogen
- 1/quarter effluent monitoring for Chloride.
- 1/quarter effluent monitoring for Nickel.
- 1/quarter effluent monitoring for Zinc.

This monitoring will provide a dataset as a means of further evaluating potential impacts in the upcoming permit term. This data will also allow the Department to evaluate the need for pollutant reduction evaluations in future NPDES permit renewals for some or all of these pollutants.

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

			Effluent L	imitations.			Monitoring Re	quirements
Parameter	Mass Units	(lbs/day) (1)		Concentrat	ions (mg/L)		Minimum (2)	Required
Farameter	Average Monthly	Average Weekly	Average Monthly	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	XXX	XXX	XXX	XXX	XXX	1/week	Measured
pH (S.U.)	XXX	XXX	6.0 Daily Min	XXX	9.0 Daily Max	XXX	5/week	Grab
DO	XXX	XXX	4.0 Daily Min	XXX	XXX	XXX	5/week	Grab
TRC	XXX	XXX	XXX	0.5	XXX	1.6	5/week	Grab
CBOD5	9.4	XXX	25.0	38.0 Wkly Avg	XXX	50.0	2/month	Grab
BOD5 Raw Sewage Influent	Report	XXX	XXX	Report	XXX	XXX	2/month	Grab
TSS	11.3	XXX	30.0	45.0 Wkly Avg	XXX	60.0	2/month	Grab
TSS Raw Sewage Influent	Report	XXX	XXX	Report	XXX	XXX	2/month	Grab
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2000 Geo Mean	XXX	10000	2/month	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	XXX	XXX	200 Geo Mean	XXX	1000	2/month	Grab
E. Coli (No./100 ml)	XXX	XXX	XXX	XXX	XXX	Report	1/year	Grab
Total Nitrogen	XXX	XXX	XXX	Report Annl Avg	XXX	XXX	1/year	Grab
Ammonia-Nitrogen	XXX	XXX	Report	XXX	XXX	Report	2/month	Grab
Total Phosphorus	XXX	XXX	XXX	Report Annl Avg	XXX	XXX	1/year	Grab

Outfall 001, Continued (from Permit Effective Date through Permit Expiration Date)

			Effluent L	imitations			Monitoring Red	quirements
Parameter	Mass Units	(lbs/day) (1)		Concentrat	ions (mg/L)		Minimum ⁽²⁾	Required
Faianietei	Average Monthly	Average Weekly	Average Monthly	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
		-	-	Report				
Total Nickel	XXX	XXX	XXX	Avg Qrtly	XXX	XXX	1/quarter	Grab
				Report				
Total Zinc	XXX	XXX	XXX	Avg Qrtly	XXX	XXX	1/quarter	Grab
				Report				
Chloride	XXX	XXX	XXX	Avg Qrtly	XXX	XXX	1/quarter	Grab

Compliance Sampling Location: at Outfall 001, after disinfection.

Flow is monitor only based on Chapter 92a.61. The limits for pH and Dissolved Oxygen are technology-based on Chapter 93.7. The Total Residual Chlorine (TRC) limits are technology-based on Chapter 92a.48. The limits for CBOD₅, Total Suspended Solids (TSS), and Fecal Coliforms are technology-based on Chapter 92a.47. Monitoring for E. Coli, Total Nitrogen, Ammonia-Nitrogen, Total Phosphorus, and Chloride is based on Chapter 92a.61.

Attachment 1

WQM 7.0 Effluent Limits

	SWP Basin Stream	m Code		Stream Name	2		
	18A 4	2122		ALLEGHENY RIV	/ER		
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
48.000	Tarrtown STP	PA0253201	0.045	CBOD5	25		
				NH3-N	25	50	
				Dissolved Oxygen			4

WQM 7.0 D.O.Simulation

SWP Basin Str	eam Code			Stream Name	
18A	42122		Al	LEGHENY RIVER	
<u>RMI</u>	Total Discharge	Flow (mgd	<u>) Ana</u>	lysis Temperature (º୯	C) Analysis pH
48.000	0.045	5		25.000	7.000
Reach Width (ft)	Reach Dep	oth (ft)		Reach WDRatio	Reach Velocity (fps)
1116.238	0.921	1		1212.292	2.007
Reach CBOD5 (mg/L)	Reach Kc (<u>1/days)</u>	<u>R</u>	each NH3-N (mg/L)	Reach Kn (1/days)
2.00	0.00	N		0.00	1.029
Reach DO (mg/L)	Reach Kr (Kr Equation	Reach DO Goal (mg/L)
7.540	9.983	3		Tsivoglou	5
Reach Travel Time (days)		Subreach	Reculte		
0.030	Tra∨Time	CBOD5	NH3-N	D.O.	
	(days)	(mg/L)	(mg/L)	(mg/L)	
	0.003	2.00	0.00	7.54	
	0.006	2.00	0.00	7.54	
	0.009	2.00	0.00	7.54	
	0.012	2.00	0.00	7.54	
	0.015	2.00	0.00	7.54	
	0.018	2.00	0.00	7.54	
	0.021	2.00	0.00	7.54	
	0.024	2.00	0.00	7.54	
	0.027	2.00	0.00	7.54	
	0.030	2.00	0.00	7.54	

WQM 7.0 Modeling Specifications

Parameters	•	Both	Use Inputted Q1-10 and Q30-10 Flows	✓
WLA Metho	od	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-1	0 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7	-10 Ratio	1.36	Temperature Adjust Kr	✓
D.O. Satura	ation	90.00%	Use Balanced Technology	✓
D.O. Goal		5		

Input Data WQM 7.0

	SWF Basii	N=1001510		Stre	eam Name		RMI	El	evation (ft)	Drainage Area (sq mi)	Slope (ft/ft)	PV Witho (m	Irawal	Apply FC
	18A	42	122 ALLEC	GHENY R	IVER		48.00	00	785.00	8970.00	0.0000	00	0.00	✓
					St	ream Dat	a							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	n Tem	<u>Tributary</u> np pH	Τe	<u>Strear</u> emp	<u>n</u> pH	
Cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)	(PC)		
Q7-10 Q1-10 Q30-10	0.230	0.00 0.00 0.00	0.00	0.000 0.000 0.000	0.000	0.0	0.00	0.	00 2	5.00 7.	00	0.00	0.00	
					Di	scharge I	Data							
			Name	Per	rmit Number	Disc	Permitt Disc Flow (mgd)	Di:	sc Res	Diserve Ter ctor	np	Disc pH		
		Tarrt	own STP	PA	0253201	0.0450	0.000	00 0.	0000	0.000	25.00	7.20		
					Pa	rameter l	Data							
				Paramete	r Name			Trib Conc	Stream Conc	Fate Coef				
	_					(m	g/L) (r	ng/L)	(mg/L)	(1/days)		_		
			CBOD5			:	25.00	2.00	0.00	1.50				
			Dissolved	Oxygen			4.00	7.54	0.00	0.00				
			NH3-N			:	25.00	0.00	0.00	0.70				

Input Data WQM 7.0

						at Dutt	4 11 4.							
	SWP Basin	Strea Cod		Stre	eam Name		RMI		evation (ft)	Drainage Area (sq mi)	Slope (ft/ft)	PW Withd (mg	rawal	Appl FC
	18A	421	122 ALLEC	GHENY R	IVER		47.0	00	780.00	8971.00	0.0000	0	0.00	✓
					St	ream Dat	a							
Design	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	<u>Tributary</u> np pH	Te	<u>Strear</u> mp	<u>n</u> pH	
Cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)	(°	PC)		
Q7-10 Q1-10 Q30-10	0.230	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000	0.0	0.00	0.0	00 2	5.00 7.0	00	0.00	0.00	
					Di	scharge l	Data							
			Name	Pei	rmit Number	Disc	Permitt Disc Flow (mgd	Dis Flo	c Res	Dis erve Ten ctor (°C	np	Disc pH		
		iii.				0.000	0.000	0.0	0000	0.000 2	5.00	7.00		
					Pa	rameter l	Data							
				Paramete	r Name			Trib Conc	Stream Conc	Fate Coef				
						(m	ng/L) (r	mg/L)	(mg/L)	(1/days)				
			CBOD5				25.00	2.00	0.00	1.50		_		
			Dissolved	Oxygen			3.00	8.24	0.00	0.00				
			NH3-N				25.00	0.00	0.00	0.70				

WQM 7.0 Wasteload Allocations

SWP Basin	Stream Code	Stream Name
18A	42122	ALLEGHENY RIVER

RMI	Discharge Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
48.00	0 Tarrtown STP	11.07	50	11.07	50	0	0
	n	š					
H3-N	Chronic Allocati					~	
H3-N (Chronic Allocati	Ons Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction

Dissolved Oxygen Allocations

		CBC	DD5	<u>NH</u>	<u>3-N</u>	Dissolved	d Oxygen	Critical	Percent
RMI	Discharge Name	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Reach	Reduction
48.00	Tarrtown STP	25	25	25	25	4	4	0	0

WQM 7.0 Hydrodynamic Outputs

	SWP Basin Stream Code					Stream Name						
18 A		18A	42122			ALLEGHENY RIVER						
RMI	Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow	Reach Slope	Depth	Width	W/D Ratio	Velocity	Reach Trav Time	Analysis Temp	Analysis pH
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)	
Q7-1	0 Flow											
48.000	2063.10	0.00	2063.10	.0696	0.00095	.921	1116.24	1212.29	2.01	0.030	25.00	7.00
Q1-1	0 Flow											
48.000	1320.38	0.00	1320.38	.0696	0.00095	NA	NA	NA	1.56	0.039	25.00	7.00
Q30-	10 Flow	,										
48.000	2805.82	0.00	2805.82	.0696	0.00095	NA	NA	NA	2.38	0.026	25.00	7.00

Attachment 2

TRC EVALUATION										
Input appropriate values in A3:A9 and D3:D9										
865	= Q stream (cfs)	0.5	= CV Daily						
0.045	= Q discharg	e (MGD)	0.5	= CV Hourly						
	no. sample		1	= AFC_Partial I	Mix Factor					
0.3	= Chlorine D	emand of Stream	1	= CFC_Partial Mix Factor						
0	= Chlorine D	emand of Discharge	15	= AFC_Criteria Compliance Time (min)						
0.5	= BAT/BPJ V	alue	720	= CFC_Criteria Compliance Time (min)						
0	= % Factor o	of Safety (FOS)	0	0 =Decay Coefficient (K)						
Source	Reference	AFC Calculations		Reference	CFC Calculations					
TRC	1.3.2.iii	WLA afc =	3963.748	1.3.2.iii	WLA cfc = 3864.336					
PENTOXSD TRG	5.1a	LTAMULT afc =	0.373	5.1c	LTAMULT cfc = 0.581					
PENTOXSD TRG	5.1b	LTA_afc=	1476.987	5.1d	LTA_cfc = 2246.544					
Source		□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	nt Limit Calcu	lations						
PENTOXSD TRG	5.1f	Emuei	AML MULT =	1515151515						
PENTOXSD TRG	5.11 5.1g	AVC MONU	AMIL MOLT		BAT/BPJ					
FEINTONSD ING	5. Ig		_IMIT (mg/l) = _IMIT (mg/l) =		BAT/BF3					
			(,							
WLA afc	/ 040/a/-b*AI	FC_tc)) + [(AFC_Yc*Qs*.019/	Odto/-ktAEC	4011						
WLA alc	PERSON SUSPENSES IN SURE SPECIA			_10;;						
LTAMULT afc	+ Xd + (AFC_Yc*Qs*Xs/Qd)]*(1-FOS/100) EXP((0.5*LN(cvh^2+1))-2.326*LN(cvh^2+1)^0.5)									
LTA afc	wla afc*LTAMULT afc									
	IIC WIA_AIC LTANIOLT_AIC									
WLA_cfc	WLA_cfc (.011/e(-k*CFC_tc) + [(CFC_Yc*Qs*.011/Qd*e(-k*CFC_tc))									
8-8	+ Xd + (CFC_Yc*Qs*Xs/Qd)]*(1-FOS/100)									
LTAMULT_cfc	EXP((0.5*LN(cvd^2/no_samples+1))-2.326*LN(cvd^2/no_samples+1)^0.5)									
LTA_cfc	wla_cfc*LTAMULT_cfc									
AML MULT										
AVG MON LIMIT MIN(BAT_BPJ,MIN(LTA_afc,LTA_cfc)*AML_MULT)										
INST MAX LIMIT 1.5*((av_mon_limit/AML_MULT)/LTAMULT_afc)										

Attachment 3

WATER MANAGEMENT SYSTEM OPEN VIOLATIONS BY CLIENT

Client ID: 77287 Client: All

Open Violations: 2

CLIENT ID	CLIENT	PFID	FACILITY	PF KIND	PF STATUS	1555765	PROGRAM SPECIFIC ID
77287	EAST FRANKLIN TWP ARMSTRONG CNTY	490537	FOX HOLLOW ESTS STP	Sewage Publicly Owned (Muni)	Active	WPC NPDES	PA0217476
77287	EAST FRANKLIN TWP ARMSTRONG CNTY	490537	FOX HOLLOW ESTS STP	Sewage Publicly Owned (Muni)	Active	WPC NPDES	PA0217476

INSPID				VIOLATION CODE	VIOLATION	PF INSPECTOR	INSP REGION
3205962	920555	PF	06/14/2021	92A.44	NPDES - Violation of effluent limits in Part A of permit	STONESIFER, CLINTON	NWRO
3205962	937813	PF	06/14/2021	CSL611	CSL - Failure to comply with terms and conditions of a WQM permit	STONESIFER, CLINTON	NWRO