

Southwest Regional Office CLEAN WATER PROGRAM

Application Type	Renewal
Facility Type	Municipal
Major / Minor	Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

 Application No.
 PA0253812

 APS ID
 1078064

 Authorization ID
 1421770

	Applicant and Facility Information										
Applicant Name	Glendale Valley Municipal Authority	Facility Name	Glendale Valley WWTP								
Applicant Address	1800 Beaver Valley Road	Facility Address	2075 Beaver Valley Road								
	Flinton, PA 16640-9000		Flinton, PA 16640								
Applicant Contact	Lisa McMurray	Facility Contact	John Patrick								
Applicant Phone	814-687-3005	Facility Phone	814-687-4666								
Client ID	263735	Site ID	705180								
Ch 94 Load Status	Not Overloaded	Municipality	Reade Township								
Connection Status	No Limitations	County	Cambria								
Date Application Receiv	ved December 21, 2022	EPA Waived?	No								
Date Application Accep		If No, Reason	Significant CB Discharge								
Purpose of Application	NPDES permit renewal application.										

Summary of Review

The PA Department of Environmental Protection (PADEP/Department) received an NPDES permit renewal application from Keller Engineers on behalf of Glendale Valley Municipal Authority (Authority/Permittee) on December 21, 2022 for permittee's Glendale Valley WWTP (facility), located in White Township, Cambria County. This is a minor sewage facility with design flow of 0.45 MGD that discharges into Clearfield Creek (WWF) in state watershed 8-C. The current permit will expire on June 30, 2023. The terms and conditions of the current permit is automatically extended since the renewal application was received at least 180 days prior to the expiration date. Renewal NPDES permit applications under Clean Water program are not covered by PADEP's PDG per 021-2100-001.

This fact sheet is developed in accordance with 40 CFR §124.56.

Changes in this renewal: Added: Annual Total Copper monitoring, quarterly E-Coli monitoring, DO changed to 5.0 mg/l

Sludge use and disposal description and location(s): Dewatered sludge is landfilled at Laurel Highlands Landfill.

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Approve	Deny	Signatures	Date
\checkmark		Reza H. Chowdhury, E.I.T. / Project Manager	June 14, 2023
х		<i>Pravin Patel</i> Pravin C. Patel, P.E. / Environmental Engineer Manager	06/15/2023

Discharge, Receiving Wate	ers and Water Supply Infor	mation					
Outfall No. 001		Design Flow (MGD)	0.45				
Latitude 40° 43' 3"		Longitude	-78º 31' 36"				
Quad Name Coalport		Quad Code	1317				
Wastewater Description:	Sewage Effluent						
Receiving Waters Clear	rfield Creek (WWF)	Stream Code	26107				
NHD Com ID 6183	5799	RMI	45.78				
Drainage Area 98.2	mi ²	Yield (cfs/mi²)	0.126				
Q ₇₋₁₀ Flow (cfs) <u>12.37</u>	7	Q7-10 Basis	Previous protection report				
Elevation (ft) 1,37	8	Slope (ft/ft)					
Watershed No. 8-C		Chapter 93 Class.	WWF				
Existing Use WWF	F, MF	Existing Use Qualifier	Ch. 93				
Exceptions to Use		Exceptions to Criteria					
Assessment Status	Impaired						
Cause(s) of Impairment	METALS						
Source(s) of Impairment	ACID MINE DRAINAGE						
TMDL Status	Final	Name Clearfield Cr	reek				
Background/Ambient Data	1	Data Source					
pH (SU)	7.0	Default					
Temperature (°C)	25	Default					
Hardness (mg/L)	100	Default					
Nearest Downstream Pub	lic Water Supply Intake	Shawville Power Plant, Lecon	tes Mills, Clearfield County				
PWS Waters W. Br. S	Susquehanna River	Flow at Intake (cfs)					
PWS RMI 164.19		Distance from Outfall (mi)	49.32				

Changes Since Last Permit Issuance: None

Streamflow:

USGS's web based watershed delineation tool StreamStats (accessible at <u>https://streamstats.usgs.gov/ss/</u>, accessed on June 7, 2023) was utilized to determine the drainage area at discharge point. The StreamStats report shows the drainage area at the discharge point is 98.2 mi². The previous permit's fact sheet indicated a yield of 0.126 cfs/mi² which results in a Q_{7-10} value of 98.2*0.126 or 12.37 cfs. A default Q_{1-10} , Q_{7-10} of 0.64 and Q_{30-10} : Q_{7-10} of 1.36 will be used for modeling, if needed.

PWS Intake:

The nearby downstream PWS intake is Shawville Power Plant on West Branch Susquehanna River in Lecontes Mills Clearfield County, which is approximately 49.32 miles downstream of discharge point. Due to the distance, dilution, and effluent limitations, it is expected that the discharge will not adversely impact the PWS intake.

Wastewater Characteristics:

A pH of 6.85 (daily eDMR data, median July- September 2021-2022), default temperature of 25°C (Default per 391-2000-007), and a default Hardness value of 100 mg/l will be used for modeling, if needed.

Background data:

There is no nearby WQN station to collect background stream data. In absence of site-specific data, default pH of 7.0, stream temperature of 25°C, and stream hardness of 100 mg/l will be used for modeling, if needed.

Clearfield Creek TMDL:

The receiving watershed, Clearfield Creek Watershed, has an EPA approved TMDL for AMD. The current permit has annual monitoring requirements for AMD parameters (Total Aluminum, Total Iron, and Total Manganese). The existing monitoring requirements will be carried over unless there is a numeric limit warranted from modeling efforts.

Antidegradation (93.4):

The effluent limits for this discharge have been developed to ensure that existing in-stream water uses and the level of water quality necessary to protect the existing uses are maintained and protected. The receiving streams are designated as Warm-Water Fishes (WWF) and Migratory Fishes (MF). No High-Quality stream or Exceptional Value water is impacted by this discharge; therefore, no Antidegradation Analysis is performed for the discharge.

	Treatment Facility Summary										
Treatment Facility Na	me: Glendale Valley Munic	sipal Authority STP	•								
WQM Permit No.	Issuance Date										
1110402	05/17/2011										
	ſ	Γ									
Waste Type	Degree of Treatment	Process Type	Disinfection	Avg Annual Flow (MGD)							
Sewage		Extended Aeration	Ultraviolet	0.45							
Hydraulic Capacity	Organic Capacity			Biosolids							
(MGD)	(lbs/day)	Load Status	Biosolids Treatment	Use/Disposal							
0.45	900	Not Overloaded	Dewatering	Landfill							

Changes Since Last Permit Issuance: None

Treatment Plant Description

Glendale Valley owns and operates the wastewater treatment facility located in Reade Township, Cambria County. It is an extended aeration minor sewage facility with a design flow of 0.45 MGD and organic loading capacity of 900 lbs. BOD5/day. The wastewater from the collection system enters the facility at a bar screen manhole before entering a precast concrete lift station. The lift station conveys the raw wastewater to the influent building. It then flows to the treatment unit. The unit contains three independent treatment trains each with a capacity of 150,000 GPD. The unit contains a shared two-part equalization basin before splitting into the individual treatment trains, each containing aerobic, anoxic, and clarification chambers. The unit also contains a shared sludge storage chamber. Clarified effluent flows from the main treatment unit to a sand filter located in a second precast concrete structure. The filtered effluent flows to a third precast structure which acts as a finishing tank. This tank contains a dual UV lamp. Overall, the facility contains the following treatment units: 1 screen, 2 EQ tanks, 3 anoxic zones, 3 aeration zones, 3 clarifiers, 1 digester, 2 sand filters, 2 UV, 1 belt filter press.

Final effluent is sampled and metered before being discharged into Clearfield Creek.

The facility receives wastewater from the below tributary municipalities:

TRIBUTARY INFORMATION											
		Type of Sev	wer System								
Municipalities Served	Flow Contribution (%)	Separate (%)	Combined (%)	Population							
Chest Township	13	100	0	350							
Reade Township	57	100	0	1,500							
White Township	30	100	0	800							

The following chemicals are used for wastewater treatment:

Wastewater Treatment Chemical	Purpose	Maximum Usage Rate	Units
Methanol	Nitrogen Reduction	n/a	n/a
Alum	Phosphorus Reduction	n/a	n/a

The facility didn't receive any hauled-in wastes in past three years but is planning to receive for next five years. Hauled-in treatment plant sludge will be received at aerobic digestor and septic tank pumping will be received at EQ tank. There is no industrial or commercial users to this treatment plant.

Biosolids Management: Dewatered sludge is landfilled at Laurel Highlands Landfill.

Compliance History

DMR Data for Outfall 001 (from February 1, 2022 to January 31, 2023)

Parameter	JAN-23	DEC-22	NOV-22	OCT-22	SEP-22	AUG-22	JUL-22	JUN-22	MAY-22	APR-22	MAR-22	FEB-22
Flow (MGD)												
Average Monthly	0.2128	0.1329	0.1174	0.0761	0.1239	0.1023	0.0783	0.0796	0.2231	0.1296	0.1824	0.2045
Flow (MGD)												
Daily Maximum	0.5517	0.3176	0.3723	0.1921	0.3199	0.3937	0.2199	0.1172	0.8591	0.2295	0.4122	0.6434
pH (S.U.)												
Minimum	6.44	6.35	6.27	6.13	6.56	6.37	6.23	6.2	6.33	6.23	6.3	6.48
pH (S.U.)												
Maximum	6.85	7.01	6.98	7.05	6.97	7.26	7.33	7.45	7.44	7.45	7.54	7.4
DO (mg/L)												
Minimum	8.7	8.32	8.38	7.72	7.8	4.48	5.41	5.13	5.44	5.83	5.76	5.64
CBOD5 (lbs/day)												
Average Monthly	3.9	2.5	2.1	1.7	2.8	1.8	1.4	1.6	6.1	2.2	4.7	4.3
CBOD5 (lbs/day)												
Weekly Average	7.5	2.8	2.8	3.6	6.1	2.9	1.9	2.2	15.4	2.7	10.3	8.4
CBOD5 (mg/L)												
Average Monthly	2	3.0	3.0	3	2.0	2.0	2.0	2.0	3.0	2.0	3.0	3.0
CBOD5 (mg/L)												
Weekly Average	2.4	3.0	3.3	4.4	3.2	2.6	2.5	2.8	6.0	2.3	4.9	5.2
BOD5 (lbs/day)												
Raw Sewage Influent												
Average Monthly	171	195	185	132	116	128	85	121.0	136	106	103	117.0
BOD5 (lbs/day)												
Raw Sewage Influent Daily												
Maximum	220	276	277	180	137	162	103	160.0	196	125	141	165.0
BOD5 (mg/L)												
Raw Sewage Influent												
Average Monthly	123.9	194	231	241	133.8	190.8	156.9	177.0	82.6	105.6	76.4	115.1
ISS (lbs/day)										. –		
Average Monthly	8.4	2.8	2.8	2.5	4.6	3.2	1.6	2.0	6.1	4.7	7.0	7.4
TSS (lbs/day)												
Raw Sewage Influent	100	407	405	4.45	400	4.40	00	400.0	407		04.0	100.0
	163	187	185	145	128	143	92	128.0	137	89	94.0	100.0
TSS (lbs/day)												
Raw Sewage Influent Dally	100	202	242	105	150	200	110	102.0	100	100	1110	150.0
	190	293	343	100	103	200	110	192.0	198	130	144.0	152.0
100 (IDS/Day)	22.2	25	4.6	F7	0.6	6.4	10	2.0	10.0	E 0	10.7	17.0
	23.3	3.5	4.0	5.7	9.0	0.4	1.0	3.8	12.9	5.3	12.1	0.11
133 (IIIg/L) Average Monthly	1	2.0	2.0	4	4.0	10	2.0	2.0	2.0	5.0	4.0	6.0
Average Monthly	4	3.0	3.0	4	4.0	4.0	3.0	3.0	3.0	5.0	4.0	0.0

NPDES Permit No. PA0253812

TSS (mg/L)												
Raw Sewage Influent												
Average Monthly	112	183	221	260	146	213	172	184.0	81	93	63.0	102.0
TSS (mg/L)												
Weekly Average	7	3.0	5.0	7	6.0	5.0	4.0	4.0	5.0	6.0	6.0	6.0
Fecal Coliform (CFU/100 ml)												
Geometric Mean	2	1.0	2.0	10	6.0	10	6.0	1.0	2.0	1.0	3.0	1.0
Fecal Coliform (CFU/100 ml)												
IMAX	7.3	1.0	7.5	77.1	59.1	740.8	240.0	1.0	10.9	2.0	140.8	2.0
UV Transmittance (%)												
Minimum	81.92	81.92	42	50.2	43.5	31.1	33.4	45.1	56.4	69.4	73.7	69.1
Nitrate-Nitrite (mg/L)												
Average Monthly	14	14.11	14.31	19.54	14.293	18.036	16.63	14.08	7.088	14.0	8.44	7.5
Nitrate-Nitrite (lbs)												
Total Monthly	432	406	307	322	375	401	274.0	287	382.0	425	315	230.0
Total Nitrogen (mg/L)												
Average Monthly	10.52	14.66	17.41	20.29	16.15	18.81	17.2	14.62	8.05	12.76	11.64	7.5
Total Nitrogen (lbs)												
Effluent Net Total Monthly	462	422	359	335	449.0	419	284	298.0	441	442	506	391.0
Total Nitrogen (lbs)												
Total Monthly	462	422	359	335	449.0	419	284	298	441	442	506	391.0
Total Nitrogen (lbs)												
Effluent Net Total Annual					4943							
Total Nitrogen (lbs)												
Total Annual					4943							
Ammonia (Ibs/day)												
Average Monthly	0.2	0.2	0.08	0.06	2.0	0.09	0.05	0.1	0.5	0.1	4.0	4.0
Ammonia (mg/L)												
Average Monthly	0.1	0.193	0.1	0.1	1.486	0.129	0.1	0.2	0.214	0.1	2.24	3.09
Ammonia (lbs)	_			_								
Total Monthly	5	5.0	2.0	2	61.0	3.0	2.0	4.0	14.0	4.0	135	104.0
Ammonia (lbs)												
Total Annual					454							
TKN (mg/L)												
Average Monthly	0.6	0.52	0.6	0.8	1.808	0.9	17.2	0.523	0.958	15.0	3.19	4.44
IKN (lbs)		. –	10.0	10	70.0					17.0	101	100.0
Total Monthly	30	15	13.0	13	73.0	20	9.0	11.0	59.0	17.0	191	160.0
Total Phosphorus (mg/L)	0	0.07	5.04	0.05	4.07	5.0	7.0.4	0.04	0.7		0.40	0.04
Average Monthly	3	3.97	5.04	6.25	4.97	5.9	7.24	6.34	2.7	3.0	2.42	2.31
I otal Phosphorus (lbs)	400		400	400	4.40.0	400	464	400.0	405	00	07.0	05.0
Effluent Net Total Monthly	108	114	100	103	142.0	129	121	128.0	135	96	97.0	65.0
Total Phosphorus (lbs)	400		100.0	400	1 4 0 0	400	101	400.0	405.0	00.0	07.0	05.0
	108	114	100.0	103	142.0	129	121	128.0	135.0	96.0	97.0	65.0
I otal Phosphorus (lbs)					4000							
Effluent Net Total Annual					1038							

NPDES Permit No. PA0253812

Total Phosphorus (lbs)							
Total Annual			1413				
Total Aluminum (mg/L)							
Daily Maximum	< 0.100						
Total Iron (mg/L)							
Daily Maximum	< 0.200						
Total Manganese (mg/L)							
Daily Maximum	0.159						

Existing Effluent Limits and Monitoring Requirements

For Outfall 001:

			Effluent L	imitations.			Monitoring Requirements	
Baramotor	Mass Units	; (lbs/day) ⁽¹⁾		Concentrati	ions (mg/L)		Minimum ⁽²⁾	Required
Falameter	Average	Weekly		Average	Weekly	Instant.	Measurement	Sample
	Monthly	Average	Minimum	Monthly	Average	Maximum	Frequency	Туре
		Report						
Flow (MGD)	Report	Daily Max	XXX	XXX	XXX	XXX	Continuous	Recorded
					9.0			
pH (S.U.)	XXX	XXX	6.0	XXX	Max	XXX	1/day	Grab
Dissolved Oxygen	XXX	xxx	4.0	xxx	XXX	xxx	1/day	Grab
Carbonaceous Biochemical								8-Hr
Oxygen Demand (CBOD5)	93.9	140.8	XXX	25	37.5	50	1/week	Composite
Biochemical Oxygen Demand								
(BOD5)		Report						8-Hr
Raw Sewage Influent	Report	Daily Max	XXX	Report	XXX	XXX	1/week	Composite
								8-Hr
Total Suspended Solids	112.7	169.0	XXX	30	45	60	1/week	Composite
Total Suspended Solids	_	Report						8-Hr
Raw Sewage Influent	Report	Daily Max	XXX	Report	XXX	XXX	1/week	Composite
Fecal Coliform (CFU/100 ml)			2004	2000	2007	10000		
Oct 1 - Apr 30	XXX	XXX	XXX	Geo Mean	XXX	10000	1/week	Grab
Fecal Coliform (CFU/100 ml)				200		4000	4/	
May 1 - Sep 30	XXX	XXX	XXX	Geo Mean	XXX	1000	1/Week	Grab
	VVV	VVV	Denert	VVV	VVV	VVV	1/dov	Deserved
(%)	XXX	***	Report	***	XXX	***	1/day	Recorded
Ammonia Nitragon	Papart	VVV	VVV	Benert	VVV	VVV	2/wook	8-Hr
Ammonia-initrogen	Report	^^^	^^^	кероп	~~~	^^^	∠/week	
Total Phosphorus	VVV	× v v	x y y	Peport	VVV	x y y	2/wook	8-⊓r Composite
i otar i nospriorus	~~~	~~~	~~~	Report	~~~	~~~		Composite

For Outfall 001:

		Monitoring Requirements						
Parameter	Mass Units	(lbs/day) ⁽¹⁾		Concentrat	Minimum ⁽²⁾	Required		
Falameter	Average	Weekly		Average	Weekly	Instant.	Measurement	Sample
	Monthly	Average	Minimum	Monthly	Average	Maximum	Frequency	Туре
					Report			8-Hr
Aluminum, Total	XXX	XXX	XXX	XXX	Daily Max	XXX	1/year	Composite
					Report			8-Hr
Iron, Total	XXX	XXX	XXX	XXX	Daily Max	XXX	1/year	Composite
					Report			8-Hr
Manganese, Total	XXX	XXX	XXX	XXX	Daily Max	XXX	1/year	Composite

Chesapeake Bay requirements for Outfall 001:

		Monitoring Requirements						
Parameter	Mass Uni	ts (Ibs) ⁽¹⁾	Concentrations (mg/L)				Minimum ⁽²⁾	Required
Falameter	Monthly	Annual	Monthly	Monthly Average	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
								8-Hr
AmmoniaN	Report	Report	XXX	Report	XXX	XXX	2/week	Composite
								8-Hr
KjeldahlN	Report	XXX	XXX	Report	XXX	XXX	2/week	Composite
								8-Hr
Nitrate-Nitrite as N	Report	XXX	XXX	Report	XXX	XXX	2/week	Composite
Total Nitrogen	Report	Report	XXX	Report	XXX	XXX	2/week	Calculation
								8-Hr
Total Phosphorus	Report	Report	XXX	Report	XXX	XXX	2/week	Composite
Net Total Nitrogen	Report	7808	XXX	XXX	XXX	XXX	1/month	Calculation
Net Total Phosphorus	Report	1041	xxx	XXX	xxx	xxx	1/month	Calculation

Summary of inspection: 02/22/2023: CEI conducted. No violation noted. The effluent appeared clear at the time of inspection

10/08/2019: CEI conducted. No violation noted.

1/18/2019: CEI conducted. No violation noted.

Development of Effluent Limitations

Outfall No.	001		Design Flow (MGD)	.45
Latitude	40° 43' 3.00"		Longitude	-78º 31' 36.00"
Wastewater	Description:	Sewage Effluent		

Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD5	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
рН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform				
(5/1 – 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform				
(5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform				
(10/1 – 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform				
(10/1 - 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)

Water Quality-Based Limitations

WQM 7.0:

WQM 7.0 is a water quality model designed to assist DEP to determine appropriate permit requirements for CBOD5, NH3-N and DO. DEP's guidance no. 391-2000-007 provides the technical methods contained in WQM 7.0 for conducting wasteload allocation and for determining recommended NPDES effluent limits for point source discharges. DEP recently updated this model (ver. 1.1) to include new ammonia criteria that has been approved by US EPA as part of the 2017 Triennial Review. The model was utilized for this permit renewal by using updated Q7-10 and historic background water quality levels of the river. The following data were used in the attached computer model of the stream:

•	Discharge pH	6.85	(median July-Sep, 2021-22, eDMR data)
•	Discharge Temperature	25°C	(Default)
٠	Discharge Hardness	100 mg/l	(Application data)
•	Stream pH	7.0	(Default)
٠	Stream Temperature	25°C	(Default)
•	Stream Hardness	100 mg/l	(Default)

The following two nodes were used in modeling:

Node 1:	At the outfall 001 on	Clearfield Creek (26107)
	Elevation:	1378 ft (USGS National Map Advanced Viewer, 6/7/2023)
	Drainage Area:	98.2 mi ² (StreamStat Version 4.15, 6/7/2023)
	River Mile Index:	45.48 (PA DEP eMapPA)
	Low Flow Yield:	0.126 cfs/mi ²
	Discharge Flow:	0.45 MGD
Node 2:	At confluence with B	eaverdam Run,
	Elevation:	1375.07 ft (USGS TNM 2.0 viewer, 6/7/2023)
	Drainage Area:	147 mi ² (StreamStat Version 4.0, 6/7/2023)
	River Mile Index:	45.26 (PA DEP eMapPA)
	Low Flow Yield:	0.126 cfs/mi ²
	Discharge Flow:	0.0 MGD

<u>NH₃-N:</u>

WQM 7.0 suggested NH₃-N limit of 25.0 mg/l as monthly average and 50.0 mg/l as IMAX limit during summer to protect water quality standards. PADEP's SOP BCW-PMT-033 (Rev. 3/24/2021) suggests that for existing dischargers, if WQM modeling results for summer indicates that an average monthly limit of 25 mg/l is acceptable, the application manager will generally establish a year-round monitoring requirements for ammonia-nitrogen, at a minimum. Current permit has year-round monitoring requirement which will be carried over in this renewal. The existing limits will be carried over.

CBOD₅:

The WQM 7.0 model suggests a monthly average CBOD₅ limit of 25 mg/l which suggests that the existing limits are still protective. The existing concentration-based and mass-based limits will be carried over.

Dissolved Oxygen (DO):

A minimum of 5.0 mg/L for D.O. is necessary to protect the designated use of the receiving stream and is supported by the output from WQM 7.0 modeling and consistent with Ch. 93.7. The current permit has a minimum DO limit of 4.0 mg/l. A review of the last 12 months eDMR data indicated that the facility can meet the new, more stringent DO limit at least 90% of the time. More stringent DO limit will be applied in the draft permit.

Toxics:

Based on the available data, PADEP utilizes Toxics Management Spreadsheet (TMS) to (1) evaluate reasonable potential for toxic pollutants to cause or contribute to an excursion above the water quality standards and (2) develop WQBELs for those such toxic pollutants (i.e., 40 CFR § 122.44(d)(1)(i)). It is noteworthy that some of these pollutants that may be reported as "non-detect", but still exceeded the criteria, were determined to be candidates for modeling because the method detection levels used to analyze those pollutants were higher than target QLs and/or the most stringent Chapter 93 criteria. The model then recommended the appropriate action for the Pollutants of Concerns based on the following logic:

1. In general, establish limits in the draft permit where the effluent concentration determined in B.1 or B.2 equals or exceeds 50% of the WQBEL (i.e., RP is demonstrated). Use the average monthly, maximum daily and instantaneous maximum (IMAX) limits for the permit as recommended by the TMS (or, if appropriate, use a multiplier of 2 times the average monthly limit for the maximum daily limit and 2.5 times the average monthly limit for IMAX).

2. For non-conservative pollutants, in general, establish monitoring requirements where the effluent concentration determined in B.1 or B.2 is between 25% - 50% of the WQBEL.

3. For conservative pollutants, in general, establish monitoring requirements where the effluent concentration determined in B.1 or B.2 is between 10% - 50% of the WQBEL.

NOTE 4 – If the effluent concentration determined in B.1 or B.2 is "non-detect" at or below the target quantitation limit (TQL) for the pollutant as specified in the TMS and permit application, the pollutant may be eliminated as a candidate for WQBELs or monitoring requirements unless 1) a more sensitive analytical method is available for the pollutant under 40 CFR Part 136 where the quantitation limit for the method is less than the applicable water quality criterion and 2) a detection at the more sensitive method may lead to a determination that an effluent limitation is necessary, considering available dilution at design conditions.

NOTE 5 – If the effluent concentration determined in B.1 or B.2 is a detection below the TQL but above or equal to the applicable water quality criterion, WQBELs or monitoring may be established for the pollutant.

4. Application managers may, on a site- and pollutant-specific basis, deviate from these guidelines where there is specific rationale that is documented in the fact sheet. Output from TMS is provided below:

Recommended WQBELs & Monitoring Requirements

No. Samples/Month: 4

	Mass	Limits		Concentra	tion Limits				
Pollutants	AML (lbs/day)	MDL (lbs/day)	AML	MDL	IMAX	Units	Governing WQBEL	WQBEL Basis	Comments
Total Copper	Report	Report	Report	Report	Report	µg/L	70.4	AFC	Discharge Conc > 10% WQBEL (no RP)

<u>Total Copper:</u> TMS suggests monitoring for Total Copper based on model input concentration of 10.2 ug/l. An annual monitoring requirement will be added in this renewal to be consistent with other metals monitoring frequency.

Existing Parameters without RP demonstration:

<u>Total Aluminum, Total Iron, and Total Manganese:</u> As stated in page 3 of this report, existing monitoring for these three TMDL pollutants will be continued unless TMS suggests numeric limit. Since no RP is demonstrated, existing monitoring will be continued.

Additional Considerations

Fecal Coliform:

The recent coliform guidance in 25 Pa. code § 92a.47.(a)(4) requires a summer technology limit of 200/100 ml as a geometric mean and an instantaneous maximum not greater than 1,000/100ml and § 92a.47.(a)(5) requires a winter limit of 2,000/100ml as a geometric mean and an instantaneous maximum not greater than 10,000/100ml. These are existing limits and will be carried over.

E. Coli:

Pa Code 25 § 92a. 61 requires monitoring of E. Coli. DEP's SOP titled "Establishing Effluent Limitations for Individual Sewage Permits (BCW-PMT-033, revised March 24, 2021) recommends monthly E. Coli monitoring for major sewage dischargers. This requirement will be applied from this permit term.

<u>рН:</u>

The TBEL for pH is above 6.0 and below 9.0 S.U. (40 CFR §133.102(c) and Pa Code 25 §§ 95.2(1), 92a.47) which are existing limits and will be carried over.

Total Suspended Solids (TSS):

There is no water quality criterion for TSS. The existing limits of 30 mg/L average monthly, 45 mg/l average weekly, and 60 mg/L instantaneous maximum will remain in the permit based on the minimum level of effluent quality attainable by secondary treatment, 25 Pa. Code § 92a.47 and 40CFR 133.102(b). The mass based average monthly and weekly average limits are calculated to be 112.7 lbs./day and 169.0 lbs./day respectively, which are the same as were in existing permit and will be carried over.

UV Disinfection:

PADEP's SOP BCW-PMT-033 recommends UV parameter monitoring where UV is used as a method of disinfection, with the same frequency as would be if Chlorine is used for disinfection. The current permit has UV Transmittance monitoring in % as daily minimum which will be carried over.

Flow and Influent BOD₅ and TSS Monitoring Requirement:

The requirement to monitor the volume of effluent will remain in the draft permit per 40 CFR § 122.44(i)(1)(ii). Influent BOD₅ and TSS monitoring requirements are established in the permit per the requirements set in Pa Code 25 Chapter 94.

Best Professional Judgement (BPJ):

Total Phosphorus:

The current permit has monitoring requirements for Total Phosphorus which is consistent with Pa Code 25 Ch. 92a.61 and will be carried over.

<u>Total Nitrogen:</u> Pa Code 25 § 92a.61 requires monitoring, at a minimum, for all sewage facilities. Current monitoring requirement will be continued.

Monitoring Frequency and Sample Types:

Otherwise specified above, the monitoring frequency and sample type of compliance monitoring for existing parameters are recommended by DEP's SOP and Permit Writers Manual and/or on a case-by-case basis using best professional judgment (BPJ).

Chesapeake Bay TMDL

On March 30, 2012, DEP finalized Pennsylvania's Chesapeake Watershed Implementation Plan Phase 2 (i.e., Phase 2 WIP) to address U.S EPA's expectations for the Chesapeake Bay TMDL. The Chesapeake Bay TMDL identifies the

necessary pollution reductions from major sources of nitrogen, phosphorus and sediment across the Bay jurisdictions and sets pollution limits necessary to meet water quality standards. The Phase 2 WIP is an update to the Pennsylvania's Chesapeake Bay TMDL Strategy (2004) and the Chesapeake WIP Phase I (2011). In August 2019, DEP finalized Phase 3 Chesapeake Bay Watershed Implementation Plan (revised July 29, 2022) to provide the plans in place by 2025 to further achieve the nutrient and sediment reduction targets. The more details on the TMDL are available at www.dep.pa.gov.

As part of the Phase 3 WIP process, a Supplement to the Phase 3 WIP was developed, providing an update on TMDL implementation for point sources and a discussion of adjustments to the permitting strategy as a result of implementation experience. According to this document, Glendale Valley Municipal Authority is a Phase 3 significant discharger located within the Chesapeake Bay watershed. The following Cap Loads specified in the current Supplement to the Phase 3 WIP will be continued in the draft permit:

			Latest			TN	TN Offsets Included	TP		
			Permit	Permit	Cap Load	Cap	in Cap	Cap	TN	TP
NPDES			Issuance	Expiration	Compliance	Load	Load	Load	Delivery	Delivery
Permit No.	Phase	Facility	Date	Date	Start Date	(lbs/yr)	(lbs/yr)	(lbs/yr)	Ratio	Ratio
		Glendale								
PA0205869	3	Valley MA	06/01/2018	6/30/2023	10/1/2013	7,808	-	1,041	0.511	0.347

Anti-Backsliding

The proposed limits are at least as stringent as are in existing permit, unless otherwise stated; therefore, anti-backsliding is not applicable.

.

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

-

-

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

_

			Effluent Li	mitations			Monitoring Re	quirements
Parameter	Mass Units	(lbs/day) ⁽¹⁾		Concentratio	ons (mg/L)		Minimum ⁽²⁾	Required
Falanciel	Average Monthly	Weekly Average	Instantaneous Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report Daily Max	XXX	XXX	xxx	xxx	Continuous	Recorded
pH (S.U.)	XXX	ххх	6.0	XXX	XXX	9.0	1/day	Grab
Dissolved Oxygen	XXX	ххх	5.0 Daily Min	XXX	XXX	xxx	1/day	Grab
Carbonaceous Biochemical Oxygen Demand (CBOD5)	93.9	140.8	XXX	25	37.5	50	1/week	8-Hr Composite
Biochemical Oxygen Demand (BOD5) Raw Sewage Influent	Report	Report Daily Max	xxx	Report	ххх	xxx	1/week	8-Hr Composite
Total Suspended Solids	112.7	169.0	XXX	30	45	60	1/week	Composite
Total Suspended Solids Raw Sewage Influent	Report	Report Daily Max	XXX	Report	XXX	XXX	1/week	8-Hr Composite
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	ххх	XXX	2000 Geo Mean	XXX	10000	1/week	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	xxx	XXX	200 Geo Mean	XXX	1000	1/week	Grab
E. Coli (No./100 ml)	XXX	xxx	XXX	XXX	XXX	Report	1/quarter	Grab
Ultraviolet light transmittance (%)	XXX	ххх	Report	XXX	XXX	xxx	1/day	Recorded
Ammonia-Nitrogen	XXX	ххх	XXX	Report	XXX	xxx	2/week	8-Hr Composite
Total Phosphorus	XXX	xxx	XXX	Report	XXX	xxx	2/week	8-Hr Composite

Outfall 001, Continued (from Permit Effective Date through Permit Expiration Date)

		Monitoring Requirements						
Baramotor	Mass Units	(lbs/day) ⁽¹⁾		Concentrations (mg/L)				Required
Faialletei	Average	Weekly	Instantaneous	Average	Weekly	Instant.	Measurement	Sample
	wonthiy	Average	MINIMUM	wonthiy	Average	waximum	Frequency	туре
					Report			8-Hr
Aluminum, Total	XXX	XXX	XXX	XXX	Daily Max	XXX	1/year	Composite
					Report			8-Hr
Copper, Total	XXX	XXX	XXX	XXX	Daily Max	XXX	1/year	Composite
					Report			8-Hr
Iron, Total	XXX	XXX	XXX	XXX	Daily Max	XXX	1/year	Composite
					Report			8-Hr
Manganese, Total	XXX	XXX	XXX	XXX	Daily Max	XXX	1/year	Composite

Compliance Sampling Location: At Outfall 001

Other Comments: None

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

		Monitoring Requirements						
Baramotor	Mass Units	(lbs/day) ⁽¹⁾		Concentrat	Minimum ⁽²⁾	Required		
Farameter	Monthly	Annual	Monthly	Monthly Average	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
								8-Hr
AmmoniaN	Report	Report	XXX	Report	XXX	XXX	2/week	Composite
								8-Hr
KjeldahlN	Report	XXX	XXX	Report	XXX	XXX	2/week	Composite
								8-Hr
Nitrate-Nitrite as N	Report	XXX	XXX	Report	XXX	XXX	2/week	Composite
Total Nitrogen	Report	Report	XXX	Report	XXX	XXX	1/month	Calculation
								8-Hr
Total Phosphorus	Report	Report	XXX	Report	XXX	XXX	2/week	Composite
Net Total Nitrogen	XXX	7808	XXX	XXX	XXX	XXX	1/year	Calculation
Net Total Phosphorus	ХХХ	1041	XXX	XXX	XXX	ХХХ	1/year	Calculation

Compliance Sampling Location: At Outfall 001

Other Comments: None

	Tools and References Used to Develop Permit
	WQM for Windows Model (see Attachment)
	Toxics Management Spreadsheet (see Attachment)
	TRC Model Spreadsheet (see Attachment)
	Temperature Model Spreadsheet (see Attachment)
	Water Quality Toxics Management Strategy, 361-0100-003, 4/06.
	Technical Guidance for the Development and Specification of Effluent Limitations, 362-0400-001, 10/97.
	Policy for Permitting Surface Water Diversions, 362-2000-003, 3/98.
	Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 362-2000-008, 11/96.
	Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97.
	Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 362-2183-004, 12/97.
	Pennsylvania CSO Policy, 385-2000-011, 9/08.
	Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.
	Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 391- 2000-002, 4/97.
	Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97.
	Implementation Guidance Design Conditions, 391-2000-006, 9/97.
	Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004.
	Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 391-2000-008, 10/1997.
	Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 391-2000-010, 3/99.
	Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 391-2000-011, 5/2004.
	Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97.
	Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 391-2000-014, 4/2008.
	Implementation Guidance Total Residual Chlorine (TRC) Regulation, 391-2000-015, 11/1994.
	Implementation Guidance for Temperature Criteria, 391-2000-017, 4/09.
	Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/97.
	Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97.
	Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 391-2000-021, 3/99.
	Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/1999.
	Design Stream Flows, 391-2000-023, 9/98.
	Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 391-2000-024, 10/98.
	Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97.
\square	Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.
	SOP: BCW-PMT-033
	Other:

3800-PM-BPNPSM0011 Rev. 10/2014 Permit

Permit No. PA0253812

Process Flow Diagram

3800-PM-BPNPSM0011 Rev. 10/2014 Permit

Permit No. PA0253812

StreamStats at Outfall 001

PA0253812 at 001

 Region ID:
 PA

 Workspace ID:
 PA20230608031201773000

 Clicked Point (Latitude, Longitude):
 40.71744, -78.52682

 Time:
 2023-06-07 23:12:23 -0400

Collapse All

Basin Characteristics

Parameter Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	98.2	square miles
ELEV	Mean Basin Elevation	1933	feet
PRECIP	Mean Annual Precipitation	44	inches

> Low-Flow Statistics

Low-Flow Statistics Parameters [100.0 Percent (98.2 square miles) Low Flow Region 3]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	98.2	square miles	2.33	1720
ELEV	Mean Basin Elevation	1933	feet	898	2700
PRECIP	Mean Annual Precipitation	44	inches	38.7	47.9

Low-Flow Statistics Flow Report [100.0 Percent (98.2 square miles) Low Flow Region 3]

PII: Prediction Interval-Lower, Plu: Prediction Interval-Upper, ASEp: Average Standard Error of Prediction, SE: Standard Error (other -- see report)

Statistic	Value	Unit	SE	ASEp
7 Day 2 Year Low Flow	13.5	ft^3/s	43	43
30 Day 2 Year Low Flow	18.3	ft^3/s	38	38
7 Day 10 Year Low Flow	7.03	ft^3/s	54	54
30 Day 10 Year Low Flow	8.96	ft^3/s	49	49
90 Day 10 Year Low Flow	12.7	ft^3/s	41	41

Low-Flow Statistics Citations

Stuckey, M.H.,2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p. (http://pubs.usgs.gov/sir/2006/5130/)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Application Version: 4.15.0 StreamStats Services Version: 1.2.22 NSS Services Version: 2.2.1 3800-PM-BPNPSM0011 Rev. 10/2014 Permit

Permit No. PA0253812

StreamStats at Node 2

PA0253812 at node 2

Collapse All

Basin Characteristie	cs		
Parameter Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	147	square miles
ELEV	Mean Basin Elevation	1833	feet
PRECIP	Mean Annual Precipitation	43	inches

> Low-Flow Statistics

Low-Flow Statistics Parameters [100.0 Percent (147 square miles) Low Flow Region 3]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	147	square miles	2.33	1720
ELEV	Mean Basin Elevation	1833	feet	898	2700
PRECIP	Mean Annual Precipitation	43	inches	38.7	47.9

Low-Flow Statistics Flow Report [100.0 Percent (147 square miles) Low Flow Region 3]

PII: Prediction Interval-Lower, Plu: Prediction Interval-Upper, ASEp: Average Standard Error of Prediction, SE: Standard Error (other -- see report)

Statistic	Value	Unit	SE	ASEp
7 Day 2 Year Low Flow	18.5	ft^3/s	43	43
30 Day 2 Year Low Flow	24.9	ft^3/s	38	38
7 Day 10 Year Low Flow	9.53	ft^3/s	54	54
30 Day 10 Year Low Flow	12.2	ft^3/s	49	49
90 Day 10 Year Low Flow	17.4	ft^3/s	41	41

Low-Flow Statistics Citations

Stuckey, M.H.,2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p. (http://pubs.usgs.gov/sir/2006/5130/)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Application Version: 4.15.0 StreamStats Services Version: 1.2.22 NSS Services Version: 2.2.1

WQM 7.0

Input Data WQM 7.0

	SWF Basi	o Strea n Coo	am le	Stre	am Name		RMI	Ele	vation (ft)	Drainage Area (sq mi)	Slope (ft/ft)	PWS Withdrawal (mgd)	Apply FC
	08C	261	107 CLEA	RFIELD C	REEK		45.48	30	1378.00	98.2	0.00000	0.00	\checkmark
					S	tream Da	ta						
Design	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	<u>Tributary</u> ıp pH	Ten	<u>Stream</u> np pH	
cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)	(°C)	
Q7-10	0.126	0.00	0.00	0.000	0.000	0.0	0.00	0.0	0 2	5.00 7	.00	0.00 0.00)
Q1-10		0.00	0.00	0.000	0.000								
Q30-10		0.00	0.00	0.000	0.000								

		Existing Disc	Permitted Disc	Design Disc	Reserve	Disc Temp	Disc pH
Name	Permit Number	Flow (mgd)	Flow (mgd)	Flow (mgd)	Factor	(°C)	
Glendale Vly MA	PA0253812	0.4500	0.4500	0.4500	0.000	25.00	6.85
	Pa	rameter D	ata				
		Dis	ic Tri	b Str	eam Fat	e	
Par	ameter Name	Co	nc Co	nc C	onc Co	ef	
		(mg	g/L) (mg	/L) (m	g/L) (1/da	iys)	
CBOD5		2	5.00	2.00	0.00	1.50	
Dissolved Ox	ygen		5.00	8.24	0.00	0.00	
NH3-N		2	5.00 (0.00	0.00 (0.70	

Input Data WQM 7.0

	SWF Basi	9 Strea n Cod	im le	Stre	am Name		RMI	Elev (ation ft)	Drainage Area (sq mi)	Slope (ft/ft)	PWS Withdrawal (mgd)	Apply FC
	08C	261	107 CLEAN	RFIELD C	REEK		45.26	50 1	375.07	147.00	0.00000	0.00	\checkmark
					S	tream Da	ta						
Design	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	<u>Tributary</u> p pH	Tem	<u>Stream</u> p pH	
conu.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)	(ºC)	
Q7-10	0.126	0.00	0.00	0.000	0.000	0.0	0.00	0.00) 2	5.00 7.	00 (0.00 0.00)
Q1-10		0.00	0.00	0.000	0.000								
Q30-10		0.00	0.00	0.000	0.000								

	Dis	scharge D	ata				
Name	Permit Number	Existing Disc Flow (mgd)	Permitted Disc Flow (mgd)	Design Disc Flow (mgd)	Reserve Factor	Disc Temp (ºC)	Disc pH
		0.0000	0.0000	0.0000	0.000	25.00	7.00
	Par	rameter D	ata				
	Parameter Name	Dis Co	c Tril nc Cor	b Stre no Co	am Fa	te bef	
	Parameter Name	(mg	/L) (mg	/L) (m	g/L) (1/d	ays)	
CBOD5		2	5.00 2	2.00	0.00	1.50	
Dissolve	ed Oxygen		3.00 8	3.24	0.00	0.00	
NH3-N		2	5.00 0	0.00	0.00	0.70	

	<u>sw</u>	<u>/P Basin</u> 08C	<u>Strea</u> 2	<u>im Code</u> 6107			CLE	Stream ARFIEL	<u>Name</u> D CREEF	c		
RMI	Stream Flow (cfs)	PWS With (cfs)	Net Stream Flow (cfs)	Disc Analysis Flow (cfs)	Reach Slope (ft/ft)	Depth (ft)	Width (ft)	W/D Ratio	Velocity (fps)	Reach Trav Time (days)	Analysis Temp (°C)	Analysis pH
Q7-1	0 Flow	0.00	12.27	8082	0.00252	702	54.04	89.10	0.21	0.044	25.00	8.00
Q1-1	0 Flow	0.00	7.92	6962	0.00252	.782 NA	04.04 NA	NA	0.31	0.044	25.00	6.99
Q30- 45.480	10 Flov 16.83	v 0.00	16.83	.6962	0.00252	NA	NA	NA	0.36	0.037	25.00	6.99

WQM 7.0 Hydrodynamic Outputs

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	~
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	✓
D.O. Saturation	90.00%	Use Balanced Technology	✓
D.O. Goal	5		

H3-N Acute Allocations RMI Baseline Baseline Multiple Multiple Critical Period RMI Discharge Name Criterion WLA Criterion WLA Reach Red (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) 45.480 Glendale Vly MA 6.83 50 6.83 50 0 0	rcent
RMI Discharge Name Baseline Criterion (mg/L) Baseline WLA (mg/L) Multiple Criterion (mg/L) Multiple WLA (mg/L) Critical Reach Per Reach 45.480 Glendale Vly MA 6.83 50 6.83 50 0 0	rcent
45.480 Glendale Vly MA 6.83 50 6.83 50 0 0	uction
	0
H3-N Chronic Allocations RMI Discharge Name Baseline Baseline Multiple Multiple Critical Pero Criterion WLA Criterion WLA Reach Reduc (mg/L) (mg/L) (mg/L) (mg/L)	ent ction
45.480 Glendale Vly MA 1.35 25 1.35 25 0	D

(mg/L) (mg/L)

25

(mg/L)

5

25

(mg/L)

5

0

0

(mg/L) (mg/L)

25

25

45.48 Glendale Vly MA

..... - --

<u>SWP Basin</u> <u>S</u> 08C	tream Code 26107		CL	Stream Name EARFIELD CREE	EK	
RMI	Total Discharge	Flow (mgd) Anal	ysis Temperature	e (°C) Analysis pH	
45.480	0.45	0		25.000	6.991	
Reach Width (ft)	Reach De	pth (ft)		Reach WDRatio	Reach Velocity (fps	;)
54.038	0.79	2		68.192	0.305	
Reach CBOD5 (mg/L)	Reach Kc	(1/days)	R	each NH3-N (mg/	/L) Reach Kn (1/days))
3.23	0.60	4		1.33	1.029	
Reach DO (mg/L)	Reach Kr (1/days)		Kr Equation	Reach DO Goal (mg	<u>/L)</u>
8.070	5.91	5		Tsivoglou	5	
Reach Travel Time (days)		Subreach	Reculte			
0.044	TravTime	CBOD5	NH3-N	D.O.		
	(days)	(mg/L)	(mg/L)	(mg/L)		
	0.004	3.21	1.33	7.54		
	0.009	3.20	1.32	7.54		
	0.013	3.19	1.31	7.54		
	0.018	3.18	1.31	7.54		
	0.022	3.17	1.30	7.54		
	0.026	3.16	1.30	7.54		
	0.031	3.15	1.29	7.54		
	0.035	3.14	1.28	7.54		
	0.040	3.13	1.28	7.54		
	0.044	3.12	1.27	7.54		

WQM 7.0 D.O.Simulation

Version 1.0b

	<u>SWP Basin</u> <u>Stream</u> 08C 261	<u>1 Code</u> 107		Stream Name CLEARFIELD CR	EEK		
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
45.480	Glendale Vly MA	PA0253812	0.450	CBOD5	25		
				NH3-N	25	50	
				Dissolved Oxygen			5

WQM 7.0 Effluent Limits

3800-PM-BPNPSM0011 Rev. 10/2014 Permit

Permit No. PA0253812

0.45

Toxics Management Spreadsheet

Toxics Management Spreadsheet Version 1.4, May 2023

Discharge Information

100

6.85

Instructions	Discharge	Stream							
Facility:	endale Vall	ey Municip	al Authority		NPDES Per	mit No.: PA	0253812	Outfall	No.: 001
Evaluation Type: Major Sewage / Industrial Waste Wastewater Description: Treated Sewage									
				Discharge	Characterist	tics			
Design Flov	V Hardnes	e (ma/l)*	pH (\$11)*	P	Partial Mix Fa	actors (PMF	s)	Complete Mix	x Times (min)
(MGD)*	narunes	is (ing/i).	pri (50)*	AFC	CFC	THH	CRL	Q ₇₋₁₀	Qh

			0 if lef	thlank	05 if le	aft blank	0) if left blan	ł.	1 if lef	thlank		
					o li lei		0.011			in ren: bian	<u>~</u>		
	Discharge Pollutant	Units	Ma	x Discharge Conc	Trib Conc	Stream Conc	Daily CV	Hourly CV	Strea m CV	Fate Coeff	FOS	Criteri a Mod	Chem Transl
	Total Dissolved Solids (PWS)	mg/L											
5	Chloride (PWS)	mg/L											
l la	Bromide	mg/L											
5	Sulfate (PWS)	mg/L											
	Fluoride (PWS)	mg/L											
	Total Aluminum	µg/L	<	100									
	Total Antimony	µg/L											
	Total Arsenic	µg/L											
	Total Barium	µg/L											
	Total Beryllium	µg/L											
	Total Boron	µg/L											
	Total Cadmium	µg/L											
	Total Chromium (III)	µg/L											
	Hexavalent Chromium	µg/L											
	Total Cobalt	µg/L											
	Total Copper	µg/L		10.2									
22	Free Cyanide	µg/L											
l a	Total Cyanide	µg/L											
อ็	Dissolved Iron	µg/L											
	Total Iron	µg/L	<	200									
	Total Lead	µg/L		0.176									
	Total Manganese	µg/L		159									
	Total Mercury	µg/L											
	Total Nickel	µg/L											
	Total Phenols (Phenolics) (PWS)	µg/L											
	Total Selenium	µg/L											
	Total Silver	µg/L											
	Total Thallium	µg/L											
	Total Zinc	µg/L		59.6									
	Total Molybdenum	µg/L											
	Acrolein	µg/L	<										
	Acrylamide	µg/L	<										
	Acrylonitrile	µg/L	<										
	Benzene	µg/L	<										
	Bromoform	µg/L	<										

1	Carbon Tetrachloride	ua/l	<	H						
	Chlorohoozooo	pg/c	-							
	Chlorobenzene	µg/L				##	 			
	Chiorodibromomethane	µg/L	<			#	 			
	Chloroethane	µg/L	<			ш				
	2-Chloroethyl Vinyl Ether	µg/L	<			##				
	Chloroform	µg/L	<							
	Dichlorobromomethane	µg/L	<	8						
	1,1-Dichloroethane	µg/L	<	-						
-	1.2-Dichloroethane	ug/L	<							
a	1 1-Dichloroethylene	un/l	<	-						
8	1.2 Dishloronronano	pare .								
อ	1.2 Dichloropropane	µg/L				##	 			
	1,3-Dichioropropylene	µg/L	<				 			
	1,4-Dioxane	µg/L	<			ш				
	Ethylbenzene	µg/L	<							
	Methyl Bromide	µg/L	<							
	Methyl Chloride	µg/L	<	8						
	Methylene Chloride	µg/L	<							
	1.1.2.2-Tetrachloroethane	ug/l	<							
	Tetrachloroethylene	ug/l	~			***				
	Teluene	pg/c								
	Toldene	µg/L				##	 			
	1,2-trans-Dichloroethylene	µg/L	<				 			
	1,1,1-Trichloroethane	µg/L	<			##				
	1,1,2-Trichloroethane	µg/L	<							
	Trichloroethylene	µg/L	<							
	Vinyl Chloride	µg/L	<							
	2-Chlorophenol	ua/L	<							
	2.4-Dichlorophenol	ua/L	<							
	2 4-Dimethylphenol	ug/l	<	-						
	4.6 Dipitro o Crocol	pare .				₩				
4	4,0-Dinitio-o-cresor	pg/L				##	 			
9	2,4-Dinitrophenoi	µg/L	<				 			
ē	2-Nitrophenol	µg/L	<	-		111				
Ō	4-Nitrophenol	µg/L	<							
	p-Chloro-m-Cresol	µg/L	<							
	Pentachlorophenol	µg/L	<							
	Phenol	µg/L	<							
	2,4,6-Trichlorophenol	µg/L	<							
\square	Acenaphthene	µg/L	<							
	Acenaphthylene	ua/L	<							
	Anthracene	ug/l	<							
	Benzidine	pare .				##				
	Benzidine	µg/L				Ⅲ	 			
	Benzo(a)Anthracene	µg/L	<		+++++	***	 			
	Benzo(a)Pyrene	µg/L	<							
	3,4-Benzofluoranthene	µg/L	<			Ш				
	Benzo(ghi)Perylene	µg/L	<	8						
	Benzo(k)Fluoranthene	µg/L	<							
	Bis(2-Chloroethoxy)Methane	µg/L	<							
	Bis(2-Chloroethyl)Ether	µg/L	<	8						
	Bis(2-Chloroisopropyl)Ether	µg/L	<							
	Bis(2-Ethylhexyl)Phthalate	ua/L	<							
	4-Bromophenyl Phenyl Ether	ug/l	<	l l		Ħ				
	Butyl Benzyl Phthalate	ug/l	2			Ⅲ				
	2 Chloropaphthalana	pg/c				***				
	2-Chloronaphthalene	µg/L				##	 			
	4-Chiorophenyi Phenyi Ether	µg/L	<				 			
1	Chrysene	µg/L	<	-						
	Dibenzo(a,h)Anthrancene	µg/L	<							
1	1,2-Dichlorobenzene	µg/L	<							
	1,3-Dichlorobenzene	µg/L	<							
9	1,4-Dichlorobenzene	µg/L	<							
<u>₽</u>	3,3-Dichlorobenzidine	µg/L	<							
õ	Diethyl Phthalate	µg/L	<	-						
G	Dimethyl Phthalate	uo/L	<							
	Di-n-Butyl Phthalate	µa/l	e	8						
	2.4. Dipitratoluces	pare .	-							
1	2,4-Dimuotoidene	Pg/L	1		1111	m				

1	2.6 Disitratelyana		1						
	2,0-Dinitrotoidene	µg/L	-						
	Di-n-Octyl Phthalate	µg/L	<						
	1,2-Diphenylhydrazine	µg/L	<						
	Fluoranthene	µg/L	<						
	Fluorene	µg/L	<						
	Hexachlorobenzene	µg/L	<						
	Hexachlorobutadiene	ua/L	<						
	Hexachlorocyclopentadiene	ug/l	<						
	Hexachloroothage	pare .	-						
	Hexachioroethane	µg/L	-		111				
	Indeno(1,2,3-cd)Pyrene	µg/L	<						
	Isophorone	µg/L	<						
	Naphthalene	µg/L	<						
	Nitrobenzene	µg/L	<						
	n-Nitrosodimethylamine	µa/L	<						
	n-Nitrosodi-n-Propylamine	10/	<						
	n Nitrosodinhenvlamine	10/L	-						
	Dhanaethanae	Pg/L	-						
	Phenanthrene	µg/L	<						
	Pyrene	µg/L	<						
	1,2,4-Trichlorobenzene	µg/L	<						
	Aldrin	µg/L	<						
	alpha-BHC	µg/L	<						
	beta-BHC	ua/L	<						
	gamma-BHC	ug/l	<						
	delte RUC	pare .	-						
		µg/L	-						
	Chlordane	µg/L	<						
	4,4-DDT	µg/L	<						
	4,4-DDE	µg/L	<						
	4,4-DDD	µg/L	<						
	Dieldrin	µg/L	<						
	alpha-Endosulfan	µa/L	<						
	beta-Endosulfan	ug/l	<						
9	Endocultan Sulfato	- 100/L	-						
đ	Endosulian Sullate	µg/L	-						
ğ	Endrin	µg/L	<						
G	Endrin Aldehyde	µg/L	<		***				
	Heptachlor	µg/L	<						
	Heptachlor Epoxide	µg/L	<						
	PCB-1016	µg/L	<		***				
	PCB-1221	µg/L	<						
	PCB-1232	ua/L	<						
	PCB-1242	ug/l	<						
	DOD 1242	pg/c	-						
	PCB-1248	µg/L	~						
	PCB-1254	µg/L	<						
	PCB-1260	µg/L	<						
	PCBs, Total	µg/L	<						
	Toxaphene	µg/L	<						
	2,3,7,8-TCDD	ng/L	<						
	Gross Alpha	pCi/L							
	Total Beta	nCi/l	<						
p.7	Padium 228/229	pCi/l	-						
o	Tatal Sheating	point	-						
5	Total Strontium	µg/L	<						
-	Total Uranium	µg/L	<						
	Osmotic Pressure	mOs/kg							
						_			

3800-PM-BPNPSM0011 Rev. 10/2014 Permit

Permit No. PA0253812

Receiving Surface W			No. Rea	iches to	Model:	1	Sta	tewide Criteri at Lakes Crit	ia teria						
Location	Stream Coo	ie* RMI*	Eleva (ft)	tion DA (n	ni²)*	Slope (ft/ft)	PWS \ (I	Withdra MGD)	awal Ap C	ply Fish riteria*		SANCO Crite	eria		
Point of Discharge	026107	45.48	137	78 98.	2					Yes					
End of Reach 1	026107	45.26	1375	.07 14	7					Yes					
Q ₇₋₁₀		·		·					·						
Location	DMI	LFY	Flo	w (cfs)	- W/	D Width	Depth	Veloci	t Tim	er Tribu	itary	Strea	m	Analys	sis
Location	EXIVII	(cfs/mi ²)*	Stream	Tributary	Rat	io (ft)	(ft)	y (fps) (dave	Hardness	s pH	Hardness*	pH*	Hardness	pН
Point of Discharge	45.48	0.126			8							100	7		
End of Reach 1	45.26	0.126			8							{			
Qn				•							•				
Location	DMI	LFY	Flo	w (cfs)	- W/	D Width	Depth	Veloci	t Time	e Tribu	itary	Strea	m	Analys	sis
Location	T XIVII	(cfs/mi ²)	Stream	Tributary	Rat	io (ft)	(ft)	y (fps) (dave	Hardness	s pH	Hardness	pН	Hardness	pН
Point of Discharge	45.48				8										
End of Reach 1	45.26														
 ✓ Wasteload Allo ✓ AFC 	cations	CCT (min):	15	PMF:	0.385	An	alysis Ha	ardness	(mg/l):	100	Analysis	pH: 6.9	8		
Polluta	ants	Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ ((µg/	Obj /L) V	VLA (µg/L))		Comments			
Total Alur	minum	0	0		0	750	75	0	5,881						
Total Co	opper	0	0		0	13.439	14.	.0	110		Chem T	ranslator of 0.	.96 applie	ed	
Total I	ron	0	0		0	N/A	N//	A	N/A						
Total L	ead	0	0		0	64.581	81.	.6	640		Chem Tr	ranslator of 0.	791 appli	ed	
Total Man	ganese	0	0		0	N/A	12	0	N/A		Chom T	conclutor of 0.1	079 oppli	iod	
Total 2	LINC	0	0		U	117.100	12	U	333		Chemin	ansiator or u.	aro appi	eu	
CFC		CCT (min): ###	***	PMF:	1	Ar	alysis Ha	ardness	s (mg/l):	100	Analysis	pH: 6.9	9		
Polluta	ants	Conc (ug/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ ((µg/	Obj /L) V	VLA (µg/L))		Comments	i		
Total Alur	minum	0	0		0	N/A	N//	A	N/A						
Total Co	opper	0	0		0	8.956	9.3	3	175		Chem T	ranslator of 0.	.96 applie	ed	
Total I	ron	0	0		0	1,500	1,50	00	28,161		WQC =	30 day averag	je;PMF⊧	= 1	
Total L	ead	0	0		0	2.517	3.1	8	59.7		Chem Tr	ranslator of 0.1	791 appli	ied	
Total Man	ganese	0	0		0	N/A	N//	A	N/A						
I otal 2	Linc	U	U		U	118.139	12	U	2,249		Chem Tr	ranslator of 0.9	986 appli	ed	
I THH		CCT (min): ###	***	PMF:	1	Ar	alysis Ha	ardness	s (mg/l):	N/A	Analysis	pH: N//	A		
Polluta	ants	Conc (ug/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ ((µg/	Obj /L) V	VLA (µg/L))		Comments	i		
Total Alur	minum	0	0		0	N/A	N//	A	N/A						
Total Co	opper	0	0		0	N/A	N//	A	N/A						
Total I	ron	0	0		0	N/A	N//	A	N/A						

Model Results

6/14/2023

Page 5

Total Lead	0	0		0	N/A	N/A	N/A	
Total Manganese	0	0		0	1,000	1,000	18,774	
Total Zinc	0	0		0	N/A	N/A	N/A	
∂ CRL C	CT (min): 37	.386	PMF:	1	Ana	alysis Hardne	ess (mg/l):	N/A Analysis pH: N/A
Pollutants	Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Copper	0	0		0	N/A	N/A	N/A	
Total Iron	0	0		0	N/A	N/A	N/A	
Total Lead	0	0		0	N/A	N/A	N/A	
Total Manganese	0	0		0	N/A	N/A	N/A	
Total Zinc	0	0		0	N/A	N/A	N/A	

Recommended WQBELs & Monitoring Requirements

No. Samples/Month: 4

	Mass	Limits		Concentra	tion Limits				
Pollutants	AML (lbs/day)	MDL (lbs/day)	AML	MDL	IMAX	Units	Governing WQBEL	WQBEL Basis	Comments
Total Copper	Report	Report	Report	Report	Report	µg/L	70.4	AFC	Discharge Conc > 10% WQBEL (no RP)

☑ Other Pollutants without Limits or Monitoring

The following pollutants do not require effluent limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharge concentration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QL).

Pollutants	Governing WQBEL	Units	Comments
Total Aluminum	3,769	µg/L	Discharge Conc ≤ 10% WQBEL
Total Iron	28,161	µg/L	Discharge Conc ≤ 10% WQBEL
Total Lead	59.7	µg/L	Discharge Conc ≤ 10% WQBEL
Total Manganese	18,774	µg/L	Discharge Conc ≤ 10% WQBEL
Total Zinc	602	µg/L	Discharge Conc ≤ 10% WQBEL

Model Results

6/14/2023

Page 6