

Southwest Regional Office CLEAN WATER PROGRAM

 Application Type
 Renewal

 Facility Type
 Industrial

 Major / Minor
 Minor

NPDES PERMIT FACT SHEET INDIVIDUAL INDUSTRIAL WASTE (IW) AND IW STORMWATER

 Application No.
 PA0254151

 APS ID
 992556

 Authorization ID
 1272166

Applicant and Facility Information

Applicant Name	Sprague Energy, LLC	Facility Name	Bridge Street Bulk Plant
Applicant Address	1045 W Chestnut Street	Facility Address	44 Bridge Street
	Washington, PA 15301-4136	_	Washington, PA 15301-5306
Applicant Contact	Camden Zappi	Facility Contact	Same as Applicant
Applicant Phone	(724) 705-7027	Facility Phone	Same as Applicant
Client ID	321124	Site ID	590661
SIC Code	5171	Municipality	Washington City
SIC Description	Wholesale Trade - Petroleum Bulk Stations and Terminals	County	Washington
Date Application Receiv	vedMay 3, 2019	EPA Waived?	No
Date Application Accep	ted May 6, 2019	If No, Reason	TMDL
Purpose of Application	Renewal of NPDES Permit Covera	age	

Summary of Review

The Department received an NPDES permit renewal application from Coen Energy, LLC on May 3, 2019 for coverage of the Coen Energy Bridge Street Bulk Plant. The Department later received an NPDES permit name change application on June 3, 2019 to change the name of Coen Energy, LLC to Sprague Energy, LLC. The Sprague Energy Bridge Street Bulk Plant is a petroleum distribution facility with a SIC code of 5171, Petroleum Bulk Station and Terminals.

The primary operations at this facility involve receipt of home heating oil in bulk quantities and subsequent sale and delivery to residential and commercial clients in smaller quantities. The facility handles, stores, and distributes petroleum products in the form of gasoline, diesel and heating oil. The site receives products by common carrier via tanker trunk. The products are stored on site in underground storage tanks and aboveground storage tanks.

The facility includes one 300-square foot office building, which houses the Veeder Root automatic tank gauging (ATG) equipment's controls. The site also includes a 2,300 square foot storage shed, which has a roof and three sides. The storage shed does not contain any petroleum products. Additionally, a small shed, which houses remediation equipment, is located along the southern property boundary. The eastern portion of the facility consist of a gravel-covered storage yard. Coen Energy leases the gravel yard area to PPC lubricants, along with the warehouse space adjoining the facility to the west. The facility includes a loading rack and unloading area, which is associated with six ASTs and is located to the southeast of the site buildings. An unmanned card lock filling station is located in the northwest corner of the facility adjacent to the bulk plant and outside of the gated/restricted entrance to the bulk plant. Three USTs and two dispensing area are associated with the filling station. The site also has a groundwater remediation system to treat contaminated groundwater.

The site has two outfalls that both discharge to Catfish Creek, designated in 25 PA Code Chapter 93 as a Warm Water Fishery. Outfall 001 discharges stormwater from the paved area near the dispensers. Outfall 002 discharges treated groundwater from the treatment system combined with collected stormwater from the loading dock areas.

Approve	Deny	Signatures	Date
X		Adam Olesnanik. / Environmental Engineering Specialist	6-4-19
\checkmark		Michael E. Fifth, P.E. / Environmental Engineer Manager	6/12/19

Summary of Review

The treatment system was installed because soil and groundwater beneath the facility have been historically impacted due to a release associated with a past UST system. An approximate 120-foot-long interceptor trench was installed directly downgradient to the existing ASTs at the site. The trench was installed to depth ranging from 3 to 6 feet below ground surface in order to contain all groundwater flowing toward Catfish Creek. Overland flow in the gravel area adsorbs into the subsurface between the ASTs and the interceptor location. A soil dike was installed along Catfish Creek to allow further adsorption into the subsurface. A collection sump exists in the interceptor trench that contains a submersible pump that is controlled by a float system. The system consists of the submersible pump to empty the collected groundwater in the interceptor trench, which is then pumped to a treatment shed containing an oil/water separator, particulate filters and granular activated carbon units prior to discharge to Catfish Creek. Oil and coarse solids are collected by the separator which is equipped with two chambers for solids and oil. Oil is periodically manually removed from the oil/water separator and drained to a tote utilized for storage prior to disposal. Groundwater is then automatically pumped from the oil/water separator by a transfer pump through two 50-micron particulate filters for fine solids removal. The water then passes through two granular activated carbon units arranged in series and is subsequently discharge via Outfall 002 to Catfish Creek. Stormwater that accumulates in a nearby loading dock is pumped into the oil/water separator on an as-needed basis to keep the dock loading area clear.

The permittee has no open violations.

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

vischarge, Receiving Waters and Water Supply Information					
Outfall No. 00	1		Design Flow (MGD)	0	
Latitude 40	° 10' 37.10	6"	Longitude	-80º 15' 37.12"	
Quad Name	Washingto	on West	Quad Code	1703	
Wastewater Des	cription:	Stormwater			
Receiving Water	s <u>Catfis</u>	sh Creek (WWF)	Stream Code	37132	
NHD Com ID	9969	4618	RMI	0.4800	
Drainage Area	4.26		Yield (cfs/mi ²)	0.0115	
Q ₇₋₁₀ Flow (cfs)	0.048	9	Q ₇₋₁₀ Basis	USGS StreamStats	
Elevation (ft)	1016		Slope (ft/ft)	0.001	
Watershed No.	20-F		Chapter 93 Class.	WWF	
Existing Use			Existing Use Qualifier		
Exceptions to Us	e		Exceptions to Criteria		
Assessment Stat	tus	Impaired			
Cause(s) of Impa	airment	Metals, Nutrients, Organi (TSS)	c Enrichment/Low D.O., Siltation	, Total Suspended Solids	
Source(s) of Imp			culture, Combined Sewer Overflo ation, Urban Runoff/Storm Sewe		
TMDL Status Final		Name Chartiers Creek, Watershed			
Nearest Downstr	eam Publ	ic Water Supply Intake	West View Municipal Authority	V	
PWS Waters	Ohio Ri		Flow at Intake (cfs)	4,730	
PWS RMI	972		Distance from Outfall (mi)	>40	

NPDES Permit Fact Sheet Sprague Energy LLC

Discharge, Receiving	Discharge, Receiving Waters and Water Supply Information					
Outfall No. 002			Design Flow (MGD)	0.0072		
Latitude 40° 10	0' 37.40	39	Longitude	-80º 15' 39.20"		
Quad Name Wa	shingto	n West	Quad Code	1703		
Wastewater Descrip	otion:	Groundwater Cleanup Disc	harge			
Receiving Waters	Catfis	h Creek (WWF)	Stream Code	37132		
NHD Com ID	99694	618	RMI	0.0400		
Drainage Area	4.26		Yield (cfs/mi ²)	0.0115		
Q7-10 Flow (cfs)	0.0489	9	Q ₇₋₁₀ Basis	USGS Streamstats		
Elevation (ft)	1016		Slope (ft/ft)	0.001		
Watershed No.	20-F		Chapter 93 Class.	WWF		
Existing Use			Existing Use Qualifier			
Exceptions to Use			Exceptions to Criteria			
Assessment Status		Impaired				
			Enrichment/Low D.O., Siltation,	, Total Suspended Solids		
Cause(s) of Impairm	nent	(TSS)	ulture Combined Sower Overfle	we Hebitat Madification		
Source(s) of Impairr	nent		Agriculture, Combined Sewer Overflows, Habitat Modification - dification, Urban Runoff/Storm Sewers			
		Final	Name Chartiers Creek Watershed			
Nearest Downstrear	m Public	c Water Supply Intake	West View Municipal Authority	<i>i</i>		
PWS Waters C	Dhio Riv	er	Flow at Intake (cfs)	4,730		
PWS RMI 9)72		Distance from Outfall (mi)	>40		

Development of Effluent Limitations

Outfall No.	001		Design Flow (MGD)	0
Latitude	40º 10' 37.16) 	Longitude	-80º 15' 37.12"
Wastewater De	escription:	Stormwater		

Technology-Based Limitations

Stormwater Technology Limits

Outfall 001 will be subject to PAG-03 General Stormwater Permit conditions as a minimum requirement because the outfall receives stormwater. The SIC code for the site is 5171 and the corresponding appendix of the PAG-03 that would apply to the facility is Appendix L. The reporting requirements applicable to stormwater discharges are shown in Table 1 below.

Table 1: PAG-03 Appendix (L) Monitoring Requirements

Parameter	Max Daily Concentration	Measurement Frequency	Sample Type
Total Suspended Solids (TSS)	Monitor and Report	1/6 Months	Grab
Oil and Grease	Monitor and Report	1/6 Months	Grab

Water Quality-Based Limitations

Stormwater WQBELs

Water quality analyses are typically performed under low-flow (Q7-10) conditions. Stormwater discharges occur at variable rates and frequencies but not however during Q7-10 conditions. Since the discharges from Outfall 001 is composed entirely of stormwater, a formal water quality analysis cannot be accurately conducted. Accordingly, water quality-based effluent limitations based on water quality analyses are not proposed.

Total Maximum Daily Loads

Discharges from the site are located within the Chartiers Creek Watershed for which the Department has developed a TMDL. The TMDL was finalized in April 2003 and establishes waste load allocations for the discharge of aluminum, iron and manganese within the watershed. The metal impairments result from acid drainage from abandoned coal mines. Section 303(d) of the Clean Water Act and the U.S. Environmental Protection Agency's Water Quality Planning and Management Regulations (codified at Title 40 of the *Code of Federal Regulations* Part 130) require states to develop a TMDL for impaired water bodies. A TMDL establishes the amount of a pollutant that a water body can assimilate without exceeding the water quality criteria for that pollutant. TMDLs provide the scientific basis for a state to establish water quality-based controls to reduce pollution from both point and non-point sources in order to restore and maintain the quality of the state's water resources (USEPA 1991a).

Only one non-mining point source located in the Chartiers Creek watershed is permitted to discharge iron, aluminum or manganese. It was assumed that discharges from all other point sources do not contain aluminum, iron, and manganese since they are not permitted to discharge these metals. Therefore, these points source were not considered as potential sources of the metal impairments in the Chartiers Creek watershed. In other words, if it is determined that a site is discharging wastewater containing these parameters, the site must meet the instream criterion values for these parameters at the point of discharge. However, in this case the only discharge from Outfall 001 is stormwater, therefore, no limitations for aluminum, iron and manganese will be imposed at Outfall 001 based on the Charters Creek Watershed TMDL.

Anti-Backsliding

Previous limits at Outfall 001 can be used pursuant to EPA's anti-backsliding regulation, 40 CFR 122.44(I) and are displayed below in Table 2. A Part C condition is included in the Draft Permit requiring a Corrective Action Plan when there are two consecutive exceedances of the benchmark values; therefore, the monitoring frequency will be reduced to semiannual sampling and the average quarterly monitoring will be removed.

Parameter	Average Quarterly	Max Daily Concentration	Measurement Frequency	Sample Type	
Flow	Report	Report	2/quarter	Estimate	
Total Suspended Solids (TSS)	Report	Report	2/quarter	Grab	
Oil and Grease	Report	Report	2/quarter	Grab	
Nitrate-Nitrite	Report	Report	2/quarter	Grab	
pH	Between 6.0 and 9.0 S.U.		2/quarter	Grab	

Table 2: Limitations in the Current Permit

Proposed Effluent Limitations and Monitoring Requirements

The proposed effluent monitoring requirements for Outfall 001 are displayed in Table 3 below, they are the most stringent values from the above effluent limitation development. As discussed, the Draft Permit requires a Corrective Action Plan when there are two consecutive exceedances of the benchmark values, which are also included in the Part C condition. The benchmark values are displayed below in Table 3. These values are not effluent limitations, an exceedance of the benchmark value is not a violation. As described above, if there are two consecutive exceedances of the benchmark value, a corrective action plan must be conducted to evaluate site stormwater controls and BMPs. Benchmark monitoring is a feedback tool, along with routine inspections and visual assessments, for assessing the effectiveness of stormwater controls and BMPs. An exceedance of the benchmark provides permittees with an indication that the facility's controls may not be sufficiently controlling pollutants in stormwater.

Parameter	Max Daily Concentration	Benchmark Values (mg/L)	Measurement Frequency	Sample Type
Flow	Report	XXX	1/6 Months	Estimate
Total Suspended Solids (TSS)	Report	100	1/6 Months	Grab
Oil and Grease	Report	30	1/6 Months	Grab
Nitrate-Nitrite	Report	XXX	1/6 Months	Grab
рН	Between 6.0	XXX	1/6 Months	Grab
	and 9.0 S.U.			

Table 3: Proposed Effluent Monitoring Requirements

Development of Effluent Limitations

Outfall No.	002		Design Flow (MGD)	0.0072
Latitude	40º 10' 39.40	11	Longitude	-80º 15' 39.20"
Wastewater De	escription:	Groundwater Cleanup Discharge		

Technology-Based Limitations

Outfall 002 will be subject to PAG-05 General Petroleum Product Contaminated Groundwater Remediation Permit conditions as a minimum requirement because the outfall receives discharge from a groundwater remediation system. The reporting requirements applicable to groundwater remediation system discharges are shown in Table 4 below.

Table 4: PAG-05 Effluent Limitations

				Monitoring R	equirements	
Parameter		Effluent I				
Farameter	Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Measurement Frequency	Required Sample Type
Flow (MGD)	xxx	Report	Report	xxx	2/month	Measured
pH (S.U.)	6.0	XXX	xxx	9.0	2/month	Grab
TSS	xxx	30	xxx	75	2/month	Grab
Oil and Grease	xxx	15	xxx	30	2/month	Grab
Dissolved Iron	xxx	XXX	xxx	7.0	1/year	Grab
Benzene	xxx	0.001	xxx	0.0025	2/month	Grab
Total BTEX	xxx	0.1	XXX	0.25	2/month	Grab
МТВЕ	XXX	Report	XXX	Report	2/month	Grab

Water Quality-Based Limitations

Toxics Screening Analysis – Procedures for Evaluating Reasonable Potential and Developing WQBELs

DEP's procedures for evaluating reasonable potential are as follows:

- 1. For IW discharges, the design flow to use in modeling is the average flow during production or operation and may be taken from the permit application.
- Perform a Toxics Screening Analysis to identify toxic pollutants of concern. All toxic pollutants whose maximum concentrations, as reported in the permit application or on DMRs, are greater than the most stringent applicable water quality criterion are pollutants of concern. [This includes pollutants reported as "Not Detectable" or as "<MDL" where the method detection limit for the analytical method used by the applicant is greater than the most stringent water quality criterion]. List all toxic pollutants of concern in a Toxics Screening Analysis section of the fact sheet (see Attachment B).
- 3. For any outfall with an applicable design flow, perform PENTOXSD modeling for all pollutants of concern. Use the maximum reported value from the application form or from DMRs as the input concentration for the PENTOXSD model run.
- 4. Compare the actual WQBEL from PENTOXSD with the maximum concentration reported on DMRs or the permit application. Use WQN data or another source to establish the existing or background concentration for naturally occurring pollutants, but generally assume zero background concentration for non-naturally occurring pollutants.
 - Establish limits in the draft permit where the maximum reported concentration equals or exceeds 50% of the WQBEL. Use the average monthly and maximum daily limits for the permit as recommended by PENTOXSD. Establish an IMAX limit at 2.5 times the average monthly limit.

- For non-conservative pollutants, establish monitoring requirements where the maximum reported concentration is between 25% 50% of the WQBEL.
- For conservative pollutants, establish monitoring requirements where the maximum reported concentration is between 10% 50% of the WQBEL.

The information described above including the maximum reported discharge concentrations, the most stringent water quality criteria, the pollutant-of-concern (reasonable potential) determinations, the calculated WQBELs, and the WQBEL/monitoring recommendations are collected on a spreadsheet titled "Toxics Screening Analysis." (Attachment B). No parameters were selected as pollutants of concern for PENTOXSD modeling, therefore no WQBELs are required based on the water quality analysis.

Total Maximum Daily Loads

Discharges from the site are located within the Chartiers Creek Watershed for which the Department has developed a TMDL. The TMDL was finalized in April 2003 and establishes waste load allocations for the discharge of aluminum, iron and manganese within the watershed. The metal impairments result from acid drainage from abandoned coal mines. Section 303(d) of the Clean Water Act and the U.S. Environmental Protection Agency's Water Quality Planning and Management Regulations (codified at Title 40 of the *Code of Federal Regulations* Part 130) require states to develop a TMDL for impaired water bodies. A TMDL establishes the amount of a pollutant that a water body can assimilate without exceeding the water quality criteria for that pollutant. TMDLs provide the scientific basis for a state to establish water quality-based controls to reduce pollution from both point and non-point sources in order to restore and maintain the quality of the state's water resources (USEPA 1991a).

Only one non-mining point source located in the Chartiers Creek watershed is permitted to discharge iron, aluminum or manganese. It was assumed that discharges from all other point sources do not contain aluminum, iron, and manganese since they are not permitted to discharge these metals. Therefore, these points source were not considered as potential sources of the metal impairments in the Chartiers Creek watershed. In other words, if it is determined that a site is discharging wastewater containing these parameters, the site must meet the instream criterion values for these parameters at the point of discharge. However, in this case aluminum, iron and manganese are not evaluated as pollutants of concern in the NPDES permit application for discharge form groundwater treatment systems, therefore, no limitations for aluminum, iron and manganese will be imposed at Outfall 002 based on the Charters Creek Watershed TMDL.

Anti-Backsliding

Previous limits at Outfall 002 can be used pursuant to EPA's anti-backsliding regulation, 40 CFR 122.44(I) and are displayed below in Table 5.

			Monitoring R	Requirements		
Parameter		Effluent L	_imitations			
Farameter	Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Measurement Frequency	Required Sample Type
Flow (MGD)	xxx	Report	Report	xxx	2/month	Measured
pH (S.U.)	6.0	XXX	xxx	9.0	2/month	Grab
TSS	xxx	30	XXX	75	2/month	Grab
Oil and Grease	XXX	15	XXX	30	2/month	Grab
Dissolved Iron	xxx	XXX	XXX	7.0	1/year	Grab
Benzene	xxx	0.001	XXX	0.0025	2/month	Grab
Total BTEX	xxx	0.1	XXX	0.25	2/month	Grab
MTBE	ххх	Report	XXX	Report	2/month	Grab

Table 5: limitations in the Current Permit

Proposed Effluent Limitations and Monitoring Requirements

The proposed effluent monitoring requirements for Outfall 002 are displayed in Table 6 below, they are the most stringent values from the above effluent limitation development.

Table 6: limitations in the Current Permit

			Monitoring R	Requirements		
Parameter		Effluent L	imitations			
Falameter	Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Measurement Frequency	Required Sample Type
Flow (MGD)	xxx	Report	Report	xxx	2/month	Measured
pH (S.U.)	6.0	XXX	XXX	9.0	2/month	Grab
TSS	ххх	30	XXX	75	2/month	Grab
Oil and Grease	XXX	15	XXX	30	2/month	Grab
Dissolved Iron	XXX	XXX	XXX	7.0	1/year	Grab
Benzene	XXX	0.001	XXX	0.0025	2/month	Grab
Total BTEX	xxx	0.1	XXX	0.25	2/month	Grab
MTBE	ххх	Report	XXX	Report	2/month	Grab

	Tools and References Used to Develop Permit
	WQM for Windows Model (see Attachment
	PENTOXSD for Windows Model (see Attachment
	TRC Model Spreadsheet (see Attachment)
	Temperature Model Spreadsheet (see Attachment)
\square	Toxics Screening Analysis Spreadsheet (see Attachment B)
	Water Quality Toxics Management Strategy, 361-0100-003, 4/06.
	Technical Guidance for the Development and Specification of Effluent Limitations, 362-0400-001, 10/97.
	Policy for Permitting Surface Water Diversions, 362-2000-003, 3/98.
	Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 362-2000-008, 11/96.
	Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97.
	Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 362-2183-004 12/97.
<u> </u>	Pennsylvania CSO Policy, 385-2000-011, 9/08.
	Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.
	Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 391 2000-002, 4/97.
	Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97.
	Implementation Guidance Design Conditions, 391-2000-006, 9/97.
	Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxyge and Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004.
	Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges 391-2000-008, 10/1997.
	Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-2000-010, 3/99.
	Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 391-2000-011, 5/2004.
	Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97.
	Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainag Channels and Swales, and Storm Sewers, 391-2000-014, 4/2008.
	Implementation Guidance Total Residual Chlorine (TRC) Regulation, 391-2000-015, 11/1994.
	Implementation Guidance for Temperature Criteria, 391-2000-017, 4/09.
	Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/97 Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolve
	Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97. Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Desig
	Hardness, 391-2000-021, 3/99.
	Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/1999.
	Design Stream Flows, 391-2000-023, 9/98.
	Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV and Other Discharge Characteristics, 391-2000-024, 10/98.
	Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97.
	Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.
	SOP:
	Other:

Attachments

Attachment A: StreamStats Drainage Area Attachment B: Toxics Screening Analysis for Outfall 002 Attachment A: StreamStats Drainage Area

StreamStats Report

Basin Characteristics

Parameter Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	4.26	square miles
ELEV	Mean Basin Elevation	1192.6	feet

Low-Flow Statistics Parameters Low Flow Region 4

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	4.26	square miles	2.26	1400
ELEV	Mean Basin Elevation	1192.6	feet	1050	2580

Low-Flow Statistics Flow Report (Low Flow Region 4)

PII: Prediction Interval-Lower,	Plu:	Prediction Interval-Upper	, SEp	Standard Error of Prediction, SE	Standard Error	(other see report)

Statistic	Value	Unit	SE	SEp	
7 Day 2 Year Low Flow	0.146	ft*3/s	43	43	
30 Day 2 Year Low Flow	0.262	ft^3/s	38	38	
7 Day 10 Year Low Flow	0.0489	ft^3/s	66	66	
30 Day 10 Year Low Flow	0.0939	ft^3/s	54	54	
90 Day 10 Year Low Flow	0.179	ft^3/s	41	41	

Low-Flow Statistics Citations

Stuckey, M.H.,2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p. (http://pubs.usgs.gov/sir/2006/5130/)

Attachment B: Toxic Screening Analysis for Outfall 002

NPDES Permit No. PA0254151 **Bridge Street Bulk Plant**

CLEAR FORM

TOXICS SCREENING ANALYSIS WATER QUALITY POLLUTANTS OF CONCERN VERSION 2.6

Coen Energy Bridge Street B Analysis Hardness (mg/L): 100 Stream Flow, Q ₇₋₁₀ (cfs): 0.0489	Bulk Plant	NPDES Permit No.: PA0254151 Outfall: Ou			
Parameter	Maximum Concentration in Application or DMRs (µg/L)	Most Stringent Criterion (µg/L)	Candidate for PENTOXSD Modeling?	Most Stringent WQBEL (µg/L)	Screening Recommendation
Dissolved Iron	11.9	300	No		
Benzene	< 1	1.2	No		
Ethylbenzene	< 1	530	No		
Toluene	< 1	330	No		
МТВЕ	23	N/A	No		
Total Xylenes	< 3	210	No		