

Application TypeRenewalFacility TypeNon-MunicipalMajor / MinorMinor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

Application No.	PA0254215
APS ID	1013554
Authorization ID	1309274

Applicant and Facility Information

Rox Coal, Inc.	Facility Name	Horning Deep Mine
PO Box 260	Facility Address	SR 4015
Friedens, PA 15541		Somerset, PA 15501
Matthew Twichell, Mining Engineer	Facility Contact	Matthew Twichell, Mining Engineer
(814) 443-4668, ext. 293	Facility Phone	(814) 443-4668, ext. 293
8306	Site ID	698364
Not Overloaded	Municipality	Stonycreek Township
No Limitations	County	Somerset County
eived March 19, 2020	EPA Waived?	Yes
epted April 10, 2020	If No, Reason	-
	PO Box 260 Friedens, PA 15541 Matthew Twichell, Mining Engineer (814) 443-4668, ext. 293 8306 Not Overloaded No Limitations eived March 19, 2020	PO Box 260Facility AddressFriedens, PA 15541Facility ContactMatthew Twichell, Mining EngineerFacility Contact(814) 443-4668, ext. 293Facility Phone8306Site IDNot OverloadedMunicipalityNo LimitationsCountyeivedMarch 19, 2020EPA Waived?

Summary of Review

Act 14 - Proof of Notification was submitted and received.

A Part II Water Quality Management permit is not required at this time. However, a Water Quality Management permit application will be required prior to any construction of the proposed STP, and prior to any discharge. The applicant should be able to meet the limits of this permit, which will protect the uses of the receiving stream.

I. OTHER REQUIREMENTS:

- A. Stormwater into sewers
- B. Right of way
- C. Solids handling

- D. Public Sewer Availability
- E. Effluent Chlorine Optimization and Minimization
- F. WQM Permit prior to discharging

SPECIAL CONDITIONS:

II. Solids Management

There are no open violations in efacts associated with the subject Client ID (8306) as of 2/24/2021.

Approve	Deny	Signatures	Date
x		Stephen A. McCauley	2/24/2021
~		Stephen A. McCauley, E.I.T. / Environmental Engineering Specialist	2/24/2021
x		Justin C. Dickey	2/28/2021
^		Justin C. Dickey, P.E. / Environmental Engineer Manager	2/20/2021

ischarge, Receiving	Wate	rs and Water Supply Info	ormation	
Outfall No. 001			Design Flow (MGD)	0.0035
	3' 58.00	יר	Longitude	-78º 56' 59.00"
Quad Name -	5 50.00)	Quad Code	
Wastewater Descrip	tion:	Sewage Effluent		
Wastewater Descrip	uon.			
Receiving Waters	Glade	es Creek (CWF)	Stream Code	45777
NHD Com ID	1237	13679	RMI	3.1
Drainage Area	1.73		Yield (cfs/mi²)	0.04
Q ₇₋₁₀ Flow (cfs)	0.069		Q ₇₋₁₀ Basis	USGS Low Flow Stats Station 03040000 Stony Creek at Hooversville
Elevation (ft)	2253		Slope (ft/ft)	0.000757
Watershed No.	18-E		Chapter 93 Class.	 CWF
Existing Use	-		Existing Use Ouglifier	-
Exceptions to Use	-		Exceptions to Criteria	-
Assessment Status		Impaired		
Cause(s) of Impairm	ent	Suspended Solids		
Source(s) of Impairn	nent	Agriculture		
TMDL Status		Final, 01/29/2010		s-Conemaugh sheds TMDL
Background/Ambien	t Data		Data Source	
pH (SU)		-	-	
Temperature (°F)		-	-	
Hardness (mg/L)		-	-	
Other:		-	-	
Nearest Downstream	n Publi	ic Water Supply Intake	Hooversville Municipal Author	ity
		eek River	Flow at Intake (cfs)	9.0
	5.2		Distance from Outfall (mi)	20.0
<u></u>	0.2			

Kiskiminetas River Basin

There is a TMDL for metals in the Kiskiminetas River watershed. The contribution for metals from a sewage plant of this nature is expected to be less than water quality criteria and therefore not contributing to stream impairment. However, 1/year monitoring is imposed for plants rated between 0.002 mgd up to 0.499 mgd for Total Iron, Total Manganese, and Total Aluminum. Monitoring is required to establish data to ensure there are no impacts on the quality of the receiving stream.

Sludge use and disposal description and location(s): <u>Sludge is no</u>

Sludge is not used, it is disposed of at an approved landfill.

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the Pennsylvania Bulletin in accordance with 25 Pa. Code § 92a.82. Upon publication in the Pennsylvania Bulletin, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one

NPDES Permit Fact Sheet Horning Deep Mine STP

additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the Pennsylvania Bulletin at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Narrative: This Fact Sheet details the determination of draft NPDES permit limits for a proposed discharge of 0.0035 MGD of treated sewage from a non-municipal STP in Stonycreek Township, Somerset County.

Treatment has not been permitted for this facility. Holding tanks are currently in use and pumped when necessary until the sewage treatment facility is permitted and installed.

1. Streamflow:

Stony Creek River (USGS gage 03040000):

Q ₇₋₁	a: <u>245</u>	cfs	(USGS StreamStats)
Drainage Area		sq. mi.	(USGS StreamStats)
Yieldrate		<u>5</u> cfsm	calculated
Glades Run:			
Yieldrate	a: <u>1.73</u>	cfsm	calculated above
Drainage Area		sq. mi.	(USGS StreamStats)
Q ₇₋₁) cfs	calculated
% of stream allocated	d: <u>100%</u>	Basis:	No nearby discharges

2. Wasteflow:

Maximum discharge: 0.0035 MGD = 0.0054 cfs

Runoff flow period: <u>24</u> hours Basis: <u>Runoff flow for a Municipal STP</u>

There is greater than 3 parts stream flow (Q7-10) to 1 part effluent (design flow). In accordance with the SOP, and since this is an existing discharge, the treatment requirements in document number 391-2000-014, titled, "Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers", dated April 12, 2008, will not be implemented in this NPDES Permit.

3. Parameters:

The following parameters were evaluated: pH, Total Suspended Solids, Fecal Coliform, Phosphorus, NH₃-N, CBOD₅, Dissolved Oxygen, and Total Residual Chlorine. NH₃-N, CBOD₅, and Dissolved Oxygen were evaluated using WQM 7.0 at the discharge point.

a. <u>pH</u>

Between 6.0 and 9.0 at all times

Basis: <u>Application of Chapter 93.7 technology-based limits. The measurement frequency was</u> previously set to 1/day as recommended in the SOP, based on Table 6-3 in the "Technical <u>Guidance for the Development and Specification of Effluent Limitations"</u> (362-0400-001), which will be retained.

b. <u>Total Suspended Solids</u>

Limits are 30 mg/l as a monthly average and 60 as a daily maximum.

Basis: Application of Chapter 92a47 technology-based limits

c. Fecal Coliform

05/01 - 09/30:	<u>200/100ml</u> <u>1,000/100ml</u>	(monthly average geometric mean) (instantaneous maximum)
10/01 - 04/30:	<u>2,000/100ml</u> <u>10,000/100ml</u>	(monthly average geometric mean) (instantaneous maximum)
Basis:	Application of C	Chapter 92a47 technology-based limits

d. Phosphorus

- Limit necessary due to:
 - Discharge to lake, pond, or impoundment
 - Discharge to stream

Basis: <u>N/A</u>

- Limit not necessary
 - Basis: <u>Chapter 96.5 does not apply.</u> However, the previous monitoring for Total Phosphorus will be retained in accordance with the SOP, based on Chapter 92a.61.
- e. Total Nitrogen

The previous monitoring for Total Nitrogen will be retained in accordance with the SOP, based on Chapter 92a.61.

f. <u>Ammonia-Nitrogen (NH₃-N)</u>

<u>7.0</u>	Standard Units (S.U.)
В	asis: default value used in the absence of data
<u>25°C</u>	(default value used in the absence of data)
<u>7.0</u>	Standard Units (S.U.)
В	asis: default value used in the absence of data
<u>25°C</u>	(default value used for WWF modeling)
<u>0.1</u>	mg/l
В	asis: Default value.
<u>25.0</u> 50.0	mg/l (monthly average) mg/l (instantaneous maximum)
<u>25.0</u> 50.0	mg/l (monthly average) mg/l (instantaneous maximum)
	B <u>25°C</u> <u>7.0</u> B <u>25°C</u> <u>0.1</u> B <u>25.0</u> <u>50.0</u> <u>25.0</u>

Result: <u>WQ modeling resulted in the summer technology-based limits above (see Attachment 1), which are the same as in the previous permit. The winter limits are calculated as three times the summer</u>

limits, but since the technology-based limits are more protective, they will be used. Since the calculated limits are technology-based, per the SOP, year-round monitoring will be retained with this renewal.

g. <u>CBOD</u>₅

Median discharge pH to be used:	<u>7.0</u>	Standard Units (S.U.)
	В	asis: default value used in the absence of data
Discharge temperature:	<u>25°C</u>	(default value used in the absence of data)
Median stream pH to be used:	<u>7.0</u>	Standard Units (S.U.)
	В	asis: default value used in the absence of data
Stream Temperature:	<u>25°C</u>	(default value used for WWF modeling)
Background CBOD5 concentration:	<u>2.0</u>	mg/l
	В	asis: Default value
CBOD₅ Summer limits:	<u>25.0</u> 50.0	mg/l (monthly average) mg/l (instantaneous maximum)
CBOD ₅ Winter limits:	<u>25.0</u> 50.0	mg/l (monthly average) mg/l (instantaneous maximum)

- Result: WQ modeling resulted in the calculated summer limits above (see Attachment 1), which are the same as the previous NPDES Permit. The winter limits are calculated as three times the summer limits, but since the technology-based limits are more protective, they will be used. Since the summer and winter limits are technology-based, per the SOP, the year-round limit of 25.0 mg/l monthly average and 50.0 mg/l instantaneous maximum will be retained with this renewal.
- h. <u>Dissolved Oxygen (DO)</u>
 - 4.0 mg/l minimum desired in effluent to protect all aquatic life
 - 5.0 mg/l desired in effluent for CWF, WWF, or TSF
 - 6.0 mg/l minimum required due to discharge falling under guidance document 391-2000-014
 - 8.0 mg/l required due to discharge going to a naturally reproducing salmonid stream

Discussion: The Dissolved Oxygen minimum of 4.0 mg/l will be retained with this renewal. The technologybased minimum of 4.0 mg/l is recommended by the WQ Model (see Attachment 1) and the SOP based on Chapter 93.7, under the authority of Chapter 92a.61. The measurement frequency was previously set to 1/day as recommended in the SOP, based on Table 6-3 in the "Technical Guidance for the Development and Specification of Effluent Limitations" (362-0400-001), which will be retained.

- i. <u>Total Residual Chlorine (TRC)</u>
 - No limit necessary

Basis: <u>N/A</u>

- TRC limits: 0.5 mg/l (monthly average)
 - 1.6 mg/l (instantaneous maximum)

- Basis: <u>The technology-based TRC limits above were calculated using the TRC_Calc spreadsheet</u> (see Attachment 2). The measurement frequency was previously set to 1/day as recommended in the SOP, based on Table 6-3 in the "Technical Guidance for the Development and Specification of Effluent Limitations" (362-0400-001), which will be retained.
- j. Influent Total Suspended Solids and BOD5

Monitoring for these two parameters will be retained as recommended in the SOP for POTWs, and as authorized under Chapter 92a.61.

k. Anti-Backsliding

Since all the permit limits in this renewal are the same or more restrictive than the previous NPDES Permit, anti-backsliding is not applicable.

4. Reasonable Potential Analysis for Receiving Stream:

A Reasonable Potential Analysis was not performed in accordance with State practices for Outfall 001 since no sampling has been performed for this facility.

5. Reasonable Potential for Downstream Public Water Supply (PWS):

Bromide has been linked to the formation of disinfection byproducts at increased levels in public water systems. Where the concentration of bromide in a discharge exceeds 1 mg/L, as is shown from eDMR, and the discharge flow exceeds 0.1 MGD, Part A of the permit should include monitor and report for bromide. Since this facility is designed for only 0.0035 MGD, and has no Bromide sampling data, monitoring for Bromide will not be added to this renewal permit.

Nearest Downstream potable water supply (PWS): <u>Hooversville Municipal Authority</u>

Distance downstream from the point of discharge: <u>20.0</u> miles (approximate)

- No limits necessary
- Limits needed

Basis: Significant dilution available.

6. Attachment List:

Attachment 1 - WQ Modeling Printouts

Attachment 2 - TRC_Calc Spreadsheet

(The Attachments above can be found at the end of this document)

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

	Effluent Limitations							Monitoring Requirements	
Parameter	Mass Units	(lbs/day) (1)		Concentrations (mg/L)			Minimum ⁽²⁾	Required	
Farameter	Average Monthly	Average Weekly	Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type	
Flow (MGD)	Report	XXX	XXX	XXX	XXX	XXX	2/month	Measured	
рН (S.U.)	xxx	xxx	6.0 Daily Min	xxx	9.0 Daily Max	xxx	1/day	Grab	
DO	XXX	xxx	4.0 Daily Min	xxx	xxx	xxx	1/day	Grab	
TRC	XXX	XXX	XXX	0.5	XXX	1.6	1/day	Grab	
CBOD5	ХХХ	xxx	xxx	25	xxx	50	2/month	Grab	
TSS	XXX	XXX	XXX	30	XXX	60	2/month	Grab	
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2000 Geo Mean	xxx	10000	2/month	Grab	
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	xxx	xxx	200 Geo Mean	xxx	1000	2/month	Grab	
Total Nitrogen	XXX	xxx	XXX	Report Annl Avg	xxx	XXX	1/year	Grab	
Ammonia-Nitrogen	XXX	XXX	XXX	Report	XXX	Report	2/month	Grab	
Total Phosphorus	ХХХ	XXX	ххх	Report Annl Avg	xxx	XXX	1/year	Grab	
Total Aluminum	xxx	xxx	ххх	Report Annl Avg	XXX	xxx	1/year	Grab	
Total Iron	XXX	XXX	XXX	Report Annl Avg	XXX	XXX	1/year	Grab	
Total Manganese	XXX	XXX	ххх	Report Annl Avg	XXX	XXX	1/year	Grab	

Compliance Sampling Location: Outfall 001, after disinfection.

Flow is monitor only based on Chapter 92a.61. The limits for pH and Dissolved Oxygen are technology-based on Chapter 93.7. The limits for Total Residual Chlorine (TRC) are technology based on Chapter 92a.48. The limits for CBOD₅, Total Suspended Solids, and Fecal Coliforms are technology-based on Chapter 92a.47. Monitoring for influent BOD5 and influent Total Suspended Solids is based on Chapter 92a.61. Monitoring for Ammonia-Nitrogen, Total Nitrogen, Total Phosphorus, Total Aluminum, Total Iron, and Total Manganese is based on Chapter 92a.61.

Attachment 1

	<u>SWP Basin</u> S 18E	tream Code 45777		<u>Stream Nam</u> GLADES CREE	-		
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
3.100	Horning Mine	PA0254215	0.004	CBOD5	25		
				NH3-N	25	50	
				Dissolved Oxygen			4

WQM 7.0 Effluent Limits

Wednesday, February 10, 2021

Version 1.0b

SWP Basin St	ream Code			Stream Name	
18E	45777			GLADES CREEK	
RMI	Total Discharge	Flow (mgd	l) <u>Ana</u>	lysis Temperature (°C)	<u>Analysis pH</u>
3.100	0.004	4		20.363	7.000
Reach Width (ft)	<u>Reach De</u>	<u>pth (ft)</u>		<u>Reach WDRatio</u>	Reach Velocity (fps)
5.581	0.35	9		15.538	0.037
Reach CBOD5 (mg/L)	Reach Kc (<u>1/days)</u>	E	<u>each NH3-N (mg/L)</u>	Reach Kn (1/days)
3.67	0.52	Manage and		1.81	0.720
Reach DO (mg/L)	<u>Reach Kr (</u>			Kr Equation	Reach DO Goal (mg/L)
7.935	16.04	4		Owens	5
Reach Travel Time (days)		Subreach	Results		
0.821	TravTime	CBOD5	NH3-N	D.O.	
	(days)	(mg/L)	(mg/L)	(mg/L)	
	0.082	3.51	1.71	8.19	
	0.164	3.36	1.61	8.19	
	0.246	3.22	1.52	8.19	
	0.328	3.08	1.43	8.19	
	0.410	2.95	1.35	8.19	
	0.493	2.83	1.27	8.19	
	0.575	2.70	1.20	8.19	
	0.657	2.59	1.13	8.19	
	0.739	2.48	1.07	8.19	
	0.821	2.37	1.00	8.19	

WQM 7.0 D.O.Simulation

Wednesday, February 10, 2021

Version 1.0b

Page 1 of 1

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	\checkmark
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	\checkmark
D.O. Saturation	90.00%	Use Balanced Technology	\checkmark
D.O. Goal	5		

Wednesday, February 10, 2021

Version 1.0b

Page 1 of 1

	<u>SW</u>	/ <u>P Basin</u> 18E		<u>m Code</u> 5777				Stream				
RMI	Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow	Reach Slope	Depth	Width	W/D Ratio	Velocity	Reach Tra∨ Time	Analysis Temp	Analysis pH
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)	
Q7-1	0 Flow											
3.100	0.07	0.00	0.07	.0054	0.00076	.359	5.58	15.54	0.04	0.821	20.36	7.00
Q1-1	0 Flow											
3.100	0.04	0.00	0.04	.0054	0.00076	NA	NA	NA	0.03	1.031	20.54	7.00
Q30-	10 Flov	v										
3.100	0.09	0.00	0.09	.0054	0.00076	NA	NA	NA	0.04	0.699	20.27	7.00

WQM 7.0 Hydrodynamic Outputs

Wednesday, February 10, 2021

Version 1.0b

Page 1 of 1

Input Data WQM 7.0

	SWP Basir			Stre	eam Name		RMI		vation ft)	Draina Are (sq r	a	Slope (ft/ft)	PW Withd (mg	rawal	Apply FC
	18E	457	777 GLAD	ES CREE	К		3.10	0 2	253.00		1.73	0.00000		0.00	\checkmark
					St	ream Da	ta								
Design Cond.	LFY (cfsm)	Trib Flow (cfs)	Stream Flow (cfs)	Rch Trav Time (days)	Rch Velocity (fps)	WD Ratio	Rch Width (ft)	Rch Depth (ft)	Ten (°C		ary pH	Ten (°C	273	рН	
Q7-10 Q1-10 Q30-10	0.040	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00	0.00	0 2	20.00	7.0	0 2	0.00	7.00	
			Name	Per	Di mit Numbe	Disc	Data Permitte Disc Flow (mgd)	ed Desig Disc Flow (mga	Res v Fa	serve ictor	Diso Tem (°C)	p r	isc oH		
		Horni	ng Mine	PA	0254215	0.003		0 0.00	000	0.000		5.00	7.00		
			1	Paramete		C	isc T Conc C	onc	Stream Conc (mg/L)	Fate Coe (1/da)	ef				
	-		CBOD5				25.00	2.00	0.00	1	.50				
			Dissolved	Oxygen			4.00	8.24	0.00	0	.00				

25.00

0.00

0.00

0.70

NH3-N

Input Data WQM 7.0

	SWP Basin			Stre	eam Name		RMI	Eleva (ft)		Drainage Area (sq mi)	Slope (ft/ft)	Witho	VS drawal igd)	Apply FC
	18E	45	777 GLAD	ES CREE	К		2.60	0 22	51.00	2.20	0.0000)	0.00	\checkmark
0					St	ream Dat	a							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	<u>1</u> Temp	<u>Fributary</u> p pH	Ter	<u>Strear</u> np	m pH	
eona.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°(C)		
Q7-10 Q1-10 Q30-10	0.040	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00	0.00	20	.00 7.0	00 2	20.00	7.00	
					Di	scharge l	Data						1	
			Name	Per	mit Number	Disc	Permitte Disc Flow (mgd)	ed Design Disc Flow (mgd)	Rese Fac		р)isc pH		
						0.0000	0.000		0 0		5.00	7.00		
					Pa	rameter I								
				Paramete	r Name	C	onc C	ione C	ream Conc ng/L)	Fate Coef (1/days)				
	-		CBOD5				25.00	2.00	0.00	1.50		-,		

3.00

25.00

8.24

0.00

0.00

0.00

0.00

0.70

Dissolved Oxygen

NH3-N

Attachment 2

Input appropria					
mpar appi opi ie	ate values in A	A3:A9 and D3:D9			
0.07	7 = Q stream (d	cfs)	0.5	= CV Daily	
0.003	5 = Q discharg	e (MGD)	0.5	= CV Hourly	
30	= no. sample:	8	1	= AFC_Partial I	Mix Factor
0.3	3 = Chlorine Da	emand of Stream	1	= CFC_Partial I	Mix Factor
(= Chlorine De	emand of Discharge	15	= AFC_Criteria	Compliance Time (min)
0.6	5 = BAT/BPJ V	alue	720	= CFC_Criteria	Compliance Time (min)
(= % Factor o	f Safety (FOS)	0	=Decay Coeffic	cient (K)
Source	Reference	AFC Calculations		Reference	CFC Calculations
TRC	1.3.2.iii	WLA afc =	4.143	1.3.2.iii	WLA cfc = 4.032
PENTOXSD TRG	5.1a	LTAMULT afc =	0.373	5.1c	LTAMULT cfc = 0.581
PENTOXSD TRG	5.1b	LTA_afc=	1.544	5.1d	LTA_cfc = 2.344
Source		Efflue	nt Limit Calcu	lations	
PENTOXSD TRG	10704 (BH)		AML MULT =		
PENTOXSD TRG	5.1g	AVG MON	LIMIT (mg/l) =	0.500	BAT/BPJ
		INST MAX	IMIT (mall) =	1 635	
		INST MAX	LIMIT (mg/l) =	1.635	
WLA afc	and an and a set of the		/Qd*e(-k*AFC		
	+ Xd + (AFC	⁻ C_tc)) + [(AFC_Yc*Qs*.019 C_Yc*Qs*Xs/Qd)]*(1-FOS/10	/Qd*e(-k*AFC		
LTAMULT afc	+ Xd + (AFC EXP((0.5*LN(/Qd*e(-k*AFC		
LTAMULT afc	+ Xd + (AFC		/Qd*e(-k*AFC		
LTAMULT afc LTA_afc	+ Xd + (AFC EXP((0.5*LN(wla_afc*LTA (.011/e(-k*CF	FC_tc)) + [(AFC_Yc*Qs*.019 C_Yc*Qs*Xs/Qd)]*(1-FOS/10 cvh^2+1))-2.326*LN(cvh^2+ MULT_afc FC_tc) + [(CFC_Yc*Qs*.011/	/Qd*e(-k*AFC 0) -1)^0.5) Qd*e(-k*CFC	9_tc))	
LTAMULT afc LTA_afc WLA_cfc	+ Xd + (AFC EXP((0.5*LN(wla_afc*LTAI (.011/e(-k*CF + Xd + (CFC	FC_tc)) + [(AFC_Yc*Qs*.019 C_Yc*Qs*Xs/Qd)]*(1-FOS/10 cvh^2+1))-2.326*LN(cvh^2+ MULT_afc FC_tc) + [(CFC_Yc*Qs*.011/ C_Yc*Qs*Xs/Qd)]*(1-FOS/10	/Qd*e(-k*AFC 0) -1)^0.5) Qd*e(-k*CFC 0)	9_tc)) _tc))).5)
WLA afc LTAMULT afc LTA_afc WLA_cfc LTAMULT_cfc LTA_cfc	+ Xd + (AFC EXP((0.5*LN(wla_afc*LTAI (.011/e(-k*CF + Xd + (CFC	^{EC_tc})) + [(AFC_Yc*Qs*.019 C_Yc*Qs*Xs/Qd)]*(1-FOS/10 cvh^2+1))-2.326*LN(cvh^2+ MULT_afc EC_tc) + [(CFC_Yc*Qs*.011/ C_Yc*Qs*Xs/Qd)]*(1-FOS/10 cvd^2/no_samples+1))-2.32	/Qd*e(-k*AFC 0) -1)^0.5) Qd*e(-k*CFC 0)	9_tc)) _tc))	0.5)
LTAMULT afc LTA_afc WLA_cfc LTAMULT_cfc	+ Xd + (AFC EXP((0.5*LN(wla_afc*LTAI (.011/e(-k*CF + Xd + (CFC EXP((0.5*LN(wla_cfc*LTAI EXP(2.326*LM	<pre>FC_tc)) + [(AFC_Yc*Qs*.019 C_Yc*Qs*Xs/Qd)]*(1-FOS/10 cvh^2+1))-2.326*LN(cvh^2+ MULT_afc FC_tc) + [(CFC_Yc*Qs*.011/ C_Yc*Qs*Xs/Qd)]*(1-FOS/10 cvd^2/no_samples+1))-2.32 MULT_cfc N((cvd^2/no_samples+1)^0.</pre>	/Qd*e(-k*AFC 0) -1)^0.5) Qd*e(-k*CFC 0) 6*LN(cvd^2/n 5)-0.5*LN(cvd	9_ tc)) _ tc)) io_samples+1)^(
LTAMULT afc LTA_afc WLA_cfc LTAMULT_cfc LTA_cfc	+ Xd + (AFC EXP((0.5*LN(wla_afc*LTAI (.011/e(-k*CF + Xd + (CFC EXP((0.5*LN(wla_cfc*LTAI EXP(2.326*LM	FC_tc)) + [(AFC_Yc*Qs*.019 C_Yc*Qs*Xs/Qd)]*(1-FOS/10 cvh^2+1))-2.326*LN(cvh^2+ MULT_afc FC_tc) + [(CFC_Yc*Qs*.011/ C_Yc*Qs*Xs/Qd)]*(1-FOS/10 cvd^2/no_samples+1))-2.32 MULT_cfc	/Qd*e(-k*AFC 0) -1)^0.5) Qd*e(-k*CFC 0) 6*LN(cvd^2/n 5)-0.5*LN(cvd	9_ tc)) _ tc)) io_samples+1)^(