

Southwest Regional Office CLEAN WATER PROGRAM

Application Type

Facility Type

Major / Minor

Renewal

Industrial

Minor

NPDES PERMIT FACT SHEET INDIVIDUAL INDUSTRIAL WASTE (IW) AND IW STORMWATER

 Application No.
 PA0253561

 APS ID
 1086027

 Authorization ID
 1435353

Applicant Name	Some	erset County General Authority	Facility Name	Quemahoning Water System
Applicant Address	300 N	Center Avenue Suite 500	Facility Address	458 Mastillo Road
	Some	erset, PA 15501-1499	_	Hollsopple, PA 15935-6503
Applicant Contact	Rand	y Welker	Facility Contact	Terry Stuztman or Matt Estep
Applicant Phone	(814)	445-1400	Facility Phone	(814) 629 - 9460
Client ID	9108	5	Site ID	628115
SIC Code	4941		Municipality	Jenner Township
SIC Description	Trans	. & Utilities - Water Supply	County	Somerset
Date Application Rece	eived	March 30, 2023	EPA Waived?	Yes
Date Application Accepted		September 7, 2023	If No, Reason	

Summary of Review

The Department received a timely renewal NPDES permit application from Somerset County General Authority for the Quemahoning Water System facility located in Jenner Township of Somerset County on March 30, 2023. The facility is a potable public water treatment plant (WTP) with an SIC Code of 4941. The facility's existing permitted discharges consist of treated clarifier rinse and filter backwash waters, which is discharged to an UNT to Quemahoning Creek and then enters the Quemahoning Reservoir.

The Quemahoning Water System Facility (plant capacity rated at 3 mgd) purifies water withdrawn from the Quemahoning Reservoir via the Cambria Somerset Authority 66" pipeline, for public consumption. The raw water is treated with the following chemicals: Polyaluminum Chloride, Potassium Permanganate, Coagulant Aid. The water then goes through a static, in-line mixer prior to entering one (1) of four (4) filter beds. Finished water then flows to the clearwell where the water is further treated with the following chemicals are added as needed: Chlorine, Fluoride and Caustic Soda. From the clearwell, the water is pumped to a 2-million-gallon storage tank, then delivered to the distribution system. The clarifier rinse and filter backwash waters are conveyed to the two (2) in-line settling ponds (140,000-gallon capacity each). Settling pond number 1 decants to settling pond number 2, which then discharges via Outfall 001 to UNT to Quemahoning Creek then to the Quemahoning Reservoir.

Residual waste disposal must meet solid waste regulations.

Part C language in the draft permit provides controls on floating solids, chemical additives, residual solids, Total Residual Chlorine and Sedimentation Basin Cleaning.

It is recommended that a draft permit be published for public comment in response to this application.

Approve	Deny	Signatures	Date
Х		Curtis Holes, P.E. / Environmental Engineer	November 2, 2023
Х		Michael E. Fifth, P.E. / Environmental Engineer Manager	November 6, 2023

Summary of Review

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Discharge, Receiving Waters and Water Supply Information							
Outfall No. 001		Design Flow (MGD)	0.146				
Latitude 40° 1	0' 46"	Longitude	-78º 58' 37"				
Quad Name Hoov	versville	Quad Code	1714				
Wastewater Descripti	ion: Treated clarifier rinse and fi	lter backwash waters.					
Receiving Waters _	UNT to Quemahoning Creek	Stream Code	45387				
NHD Com ID	123719413	RMI	0.834				
Drainage Area	3.29 mi ²	Yield (cfs/mi²)	0.042 cfs/mi ²				
Q ₇₋₁₀ Flow (cfs)	0.137 cfs	Q ₇₋₁₀ Basis	USGS StreamStats				
Elevation (ft)	1630 ft.	Slope (ft./ft.)					
Watershed No.	18-E	Chapter 93 Class.	CWF				
Existing Use		Existing Use Qualifier					
Exceptions to Use _	None	Exceptions to Criteria	None				
Assessment Status	Attaining Use Aquatic Life						
Cause(s) of Impairme							
Source(s) of Impairme	ent Abandoned Mine Drainage,	, Agriculture, Urban Runoff/Sto					
TMDL Status	Final, 01/29/2010	Kiskiminetas Name Watersheds	s-Conemaugh River TMDL				
	·						
		Greater Johnstown Water Aut	•				
	Public Water Supply Intakes	Riverside & Saltlick (5.4 MGD	<u>) </u>				
PWS Waters Qu	uemahoning Creek	Flow at Intake (cfs)	5.99				
PWS RMI 1.4	424201	Distance from Outfall (mi)	1.6 mi				

Changes Since Last Permit Issuance: None

Jerome 219

Dairy 20

Shau S An Ale Pine Run

Quemahoning Cham Ro

Figure 1: Basin Delineation for Outfall 001

Compliance History

DMR Data for Outfall 001 (from September 1, 2022 to July 31, 2023)

Parameter	Limit	JUL-23	JUN-23	MAY-23	APR-23	MAR-23	FEB-23	JAN-23	DEC-22	NOV-22	OCT-22	SEP-22
Flow (MGD)												
Average Monthly	Report	0.176	0.124	0.145	0.189	0.190	0.209	0.243	0.164	0.153	0.140	0.144
Flow (MGD)												
Daily Maximum	Report	0.807	0.233	0.383	0.319	0.269	0.395	0.335	0.267	0.259	0.217	0.211
pH (S.U.)												
Daily Minimum	6.0	7.3	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.3	7.3	7.2
pH (S.U.)												
Daily Maximum	9.0	7.3	7.5	7.4	7.4	7.4	7.5	7.5	7.4	7.5	7.4	7.5
TRC (mg/L)												
Average Monthly	0.5	0.11	0.05	0.09	0.14	0.14	0.10	0.13	0.12	0.09	0.10	0.08
TRC (mg/L)												
Daily Maximum	1.0	0.11	0.06	0.11	0.15	0.17	0.10	0.17	0.13	0.10	0.10	0.09
TSS (mg/L)												
Average Monthly	30.0	2.5	2.0	7.5	5.5	3.0	2.5	3.5	5.5	2.0	2.0	2.0
TSS (mg/L)												
Daily Maximum	60.0	3.0	2.0	12.0	6.0	4.0	3.0	5.0	6.0	2.0	2.0	2.0
Total Dissolved Solids												
(mg/L)		4.40	400		404	400	400	400		4=0	4.0=	1
Average Monthly	Report	146	132	121	124	120	129	139	151	150	127	173
Total Dissolved Solids												
(mg/L)	D	474	400	404	400	400	400	4.40	454	450	400	000
Daily Maximum	Report	174	138	124	126	126	130	142	154	152	132	202
Total Aluminum												
(mg/L) Average Monthly	0.75	0.40	0.35	1.10	0.50	0.35	0.40	0.40	0.70	0.25	0.30	0.35
Total Aluminum	0.75	0.40	0.35	1.10	0.50	0.35	0.40	0.40	0.70	0.25	0.30	0.35
(mg/L)												
Daily Maximum	1.5	0.40	0.40	1.80	0.60	0.40	0.50	0.50	0.80	0.30	0.30	0.40
Total Iron (mg/L)	1.5	0.40	0.40	1.00	0.00	0.40	0.50	0.50	0.00	0.50	0.50	0.40
Average Monthly	2.0	0.05	0.05	0.10	0.09	0.06	0.07	0.06	0.08	0.05	0.05	0.05
Total Iron (mg/L)	2.0	0.00	0.00	0.10	0.00	0.00	0.07	0.00	0.00	0.00	0.00	0.00
Daily Maximum	4.0	0.05	0.05	0.14	0.10	0.07	0.08	0.06	0.10	0.05	0.05	0.05
Total Manganese		5.55	5.55	5	55	5.5.	0.00	5.55	55	5.55	5.55	5.55
(mg/L)												
Average Monthly	1.0	0.34	0.37	0.36	0.19	0.11	0.10	0.08	0.22	0.08	0.12	0.24
Total Manganese												
(mg/L)												
Daily Maximum	2.0	0.35	0.37	0.53	0.19	0.13	0.12	0.09	0.24	0.09	0.13	0.30

Compliance History

Effluent Violations for Outfall 001, from: September 1, 2022 To: July 31, 2023

Parameter	Date	SBC	DMR Value	Units	Limit Value	Units
Total Aluminum	05/31/23	Avg Mo	1.10	mg/L	0.75	mg/L
Total Aluminum	05/31/23	Daily Max	1.80	mg/L	1.5	mg/L

Summary of Inspections: The last inspection conducted by the Department was on January 17, 2023 by Lisa Milsop and one violation noted. Failure to comply with Part A effluent limitations -

Review of November 2019 through November 2022

August 2020 - Total Manganese Daily Max & Monthly Average

October 2020 - Total Aluminum Monthly Average

March 2022 - Total Aluminum Monthly Average

Other Comments: None

Development of Effluent Limitations						
Outfall No.	001	Design Flow (MGD)	0.146			
Latitude	40° 10' 46"	Longitude	-78° 58' 37"			
Wastewater D	escription:	Treated clarifier rinse and filter backwash waters.				

Technology-Based Limitations

The Quemahoning Water System facility is not subject to Federal Effluent Limitation Guidelines (ELGs) as the SIC code is not listed under 40 CFR parts 405 through 471.

Regulatory Effluent Standards and Monitoring Requirements

The pH effluent range for all Industrial waste process and non-process discharges pursuant of 25 Pa. Code § 92a.48(a)(2) and 25 Pa. Code § 95.2 is indicated in Table 1 below.

Flow monitoring is required pursuant to 25 Pa. Code § 92a.61(d)(1) as indicated in Table 1 below.

Pursuant to 25 Pa. Code § 95.2(4) effluent standards for industrial wastes may not contain more than 7 mg/L of dissolved iron as indicated in Table 1 below.

Pursuant to 25 Pa. Code § 92a.48(b) the imposition of technology-based Total Residual Chlorine (TRC) limits for facilities that use chlorination and that are not already subject to TRC limits based on applicable federal ELG's or a facility specific BPJ evaluation as indicated in Table 1 below.

Table 1. Regulatory Effluent Standards

Parameter	Monthly Avg.	Daily Max	IMAX
Flow (MGD)	Monitor	Monitor	
Iron, Dissolved			7.0 mg/l
pH (S.U.)	6-9 at all times		
TRC	0.5 mg/l		1.6 mg/l

Total Dissolved Solids (TDS)

Integral to the implementation of 25 Pa. Code § 95.10 is the principle that existing, authorized mass loadings of TDS are exempt from any treatment requirements under these provisions. Existing mass loadings of TDS up to and including the maximum daily discharge loading for any existing discharge, provided that the loading was authorized prior to August 21, 2010 are exempt. Discharge loadings of TDS authorized by the Department are typically exempt from the treatment requirements of Chapter 95.10 until the net TDS loading is increased, an existing discharge proposes a hydraulic expansion or a change in the waste stream. If there are existing mass or production-based TDS effluent limits, then these are used as the basis for the existing mass loading.

During the 2018 permit renewal, it was determined that the 1 MGD expansion of the facility was a *de minimus* increase threshold (increase amount of 64 lbs/day < trigger amount of 5,000 lbs/day). Since the previous permit, the facility has not expanded the capacity of the plant. Therefore, the facility is exempt from 25 Pa. Code § 95.10 treatment requirements. TDS shall be included in the parameter monitoring as monitor/report at a frequency of 2 samples per month, consistent with currently facility sampling procedures.

Best Practicable Control Technology Currently Achievable (BPT)

The Department's reference document *Technology-Based Control Requirements for Water Treatment Plant Wastes* (DEP-ID 362-2183-003) established BPT for discharges of WTPs wastewater, which are illustrated in Table 2 below.

Table 2. BPT Limits for WTP Filter Backwash Wastewater

Parameter	Monthly Avg. (mg/l)	Daily Max (mg/l)			
Total Suspended solids (TSS)	30.0	60.0			
Iron (total)	2.0	4.0			
Aluminum (total)	4.0	8.0			
Manganese (total)	1.0	2.0			
Flow	Monitor				
pH (S.U.)	6-9 at all times				
TRC	0.5	1.0			

Water Quality-Based Limitations

Total Maximum Daily Load (TMDL)

Wastewater discharges from Quemahoning Water System facility are located within the Kiskiminetas-Conemaugh River Watersheds for which the Department has developed a TMDL. The TMDL was finalized on January 29, 2010 and establishes waste load allocations for the discharge of aluminum, iron and manganese within the Kiskiminetas-Conemaugh River Watersheds. The facility permit, PA0253561, is listed in the Appendix G of the Kiskiminetas-Conemaugh River Watershed TMDL, requiring load allocations and is displayed below in Table 3. Section 303(d) of the Clean Water Act and the U.S. Environmental Protection Agency's Water Quality Planning and Management Regulations (codified at Title 40 CFR Part 130) require states to develop a TMDL for impaired water bodies. A TMDL establishes the amount of a pollutant that a water body can assimilate without exceeding the water quality criteria for that pollutant. TMDLs provide the scientific basis for a state to establish water quality-based controls to reduce pollution from both point and non-point sources in order to restore and maintain the quality of the state's water resources (USEPA 1991a). Stream reaches within the Kiskiminetas-Conemaugh River Watersheds are included in the state's 2008 Section 303(d) list because of various impairments, including metals, pH and sediment. The TMDL includes consideration for each river and tributary within the target watershed and its impairment sources. Stream data is then used to calculate minimum pollutant reductions that are necessary to attain water quality criteria levels. Target concentrations published in the TMDL were based on established water quality criteria of 0.750 mg/L total recoverable aluminum, 2.0 mg/L total recoverable iron based on a 30-day average and 1.0 mg/L total recoverable manganese. The reduction needed to meet the minimum water quality standards is then divided between each known point and non-point pollutant source in the form of a watershed allocation. TMDLs prescribe allocations that minimally achieve water quality criteria (i.e., 100 percent use of a stream's assimilative capacity).

Table 3. Kiskiminetas-Conemaugh River Watershed TMDL PA0253561 Load Allocations

Region	SWS	PERMIT	PIPE	Metal	Baseline Load (lbs/yr)	Baseline Concentration (mg/L)	Allocated Load (lbs/yr)	Allocated Concentration (mg/L)	% Reduction
6	4174	PA0253561	1	Aluminum	1,158	4.00	217	0.75	81
6	4174	PA0253561	1	Iron	579	2.00	579	2.00	0
6	4174	PA0253561	1	Manganese	289	1.00	289	1.00	0

Applicable water quality criteria for the TMDL watershed are imposed as effluent limits and shown in Table 3, above for aluminum, iron and manganese. The Department reviewed the effluent concentrations of pollutants from and determined that effluent limitations are required in order to meet the requirements of the TMDL.

Aluminum: The specific water quality criterion for aluminum is expressed as an acute or maximum daily in 25 Pa. Code Chapter 93. Discharges of aluminum may only be authorized to the extent that they will not cause or contribute to any violation of the water quality standards. Therefore, the water quality criterion for aluminum (0.75 mg/L) is imposed as a maximum daily effluent limit (MDL). Whenever the most stringent criterion is selected for the MDL, the Department should also impose an average monthly limit (AML) and instantaneous maximum limit (IMAX) if applicable. The imposition of an AML that is more stringent than the MDL is typically not appropriate because the water quality concerns have already been fully addressed by setting the MDL equal to the most stringent applicable criterion. Therefore, where the MDL is set at the value of the most stringent applicable criterion, the AML should be set equal to the MDL. Accordingly, TMDL aluminum limits are proposed for the Outfalls. The proposed aluminum limits are shown in Table 3.

Iron: The specific water quality criterion for iron is expressed as a 30-day average of 2.0 mg/L in 25 Pa. Code § 93.7(a). The criterion is based on the protection of aquatic life and is associated with chronic exposure. There are no other criteria for total iron. Since the duration of the total iron criterion coincides with the 30-day duration of the AML, the 30-day average criterion for total iron is set equal to the AML. In addition, because the total iron criterion is associated with chronic exposure, the MDL (representing acute exposure) and the IMAX may be made less stringent according to established procedures described in Section III.C.3.h on Page 13 of the Water Quality Toxics Management Strategy (Doc. # 361-0100-003). These procedures state that a MDL and IMAX may be set at 2 times and 2.5 times the AML, respectively, or there is the option to use multipliers from EPA's Technical Support Document for Water Quality-based Toxics Control, if data are available to support the use of alternative multipliers. Accordingly, TMDL iron limits are proposed for the Outfalls. The proposed iron limits are shown in Table 3.

Manganese: The specific water quality criterion for manganese is expressed as an acute or maximum daily of 1.0 mg/L in 25 Pa. Code § 93.7(a). The criterion is based on the protection of human health and is associated with chronic exposure associated with a potable water supply (PWS). Since no duration is given in Chapter 93 for the manganese criterion, a duration of 30 days is used based on the water quality criteria duration for Threshold Human Health (THH) criteria given in Section III.C.3.a., Table 1 on Page 10 of DEP's Water Quality Toxics Management Strategy. The 30-day duration for THH criteria coincides with the 30-day duration of an AML, which is why the manganese criterion is set equal to the AML for a "permitting at criteria" scenario. Because the manganese criterion is interpreted as having chronic exposure, the manganese MDL and IMAX may be made less stringent according to procedures established in Section III.C.2.h. of the Water Quality Toxics Management Strategy (AML multipliers of 2.0 and 2.5 for the MDL and IMAX respectively). Accordingly, TMDL manganese limits are proposed for the Outfalls. The proposed manganese limits are shown in Table 3.

In this case, aluminum, iron and manganese limits were proposed in order to ensure compliance with the TMDL.

Toxics Management Analysis

The Department's Toxics Management Spreadsheet (TMS) was utilized to facilitate calculations necessary for completing a reasonable potential analysis and determine Water Quality-Based Effluent Limitations (WQBELs) for discharges containing toxic pollutant concentrations. TMS combines the functionality of two (2) of the Department's analysis tools, Toxics Screening Analysis Spreadsheet and PENTOXSD water quality model.

DEP's procedures for evaluating reasonable potential are as follows:

- 1. For IW discharges, the design flow to use in modeling is the average flow during production or operation and may be taken form the permit application.
- 2. Perform a Toxics Screening Analysis to identify toxic pollutants of concern. All toxic pollutants, as reported in the permit application or on DMRs, are modeled by the TMS to determine the parameters of concern. [This includes pollutants reported as "Not Detectable" or as "<MDL" where the method detection limit for the analytical method used by the applicant is greater than the most stringent water quality criterion].</p>
 - Establish limits in the draft permit where the maximum reported concentration equals or exceeds 50% of the WQBEL. Use the average monthly and maximum daily limits for the permit as recommended by TMS. Establish an IMAX limit at 2.5 times the average monthly limit.
 - For non-conservative pollutants, establish monitoring requirements where the maximum reported concentration is between 25% 50% of the WQBEL.
 - For conservative pollutants, establish monitoring requirements where the maximum reported concentration is between 10% 50% of the WQBEL.

Discharges from Outfall 001 are evaluated based on concentrations reported on the application and contained in the DMRs; data from those sources are used as inputs into the TMS. A summary of TMS Inputs is contained in Table 4 below.

Table 4. TMS Inputs

Parameter	Value
Discharge Inputs	
Facility	Quemahoning WTP
Evaluation Type	Industrial
NPDES Permit No.	PA0253561
Wastewater Description	Filter Backwash & Clarifier Rinse
Outfall ID	001
Design Flow (MGD)	0.146
Hardness (mg/L)	78.6
pH (S.U.)	7.47
Partial Mix Factors	Unknown – Calculated by TMS
Complete Mix Times	•
Q ₇₋₁₀ (min)	
Q _h (min)	
Stream Inputs	
Receiving Surface Water	UNT to Quemahoning Creek
Number of Reaches to Model	1
Stream Code	045387
RMI	0.834
Elevation (ft)	1630/1628*
Drainage Area (mi ²)	3.29
Slope (ft/ft)	
PWS Withdrawal (MGD)	5.4
Apply Fish Criteria	Yes
Low Flow Yield (cfs/mi ²)	
Flows	
Stream (cfs)	0.137
Tributary (cfs)	N/A
Width (ft)	
Stream Hardness (mg/L)	100
Stream pH (S.U.)	7.0

^{*} Denotes discharge location/downstream location values.

The TMS Model WQBEL recommendations at Outfall 001 are summarized below in Table 5. Analysis Report from the TMS run is included in Attachment B.

Table 5. TMS WQBEL Recommendations

Parameter	Average Monthly (^{µg} / _L)	Maximum Daily (^{μg} / _L)
Total Aluminum	772	1,205
Hexavalent Chromium*	16.7	26.1
Total Cobalt*	Report	Report
Total Copper	Report	Report
Dissolved Iron	Report	Report
Total Manganese	Report	Report

^{*} Two (2) parameters (Hexavalent Chromium and Total Cobalt) were analyzed above Department Target QLs and yielded a "Non-Detect". The Department will allow the facility the opportunity to resample this parameter during the 30-day Draft permit comment period. If the new analytical results verify that the parameters are not present in its wastewater discharge at the Department's minimum quantitation limits, effluent limitations / monitoring requirements for these pollutants may be eliminated prior to Final permit issuance.

WQM 7.0 Model

In general, WQM 7.0 Model is run if the maximum $BOD_5/CBOD_5$ concentrations exceeds 30/25 mg/L respectively in the permit application or the DMRs. The permit application reports $BOD_5/CBOD_5$ concentrations of <1.5/<10 mg/L respectively, therefore, MQW 7.0 Model is not required to be run.

Total Residual Chlorine

To determine if WQBELs are required for discharges containing total residual chlorine (TRC), a discharge evaluation is performed using a DEP program called TRC_CALC created with Microsoft Excel for Windows. TRC_CALC calculates TRC Waste Load Allocations (WLAs) through the application of a mass balance model which considers TRC losses due to stream

NPDES Permit Fact Sheet Somerset County Gen Authority Water System

and discharge chlorine demands and first-order chlorine decay. Input values for the program include flow rates and discharge chlorine demands for the receiving stream, the number of samples taken per month, coefficients of TRC variability, partial mix factors, and an optional factor of safety. The mass balance model calculates WLAs for acute and chronic criteria that are then converted to long term averages using calculated multipliers. The multipliers are functions of the number of samples taken per month and the TRC variability coefficients (normally kept at default values unless site specific information is available). The most stringent limitation between the acute and chronic long-term averages is converted to an average monthly limit for comparison to the BAT average monthly limit of 0.5 mg/L from 25 Pa. Code § 92a.48(b)(2). The more stringent of these average monthly TRC limitations is then proposed. The results of the modeling, included in Attachment B, indicate that WQBELs are required for TRC. Acute Fish Criterion (AFC) average monthly limit of 0.136 mg/L and an IMAX limit of 0.319 mg/L for TRC.

Anti-Backsliding

Section 402(o) of the Clean Water Act (CWA), enacted in the Water Quality Act of 1987, establishes anti-backsliding rules governing two situations. The first situation occurs when a permittee seeks to revise a Technology-Based effluent limitation based on BPJ to reflect a subsequently promulgated effluent guideline which is less stringent. The second situation addressed by Section 402(o) arises when a permittee seeks relaxation of an effluent limitation which is based upon a State treatment standard of water quality standard.

Previous limits can be used pursuant to EPA's anti-backsliding regulation 40 CFR 122.44 (I) Reissued permits. (1) Except as provided in paragraph (I)(2) of this section when a permit is renewed or reissued. Interim effluent limitations, standards or conditions must be at least as stringent as the final effluent limitations, standards, or conditions in the previous permit (unless the circumstances on which the previous permit was based have materially and substantially changed since the time the permit was issued and would constitute cause for permit modification or revocation and reissuance under §122.62). (2) In the case of effluent limitations established on the basis of Section 402(a)(1)(B) of the CWA, a permit may not be renewed, reissued, or modified on the basis of effluent guidelines promulgated under section 304(b) subsequent to the original issuance of such permit, to contain effluent limitations which are less stringent than the comparable effluent limitations in the previous permit.

The facility is not seeking to revise the previously permitted effluent limits.

Effluent Limitations and Monitoring Requirements for Outfall 001

Effluent limits applicable at Outfall 001 are the more stringent of TBELs, WQBELs, regulatory effluent standards, and monitoring requirements as summarized in Table 6. The applicable limits and monitoring requirements provided below are based on those in Tables 1, 2, 3 and 5 of this Fact Sheet.

Table 6. Effluent limits and monitoring requirements for Outfall 001

	Mass (pounds)		Cor	ncentration (ı		
Parameter	Average Monthly	Daily Maximum	Average Monthly	Daily Maximum	Instant Maximum	Basis
Flow (MGD)	Report	Report	_	_	_	25 Pa. Code § 92a.61(d)(1)
Total Residual Chlorine	_	_	0.14	0.24	0.32	WQBEL
Total Suspended Solids	_	_	30.0	60.0	_	40 CFR § 125.3
Total Dissolved Solids	_	_	Report	Report	_	25 Pa. Code § 95.10
Iron (total)	_	_	2.0	4.0	_	TMDL
Aluminum (total)	_	_	0.75	0.75	_	TMDL
Manganese (total)	_	_	1.0	2.0	_	TMDL
pH (S.U.)		Within t		25 Pa. Code § 92a.48(a)(2) & 25 Pa. Code § 95.2		
Hexavalent Chromium*		_	0.017	0.026	_	WQBEL
Total Cobalt*	_	_	Report	Report	_	WQBEL
Total Copper	_	_	Report	Report	_	WQBEL

^{*} Two (2) parameters (Hexavalent Chromium and Total Cobalt) were analyzed above Department Target QLs and yielded a "Non-Detect". The Department will allow the facility the opportunity to resample this parameter during the 30-day Draft permit comment period. If the new analytical results verify that the parameters are not present in its wastewater discharge

at the Department's minimum quantitation limits, effluent limitations / monitoring requirements for these pollutants may be eliminated prior to Final permit issuance.

Monitoring Frequency for Outfall 001

Monitoring requirements are based on the previous permits monitoring requirements for Somerset County General Authority WTF and displayed in Table 7 below.

Table 7. Monitoring Requirements for Outfall 001

Parameter	Sample Type	Minimum Sample Frequency
Flow (MGD)	Meter	2/Month
TRC	Grab	2/Month
TSS	Grab	2/Month
TDS	Grab	2/Month
Iron (total)	Grab	2/Month
Aluminum (total)	Grab	2/Month
Manganese (total)	Grab	2/Month
pH (S.U.)	Grab	2/Month
Hexavalent Chromium	Grab	2/Month
Total Cobalt	Grab	2/Month
Total Copper	Grab	2/Month

	Tools and References Used to Develop Permit
	WQM for Windows Model (see Attachment)
	Toxics Management Spreadsheet (see Attachment B)
$\overline{\mathbb{X}}$	TRC Model Spreadsheet (see Attachment C)
	Temperature Model Spreadsheet (see Attachment)
	Water Quality Toxics Management Strategy, 361-0100-003, 4/06.
	Technical Guidance for the Development and Specification of Effluent Limitations, 386-0400-001, 10/97.
	Policy for Permitting Surface Water Diversions, 386-2000-019, 3/98.
	Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 386-2000-018, 11/96.
	Technology-Based Control Requirements for Water Treatment Plant Wastes, 386-2183-001, 10/97.
	Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 386-2183-002, 12/97.
	Pennsylvania CSO Policy, 386-2000-002, 9/08.
	Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.
	Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 386-2000-008, 4/97.
	Determining Water Quality-Based Effluent Limits, 386-2000-004, 12/97.
	Implementation Guidance Design Conditions, 386-2000-007, 9/97.
	Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 386-2000-016, 6/2004.
	Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 386-2000-012, 10/1997.
	Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 386-2000-009, 3/99.
	Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 386-2000-015, 5/2004.
	Implementation Guidance for Section 93.7 Ammonia Criteria, 386-2000-022, 11/97.
	Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 386-2000-013, 4/2008.
	Implementation Guidance Total Residual Chlorine (TRC) Regulation, 386-2000-011, 11/1994.
	Implementation Guidance for Temperature Criteria, 386-2000-001, 4/09.
	Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 386-2000-021, 10/97.
	Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 386-2000-020, 10/97.
	Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 386-2000-005, 3/99.
	Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 386-2000-010, 3/1999.
	Design Stream Flows, 386-2000-003, 9/98.
	Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 386-2000-006, 10/98.
	Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 386-3200-001, 6/97.
	Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.
	SOP:
	Other:

ATTACHMENTS

ATTACHMENT A: STREAMSTATS DATA

ATTACHMENT B: TMS MODEL SUMMARY

ATTACHMENT C: TRC MODEL SPREADSHEET

ATTACHMENT D: FACILITY FIGURES

NPDES Permit No. PA0253561

ATTACHMENT A: STREAMSTATS DATA

Outfell 001

Basin Characteristics			
Parameter Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	3.29	square miles
ELEV	Mean Basin Elevation	1880.8	feet
PRECIP	Mean Annual Precipitation	41	inches

Low-Flow Statistics Param	eters (Low Flow Region 3)				
Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	3.29	square miles	2.33	1720
ELEV	Mean Basin Elevation	1880.8	feet	898	2700
PRECIP	Mean Annual Precipitation	41	inches	38.7	47.9

Low-Flow Statistics Flow Report (Low Flow Region 3)

PII: Prediction Interval-Lower, PIu: Prediction Interval-Upper, SEp: Standard Error of Prediction, SE: Standard Error (other -- see report)

Statistic	Value	Unit	SE	SEp
7 Day 2 Year Low Flow	0.35	ft^3/s	43	43
30 Day 2 Year Low Flow	0.495	ft^3/s	38	38
7 Day 10 Year Low Flow	0.137	ft^3/s	54	54
30 Day 10 Year Low Flow	0.193	ft^3/s	49	49
90 Day 10 Year Low Flow	0.29	ft^3/s	41	41

Low-Flow Statistics Citations

Stuckey, M.H., 2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p. (http://pubs.usgs.gov/sir/2006/5130/)

NPDES Permit No. PA0253561

ATTACHMENT B: TMS MODEL SUMMARY

Toxics Management Spreadsheet Version 1.4, May 2023

Discharge Information

78.6

0.146

Instructions	Discharge Stream							
Facility: Que	emahoning Water Sy	ystem		NPDES Per	mit No.: PA	253561	Outfall I	No.: 001
Evaluation Type	Major Sewage /	Industrial Wast	te	Wastewater	Description:	Treated Cla	rifier Rinse & Ba	ackwash Waters
Discharge Characteristics								
Design Flow	Headassa (mar/l)*	-II (CID+	F	Partial Mix F	actors (PMFs	s)	Complete Mix	x Times (min)
(MGD)*	Hardness (mg/l)*	pH (SU)*	AFC	CFC	THH	CRL	Q ₇₋₁₀	Qh

					0 If le	ft blank	0.5 lf le	ft blank	0) If left blan	k	1 If left blank	
	Discharge Pollutant	Units	Ma	Max Discharge Conc		Stream Conc	Daily CV	Hourly CV	Strea m CV	Fate Coeff	FOS	Criteri a Mod	Chem Transl
	Total Dissolved Solids (PWS)	mg/L		202									
7	Chloride (PWS)	mg/L		19.3									
Group 1	Bromide	mg/L	٧	0.2	$\rightarrow \rightarrow \rightarrow$								
ြစ်	Sulfate (PWS)	mg/L		47.2									
	Fluoride (PWS)	mg/L	<	0.1									
	Total Aluminum	μg/L		1200									
	Total Antimony	μg/L	<	1		-							
	Total Arsenic	μg/L	<	1									
	Total Barium	µg/L		32.7									
	Total Beryllium	μg/L	<	1									
	Total Boron	μg/L	<	50									
	Total Cadmium	µg/L	<	0.2									
	Total Chromium (III)	μg/L	<	1									
	Hexavalent Chromium	µg/L	<	20									
	Total Cobalt	μg/L	<	5									
	Total Copper	mg/L		0.0016									
2	Free Cyanide	µg/L											
Group	Total Cyanide	µg/L	<	20									
15	Dissolved Iron	μg/L	<	50									
	Total Iron	µg/L		220									
	Total Lead	μg/L	<	1									
	Total Manganese	μg/L		410									
	Total Mercury	μg/L	<	0.2									
	Total Nickel	μg/L		2.8									
	Total Phenols (Phenolics) (PWS)	μg/L	<	20									
	Total Selenium	μg/L	<	1									
	Total Silver	μg/L	<	0.2									
	Total Thallium	μg/L	<	0.2									$\overline{}$
	Total Zinc	mg/L	<	0.005									$\overline{}$
	Total Molybdenum	μg/L	<	20									
\vdash	Acrolein	µg/L	<										
	Acrylamide	μg/L	<										
	Acrylonitrile	μg/L	<										
	Benzene	μg/L	<										
	Bromoform	μg/L											
1		Pare											

Discharge Information 11/2/2023 Page 1

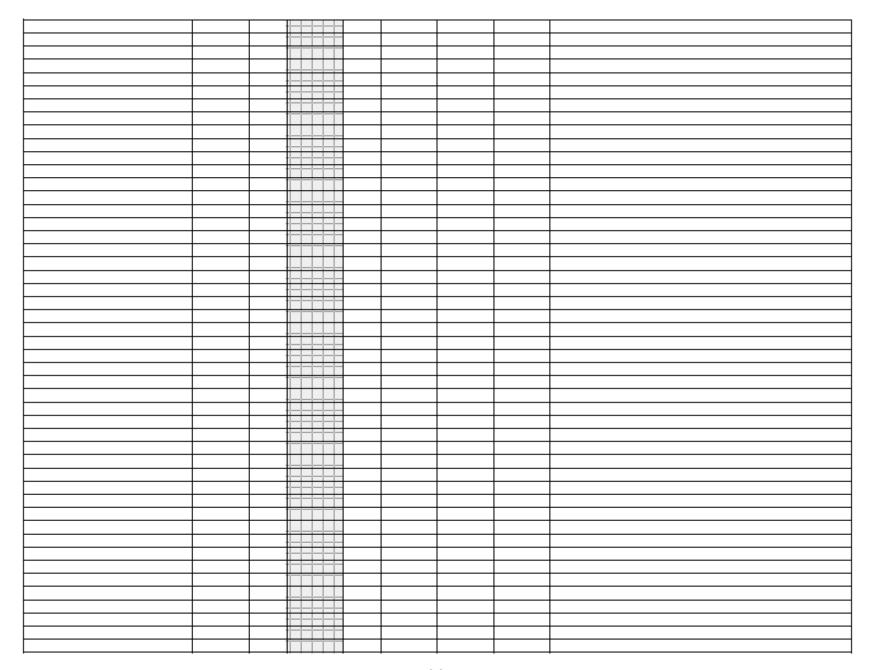
1	Code Total Marida		-		_							
1	Carbon Tetrachloride	μg/L	<		+	Ξ					\equiv	\Box
1	Chlorobenzene	μg/L	<		I	Ц						\Box
1	Chlorodibromomethane	μg/L	<	Ц		Ц						Ш
	Chloroethane	μg/L	<	Щ	4	Ц						Ш
	2-Chloroethyl Vinyl Ether	μg/L	<	H	+	Н						\vdash
	Chloroform	μg/L		H	Ŧ	Н				Н	F	\Box
	Dichlorobromomethane	μg/L	<	Ħ	7	Ħ					F	Ħ
	1,1-Dichloroethane	μg/L	<	\vdash		П					П	\Box
l	1,2-Dichloroethane	μg/L	<	т		П				П	П	\Box
5	1,1-Dichloroethylene	µg/L	<									\blacksquare
Group	1,2-Dichloropropane		<	H	+	Н						\boxminus
ြစ်		μg/L	<	H	+	H				H		₩
	1,3-Dichloropropylene	μg/L	_	Н	+	Н				Н		ш
	1,4-Dioxane	μg/L	<	H	+	H				H	H	$\vdash\vdash\vdash$
	Ethylbenzene	μg/L	<	H	+	Н					H	=
	Methyl Bromide	μg/L	<	Ħ	$\dot{\bot}$	Н						
	Methyl Chloride	μg/L	<	Ť								
	Methylene Chloride	μg/L	<									
	1,1,2,2-Tetrachloroethane	μg/L	<	Ц	Ţ.	Ц						Ш
	Tetrachloroethylene	μg/L	<	H	T	H						H
	Toluene	μg/L	<	H		H					F	H
	1,2-trans-Dichloroethylene	μg/L	<	H		Ħ				F		Ħ
	1,1,1-Trichloroethane	μg/L	<			Н						
	1,1,2-Trichloroethane	μg/L	<	m		Н				Н	г	\Box
	Trichloroethylene	µg/L	<	Ħ	Ť	Ħ					F	\Box
	Vinyl Chloride	µg/L	_	-	-	Н					Е	\blacksquare
\vdash	2-Chlorophenol		_	H	+	H				H		₩
		μg/L	<	Н	+	Н				Н	H	ш
	2,4-Dichlorophenol	μg/L	<	H	+	Н				H	H	H
	2,4-Dimethylphenol	μg/L	<	H	+	Н				H	H	
l_	4,6-Dinitro-o-Cresol	μg/L	<	Ħ	$^{\perp}$	Н						
4	2,4-Dinitrophenol	μg/L	<	Ħ								
1 5	2-Nitrophenol 4-Nitrophenol	μg/L	<			П						\Box
ত	4-Nitrophenol	μg/L	<	Щ	4	Ц						Ш
	p-Chloro-m-Cresol	μg/L	<	H	Ŧ	H						\square
	Pentachlorophenol	μg/L	<	H	\mp	Н				Н	F	H
	Phenol	μg/L	<	Ħ	+	Н				F	F	Ħ
	2,4,6-Trichlorophenol	μg/L	<	\vdash		П				П	П	\Box
\vdash	Acenaphthene	μg/L	<	m		П				Н	г	\Box
	Acenaphthylene	µg/L	<									
	Anthracene	µg/L	<	H	+	Н						₩
	Benzidine	µg/L	<	H	+	H				H	H	H
			<	₩	+	Н				Н		н
	Benzo(a)Anthracene	µg/L	<	H	+	Н				H	H	H
	Benzo(a)Pyrene	μg/L	_	Ħ	+	H				H	F	=
	3,4-Benzofluoranthene	μg/L	<	Ħ	Ŧ	Ή					F	\Box
	Benzo(ghi)Perylene	μg/L										
	Benzo(k)Fluoranthene	μg/L	<	Н	\perp	Ц				Ш		ш
	Bis(2-Chloroethoxy)Methane	μg/L	<	H	+	Ц						ш
	Bis(2-Chloroethyl)Ether	μg/L	<	\vdash	\pm	Н						
	Bis(2-Chloroisopropyl)Ether	μg/L	<	\vdash	\pm	Н						
	Bis(2-Ethylhexyl)Phthalate	μg/L	<	\Box	\pm	Π						
	4-Bromophenyl Phenyl Ether	μg/L	<									
	Butyl Benzyl Phthalate	μg/L	<	П		П						
	2-Chloronaphthalene	μg/L	<	H	\bot	П						\Box
	4-Chlorophenyl Phenyl Ether	μg/L	<	H	+	H				Н	F	\Box
	Chrysene	μg/L	\vdash	Ħ	Ŧ	Ħ				F	F	Ħ
	Dibenzo(a,h)Anthrancene	µg/L	<	1		H						
	1,2-Dichlorobenzene	µg/L	<			H						
	1.3-Dichlorobenzene	µg/L	<			Ø						
			<	H								
	1,4-Dichlorobenzene	µg/L	<	+	+	H						H
Ĭ	Diathyl Distrator	µg/L	_		-	H						
5	3,3-Dichlorobenzidine Diethyl Phthalate Dimethyl Phthalate	μg/L	<	H	+	H						H
	Difficulty i indidiate	μg/L	<		+	H						
	Di-n-Butyl Phthalate	μg/L	<			Ħ						
	2,4-Dinitrotoluene	μg/L	<	Ĥ								
							 _					

ı	2,6-Dinitrotoluene	μg/L	<								
	Di-n-Octyl Phthalate	µg/L	<	+	\forall					H	
	1,2-Diphenylhydrazine	µg/L	<	+	+	_				⊨	+
	Fluoranthene		<	+	Н	_				⊢	\vdash
		μg/L	_	Ħ	Ħ	_				H	H
	Fluorene	μg/L	_		$\overline{\mathbf{H}}$	_				F	$\overline{}$
	Hexachlorobenzene	μg/L	<	#		-					
	Hexachlorobutadiene	μg/L	<	4	+	-				┡	
	Hexachlorocyclopentadiene	μg/L	<	+	₩	_				⊢	\vdash
	Hexachloroethane	μg/L	<	+	+	_				H	#
	Indeno(1,2,3-cd)Pyrene	μg/L	<	\Rightarrow	\Box	_					
	Isophorone	μg/L	<	#							
	Naphthalene	μg/L	<	\perp	Ш					L	\perp
	Nitrobenzene	μg/L	<	4	Н					L	4
	n-Nitrosodimethylamine	μg/L	<	\pm	+					L	4
	n-Nitrosodi-n-Propylamine	μg/L	<	\pm						Н	
	n-Nitrosodiphenylamine	μg/L	<	\perp							
	Phenanthrene	μg/L	<								
	Pyrene	μg/L	<	ļ	П						\Box
	1,2,4-Trichlorobenzene	μg/L	<	7	\blacksquare						
	Aldrin	μg/L	<	Ŧ	H					F	
	alpha-BHC	μg/L	<	7							
	beta-BHC	μg/L	<	\neg	П					Г	\sqcap
	gamma-BHC	μg/L	<								
	delta BHC	μg/L	<	#						F	
	Chlordane	μg/L	<	+	\pm					F	H
	4.4-DDT	μg/L	<	Ŧ	Ħ					F	Ħ
	4.4-DDE	μg/L	<	+	Н					\vdash	\vdash
	4.4-DDD	μg/L	<	Ť	П					H	
	Dieldrin	µg/L	<	#						E	
	alpha-Endosulfan	µg/L	<	#	\forall	-				H	#
	beta-Endosulfan	µg/L	<	+	+	_				⊨	+
9	Endosulfan Sulfate	µg/L	<	+	Н	_				⊢	\vdash
Group	Endrin	µg/L	<	Ħ	Ħ	_				H	\vdash
2	Endrin Aldehyde	µg/L	<	#						Е	
9	Heptachlor	µg/L	<	#	\forall	-				H	#
	Heptachlor Epoxide		<	+	₩	-				⊢	-
	PCB-1016	µg/L	<	+	Н	_				⊢	\vdash
		μg/L	<	Ħ	Ħ	_				H	H
	PCB-1221	μg/L	_	\Rightarrow	$\overline{\Box}$						
	PCB-1232	μg/L	<	#	\blacksquare	-					=
	PCB-1242	μg/L	<	4	+	-				┡	
	PCB-1248	μg/L	<	+	+	_				┡	#
	PCB-1254	μg/L	<	+	+	_				H	#
	PCB-1260	μg/L	<	\Rightarrow	\Box	_					
	PCBs, Total	μg/L	<								
	Toxaphene	μg/L	<	\perp	Ш					L	\perp
	2,3,7,8-TCDD	ng/L	<	4	₩					L	#
	Gross Alpha	pCi/L		\pm	\pm					L	
7	Total Beta	pCi/L	<	\Rightarrow							
Group	Radium 226/228	pCi/L	<								
2	Total Strontium	μg/L	<	\Box	Ш						
٥	Total Uranium	μg/L	<	4	Ш					L	4
	Osmotic Pressure	mOs/kg		4	+	-				L	
				+	$\forall \exists$						
				Ţ							
				-							
				+	H						
										-	

Toxics Management Spreadsheet Version 1.4, May 2023

Stream / Surface Water Information

Quemahoning Water System, NPDES Permit No. PA0253561, Outfall 001


Instructions Disch	arge Str	ream													
Receiving Surface W	ater Name:	UNT to Que	mohoning	Creek			No. Rea	aches to	Model:	1	~	tewide Criteri at Lakes Crit			
Location	Stream Co	de' RMI	Elevat	IDA (mai	²)* S	lope (ft/ft)		Withdraw MGD)	val Apply F Criteri		OR	SANCO Crite	eria		
Point of Discharge	005387	0.83	4 163	0 3.29					Yes						
End of Reach 1	045387	0.1	162	8 12					Yes						
Q 7-10		LEV	FI	1-5-1					Travel	T.1.		84		4	•-
Location	RMI	LFY (cfs/mi ²)*	Stream	r (cfs)	W/D Ratio		Depth (ft)	Velocit	Time	Tribut Hardness	pH	Stream Hardness*	m pH*	Analys Hardness	pH
Point of Discharge	0.834	0.1	0.137	Indutary	Rauc	(11)	(11)	y (fps)	(days)	naruness	pn	100	7 PH	naruness	рп
End of Reach 1	0.034	0.1	0.137									100	,		
End of Reach 1	0.1	0.1													
Qh															
Location	RMI	LFY	Flow	/ (cfs)	W/D	Width	Depth	Velocit	Time	Tribut	ary	Stream	m	Analys	sis
Location	KWII	(cfs/mi ²)	Stream	Tributary	Ratio	(ft)	(ft)	y (fps)	(days)	Hardness	pН	Hardness	pН	Hardness	pН
Point of Discharge	0.834														
End of Reach 1	0.1														

Model Results

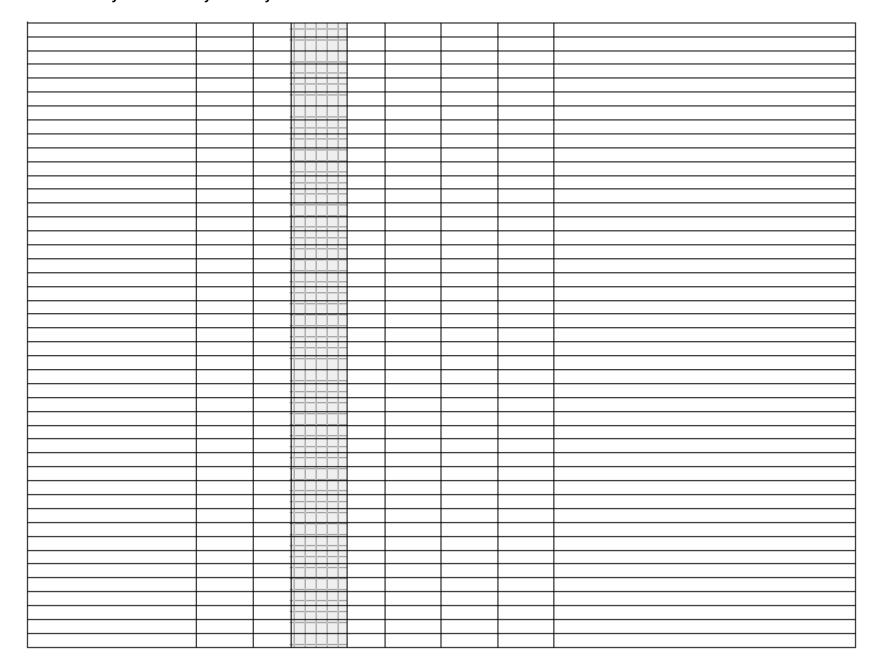
Quemahoning Water System, NPDES Permit No. PA0253561, Outfall 001

Instructions Results		RETURN	TO INPU	тѕ	SAVE AS	PDF	PRINT	г 🧻 🔘 🖊	All Onputs OResults OLimits
Hydrodynamics									
✓ Wasteload Allocation	ons								
☑ AFC	cc	T (min): 2.	837	PMF:	1	Ana	lysis Hardne	ss (mg/l):	86.68 Analysis pH: 7.20
Pollutants		Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solid		0	0		0	N/A	N/A	N/A	
Chloride (PWS	3)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS		0	0		0	N/A	N/A	N/A	
Fluoride (PWS		0	0		0	N/A	N/A	N/A	
Total Aluminur	m	0	0		0	750	750	1,205	
Total Antimon	у	0	0		0	1,100	1,100	1,767	
Total Arsenic		0	0		0	340	340	546	Chem Translator of 1 applied
Total Barium		0	0		0	21,000	21,000	33,738	
Total Boron		0	0		0	8,100	8,100	13,013	
Total Cadmiur	n	0	0		0	1.752	1.84	2.96	Chem Translator of 0.95 applied
Total Chromium	(III)	0	0		0	506.814	1,604	2,577	Chem Translator of 0.316 applied
Hexavalent Chron	nium	0	0		0	16	16.3	26.2	Chem Translator of 0.982 applied
Total Cobalt		0	0		0	95	95.0	153	
Total Copper	•	0	0		0	11.746	12.2	19.7	Chem Translator of 0.98 applied
Dissolved Iron	1	0	0		0	N/A	N/A	N/A	
Total Iron		0	0		0	N/A	N/A	N/A	
Total Lead		0	0		0	55.254	68.1	109	Chem Translator of 0.812 applied
Total Mangane	se	0	0		0	N/A	N/A	N/A	
Total Mercury	/	0	0		0	1.400	1.65	2.65	Chem Translator of 0.85 applied
Total Nickel		0	0		0	414.899	416	668	Chem Translator of 0.998 applied
Total Phenols (Phenoli	cs) (PWS)	0	0		0	N/A	N/A	N/A	
Total Seleniur	n	0	0		0	N/A	N/A	N/A	Chem Translator of 0.922 applied
Total Silver		0	0		0	2.516	2.96	4.75	Chem Translator of 0.85 applied
Total Thalliun	1	0	0		0	65	65.0	104	
Total Zinc		0	0		0	103.813	106	171	Chem Translator of 0.978 applied
			_				_		

Model Results 11/2/2023 Page 5

	1			
+	-			
-				
	- 1			
	-			
	-			

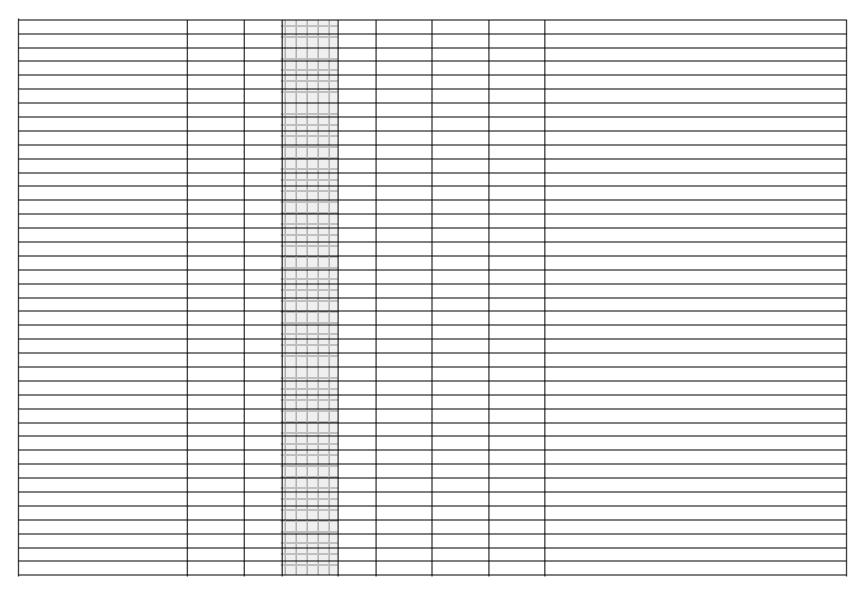
	☑ CFC C	PMF:	1	Analysis Hardness (mg/l):			86.68 Analysis pH: 7.20		
	Pollutants	Conc (ug/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)) Comments
	Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
	Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Γ	Sulfate (PWS)	0	0 -		0	N/A	N/A	N/A	
Γ	Fluoride (PWS)	0	0 -		0	N/A	N/A	N/A	
Γ	Total Aluminum	0	0		0	N/A	N/A	N/A	
Ī	Total Antimony	0	0		0	220	220	353	
Ī	Total Arsenic	0	0 -		0	150	150	241	Chem Translator of 1 applied
Ī	Total Barium	0	0		0	4,100	4,100	6,587	
ſ	Total Boron	0	0		0	1,600	1,600	2,571	
ſ	Total Cadmium	0	0 .		0	0.223	0.24	0.39	Chem Translator of 0.915 applied
ſ	Total Chromium (III)	0	0 -		0	65.926	76.7	123	Chem Translator of 0.86 applied
ı	Hexavalent Chromium	0	0		0	10	10.4	16.7	Chem Translator of 0.962 applied


NPDES Permit Fact Sheet Somerset County Gen Authority Water System

Total Cobalt	0	0		0	19	19.0	30.5	
Total Copper	0	0		0	7.926	8.26	13.3	Chem Translator of 0.96 applied
Dissolved Iron	0	0		0	N/A	N/A	N/A	
Total Iron	0	0		0	1,500	1,500	2,410	WQC = 30 day average; PMF = 1
Total Lead	0	0		0	2.153	2.65	4.26	Chem Translator of 0.812 applied
Total Manganese	0	0		0	N/A	N/A	N/A	
Total Mercury	0	0		0	0.770	0.91	1.46	Chem Translator of 0.85 applied
Total Nickel	0	0		0	46.082	46.2	74.3	Chem Translator of 0.997 applied
Total Phenols (Phenolics) (PWS)	0	0		0	N/A	N/A	N/A	
Total Selenium	0	0		0	4.600	4.99	8.02	Chem Translator of 0.922 applied
Total Silver	0	0		0	N/A	N/A	N/A	Chem Translator of 1 applied
Total Thallium	0	0		0	13	13.0	20.9	Orient Hansiator of Lappiled
Total Zinc	0	0		0	104.662	106	171	Chem Translator of 0.988 applied
Total Zinc	U	U		U	104.002	100	1/1	Chem Translator of 0.980 applied
			 					
			 					
								I

	 		 	
	<u> </u>		<u> </u>	
	<u> </u>			
	1			
	 			
	<u> </u>			
	<u> </u>			
	<u> </u>			
	 			
	<u> </u>			

NPDES Permit No. PA0253561


<i>☑ ТНН</i> cc	CT (min): 2.	837	PMF:	1	Ana	alysis Hardne	ess (mg/l):	N/A Analysis pH: N/A
Pollutants	Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (μg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	500,000	500,000	N/A	
Chloride (PWS)	0	0		0	250,000	250,000	N/A	
Sulfate (PWS)	0	0		0	250,000	250,000	N/A	
Fluoride (PWS)	0	0		0	2,000	2,000	N/A	
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Antimony	0	0		0	5.6	5.6	9.0	
Total Arsenic	0	0		0	10	10.0	16.1	
Total Barium	0	0 .		0	2,400	2,400	3,856	
Total Boron	0	0		0	3,100	3,100	4,980	
Total Cadmium	0	0		0	N/A	N/A	N/A	
Total Chromium (III)	0	0		0	N/A	N/A	N/A	
Hexavalent Chromium	0	0 .		0	N/A	N/A	N/A	
Total Cobalt	0	0		0	N/A	N/A	N/A	
Total Copper	0	0		0	N/A	N/A	N/A	
Dissolved Iron	0	0		0	300	300	482	
Total Iron	0	0		0	N/A	N/A	N/A	
Total Lead	0	0		0	N/A	N/A	N/A	
Total Manganese	0	0		0	1,000	1,000	1,607	
Total Mercury	0	0		0	0.050	0.05	0.08	
Total Nickel	0	0		0	610	610	980	
Total Phenols (Phenolics) (PWS)	0	0		0	5	5.0	N/A	
Total Selenium	0	0		0	N/A	N/A	N/A	
Total Silver	0	0		0	N/A	N/A	N/A	
Total Thallium	0	0 -		0	0.24	0.24	0.39	
Total Zinc	0	0		0	N/A	N/A	N/A	

				_				
					-	-		
☑ CRL CC	T (min): 5.8	589	PMF:	1	Ana	alysis Hardne	ess (mg/l):	N/A Analysis pH: N/A
	Stream	Stream	PMF: Trib Conc	1 Fate	MQC WQC			
✓ CRL CC	Stream		Trib Conc		WQC	WQ Obj	wks (mg/l):	
	Stream	Stream		Fate	·			
Pollutants Total Dissolved Solids (PWS)	Conc (up/L)	Stream	Trib Conc	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	
Pollutants Total Dissolved Solids (PWS) Chloride (PWS)	Conc (ug/L)	Stream CV 0	Trib Conc	Fate Coef	WQC (µg/L) N/A	WQ Obj (µg/L) N/A	WLA (µg/L)	
Pollutants Total Dissolved Solids (PWS) Chloride (PWS) Sulfate (PWS)	Conc (unit) 0 0	Stream CV 0	Trib Conc	Fate Coef 0	WQC (µg/L) N/A N/A	WQ Obj (µg/L) N/A N/A	WLA (µg/L) N/A N/A N/A	
Pollutants Total Dissolved Solids (PWS) Chloride (PWS) Sulfate (PWS) Fluoride (PWS)	Conc (uall) 0 0 0	Stream CV 0 0	Trib Conc	Fate Coef 0 0	WQC (µg/L) N/A N/A N/A N/A	WQ Obj (µg/L) N/A N/A N/A N/A	WLA (µg/L) N/A N/A N/A N/A	
Pollutants Total Dissolved Solids (PWS) Chloride (PWS) Sulfate (PWS) Fluoride (PWS) Total Aluminum	Conc (unit) 0 0 0 0	Stream CV 0 0 0	Trib Conc	Fate Coef 0 0 0	WQC (µg/L) N/A N/A N/A N/A N/A	WQ Obj (µg/L) N/A N/A N/A N/A N/A	WLA (µg/L) N/A N/A N/A N/A N/A N/A	
Pollutants Total Dissolved Solids (PWS) Chloride (PWS) Sulfate (PWS) Fluoride (PWS) Total Aluminum Total Antimony	Conc (uall) 0 0 0 0 0	Stream CV 0 0 0	Trib Conc	Fate Coef 0 0 0 0 0	WQC (µg/L) N/A N/A N/A N/A N/A	WQ Obj (µg/L) N/A N/A N/A N/A N/A N/A	WLA (µg/L) N/A N/A N/A N/A N/A N/A N/A	
Pollutants Total Dissolved Solids (PWS) Chloride (PWS) Sulfate (PWS) Fluoride (PWS) Total Aluminum Total Antimony Total Arsenic	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Stream CV 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Trib Conc	Fate Coef 0 0 0 0 0 0	WQC (µg/L) N/A N/A N/A N/A N/A N/A	WQ Obj (µg/L) N/A N/A N/A N/A N/A N/A	WLA (µg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A	
Pollutants Total Dissolved Solids (PWS) Chloride (PWS) Sulfate (PWS) Fluoride (PWS) Total Aluminum Total Antimony Total Arsenic Total Barium	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Stream CV 0 0 0 0 0	Trib Conc	Fate Coef 0 0 0 0 0 0 0	WQC (µg/L) N/A N/A N/A N/A N/A N/A N/A	WQ Obj (µg/L) N/A N/A N/A N/A N/A N/A N/A	WLA (µg/L) N/A N/A N/A N/A N/A N/A N/A N/	
Pollutants Total Dissolved Solids (PWS) Chloride (PWS) Sulfate (PWS) Fluoride (PWS) Total Aluminum Total Antimony Total Arsenic Total Barium Total Boron	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Stream CV 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Trib Conc	Fate Coef 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	WQC (µg/L) N/A N/A N/A N/A N/A N/A N/A N/A	WQ Obj (µg/L) N/A N/A N/A N/A N/A N/A N/A N/A	WLA (µg/L) N/A N/A N/A N/A N/A N/A N/A N/	
Pollutants Total Dissolved Solids (PWS) Chloride (PWS) Sulfate (PWS) Fluoride (PWS) Total Aluminum Total Antimony Total Arsenic Total Barium Total Boron Total Cadmium	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Stream CV 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Trib Conc	Fate Coef 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	WQC (µg/L) N/A N/A N/A N/A N/A N/A N/A N/A	WQ Obj (µg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A	WLA (µg/L) N/A N/A N/A N/A N/A N/A N/A N/	
Pollutants Total Dissolved Solids (PWS) Chloride (PWS) Sulfate (PWS) Fluoride (PWS) Total Aluminum Total Antimony Total Arsenic Total Barium Total Boron Total Cadmium Total Chromium (III)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Stream CV 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Trib Conc	Fate Coef 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	WQC (µg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	WQ Obj (µg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	WLA (µg/L) N/A N/A N/A N/A N/A N/A N/A N/	
Pollutants Total Dissolved Solids (PWS) Chloride (PWS) Sulfate (PWS) Fluoride (PWS) Total Aluminum Total Antimony Total Arsenic Total Barium Total Boron Total Cadmium Total Chromium (III) Hexavalent Chromium	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Stream CV	Trib Conc	Fate Coef 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	WQC (µg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	WQ Obj (µg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	WLA (µg/L) N/A N/A N/A N/A N/A N/A N/A N/	
Pollutants Total Dissolved Solids (PWS) Chloride (PWS) Sulfate (PWS) Fluoride (PWS) Total Aluminum Total Antimony Total Arsenic Total Barium Total Boron Total Cadmium Total Chromium (III) Hexavalent Chromium Total Cobalt	O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Stream CV 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Trib Conc	Fate Coef 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	WQC (µg/L) N/A	WQ Obj (µg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	WLA (µg/L) N/A N/A N/A N/A N/A N/A N/A N/	
Pollutants Total Dissolved Solids (PWS) Chloride (PWS) Sulfate (PWS) Fluoride (PWS) Total Aluminum Total Antimony Total Arsenic Total Barium Total Boron Total Cadmium Total Chromium (III) Hexavalent Chromium Total Cobalt Total Copper	O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Stream CV	Trib Conc	Fate Coef 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	WQC (µg/L) N/A	WQ Obj (µg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	WLA (µg/L) N/A N/A N/A N/A N/A N/A N/A N/	
Pollutants Total Dissolved Solids (PWS) Chloride (PWS) Sulfate (PWS) Fluoride (PWS) Total Aluminum Total Antimony Total Arsenic Total Barium Total Barium Total Cadmium Total Chromium (III) Hexavalent Chromium Total Cobalt Total Copper Dissolved Iron	O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Stream CV	Trib Conc	Fate Coef 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	WQC (µg/L) N/A	WQ Obj (µg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	WLA (µg/L) N/A N/A N/A N/A N/A N/A N/A N/	
Pollutants Total Dissolved Solids (PWS) Chloride (PWS) Sulfate (PWS) Fluoride (PWS) Total Aluminum Total Antimony Total Arsenic Total Barium Total Boron Total Cadmium Total Chromium (III) Hexavalent Chromium Total Cobalt Total Copper Dissolved Iron Total Iron	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Stream CV	Trib Conc	Fate Coef 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	WQC (µg/L) N/A	WQ Obj (µg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	WLA (µg/L) N/A N/A N/A N/A N/A N/A N/A N/	
Pollutants Total Dissolved Solids (PWS) Chloride (PWS) Sulfate (PWS) Fluoride (PWS) Total Aluminum Total Antimony Total Arsenic Total Barium Total Boron Total Cadmium Total Chromium (III) Hexavalent Chromium Total Copper Dissolved Iron Total Iron Total Icad	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Stream CV	Trib Conc	Fate Coef 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	WQC (µg/L) N/A	WQ Obj (µg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	WLA (µg/L) N/A N/A N/A N/A N/A N/A N/A N/	
Pollutants Total Dissolved Solids (PWS) Chloride (PWS) Sulfate (PWS) Fluoride (PWS) Total Aluminum Total Antimony Total Arsenic Total Barium Total Boron Total Cadmium Total Chromium (III) Hexavalent Chromium Total Cobalt Total Copper Dissolved Iron Total Iron	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Stream CV	Trib Conc	Fate Coef 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	WQC (µg/L) N/A	WQ Obj (µg/L) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	WLA (µg/L) N/A N/A N/A N/A N/A N/A N/A N/	

NPDES Permit Fact Sheet Somerset County Gen Authority Water System

Total Nickel	0	0				0	N/A	N/A	N/A	
Total Phenols (Phenolics) (PWS)	0	0	H	+	++	0	N/A	N/A	N/A	
Total Selenium	0	0	Ш	+	++	0	N/A	N/A	N/A	
Total Silver	0	0				0	N/A	N/A	N/A	
Total Thallium	0	0		-	##	0	N/A	N/A	N/A	
Total Zinc	0	0	Ħ	\pm	++	0	N/A	N/A	N/A	
				\top	++					
				+	++					
			₩	\pm	++					
			\Box	\dashv	\rightarrow					
				#	#					
			₩	+	##					
			₩	\pm	++					
				+	++					
			₩	+	++					
				\exists						
				#	#					
			H	+	++					
			₩	+	++					

			H	+	++					
			Н	+	++					
					#					
			₩	+	++	_				
			₩	+	++					
					#					
					++					
			₩	+	++	_				
					+					
					++	-				
				-	++					
		-				1				
					\blacksquare					
		-			++	-				
				+	-	-				
					+					
					\Box					
			\square	4	\bot					

☑ Recommended WQBELs & Monitoring Requirements

No. Samples/Month: 4

Model Results 11/2/2023 Page 14

NPDES Permit Fact Sheet Somerset County Gen Authority Water System

	Mass	Limits	Concentration Limits				1		
Pollutants	AML (lbs/day)	MDL (lbs/day)	AML	MDL	IMAX	Units	Governing WQBEL	WQBEL Basis	Comments
Total Aluminum	0.94	1.47	772	1,205	1,931	μg/L	772	AFC	Discharge Conc ≥ 50% WQBEL (RP)
Hexavalent Chromium	0.02	0.032	16.7	26.1	41.8	μg/L	16.7	CFC	Discharge Conc ≥ 50% WQBEL (RP)
Total Cobalt	Report	Report	Report	Report	Report	μg/L	30.5	CFC	Discharge Conc > 10% WQBEL (no RP)
Total Copper	Report	Report	Report	Report	Report	mg/L	0.013	AFC	Discharge Conc > 10% WQBEL (no RP)
Dissolved Iron	Report	Report	Report	Report	Report	μg/L	482	THH	Discharge Conc > 10% WQBEL (no RP)
Total Manganese	Report	Report	Report	Report	Report	μg/L	1,607	THH	Discharge Conc > 10% WQBEL (no RP)

Other Pollutants without Limits or Monitoring

The following pollutants do not require effluent limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharge concentration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QL).

Pollutants	Governing WQBEL	Units	Comments
Total Dissolved Solids (PWS)	N/A	N/A	PWS Not Applicable
Chloride (PWS)	N/A	N/A	PWS Not Applicable
Bromide	N/A	N/A	No WQS
Sulfate (PWS)	N/A	N/A	PWS Not Applicable
Fluoride (PWS)	N/A	N/A	Discharge Conc < TQL
Total Antimony	N/A	N/A	Discharge Conc < TQL
Total Arsenic	N/A	N/A	Discharge Conc < TQL
Total Barium	3,856	μg/L	Discharge Conc ≤ 10% WQBEL
Total Beryllium	N/A	N/A	No WQS
Total Boron	2,571	μg/L	Discharge Conc < TQL
Total Cadmium	0.39	μg/L	Discharge Conc < TQL
Total Chromium (III)	123	μg/L	Discharge Conc < TQL
Total Cyanide	N/A	N/A	No WQS

Model Results 11/2/2023 Page 15

NPDES Permit Fact Sheet Somerset County Gen Authority Water System

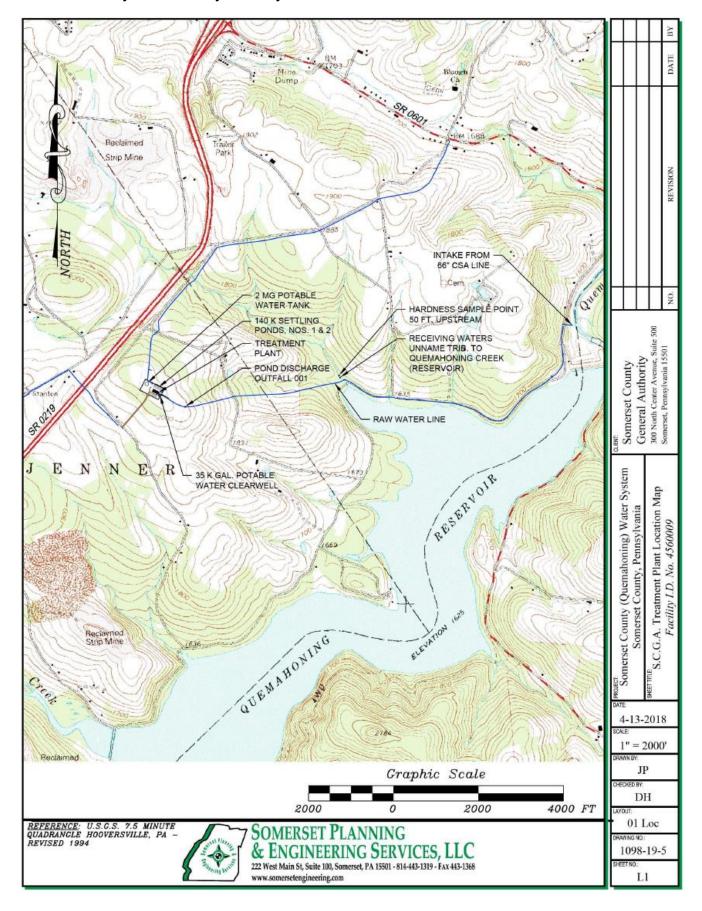
Total Iron	2,410	μg/L	Discharge Conc ≤ 10% WQBEL
Total Lead	4.26	μg/L	Discharge Conc < TQL
Total Mercury	0.08	μg/L	Discharge Conc < TQL
Total Nickel	74.3	μg/L	Discharge Conc ≤ 10% WQBEL
Total Phenols (Phenolics) (PWS)		μg/L	PWS Not Applicable
Total Selenium	8.02	μg/L	Discharge Conc < TQL
Total Silver	3.05	μg/L	Discharge Conc < TQL
Total Thallium	0.39	μg/L	Discharge Conc < TQL
Total Zinc	0.11	mg/L	Discharge Conc < TQL
Total Molybdenum	N/A	N/A	No WQS

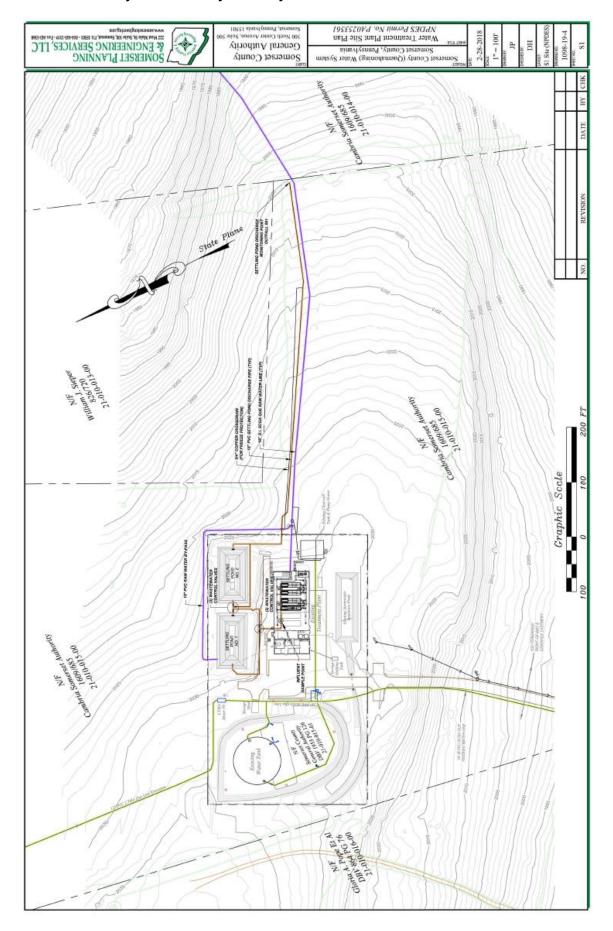
NPDES Permit No. PA0253561

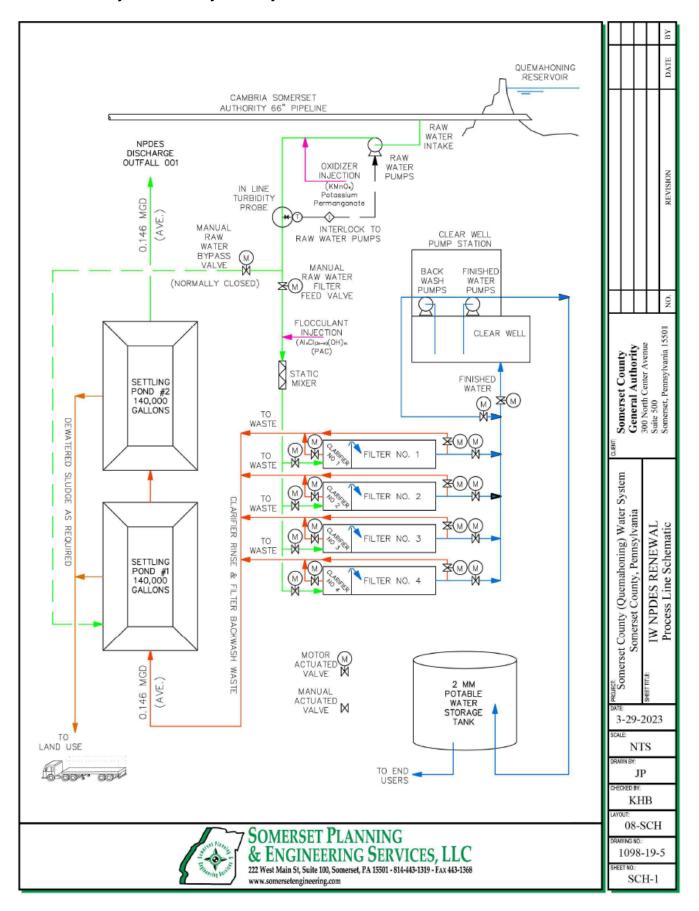
ATTACHMENT C: TRC MODEL SPREADSHEET

Somerset TRC_CALC

TRC EVALUATION


Somerset County General Authority


0.137	= Q stream (cfs)	0.5 = CV Daily							
0.146	= Q discharg	e (MGD)	0.5 = CV Hourly							
4	= no. sample	s	1	1 = AFC_Partial Mix Factor						
0.3	= Chlorine D	emand of Stream	1 = CFC_Partial Mix Factor							
(= Chlorine D	emand of Discharge	15	= AFC_Criteria (Compliance Time (min)					
0.5	= BAT/BPJ V	alue	720	= CFC_Criteria (Compliance Time (min)					
	= % Factor of	of Safety (FOS)		=Decay Coeffici	ent (K)					
Source	Reference	AFC Calculations		Reference	CFC Calculations					
TRC	1.3.2.iii	WLA afc =	0.212	1.3.2.iii	WLA cfc = 0.200					
PENTOXSD TRG	5.1a	LTAMULT afc =	0.373	5.1c	LTAMULT cfc = 0.581					
PENTOXSD TRG	5.1b	LTA_afc=	0.079	5.1d	$LTA_cfc = 0.116$					
Source		Efflue	nt Limit Calcu	ations						
PENTOXSD TRO	5.1f		AML MULT =	1.720						
PENTOXSD TRG	5.1g		LIMIT (mg/l) =		AFC					
		INST MAX I	LIMIT (mg/l) =	0.319						
WLA afc		C_tc)) + [(AFC_Yc*Qs	•	AFC_tc))						
	•	C_Yc*Qs*Xs/Qd)]*(1-F	•							
LTAMULT afc		cvh^2+1))-2.326*LN(cv	h^2+1)^0.5)							
LTA_afc	wla_afc*LTAN	/IULT_afc								
			04410 10 11 11 1	050 / 11						
WLA_cfc		C_tc) + [(CFC_Yc*Qs*		CFC_tc))						
	+ Xd + (CFC_Yc*Qs*Xs/Qd)]*(1-FO\$/100)									
_	LTAMULT_cfc EXP((0.5*LN(cvd^2/no_samples+1))-2.326*LN(cvd^2/no_samples+1)^0.5)									
LTA_cfc	wla_cfc*LTAN	IUL I_CTC								
AML MULT	EVD/2 226*I	N((cvd^2/no samples+1	1\00 E\ 0 E*I NI	loudA2/no comple	2011))					
	•				#ST1))					
AVG MON LIMIT	_	J,MIN(LTA_afc,LTA_cfo limit/AML_MULT)/LT	_)						
INST MAX LIMIT	1.5 ((av_mor	I_IIIIIUAWL_WULI/LI	AWOLI_aic)							



NPDES Permit No. PA0253561

ATTACHMENT D: FACILITY FIGURES

