

 Application Type
 Renewal

 Facility Type
 Municipal

 Major / Minor
 Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

 Application No.
 PA0254223

 APS ID
 861134

 Authorization ID
 1359006

Applicant and Facility Information

Applicant Name	Lincoln Township Municipal Authority	Facility Name	Southside STP
Applicant Address	PO Box 162	Facility Address	Old Shaffer Road
	Sipesville, PA 15561-0162		Sipesville, PA 15561
Applicant Contact	Allen Hay	Facility Contact	Branden Trent
Applicant Phone	(814) 445-7669	Facility Phone	(814) 233-4961
Client ID	25722	Site ID	726695
Ch 94 Load Status	Not Overloaded	Municipality	Lincoln Township
Connection Status	No Limitations	County	Somerset
Date Application Receiv	vedJune 3, 2021	EPA Waived?	Yes
Date Application Accep	ted June 24, 2021	If No, Reason	
Purpose of Application	Application for renewal of a NPDES	Permit for treated sew	/age

Summary of Review

The permittee has applied for a renewal of NPDES Permit No. PA0254223. PA0254223 was previously issued by the PA Department of Environmental Protection (DEP) on January 11, 2017 and expired January 31, 2022. The renewal application was submitted in a timely manner; therefore, the permit was granted an administrative extension.

Sewage and industrial wastewater at this facility are treated with flow equalization, extended aeration, clarification, and UV disinfection prior to discharge to outfall 001 to Trib 45660 of Quemahoning Creek.

The permittee is currently enrolled in and will continue to use eDMR.

The applicant complied with Act 14 Notification, and no comments were received.

Sewage sludge produced at this facility is hauled by Stutzman Vac LLC and disposed of in the Sandy Run Landfill.

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania*

Approve	Deny	Signatures	Date
х		It al	
		Stephanie Conrad / Environmental Engineering Specialist	February 1, 2022
x		MAHBUBA IASMIN	
		Mahbuba lasmin, Ph.D., P.E. / Environmental Engineering Manager	May 11, 2022

Summary of Review

Bulletin at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Discharge, Receiving Waters and Water Supply Inform	mation
Outfall No 001	Design Flow (MGD) 01
Latitude $40^{\circ} 4' 25''$	Longitude -79º 4' 39"
Quad Name Somerset	Longitude 10 4 00 Quad Code 1813
Wastewater Description: Sewage Effluent	
Trib 45660 of Quemahoning Crea	ek
Receiving Waters (CWF)	Stream Code45660
NHD Com ID 123722624	RMI1.25
Drainage Area 1.09	Yield (cfs/mi ²) 0.0519
Q ₇₋₁₀ Flow (cfs) 0.0566	Q7-10 Basis USGS Stream Stats
Elevation (ft) 2040	Slope (ft/ft)
Watershed No. 18-E	Chapter 93 Class. CWF
Existing Use	Existing Use Qualifier
Exceptions to Use	Exceptions to Criteria
Assessment Status Impaired	
Cause(s) of Impairment <u>METALS, PH</u>	
Source(s) of Impairment <u>ACID MINE DRAINAGE</u> ,	AGRICULTURE
TMDL Status Final	Kiskiminetas-Conemaugh River Name Watersheds TMDL
Background/Ambient Data pH (SU) Temperature (°F)	Data Source
Hardness (mg/L)	
Other:	
Nearest Downstream Public Water Supply Intake	Bethlehem Steel Johnstown PLT
PWS Waters Quemahoning Reservoir	Flow at Intake (MGD) 4.0
PWS RMI 4.52	Distance from Outfall (mi) 12.4

Changes Since Last Permit Issuance: None

Other Comments:

Treatment Facility Summary									
Treatment Facility Na	me: Southside STP								
WQM Permit No.	Issuance Date								
5610101	April 15, 2021								
	Degree of								
Waste Type	Treatment	Process Type	Disinfection	Flow (MGD)					
Sewage	Secondary	Extended Aeration	UV Disinfection	0.01					
Hydraulic Capacity	Organic Capacity			Biosolids					
(MGD)	(lbs/day)	Load Status	Biosolids Treatment	Use/Disposal					
0.015	23.6	Not Overloaded	Pump and Haul	Other STP					

Changes Since Last Permit Issuance: None

Other Comments:

Compliance History

Facility: Southside STP

NPDES Permit No.: PA0254223

Compliance Review Period: 1/2017 – 1/2022

Inspection Summary:

IN SP ID	IN SPECTED DATE	INSP TYPE	AGENCY	IN SPECTION RESULT DESC	UPDATE DATE
<u>3155830</u>	02/26/2021	Compliance Evaluation	PA Dept of Environmental Protection	Violation(s) Noted	10/29/2021
3155511	02/25/2021	Chapter 94 Inspection	PA Dept of Environmental Protection	No Violations Noted	03/03/2021
3152933	02/25/2021	Administrative/File Review	PA Dept of Environmental Protection	No Violations Noted	
<u>2881397</u>	04/09/2019	Compliance Evaluation	PA Dept of Environmental Protection	No Violations Noted	
2720423	04/12/2018	Compliance Evaluation	PA Dept of Environmental Protection	No Violations Noted	
<u>2567279</u>	02/13/2017	Routine/Partial Inspection	PA Dept of Environmental Protection	No Violations Noted	
<u>2583354</u>	02/01/2017	Compliance Evaluation	PA Dept of Environmental Protection	No Violations Noted	04/17/2017

Violation Summary:

VIOL ID	VIOLATION	VIOLATION	VIOLATION TYPE	RESOLVED
	DATE	TYPE	DESC	DATE
909182	02/26/2021	92A.44	NPDES - Violation of effluent limits in Part A of permit	10/29/2021

Open Violations by Client ID:

No open violations for Client ID 25722

Enforcement Summary:

No enforcements

DMR Violation Summary:

MONITORING END DATE	OUTFALL	PARAMETER	STATISTICAL BASECODE	VALUE	SAMPLE VALUE	UNIT OF MEA SURE
2/29/2016	1	Total Suspended Solids	Average Monthly	30	35	mg/L
2/29/2016	1	Total Suspended Solids	Instantaneous Maximum	60	64	mg/L
9/30/2016	1	Fecal Coliform	Instantaneous Maximum	1000	1986.3	CFU/100 ml
9/30/2016	1	Fecal Coliform	Geometric Mean	200	609.8	CFU/100 ml
5/31/2018	1	Fecal Coliform	Instantaneous Maximum	1000	2419.6	No./100 ml
5/31/2018	1	Iron, Dissolved	Average Monthly	0.3	0.95	mg/L
5/31/2018	1	Iron, Dissolved	Instantaneous Maximum	0.6	1.84	mg/L
6/30/2019	1	Fecal Coliform	Instantaneous Maximum	1000	> 2419.6	No./100 ml
6/30/2019	1	Fecal Coliform	Geometric Mean	200	> 2419.6	No./100 ml
8/31/2019	1	Fecal Coliform	Instantaneous Maximum	1000	1031.6	No./100 ml
8/31/2019	1	Fecal Coliform	Geometric Mean	200	593.72	No./100 ml
2/29/2020	1	Iron, Dissolved	Average Monthly	0.3	0.42	mg/L
6/30/2020	1	Fecal Coliform	Geometric Mean	200	271.4	No./100 ml
1/31/2021	1	Iron, Dissolved	Average Monthly	0.3	0.4	mg/L
1/31/2021	1	Iron, Dissolved	Instantaneous Maximum	0.6	0.7	mg/L

Compliance Status:

Permittee has several DMR exceedances.

Completed by: John Murphy

Completed date: 1/12/2021

Compliance History

DMR Data for Outfall 001 (from December 1, 2020 to November 30, 2021)

Parameter	NOV-21	OCT-21	SEP-21	AUG-21	JUL-21	JUN-21	MAY-21	APR-21	MAR-21	FEB-21	JAN-21	DEC-20
Flow (MGD)												
Average Monthly	0.001	0.001	0.002	0.01	0.001	0.001	0.001	0.001	0.002	0.002	0.001	0.001
Flow (MGD)												
Daily Maximum	0.003	0.002	0.005	0.002	0.003	0.002	0.003	0.003	0.004	0.004	0.003	0.003
pH (S.U.)												
Minimum	7.1	7.3	7.1	7.5	7.3	7.4	7.4	7.3	7.3	7.4	7.5	7.5
pH (S.U.)												
Maximum	7.5	7.6	7.6	7.7	7.6	7.6	7.6	7.5	7.6	7.8	7.6	7.6
DO (mg/L)												
Minimum	7.1	6.6	5.8	6.4	5.9	7.1	6.7	6.8	6.4	6.1	7.6	6.9
CBOD5 (mg/L)												
Average Monthly	< 2.0	< 2.0	< 2.0	2.0	2.5	< 2.0	< 2.0	5.0	4.5	7.5	2.50	< 3.0
BOD5 (lbs/day)												
Influent Average												
Monthly	1.47	4.0	3.47	3.64	2.69	3.1	3.2	1.95	1.83	2.7	2.4	2.61
BOD5 (mg/L)												
Influent Average												
Monthly	176.0	479.5	416.5	276.5	322.5	267.0	189.0	234.0	174.0	220.0	282.0	313.0
BOD5 (mg/L)												
Influent 												
Instantaneous												
Maximum	214.0	593.0	479.0	320.0	341.0	325.0	206.0	348.0	302.0	228.0	296.0	401.0
TSS (lbs/day)												
Influent Average												
Monthly	13.2	15.3	4.6	5.6	4.52	3.4	5.1	3.46	19.4	3.4	2.8	3.06
TSS (mg/L)												
Average Monthly	< 2.0	< 2.0	5.50	< 3.5	< 2.0	< 3.50	3.5	< 2.0	4.5	9.0	4.0	5.50
TSS (mg/L)												
Influent Average												
Monthly	1582.5	1840	554.0	386.0	542.5	290.5	305.5	415.0	1470.0	341.0	335.0	366.5
TSS (mg/L)												
Influent 												
Instantaneous												
Maximum	2770.0	2700	633	570.0	615.0	353.0	475.0	450.0	2080.0	560.0	410.0	613.0
Fecal Coliform												
(No./100 ml)												
Geometric Mean	< 1.0	< 1.0	1.41	2.49	4.09	< 1.0	< 1.0	1.0	1.41	< 10.6	21.3	< 3.61

NPDES Permit Fact Sheet Southside STP

NPDES Permit No. PA0254223

Fecal Coliform												
(No./100 ml)												
Instantaneous												
Maximum	< 1.0	< 1.0	2.0	3.1	16.7	< 1.0	< 1.0	1.0	2.0	112.8	46.4	13.0
UV Transmittance (%)												
Average Monthly	00	00	00	00	00	00	00	00	00	00	00	00
UV Transmittance (%)												
Daily Maximum	00	00	00	00	00	00	00	00	00	00	00	00
Total Nitrogen (mg/L)												
Daily Maximum											37.9	
Ammonia-Nitrogen												
(lbs/day)												
Average Monthly	< 0.0008	< 0.001	< 0.001	< 0.001	< 0.01	< 0.001	0.003	< 0.002	< 0.007	0.097	0.01	< 0.009
Ammonia-Nitrogen												
(mg/L)												
Average Monthly	< 0.10	< 0.13	< 0.16	< 0.11	< 1.23	< 0.10	< 0.16	< 0.23	< 0.70	6.09	1.45	< 1.09
Total Phosphorus												
(mg/L)												
Daily Maximum											0.476	
Total Aluminum												
(lbs/day)												
Average Monthly	< 0.0008	< 0.0008	< 0.0008	< 0.001	< 0.0008	< 0.001	< 0.002	< 0.0008	< 0.002	< 0.001	< 0.0008	< 0.0008
Total Aluminum												
(mg/L)												
Average Monthly	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Total Aluminum												
(mg/L)												
Instantaneous												
Maximum	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Dissolved Iron												
(lbs/day)												
Average Monthly	< 0.0004	< 0.0004	< 0.0004	< 0.0006	< 0.0004	< 0.0006	< 0.0008	< 0.0004	0.001	< 0.0009	0.004	< 0.0004
Dissolved Iron (mg/L)												
Average Monthly	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.07	0.09	0.4	< 0.05
Dissolved Iron (mg/L)												
Instantaneous												
Maximum	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.07	0.12	0.7	< 0.05
Total Iron (lbs/day)												
Average Monthly	< 0.0004	< 0.0004	< 0.0005	< 0.0006	< 0.0004	< 0.0006	< 0.008	< 0.0004	0.002	< 0.001	0.005	< 0.0005
Total Iron (mg/L)												
Average Monthly	0.05	< 0.05	< 0.05	< 0.05	0.05	< 0.05	< 0.05	< 0.05	0.12	< 0.10	0.5	< 0.07
Total Iron (mg/L)												
Instantaneous												
Maximum	< 0.05	< 0.05	0.06	0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.13	0.15	0.9	0.08

NPDES Permit Fact Sheet Southside STP

NPDES Permit No. PA0254223

Total Manganese												
(lbs/day)	<	<	<		<			<			<	<
Average Monthly	0.00008	0.00008	0.00008	< 0.0001	0.00008	< 0.0001	0.0003	0.00008	0.0005	< 0.0002	0.00008	0.00008
Total Manganese												
(mg/L)												
Average Monthly	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.02	< 0.01	0.03	< 0.02	< 0.01	< 0.01
Total Manganese												
(mg/L)												
Instantaneous												
Maximum	0.01	< 0.01	0.01	< 0.01	< 0.01	< 0.01	0.02	< 0.01	0.03	0.02	< 0.01	< 0.01

Compliance History

Effluent Violations for Outfall 001, from: January 1, 2021 To: November 30, 2021

Parameter	Date	SBC	DMR Value	Units	Limit Value	Units
Dissolved Iron	01/31/21	Avg Mo	0.4	mg/L	0.3	mg/L
Dissolved Iron	01/31/21	Avg Mo	0.4	mg/L	0.3	mg/L
Dissolved Iron	01/31/21	IMAX	0.7	mg/L	0.6	mg/L
Dissolved Iron	01/31/21	IMAX	0.7	mg/L	0.6	mg/L

Summary of Inspections: This facility was last inspected on February 26, 2021 and no violations were noted.

Development of Effluent Limitations

Outfall No.	001		Design Flow (MGD)	.01
Latitude	40° 4' 25.00"		Longitude	-79° 4' 39.00"
Wastewater D	escription:	Sewage Effluent		

Technology-Based Limitations (TBELs)

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
CROD	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBODS	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
рН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform				
(5/1 – 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform				
(5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform				
(10/1 – 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform				
(10/1 – 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)

Water Quality-Based Limitations (WQBELs)

Pursuant to the EPA's approval of Pennsylvania's 2017 Triennial Review of Water Quality Standards and corresponding regulatory changes published in the *Pennsylvania Bulletin* on July 11, 2020, new water quality criteria for Ammonia-Nitrogen apply to waters of the commonwealth. Therefore, WQBELs for Outfall 001 are being re-evaluated even though there have been no changes to STP.

The effluent was modeled using WQM 7.0 to evaluate the CBOD₅, Ammonia-Nitrogen, and Dissolved Oxygen parameters. Modeling confirmed that a technology based effluent limit is appropriate for CBOD₅ Winter. The modeling determined that water quality based effluent limits for Ammonia-Nitrogen and CBOD₅ Summer are necessary to meet in-stream water quality criterion. WQM 7.0 output files are provided in Attachment A.

The facility is receiving new, more restrictive limits for Ammonia-Nitrogen as well as CBOD₅ winter. The facility as currently operating should be able to meet the new, more restrictive limits.

The following limitations were determined through water quality modeling (output files attached):

Parameter	Limit (mg/l)	SBC	Model
Ammonia-Nitrogen			
(winter)	10.5	Average Monthly	WQM 7.0
Ammonia-Nitrogen			
(summer)	9.0	Average Monthly	WQM 7.0
CBOD₅ (winter)	24.0	Average Monthly	WQM 7.0

A "Reasonable Potential Analysis" (Toxic Management Spreadsheet Version 1.3) was conducted.

The following limitations were determined through water quality modeling:

Parameter	Limit (mg/l)	SBC	Model
Iron, Dissolved	1.399	Average Monthly	TMS Version 1.3
Iron, Total	Report	Average Monthly	TMS Version 1.3

Permit limits with 2/month sampling for dissolved iron, total iron, total aluminum, and total manganese were previously imposed on the facility due the facility discharging to the Kiskiminetas-Conemaugh River Watershed. The maximum value for the last two years of data was input into the TMS Spreadsheet. It was determined that a monitor and report requirement for total iron and limit for dissolved iron are necessary based on the maximum value reported. Using the Department's TOXCONC spreadsheet and the two years of sample data, an average monthly value and coefficient of variation were calculated for both dissolved iron and total iron. These values were then input into TMS Version 1.3.

Based on the average value, a monitor and report requirement is recommended for dissolved iron. The limit for total iron is sufficiently restrictive and frequent to justify not requiring additional sampling for dissolved iron.

Based on the average value, a monitor and report requirement is no longer recommended for total iron due to the TMS results.

The output files for TMS Version 1.3 and the Department's TOXCONC Spreadsheet are included in Attachment B.

Kiskiminetas-Conemaugh River Watershed TMDL

Section 303(d) of the Clean Water Act and the U.S. Environmental Protection Agency's Water Quality Planning and Management Regulations (codified at Title 40 of the Code of Federal Regulations Part 130) require states to develop a TMDL for impaired water bodies. A TMDL establishes the amount of a pollutant that a water body can assimilate without exceeding water quality criteria for the pollutant. TMDLs also provide a scientific bases for states to establish water quality-based controls for reducing pollution from both point and non-point sources in order to restore and maintain the quality of the state's water resources (USEPA 1991a). Stream reaches within the Kiskiminetas-Conemaugh River Watershed are included in the state's 2008 Section 303(d) because of various impairments including metals, pH, and sediment. A TMDL for this watershed was finalized on January 29, 2010 to address metals, pH, and sediment impairments associated with abandoned mine drainage discharge.

A Final TMDL for the Kiskiminetas-Conemaugh River Watershed ("Kiski-Conemaugh TMDL") was completed on January 29, 2010 for the control of acid mine drainage pollutants: aluminum, iron, manganese, sediment, and pH. In accordance with 40 CFR § 122.44(d)(1)(vii)(B), when developing WQBELs, the permitting authority shall ensure that effluent limits developed to protect a narrative water criterion, a numeric water quality criterion, or both, are consistent with the assumptions and requirements of any available wasteload allocation (WLA) for the discharge. The facility permit, PA0254223, is not listed in the Appendix G of the TMDL as the facility was built after the TMDL was finalized. Department policy states that if an existing discharge is to a receiving water with an approved TMDL, pollutants of concern that are limited under the TMDL have been detected in the discharge, and the TMDL does not assign a site-specific Waste Load Allocation, then the facility will be assigned water quality-based effluent limits that are equivalent to the most stringent water quality criteria. Because total iron, dissolved iron, total manganese, and total aluminum have all been detected in the facility's effluent, WQBELs will be imposed at Outfall 001. Only aluminum, total iron, dissolved iron, and manganese WQBELs will be imposed because the TMDL does not establish waste load allocations for sediment or pH. Instead, the TMDL assumes a surrogate approach where reduction to in-stream concentrations of aluminum, iron, and manganese will result in reduced exceedances for sediment and pH.

Under the TMDL, discharges of aluminum, iron, and manganese are allowed only to the extent that they will not cause or contribute to any violation of the water quality criteria. Therefore, the target concentrations published in the TMDL of 0.75 mg/L total recoverable aluminum, 1.5 mg/L total recoverable iron on a 30 day-average, 0.3 mg/L dissolved iron, and 1.0 mg/L total recoverable manganese were based on established water quality criteria. The methods used to implement water quality criteria are described in 25 Pa Code §§ 96.3 and 96.4. Additionally, Table 1 of the Department's *Water Quality Toxics Management Strategy* (Doc. No. 361-0100-003) addresses design conditions in detail, including the appropriate durations to assign to water quality criteria. The design duration for Criteria Maximum Concentration (CMC) criteria is 1 hour (acute). The design duration for Criteria Continuous Concentration (CCC) criteria is 4 days (chronic). The design duration for Threshold Human Health (THH) criteria is 30 days (chronic). The design duration for Cancer Risk Level (CRL) criteria is 70 years (chronic).

The 0.75 mg/L aluminum criterion in 25 Pa. Code § 93.8c is a CMC criterion with a duration of 1 hour. Therefore, 0.75 mg/L will be imposed as a maximum daily limit. There is no CCC criterion for aluminum which would necessitate a more restrictive monthly average limit. 0.75 mg/L will be imposed both as a maximum daily and average monthly limit.

The 1.5 mg/L iron criterion in 25 Pa. Code § 93.7(a). is expressed as a 30-day average. Therefore, 1.5 mg/L will be imposed as a monthly average limit. A maximum daily effluent limit of 3.0 mg/L was calculated by using a multiplier of two times the average monthly limit in accordance with the Department's Technical Guidance for the Development and Specification of Effluent Limitations and Other Permit Conditions in NPDES Permits (Doc. No. 362-0400-001, Chapter 3, pp. 15 – 16).

The 1.0 mg/L potable water supply criterion for manganese in 25 Pa. Code § 93.7(a). is a THH criterion with a duration of 30 days. Therefore, 1mg/L will be imposed as an average monthly limit. A maximum daily effluent limit of 2.0 mg/L was calculated using a multiplier of two times the average monthly limit consistent with the guidance sited above for total iron.

Mass loading limits will also be imposed for aluminum, total iron, dissolved iron, and manganese. Average monthly mass loading limits (lbs/day) are based on the formula: design flow (MGD) x concentration limit (mg/L) x conversion factor (8.34).

The mass loading limit for total iron is becoming more restrictive for total iron due to department rounding guidance. The facility as currently operating should be able to meet the new, more restrictive limit. Additionally, the daily maximum limit for total aluminum is becoming more restrictive because the maximum daily limit was incorrectly assigned during the last permit cycle. The facility as currently operating should be able to meet the new, more restrictive limit.

Parameter	Average Monthly (mg/l)	Maximum Daily (mg/L)	Average Monthly (Ibs/day)
Aluminum, Total	0.75	0.75	0.06
Iron, Total	1.5	3.0	0.10
Manganese, Total	1.0	2.0	0.08

Best Professional Judgment (BPJ) Limitations

A Dissolved Oxygen minimum limitation of 4.0 mg/L will be implemented based on the standard in 25 PA Code Chapter 93 and best professional judgement.

Anti-Backsliding

Section 402(o) of the Clean Water Act (CWA), enacted in the Water Quality Act of 1987, establishes anti-backsliding rules governing two situations. The first situation occurs when a permittee seeks to revise a Technology-Based effluent limitation based on BPJ to reflect a subsequently promulgated effluent guideline which is less stringent. The second situation addressed by Section 402(o) arises when a permittee seeks relaxation of an effluent limitation which is based upon a State treatment standard of water quality standard.

Previous limits can be used pursuant to EPA's anti-backsliding regulation 40 CFR 122.44 (I) Reissued permits. (1) Except as provided in paragraph (I)(2) of this section when a permit is renewed or reissued. Interim effluent limitations, standards or conditions must be at least as stringent as the final effluent limitations, standards, or conditions in the previous permit (unless the circumstances on which the previous permit was based have materially and substantially changed since the time the permit was issued and would constitute cause for permit modification or revocation and reissuance under §122.62). (2) In the case of effluent limitations established on the basis of Section 402(a)(1)(B) of the CWA, a permit may not be renewed, reissued, or modified on the basis of effluent guidelines promulgated under section 304(b) subsequent to the original issuance of such permit, to contain effluent limitations which are less stringent than the comparable effluent limitations in the previous permit.

NPDES Permit Fact Sheet Southside STP

Dissolved Iron

The 0.3 mg/L potable water supply dissolved iron criterion in 25 Pa. Code § 93.7(a) is a THH criterion with a duration of 30 days. Therefore, 0.3 mg/L was previously imposed as a monthly average limit. A maximum daily effluent limit of 0.6 mg/L was calculated by using a multiplier of two times the average monthly limit consistent with the guidance sited above for total iron.

The dissolved iron criteria for potable water supply must be met at the point of potable water withdrawal. The nearest potable water intake is Bethlehem Steel Johnstown PLT (PWSID 4110803) which is 12.4 miles downstream of Outfall 001 and located in the Quemahning Reservoir. Trib 45660 of Quemahning River connects to the Quemahning Reservoir via Quemahning Creek. Due to the distance between the water intake and assimilative capacity of the creek and reservoir into which Southside STP drains, the dissolved iron in the facility's effluent has a negligible effect on dissolved iron concentrations at the water supply intake.

While the Kiskiminetas-Conemaugh Watershed TMDL discusses dissolved iron, no dissolved iron wasteload allocations are identified in the TMDL.

Due to both the negligible impact of dissolved iron in regard to drinking water and the lack of dissolved iron wasteload allocations in the TMDL, there is not sufficient justification to impose a dissolved iron limitation. In accordance with 40 CFR 122.44.1.2.i.B.2, an exception can be made to antibacksliding if "the Administrator determines that... mistaken interpretations of law were made in issuing the permit." Because there is insufficient justification to impose dissolved iron limitations, and 40 CFR 122.44.1.2.i.B.2. justifies removing permit limits where a misinterpretation of the law resulted in a permit limit, a dissolved iron limitation will no longer be imposed.

Additional Considerations

Pursuant to EPA's approval of Pennsylvania's 2017 Triennial Review of Water Quality Standards and corresponding with regulatory changes published in the *Pennsylvania Bulletin* on July 11, 2020, sewage discharges will include monitoring, at a minimum for *E. coli*, in new and reissued permits, with a monitoring frequency of 1/year for design lows of 0.002 – 0.05 MGD.

For pH, Dissolved Oxygen (DO), and UV, a monitoring frequency of 1/day has been imposed. In general, less frequent monitoring may be established only when the permittee demonstrates that there will be no discharge on days where monitoring is not required.

Monitoring frequency for the proposed effluent limits are based upon Table 6-3, Self-Monitoring Requirements for Sewage Dischargers, from the Department's Technical Guidance for the *Development and Specification of Effluent Limitations*. The sampling frequency for toxic parameters is being changed from 2/month to 1/week.

Mass Loading

Mass loading limits are applicable for publicly owned treatment works. Current policy requires average monthly mass loading units be established for CBOD5, TSS, and Ammonia-Nitrogen. Average monthly Mass loading limits (lbs/day) are based on the formula: design flow (MGD x concentration limit (mg/L) x conversion factor (8.34).

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

			Effluent L	imitations			Monitoring Red	quirements
Parameter	Mass Units	(lbs/day) ⁽¹⁾		Concentrat	ions (mg/L)		Minimum ⁽²⁾	Required
Farameter	Average	Average		Average	Daily	Instant.	Measurement	Sample
	Monthly	Weekly	Minimum	Monthly	Maximum	Maximum	Frequency	Туре
		Report						
Flow (MGD)	Report	Daily Max	XXX	XXX	XXX	XXX	1/week	Measured
			6.0					
pH (S.U.)	XXX	XXX	Inst Min	XXX	XXX	9.0	1/day	Grab
			4.0					
DO	XXX	XXX	Inst Min	XXX	XXX	XXX	1/day	Grab
CBOD5								
Nov 1 - Apr 30	XXX	XXX	XXX	25.0	XXX	50.0	2/month	Grab
CBOD5								
May 1 - Oct 31	XXX	XXX	XXX	24.0	XXX	48.0	2/month	Grab
BOD5	_			_				
Raw Sewage Influent	Report	XXX	XXX	Report	XXX	Report	2/month	Grab
795	XXX	XXX	XXX	30.0	XXX	60.0	2/month	Grah
TSS				30.0		00.0	2/1101101	Olab
Raw Sewage Influent	Report	XXX	xxx	Report	XXX	Report	2/month	Grab
Fecal Coliform (No./100 ml)				2000				0.000
Oct 1 - Apr 30	XXX	XXX	XXX	Geo Mean	XXX	10000	2/month	Grab
Fecal Coliform (No./100 ml)				200				
May 1 - Sep 30	XXX	XXX	XXX	Geo Mean	XXX	1000	2/month	Grab
E. Coli (No./100 ml)	XXX	XXX	XXX	XXX	XXX	Report	1/year	Grab
UV Transmittance (%)	XXX	XXX	XXX	Report	Report	XXX	1/day	Measured

			Effluent L	imitations			Monitoring Red	quirements
Baramotor	Mass Units	(lbs/day) ⁽¹⁾		Concentrat	tions (mg/L)		Minimum ⁽²⁾	Required
Falameter	Average Monthly	Average Weekly	Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Total Nitrogen	xxx	XXX	XXX	XXX	Report	XXX	1/year	Grab
Ammonia Nov 1 - Apr 30	Report	XXX	xxx	10.5	XXX	21.0	2/month	Grab
Ammonia May 1 - Oct 31	Report	XXX	xxx	9.0	XXX	18.0	2/month	Grab
Total Phosphorus	XXX	XXX	XXX	XXX	Report	XXX	1/year	Grab
Total Aluminum	0.06	XXX	XXX	0.75	0.75	xxx	1/week	Grab
Total Iron	0.10	xxx	XXX	1.5	3.0	xxx	1/week	Grab
Total Manganese	0.08	XXX	XXX	1.0	2.0	XXX	1/week	Grab

Compliance Sampling Location: Outfall #001

Other Comments:

ATTACHMENT A

WQM 7.0 Modeling Results

Summer

	SWF Basi	o Strea n Coo	am Je	Stre	am Name		RMI	Elev: (f	ation t)	Drainage Area (sq mi)	Slop (ft/ft	e PV Withd t) (m	/S irawal gd)	Apply FC
	18E	45	860 Trib 48	660 to S	Fork Beave	rdam Cr	1.2	50 20	040.00	1.0	9 0.00	000	0.00	~
					St	ream Dat	a							
Design	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	<u>Tributary</u> 1p pH	ł	<u>Strear</u> Temp	n pH	
Cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C)		
27-10 21-10 230-10	0.052	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	8.00	0.80	2	0.00 7	7.00	0.00	0.00	
					Di	ischarge l	Data]	
			Name	Per	mit Number	Existing Disc r Flow (mgd)	Permitt Disc Flow (mgd	ed Desig Disc Flow) (mgd	n Res / Fa)	D erve Te ctor (*	isc emp °C)	Disc pH		
		South	nside STP	PA	02254223	0.010	0.000	0.00	00	0.000	20.00	7.00		
					Pa	arameter l	Data							
				Paramete	r Name	Di C	isc i onc (Trib S Conc	tream Conc	Fate Coef				
						(m	ig/L) (r	ng/L) (mg/L)	(1/days)				
			CBOD5			:	25.00	2.00	0.00	1.50				
			Dissolved	Oxygen			4.00	9.01	0.00	0.00				
			NH3-N			:	25.00	0.00	0.00	0.70				

Input Data WQM 7.0

Wednesday, January 12, 2022

Version 1.1

	SWF Basi	n Coo	am de	Stre	am Name		RMI	Eleva (ft)	tion Dr) (rainage Area (sq mi)	Slope (ft/ft)	PV Withd (m)	VS Irawal gd)	Apply FC
	18E	450	860 Trib 4	5660 to S	Fork Beave	rdam Cr	0.0	10 18	80.00	2.25	0.00000		0.00	\checkmark
					St	ream Da	ta							
Design	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	<u>Tri</u> Temp	i <u>butary</u> pH	Ten	<u>Strear</u> p	n pH	
cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C)		
Q7-10 Q1-10 Q30-10	0.052	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	8.00	0.80	20.0	0 7.0	0	0.00	0.00	
			Name	Per	Di mit Numbe	ischarge Existing Disc r Flow (mgd)	Data Permitt Disc Flow (mgd)	ed Design Disc Flow) (mgd)	Reserv Facto	Disc ve Tem vr (°C)	p p p p	isc H		
					Pa	0.000 arameter	0 0.000 Data	000.00	0.0	00 28	5.00	7.00		
				Paramete	r Name	D	isc 1 Conc C	Trib St Conc C	ream Conc	Fate Coef				
			00005			(п	ng/L) (r	ng/L) (n	ng/L) (1	l/days)				
			Dissolved	Oxygen			3.00	8.24	0.00	0.00				

25.00

0.00

0.00

0.70

Input Data WQM 7.0

NH3-N

Version 1.1

Page 2 of 2

	<u>sw</u>	P Basin 18E	<u>Strea</u> 4	m <u>Code</u> 5660		Tr	ib 45660	<u>Stream</u> to S Fo	<u>Name</u> rk Beaver	dam Cr		
RMI	Stream Flow (cfs)	PWS With (cfs)	Net Stream Flow (cfs)	Disc Analysis Flow (cfs)	Reach Slope (ft/ft)	Depth (ft)	Width (ft)	W/D Ratio	Velocity (fps)	Reach Trav Time (days)	Analysis Temp (°C)	Analysis pH
Q7-1(0 Flow											
1.250	0.06	0.00	0.06	.0155	0.02444	.8	8	10	0.01	6.732	20.00	7.00
Q1-1(0 Flow											
1.250	0.04	0.00	0.04	.0155	0.02444	NA	NA	NA	0.01	9.385	20.00	7.00
Q30-'	10 Flow	,										
1.250	0.08	0.00	0.08	.0155	0.02444	NA	NA	NA	0.01	5.248	20.00	7.00

WQM 7.0 Hydrodynamic Outputs

Version 1.1

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	✓
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	✓
D.O. Saturation	90.00%	Use Balanced Technology	~
D.O. Goal	6		

Version 1.1

	18E	4	5660	1	<u></u>	S Fork Beav	erdam Cr	
IH3-N	Acute Alloo	cation	s					
RMI	Discharge	Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
1.2	50 Southside S	TP	16.76	50	16.76	50	0	0
1.2 IH3-N RMI	50 Southside S Chronic All Discharge N	iTP locati Name	16.76 O NS Baseline Criterion (mg/L)	50 Baseline WLA (mg/L)	16.76 Multiple Criterion (mg/L)	50 Multiple WLA (mg/L)	0 Critical Reach	0 Percent Reduction

23.82

23.82

(mg/L) (mg/L) (mg/L) (mg/L) (mg/L)

8.88

4

8.88

4

0

0

Wednesday, January 12, 2022

1.25 Southside STP

Version 1.1

SWP Basin	Stream Code			Stream Name	
18E	45660		Trib 45660	rdam Cr	
RMI	Total Discharge	Flow (mgd) <u>Anal</u>	ysis Temperature ((°C) Analysis pH
1.250	0.01	0		20.000	7.000
Reach Width (ft)	Reach De	pth (ft)		Reach WDRatio	Reach Velocity (fps)
8.000	0.80	0		10.000	0.011
Reach CBOD5 (mg/L)	Reach Kc	(1/days)	R	each NH3-N (mg/L	.) Reach Kn (1/days)
6.68	0.17	9		1.91	0.700
Reach DO (mg/L)	Reach Kr (Reach Kr (1/days) 1.622		Kr Equation	Reach DO Goal (mg/L)
7.934	1.62	2		Owens	6
Reach Travel Time (day	5)	Subreach	Results		
6.732	TravTime (days)	Subreach TravTime CBOD5 (days) (mg/L)		D.O. (mg/L)	
	0.673	5.92	1.19	6.15	
	1.346	5.25	0.74	6.35	
	2.020	4.65	0.46	6.93	
	2.693	4.13	0.29	7.47	
	3.366	3.66	0.18	7.88	
	4.039	3.24	0.11	8.17	
	4.712	2.87	0.07	8.24	
	5.386	5.386 2.55		8.24	
	6.059	2.26	0.03	8.24	
	6.732	2.00	0.02	8.24	

WQM 7.0 D.O.Simulation

Version 1.1

	SWP Basin S	<u>e</u>									
	18E	45660	Trib 45660 to S Fork Beaverdam Cr								
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)				
1.250	Southside STF	PA02254223	0.010	CBOD5	23.82						
				NH3-N	8.88	17.76					
				Dissolved Oxygen			4				

WQM 7.0 Effluent Limits

Wednesday, January 12, 2022

Version 1.1

Winter

	SWF Basi	o Strea n Coo	im le	Str	eam Name		RMI	Elev (f	ation t)	Drainage Area (sq mi)	Slop (ft/ft	e PV Withd	VS irawal gd)	Apply FC
	18E	456	360 Trib 45	5660 to S	Fork Beave	rdam Cr	1.2	50 2	040.00	1.0	9 0.00	000	0.00	\checkmark
					St	ream Dat	a							
Design	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	<u>Tributary</u> Ip pH	I .	<u>Strear</u> Temp	n pH	
cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C)		
Q7-10 Q1-10 Q30-10	0.052	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	8.00	0.80	2	0.00 7	.00	0.00	0.00	
					Di	ischarge l	Data]	
			Name	Per	mit Number	Existing Disc r Flow (mgd)	Permitt Disc Flow (mgd	ed Desig Disc Flow) (mgd	n Res / Fa	D erve Te ctor (°	isc emp °C)	Disc pH		
		South	nside STP	PA	02254223	0.010	0.00	00 0.00	00	0.000	20.00	7.00		
					Pa	arameter l	Data							
				Paramete	r Name	Di C	isc onc (Trib S Conc	tream Conc	Fate Coef				
			CRODS			(III)	1gr∟) (i 25.00	10/L) ((mg/L)	(1/days)				
			Dissolved	Oxygen			4 00	12.50	0.00	0.00				
			NH3-N	, g		:	25.00	0.00	0.00	0.70				

Input Data WQM 7.0

Wednesday, January 12, 2022

Version 1.1

	SWF Basi	o Strea n Cod	m le	Stream Name			RMI EI		ation t)	Drainage Area (sq mi)	Slope (ft/ft)	PW Withd (mg	/S rawal gd)	Apply FC
	18E	456	360 Trib 45	660 to S	Fork Beave	rdam Cr	0.01	10 18	880.00	2.25	0.0000	0	0.00	\checkmark
					St	ream Dat	a							
Design	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	<u>Tributary</u> p pH	Te	<u>Strean</u> Imp	pH	
cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(*	°C)		
Q7-10 Q1-10 Q30-10	0.052	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	8.00	0.80	20).00 7.1	00	0.00	0.00	
					Di	ischarge l	Data]	
			Name	Per	mit Numbe	Existing Disc r Flow (mgd)	Permitt Disc Flow (mgd)	ed Desigr Disc Flow) (mgd	n Rese / Fac)	Dis erve Ten stor (°C	np ()	Disc pH		
						0.000	0.000	00.00	00 0	.000 2	25.00	7.00		
					Pa	arameter l	Data							
			,	Paramete	Name	Di C	isc 1 onc C	Trib S Conc (tream Conc	Fate Coef				
				circumete.		(m	ig/L) (n	ng/L) (mg/L)	(1/days)				
			CBOD5				25.00	2.00	0.00	1.50				
			Dissolved Oxygen				3.00	8.24	0.00	0.00				
			NH3-N				25.00	0.00	0.00	0.70				

Input Data WQM 7.0

Wednesday, January 12, 2022

Version 1.1

Page 2 of 2

	SW	P Basin	Strea	m Code										
		18E	4	5660		Tr	ib 45660	to S Fo	rk Beaver	dam Cr				
RMI	Stream Flow	PWS With	Net Stream	Disc Analysis Flow	Reach Slope	Depth	Width	W/D Ratio	Velocity	Reach Trav Time	Analysis Temp	Analysis pH		
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)			
Q7-1	0 Flow													
1.250	0.06	0.00	0.06	.0155	0.02444	.8	8	10	0.01	6.732	20.00	7.00		
Q1-1	0 Flow													
1.250	0.04	0.00	0.04	.0155	0.02444	NA	NA	NA	0.01	9.385	20.00	7.00		
Q30-'	10 Flow	<i>i</i>												
1.250	0.08	0.00	0.08	.0155	0.02444	NA	NA	NA	0.01	5.248	20.00	7.00		

WQM 7.0 Hydrodynamic Outputs

Wednesday, January 12, 2022

Version 1.1

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	~
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	~
D.O. Saturation	90.00%	Use Balanced Technology	~
D.O. Goal	6		

Version 1.1

	SWP Basin	Stream Code	Stream Name									
	18E	45660		Trib 45660 to	S Fork Beav	erdam Cr						
NH3-N	Acute Allocat	ions										
RMI	Discharge Na	Baseline me Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction					
1.25	50 Southside STP	16.76	50	16.76	50	0	0					
NH3-N	Chronic Alloc	ations										
RMI	Discharge Nan	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction					
		4.00		4.00	44.07							

Dissolved Oxygen Allocations

		CBC	DD5	NH	3-N	Dissolved	d Oxygen	Critical	Percent Reduction	
RMI	Discharge Name	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Reach		
1.25	Southside STP	25	25	10.3	10.3	4	4	0	0	

Wednesday, January 12, 2022

Version 1.1

<u>SWP Basin</u> 18E	tream Code 45660		Trib 4566	<u>Stream Nam</u> 0 to S Fork Be	Cr	
<u>RMI</u>	Total Discharge	Flow (mgd	l) <u>Ana</u> l	lysis Temperat	ure (°C)	Analysis pH
Reach Width (ft)	Reach De	oth (ft)		Reach WDRs	tio	Reach Velocity (fns)
8 000	0.80	0		10 000		0.011
Reach CBOD5 (mg/L)	Reach Kc ((1/days)	R	each NH3-N (r	ng/L)	Reach Kn (1/days)
6.94	0.18	5	_	2.21		0.700
Reach DO (mg/L)	Reach Kr (1/days)		Kr Equation	1	Reach DO Goal (mg/L)
10.683	1.62	2		Owens		6
Reach Travel Time (days) 6.732	1.622 Subreach R TravTime CBOD5 N (days) (mg/L) (r		NH3-N (mg/L)	D.O. (mg/L)		
	1 248	5.41	0.96	6.21		
	2.020	4.78	0.54	6.77		
	2.693	4.22	0.34	7.31		
	3.366	3.73	0.21	7.76		
	4.039	3.29	0.13	8.09		
	4.712	2.90	0.08	8.24		
	5.386	2.56	0.05	8.24		
	6.059	2.26	0.03	8.24		
	6.732	2.00	0.02	8.24		

WQM 7.0 D.O.Simulation

Wednesday, January 12, 2022

Version 1.1

	SWP Basin	Stream Code	Stream Name									
	18E	45660	Tril									
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)					
1.250	Southside ST	P PA02254223	0.010	CBOD5	25							
				NH3-N	10.3	20.6						
				Dissolved Oxygen			4					

WQM 7.0 Effluent Limits

Wednesday, January 12, 2022

Version 1.1

ATTACHMENT B

TMS Version 1.3 and TOXCONC Results

TMS Output File

Toxics Management Spreadsheet Version 1.3, March 2021

Discharge Information

Instructions Discharge Stream NPDES Permit No.: PA0254223 Outfall No.: 001 Facility: Southside STP Major Sewage / Industrial Waste Evaluation Type: Wastewater Description: Treated Effluent **Discharge Characteristics** Partial Mix Factors (PMFs) Complete Mix Times (min) Design Flow Hardness (mg/l)* pH (SU)* (MGD)⁴ AFC CFC THH CRL Q7-10 Q, 0.01 100 0 if left blank 0 lf left blank 0.5 If left blank 1 li left blank Max Discharge Trib Stream Daily Hourly Strea Fate Criteri Chem Discharge Pollutant FOS Units Conc Conc Conc CV CV m CV Coeff a Mod Transl Total Dissolved Solids (PWS) mg/L Chloride (PWS) mg/L loup Bromide mg/L Sulfate (PWS) mg/L σ Fluoride (PWS) mg/L Total Aluminum µg/L 100 Total Antimony µg/L Total Arsenic µg/L Total Barium µg/L Total Beryllium µg/L Total Boron µg/L Total Cadmium µg/L Total Chromium (III) µg/L Hexavalent Chromium µg/L Total Cobalt µg/L Total Copper µg/L 2 Free Cyanide µg/L Group Total Cyanide µg/L Dissolved Iron 480 µg/L Total Iron µg/L 540 Total Lead µg/L Total Manganese µg/L 30 Total Mercury µg/L µg/L Total Nickel Total Phenols (Phenolics) (PWS) µg/L Total Selenium µg/L Total Silver µg/L Total Thallium µg/L Total Zinc µg/L Total Molybdenum µg/L Acrolein µg/L e Acrylamide µg/L < Acrylonitrile µg/L < Benzene < µg/L Bromoform < µg/L

Discharge Information

5/10/2022

1	Carbon Tetrachloride	µg/L	<						
	Chlorobenzene	ua/L							
	Chlorodibromomethane	ua/L	<						
	Chlorpethane	ug/	<			 			
	2-Chloroethyl Vinyl Ether	ug/	2			 			
	2-Chloroferry Villyr Ealer	Pg/L			+	 			
	Chiorotorm	µg/L	<		-	 			
	Dichlorobromomethane	µg/L	<			 			
	1,1-Dichloroethane	µg/L	<						
3	1,2-Dichloroethane	µg/L	<						
e	1,1-Dichloroethylene	µg/L	<						
ē	1,2-Dichloropropane	µg/L	<						
C	1.3-Dichloropropylene	ua/L	<			 			
	1 4-Dioxane	ug/l	<			 			
	Ethylhonzono	ug/	-			 			
	Mathud Reserved	ug/L			+	 			
	Methyl Bromide	µg/L			+	 			
	Methyl Chloride	µg/L	<	 Ļ	-	 			
	Methylene Chloride	µg/L	<						
	1,1,2,2-Tetrachloroethane	µg/L	<						
	Tetrachloroethylene	µg/L	<		_				
	Toluene	µg/L	<						
	1.2-trans-Dichloroethylene	ua/L	<						
	1.1.1.Trichlomethane	un/	<			 			
	1.1.2.Trichlorosthano	ug/			+	 			
	Trickless that as a	Pg/L			+	 			
	Inchioroethylene	µg/L	<		-	 			
\vdash	Vinyi Chloride	µg/L	<		_	 			
	2-Chlorophenol	µg/L	<						
	2,4-Dichlorophenol	µg/L	<						
	2,4-Dimethylphenol	µg/L	<						
	4,6-Dinitro-o-Cresol	µg/L	<						
4	2.4-Dinitrophenol	ua/L	<						
8	2-Nitrophenol	uo/	<			 			
2	4 Nitrophenel	100			+	 			
0	- Oblem en Orneal	Pg/L			-	 			
	p-Unioro-m-Uresoi	µg/L	<		_	 			
	Pentachlorophenol	µg/L	<		_	 			
	Phenol	µg/L	<						
	2,4,6-Trichlorophenol	µg/L	<						
	Acenaphthene	µg/L	<						
	Acenaphthylene	µg/L	<						
	Anthracene	µa/L	<						
	Benzidine	ug/l	<			 			
	Benzo(a)Anthracene	ug/	<			 			
	Benzo(a)Purene	ug/	2		+	 			
	2 A Dependence there	pg/L			+	 			
	3,4-Benzonuorantnene	µg/L	<			 			
	Benzo(ghi)Perylene	µg/L	<			 			
	Benzo(k)Fluoranthene	µg/L	<						
	Bis(2-Chloroethoxy)Methane	µg/L	<						
1	Bis(2-Chloroethyl)Ether	µg/L	<						
	Bis(2-Chloroisopropyl)Ether	µg/L	<						
	Bis(2-Ethylhexyl)Phthalate	ua/L	<						
	4-Bromophenyl Phenyl Ether	ug/	<		-	 			
	Rubid Bonzid Phthalato	ugl	2		+	 			
	2 Chlorenzehthalage	Pg/L			+	 			
	2-Chioronaphthaiene	µg/L			-	 			
	4-Chlorophenyl Phenyl Ether	µg/L	<			 			
1	Chrysene	µg/L	<						
1	Dibenzo(a,h)Anthrancene	µg/L	<	Î					
	1,2-Dichlorobenzene	µg/L	<						
1	1,3-Dichlorobenzene	µg/L	<						
	1,4-Dichlorobenzene	µg/L	<	Î					
b	3.3-Dichlorobenzidine	ug/l	<		+				
8	Diethyl Phthalate	uo/	<						
ت ق	Dimethyl Phthalate	ucl	-		+				
1	Dia Budd Dhthalate	Pg/L			+				
1	on District Interaction	µg/L	-		-				
1	2,4-Dinitrotoluene	µg/L	<	L I					

Discharge Information

5/10/2022

	2,6-Dinitrotoluene	µg/L	<							
	Di-n-Octvl Phthalate	ua/L	<							
	1.2-Diphenylhydrazine	ug/L	<		-	<u> </u>				
	Fluoranthene	uo/	<			<u> </u>				
	Fluorene	ug/L	<			<u> </u>				
	Hevachlorobenzene	ug/L	-		-		<u> </u>			
	Hexachlorobutadiana	pg/L	-		<u> </u>					
	Hexachiorobutaciene	pg/L	_							
	Hexachiorocyclopentaclene	µg/L	<	 						
	Hexachloroethane	µg/L	<		<u> </u>	<u> </u>				
	Indeno(1,2,3-cd)Pyrene	µg/L	<		<u> </u>	<u> </u>				
	Isophorone	µg/L	<		-					
	Naphthalene	µg/L	<							
	Nitrobenzene	µg/L	<							
	n-Nitrosodimethylamine	µg/L	<							
	n-Nitrosodi-n-Propylamine	µg/L	۷							
	n-Nitrosodiphenylamine	µg/L	<							
	Phenanthrene	µg/L	<							
	Pyrene	µg/L	<							
	1.2.4-Trichlorobenzene	ua/L	<							
_	Aldrin	ug/l	<		-	<u> </u>				
	alpha-BHC	ug/L	<			<u> </u>				
	hata BHC	ug/L	~			<u> </u>				
	anno RUC	ug/L	-			<u> </u>	<u> </u>			
	gamma-bho	pg/L	-		-					
	Oelta BHC	µg/L	<		-					
	Chlordane	µg/L	<			<u> </u>				
	4,4-DDT	µg/L	<							
	4,4-DDE	µg/L	<							
	4,4-DDD	µg/L	<							
	Dieldrin	µg/L	<							
	alpha-Endosulfan	µg/L	۷		-					
	beta-Endosulfan	µg/L	۷							
90	Endosulfan Sulfate	µg/L	<							
1	Endrin	µg/L	<		-					
ž	Endrin Aldehvde	ug/L	<			<u> </u>				
~	Heptachlor	ua/L	<			<u> </u>				
	Hentachlor Enovide	und	<			<u> </u>				
	PCB-1016	100/L	<			<u> </u>	<u> </u>			
	PCB 1221	ug/L			<u> </u>					
	POB-1221	µg/L	\rightarrow				<u> </u>			
	P08-1232	µg/L	<		-					
	P0B-1242	µg/L	<				<u> </u>			
	PCB-1248	µg/L	<	 Ì		<u> </u>				
	PCB-1254	µg/L	<							
	PCB-1260	µg/L	<							
	PCBs, Total	µg/L	<							
	Toxaphene	µg/L	<							
	2,3,7,8-TCDD	ng/L	۷							
	Gross Alpha	pCi/L								
~	Total Beta	pCi/L	<							
₽.	Radium 226/228	pCi/L	<							
ē	Total Strontium	ua/L	<			<u> </u>				
ō	Total Uranium	ug/L	<			<u> </u>				
	Osmotic Pressure	mOs/ka			-	<u> </u>				
_						<u> </u>				
					<u> </u>		<u> </u>			
					-					

Discharge Information

5/10/2022

Toxics Management Spreadsheet Version 1.3, March 2021

Stream / Surface Water Information

Southside STP, NPDES Permit No. PA0254223, Outfall 001

Instructions Discharge Stream

Receiving Surface Water Name: UNT Quemahoning Creek

No. Reaches to Model: 1

- Statewide Criteria
 Great Lakes Criteria
- ORSANCO Criteria

Location	Stream Code*	RMI*	Elevation (ft)*	DA (mi ²)*	Slope (ft/ft)	PWS Withdrawal (MGD)	Apply Fish Criteria*
Point of Discharge	045660	1.25	2040	1.09	0.0155		Yes
End of Reach 1	045660	0.01	1880	2.25			Yes

Q 7-10

Location PMI L		LFY	Flow (cfs)		W/D	Width Depth Velocit		Time	Tributary		Stream		Analysis			
Location	T SIVII	(cfs/mi ²)*	Stream	Tributary	Ratio	(ft)	(ft)	y (fps)	(days)	Han	dness	pН	Hardness*	pH*	Hardness	pН
Point of Discharge	1.25	0.052			_	8	0.8	0.01		Î			100	7		
End of Reach 1	0.01	0.052														

 Q_h

Location	DMI	LFY	Flow	(cfs)	W/D	Width	Depth	Velocit	Time	Tribut	ary	Strea	m	Analys	sis
Location	T NIVII	(cfs/mi ²)	Stream	Tributary	Ratio	(ft)	(ft)	y (fps)	(days)	Hardness	pH	Hardness	pН	Hardness	pН
Point of Discharge	1.25														
End of Reach 1	0.01		-									-			

Stream / Surface Water Information

5/10/2022

DEPARTMENT OF ENVIRON PROTECTION	a Mental							т	oxics Management Spreadsheet Version 1.3, March 2021
Model Results						South	nside STP, NPDE	S Permit No. P	PA0254223, Outfall 001
Instructions Results	RETURN TO	INPUTS	SAVE AS P	PDF	PRINT	r) ® A	ll 🔿 Inputs	Results	○ Limits
Hydrodynamics									
✓ Wasteload Allocations									
AFC	CCT (min): 0.608	PMF:	1	Anal	ysis Hardne	ss (mg/l):	100	Analysis pH:	7.00
Pollutants	Conc Str	ream Trib Conc CV (µɑ/L)	Fate Coef	WQC (µa/L)	WQ Obj (µa/L)	WLA (µg/L)		Co	omments
Total Aluminum	0	0	0	750	750	3,498			
Dissolved Iron	0	0	0	N/A	N/A	N/A			
Total Iron	0	0	0	N/A	N/A	N/A			
Total Manganese	0	0	0	N/A	N/A	N/A			
CFC	CCT (min): 0.608	PMF:	1	Ana	lysis Hardne	ess (mg/l):	100	Analysis pH:	7.00
Pollutants	Conc Str (un/l.)	ream Trib Conc CV (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)		Co	omments
Total Aluminum	0	0	0	N/A	N/A	N/A			
Dissolved Iron	0	0	0	N/A	N/A	N/A			
I otal Iron	0	0	0	1,500	1,500	6,996		WQC = 30 da	y average; PMF = 1
THH	CCT (min): 0.608] PMF: [1	N/A Ana	lysis Hardne	N/A ss (mg/l):	N/A	Analysis pH:	N/A
Pollutants	Conc Str	ream Trib Conc CV (μg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)		Co	omments
Total Aluminum	0	0	0	N/A	N/A	N/A			
Dissolved Iron	0	0	0	300	300	1,399			
Total Iron	0	0	0	N/A	N/A	N/A			
Total Manganese	0	0	0	1,000	1,000	4,664			
CRL	CCT (min): 0.226	PMF:	1	Ana	lysis Hardne	ss (mg/l):	N/A	Analysis pH:	N/A

Model Results

5/10/2022

Pollutants	Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Aluminum	0	0		0	N/A	N/A	N/A	
Dissolved Iron	0	0		0	N/A	N/A	N/A	
Total Iron	0	0		0	N/A	N/A	N/A	
Total Manganese	0	0		0	N/A	N/A	N/A	

Recommended WQBELs & Monitoring Requirements

No. Samples/Month: 4

	Mass	Limits	Concentration Limits						
Pollutants	AML (lbs/day)	MDL (lbs/day)	AML	MDL	IMAX	Units	Governing WQBEL	WQBEL Basis	Comments
Dissolved Iron	Report	Report	Report	Report	Report	µg/L	1,399	THH	Discharge Conc > 10% WQBEL (no RP)

Other Pollutants without Limits or Monitoring

The following pollutants do not require effluent limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharge concentration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QL).

Pollutants	Governing WQBEL	Units	Comments
Total Aluminum	2,242	µg/L	Discharge Conc ≤ 10% WQBEL
Total Iron	6,996	µg/L	Discharge Conc ≤ 10% WQBEL
Total Manganese	4,664	µg/L	Discharge Conc ≤ 10% WQBEL

Model Results

5/10/2022

Total Iron TOXCONC Outputs

	raciny. NPDES #: Outfall No: n (Samples/Month): Reviewer/Permit Engineer:	PA0254223 001 4 Conrad						
Parameter Name	Total Iron		_					
Units	mg/L		_					
Detection Limit	0.05		_					
Sample Date	When entering values below ti	te detection limit, enter "ND" or use the < notation (eg. <0.02)	-					
01/14/20	0.54		_					
01/30/20	0.08							
02/20/20	0.53							
03/04/20	0.41							
03/16/20	0.26		_					
04/01/20	0.11		_					
04/15/20	0.05		_					
04/30/20	0.52		_					
05/15/20	0.1		_					
06/01/20	0.12		_					
06/22/20	0.15		_					
07/14/20	0.05		-					
08/06/20	<0.05		-					
08/19/20	<0.05		-					
09/04/20	<0.05		-					
09/24/20	0.06		-					
10/02/20	<0.05		_					
10/19/20	<0.05		-					
10/30/20	0.05		-					
11/16/20	0.06		_					
11/30/20	<0.05		_					
12/18/20	<0.05							
12/31/20	0.08							
01/05/21	0.9		_					
01/20/21	0.18		_					
02/01/21	0.15		_					
02/25/21	<0.05		_					
03/04/21	0.13		_					
03/17/21	0.1		_					
04/13/21	<0.05		_					
04/20/21	<0.05		_					
05/05/21	<0.05		_					
08/09/21	<0.05		_					
08/24/21	<0.05		_					
07/07/21	<0.05		-					
07/27/21	<0.05		-					
08/03/21	<0.05		-					
08/16/21	<0.05		_					
09/14/21	<0.05		-					
09/21/21	0.06		_					
10/07/21	<0.05		_					
10/27/21	<0.05							
11/08/21	<0.05							
11/29/21	<0.05							
12/07/21	0.05		_					
12/20/21	<0.05							

		Reviewer/Permit Engineer:	Conrad
Facility:	Southside STP	-	
NPDES #:	PA0254223		
Outfall No:	001		
n (Samples/Month):	4		
Parameter	Distribution Applied	Coefficient of Variation (daily)	Avg. Monthly
Total Iron (mg/L)	Delta-Lognormal	1.2742861	0.3355025

Dissolved Iron TOXCONC Outputs

NPDES Permit Fact Sheet Southside STP

.

	Facility: NPDES #: Outfall No: n (Samples/Month): Reviewer/Permit Engineer:	Southside STP PA0254223 001 4 Conrad
Parameter Name	Dissolved Iron	
Units	mg/L	
Detection Limit	0.05	
Sample Date	When entering values below to	he detection limit, enter "ND" or use the < notation (eg. <0.02)
01/14/22	0.48	
01/30/20	0.07	
02/20/20	0.48	
03/04/20	0.36	
03/16/20	0.3	
04/01/20	0.15	
04/15/20	<0.05	
04/30/20	0.26	
05/15/20	0.08	
06/01/20	0.08	
06/10/20	0.11	
06/23/20	0.12	
0//14/20	<0.05	
08/06/20	<0.05	
08/18/20	<0.05	
09/04/20	<0.05	
10/02/20	<0.05	
10/02/20	<0.05	
10/18/20	<0.05	
11/18/20	<0.05	
11/30/20	0.05	
12/18/20	<0.05	
12/31/20	<0.05	
01/05/21	0.71	
01/20/21	0.17	
02/01/21	0.12	
02/25/21	<0.05	
03/04/21	0.07	
03/17/21	0.07	
04/13/21	<0.05	
04/26/21	<0.05	
05/05/21	<0.05	
05/18/21	<0.05	
06/08/21	<0.05	
06/24/21	<0.05	
07/07/21	<0.05	
07/27/21	<0.05	
08/03/21	<0.05	
08/16/21	<0.05	
09/14/21	<0.05	
09/21/21	<0.05	
10/07/21	<0.05	
10/27/21	<0.05	
11/08/21	<0.05	
11/29/21	<0.05	
12/07/21	<0.05	
12/20/21	<0.05	
1		

		Reviewer/Permit Engineer:	Conrad
Facility:	Southside STP	-	
NPDES #:	PA0254223		
Outfall No:	001		
n (Samples/Month):	4		
, , , ,			
Parameter	Distribution Applied	Coefficient of Variation (daily)	Avg. Monthly
Dissolved Iron (mg/L)	Delta-Lognormal	1.3377142	0.3038971

TMS Output Using TOXCONC Outputs

Toxics Management Spreadsheet Version 1.3, March 2021

Discharge Information

Instructions Di	scharge Stream				
Facility: Sout	hside STP		NPDES Permit No.:	PA0254223	Outfall No.: 001
Evaluation Type:	Major Sewage / Inc	ustrial Waste	Wastewater Descripti	on: Treated Effluent	

	Discharge Characteristics												
Design Flow Hardness (mo/l)* pH (SU)* Partial Mix Factors (PMFs) Complete Mix Times (min)													
(MGD)*	Haroness (mg/l)*	рн (50)-	AFC	CFC	THH	CRL	Q ₇₋₁₀	Qh					
0.01	100	7											

						0 11 1	left	blank	0.5 If le	eft blank	0	if left blan	k	1 li lei	t blank
	Discharge Pollutant	Units	Ma	x Discharge Conc	T Co	rib onc	;	Stream Conc	Daily CV	Hourly CV	Strea m CV	Fate Coeff	FOS	Criteri a Mod	Chem Transl
	Total Dissolved Solids (PWS)	mg/L				+	-								
5	Chloride (PWS)	mg/L				F	Η								
l ă	Bromide	mg/L													
5	Sulfate (PWS)	mg/L													
	Fluoride (PWS)	mg/L				F	Η								
	Total Aluminum	µg/L		100		ī									
	Total Antimony	µg/L													
	Total Arsenic	µg/L													
	Total Barium	µg/L				F	Π								
	Total Beryllium	µg/L													
	Total Boron	µg/L													
	Total Cadmium	µg/L				R	Η								
	Total Chromium (III)	µg/L													
	Hexavalent Chromium	µg/L													
	Total Cobalt	µg/L				H	Η								
	Total Copper	µg/L				ī									
03	Free Cyanide	µg/L													
l no	Total Cyanide	µg/L					-								
5	Dissolved Iron	µg/L		303		F			1.3377						
	Total Iron	µg/L		336					1.2743						
	Total Lead	µg/L					-								
	Total Manganese	µg/L		30											
	Total Mercury	µg/L					Ī								
	Total Nickel	µg/L													
	Total Phenols (Phenolics) (PWS)	µg/L													
	Total Selenium	µg/L				T									
	Total Silver	µg/L													
	Total Thallium	µg/L					-								
	Total Zinc	µg/L				П									
	Total Molybdenum	µg/L													
	Acrolein	µg/L	<												
	Acrylamide	µg/L	<				-								
	Acrylonitrile	µg/L	<												
	Benzene	µg/L	<												
	Bromoform	µg/L	<				H								

Discharge Information

				 		_	 	 	 	 	_	_
	Carbon Tetrachloride	µg/L	<	Ĺ							Í.	Î
	Chlorobenzene	µg/L										I
	Chlorodibromomethane	µg/L	<									Į
	Chloroethane	ug/l	<	Ħ	-	H					Ŧ	ŧ
	2-Chloroethyl Vinyl Ether	- ug/l	6	╞┼╴	+	H				╞┼┼	+	t
	2-Chlordenyr Vinyr Earer	Pgrt		 ┝┼	+	-				 ┝─┼─	÷	÷
	Chiorotorm	µg/L	<	 Ħ	+	Η.				╞╞╞	+	4
	Dichlorobromomethane	µg/L	<	Ľ							÷	î
	1,1-Dichloroethane	µg/L	<								T	Î
0	1,2-Dichloroethane	µg/L	<									I
₽.	1,1-Dichloroethylene	µg/L	<								Ŧ	ţ
5	1.2-Dichloropropage	ug/l	<	Þ	-						Ŧ	ŧ
σ	1.2 Dichloropropulane	ug/l		Ħ	+	H				╞┼═	+	t
	1,3-Dichloropropylene	Pg/L		 ┝┼	+	-				 ┝─┼─	÷	÷
	1,4-Dioxane	µg/L	<u> </u>	 Ħ	+	Η.					÷	÷
	Ethylbenzene	µg/L	<	Ĺ	İ					i i	Ŧ	Î
	Methyl Bromide	µg/L	<								T	Î
	Methyl Chloride	µg/L	<	Ľŀ-		Ц.						Ļ
	Methylene Chloride	µg/L	<								Ŧ	ţ
	1 1 2 2-Tetrachloroethane	uo/l	<	Ħ	+	H					Ŧ	Ŧ
	Tetrachloroethylene	10/	2	 Ħ	+	H				╞┼╴┼	+	t
1	Toluono	P8/L		Ħ	-	H					÷	ŧ
1	rouelle	µg/L	~	F	÷	H					Ŧ	f
1	1,2-trans-Dichloroethylene	µg/L	<								T	ļ
1	1,1,1-Trichloroethane	µg/L	<									Ĺ
1	1,1,2-Trichloroethane	µg/L	<									ļ
	Trichloroethylene	µg/L	<	F-		H						ł
	Vinyl Chloride	µg/L	<	Ħ	-	H					Ŧ	Ŧ
	2-Chlorophenol	ug/l	<	h	Ť						Ť	î
	2 4-Dichlorophenol	ug/l	<	 Ħ	Ŧ	1					Ŧ	f
	2.4 Disselfudebased	1991									÷	t
	2,4-Dimetryphenol	µg/L	<	 ⊨⊧	+	4					┿	÷
-	4,6-Dinitro-o-Cresol	µg/L	<	 \vdash	_	4					┿	Ļ
a	2,4-Dinitrophenol	µg/L	<	⊨	+	4					+	ł
8	2-Nitrophenol	µg/L	<	\vdash	-							ł
6	4-Nitrophenol	µg/L	<	Fi	T	iΠ.					1	î
	p-Chloro-m-Cresol	µg/L	<									I
	Pentachlorophenol	uo/L	<								t	ţ
	Phenol	uo/l	<	Ħ	-	H					÷	ŧ
	2.4.6 Trichlorophenol	1975 110/	2	┢┼╴	+-	H				╟─┼─	┿	t
⊢	2,4,0- monorophenor	Part		 Ħ	╞	+				╞┼╤	÷	÷
	Acenaphtnene	µg/L	< <u>_</u>	 Ħ	÷	Η.					÷	Ť
	Acenaphthylene	µg/L	<								Ļ	Į
	Anthracene	µg/L	<	\square							4	4
	Benzidine	µg/L	<		_	-						ł
	Benzo(a)Anthracene	µg/L	<	\vdash								ł
	Benzo(a)Pyrene	µg/L	<	FF	1	Η					Ŧ	f
	3,4-Benzofluoranthene	µg/L	<									T
	Benzo(ahi)Pervlene	ug/L	<									Ĵ
1	Benzo(k)Eluoranthene	uo/l	<	H-	-	H					+	ţ
1	Bis(2-Chloroethoxy)Methane	uo/l	1	H	+-						+	ŧ
1	Dis(2 Chlorosthul)Ether	Part.		H		-					+	t
1	Dis(2-Onlordenyt)Ether	µg/L	C	Ħ	+	H					÷	ŧ
1	Bis(2-Chioroisopropyi)Ether	hð/r	<								1	ļ
1	Bis(2-Ethylhexyl)Phthalate	µg/L	<	Ļ	1						Ļ	Ļ
1	4-Bromophenyl Phenyl Ether	µg/L	<								_	ļ
	Butyl Benzyl Phthalate	µg/L	<	\vdash	-						+	ł
	2-Chloronaphthalene	µg/L	<	FF	-	Н						ł
	4-Chlorophenyl Phenyl Ether	µg/L	<								Ť	î
	Chrysene	ug/L	<		Ì						Ì	Î
	Dibenzo(a h)Anthrancene	ug/l	<								÷	t
1	1.2 Dioblombostone	Part.		H	-						+	ŧ
1	1.2 Disblassheazers	Hg/L		 \vdash	+-						+	ł
1	1,3-Dichlorobenzene	µg/L	<	 Ħ	-	H					+	4
5	1,4-Dichlorobenzene	µg/L	<	E +	1						Ŧ	ţ
8	3,3-Dichlorobenzidine	µg/L	<									ĺ
2	Diethyl Phthalate	µg/L	<									ļ
0	Dimethyl Phthalate	µg/L	<								+	ł
1	Di-n-Butyl Phthalate	µg/L	<			H					Ŧ	f
1	2,4-Dinitrotoluene	µg/L	<	Ħ	1						t	Ť
	-		-	 1	-	_		 		1 C C	_	4

Discharge Information

2/1/2022

NPDES Permit Fact Sheet Southside STP

	2.6-Dinitrotoluene	ual	<			÷				
	2,0-billiotoidene	Pgrc		 H	+-	┿				 ┿┽┿┿
	Di-n-Octyl Phthalate	µg/L	<	 ╞╡	+	╞				
	1,2-Diphenylhydrazine	µg/L	<		+	╞				
	Fluoranthene	µg/L	<	H	╈	t				
	Fluorene	µg/L	<	T		T				
	Hexachlorobenzene	ug/l	<	Ť	Ť	Ť				
	Hexachlerebutadiana	100/		 Ħ	Ŧ	t				
	Hexachiorobutadiene	µg/L	×			L				
	Hexachlorocyclopentadiene	µg/L	<							
	Hexachloroethane	µg/L	<			Ļ				
	Indeno(1,2,3-cd)Pyrene	µg/L	<		_	F				
	Isophorone	ug/l	<	=	-	÷				
	Naphthalene	ug/l	-	Ħ	+	t				
	Naprulaiene	Pg/L	-	 +	┿	┢				 ┝┼╌┼╌┼
	Nitrobenzene	hð\r	<	 Ħ	+	+				
	n-Nitrosodimethylamine	µg/L	<	Ť		Ĺ				
	n-Nitrosodi-n-Propylamine	µg/L	<	Tì	Ť	Ĺ				
	n-Nitrosodiphenvlamine	ua/L	<							
	Phenanthrene	uo/l	<			t				
	D	P8/5			_					
	Pyrene	hð/r	<	 H	+	÷				
	1,2,4-Trichlorobenzene	µg/L	<			Ļ				
	Aldrin	µg/L	<	\rightarrow	_	ł				╎─╎─╎─╎
	alpha-BHC	µg/L	<			┢				
	beta-BHC	uo/L	<	Ħ	+	t				
	commo PLIC		/	 H	÷	÷				
	gamma-BHC	µg/L	-	 Ħ	÷	÷				
	delta BHC	µg/L	<	 Ì	Ť	Ĺ		 		
	Chlordane	µg/L	<	Ť		Ĺ				
	4,4-DDT	µg/L	<							
	4.4-DDE	ua/L	<			t				
	44-DDD	ual	~	Ħ	+	t				
	Distain	Pgrt	-	 ╞╡	+	÷		 		
	Dieldrin	µg/L	~	 -+-	+	┝				
	alpha-Endosulfan	µg/L	<		+	╞				
	beta-Endosulfan	µg/L	<	\vdash		┢				╎─┼─┼─┼
9	Endosulfan Sulfate	µg/L	<		-	t				
£.	Endrin	10/	<	H	+	t				
2	Endrin Aldebude	1975		 Ħ	Ŧ	÷				
o	Endrin Aldenyde	µg/L		 Ĥ	Ŧ	Ĥ				
	Heptachlor	µg/L	<	Ť		Ĺ				
	Heptachlor Epoxide	µg/L	<			L				
	PCB-1016	µg/L	<			Ļ				
	PCB-1221	uo/l	<		+	t				
	DCB 1222	- 10 P	-	+	+	÷				
	PGB-1232	Pg/L	`	 +	+	+				
	PCB-1242	µg/L	<		+	╞		 		
	PCB-1248	µg/L	<			÷				
	PCB-1254	µg/L	٨		-	F				
	PCB-1260	ua/L	<		+	t				
	PCBs Total	ug/l	<	Ť	1	Ť				
	Taxanhana	ug/l	-	H		E				
	a a z a zoop	HØ/L	-	H	-	+				
	2,3,7,8-TCDD	ng/L	<	_	_	Ļ		 		
	Gross Alpha	pCi/L		\rightarrow	_	ł				╷╷╷
~	Total Beta	pCi/L	۸			F				
٩	Radium 226/228	pCi/l	<	Ħ	+	ŧ				
5	Total Streetium	ual	-	 H	+	t				
້	Total Unoiser	Pgrt	-	 Ħ	╪	÷		 		
	Total Uranium	µg/L	<	 Ĥ	Ť	÷		 		
	Osmotic Pressure	mOs/kg		Ì		Ĺ				
						L				
				 Ħ	+	t				
				 Ħ	+	÷				
				-	-	+				
						+				
						+				
						f				
				Ť		Ť				
				Ì		Ì				
					100	100				

Discharge Information

2/1/2022

Apply Fish

Criteria*

Yes

Yes

Toxics Management Spreadsheet Version 1.3, March 2021

Stream / Surface Water Information

Instructions Discharge Stream

Receiving Surface Water Name: UNT Quemahoning Creek

Stream Code*

045660

045660

RMI*

1.25

0.01

Elevation

(ft)*

2040

1880

DA (mi²)*

1.09

2.25

No. Reaches to Model: 1

PWS Withdrawal

(MGD)

- Statewide Criteria
- O Great Lakes Criteria

Southside STP, NPDES Permit No. PA0254223, Outfall 001

ORSANCO Criteria

Q 7-10

Location

Point of Discharge

End of Reach 1

Location	PMI	LFY	Flow	(cfs)	W/D	Width	Depth	Velocit	Time	Tributa	ary	Stream	m	Analys	sis
Location	TSIMI	(cfs/mi ²)*	Stream	Tributary	Ratio	(ft)	(ft)	y (fps)	(days)	Hardness	pН	Hardness*	pH*	Hardness	pН
Point of Discharge	1.25	0.052				8	0.8	0.01				100	7		
End of Reach 1	0.01	0.052										-			

Slope (ft/ft)

0.0155

Qh

Location	PMI	LFY	Flow	(cfs)	W/D	Width	Depth	Velocit	Time	Tributa	ary	Stream	m	Analys	sis
Location	TSIMIT	(cfs/mi ²)	Stream	Tributary	Ratio	(ft)	(ft)	y (fps)	(dave)	Hardness	pН	Hardness	pН	Hardness	pН
Point of Discharge	1.25														
End of Reach 1	0.01														

DEPARTMENT OF ENVIRON PROTECTION	a							Toxics Management Spreadsheet Version 1.3, March 2021
Model Results						South	nside STP, NPDES Permit No	o. PA0254223, Outfall 001
structions Results	RETURN T		SAVE AS	PDF	PRINT	• • •	ll 🔿 Inputs 🔿 Result	s 🔿 Limits
Hydrodynamics								
Wasteload Allocations								
AFC	CCT (min): 0.6	08 PMF:	1	Ana	lysis Hardne	ss (mg/l):	100 Analysis pl	H: 7.00
Pollutants	Conc	Stream Trib Conc	Fate	WQC	WQ Obj	WLA (µg/L)		Comments
Total Aluminum	(100/1)	0	0	750	750	3.498		
Dissolved Iron	0	0	0	N/A	N/A	N/A		
Total Iron	0	0	0	N/A	N/A	N/A		
Total Manganese	0	0	0	N/A	N/A	N/A		
CFC	CCT (min): 0.6	08 PMF:	1	Ana	alysis Hardne	ss (mg/l):	100 Analysis p	H: 7.00
Pollutants	Conc	Stream Trib Conc CV (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)		Comments
Total Aluminum	0	0	0	N/A	N/A	N/A		
Dissolved Iron	0	0	0	N/A	N/A	N/A		
Total Iron	0	0	0	1,500	1,500	6,996	WQC = 30	day average; PMF = 1
Total Manganese	0	0	0	N/A	N/A	N/A		
✓ THH	CCT (min): 0.6	08 PMF:	1	Ana	alysis Hardne	ss (mg/l):	N/A Analysis p	H: N/A
Pollutants	Conc	Stream Trib Conc CV (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)		Comments
Total Aluminum	0	0	0	N/A	N/A	N/A		
Dissolved Iron	0	0	0	300	300	1,399		
Total Iron	0	0	0	N/A	N/A	N/A		
Total Manganese	0	0	0	1,000	1,000	4,664		
✓ CRL	CCT (min): 0.2	26 PMF:	1	Ana	alysis Hardne	ss (mg/l):	N/A Analysis p	H: N/A

		-	-			-	-	
Pollutants	Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
	(1)(1)							
Total Aluminum	0	0		0	N/A	N/A	N/A	
Dissolved Iron	0	0		0	N/A	N/A	N/A	
Total Iron	0	0		0	N/A	N/A	N/A	
Total Manganese	0	0		0	N/A	N/A	N/A	

Recommended WQBELs & Monitoring Requirements

No. Samples/Month: 4

	Mass	Limits		Concentra	tion Limits		I		
Pollutants	AML (lbs/day)	MDL (lbs/day)	AML	MDL	IMAX	Units	Governing WQBEL	WQBEL Basis	Comments
Dissolved Iron	Report	Report	Report	Report	Report	µg/L	1,399	THH	Discharge Conc > 10% WQBEL (no RP)

Other Pollutants without Limits or Monitoring

The following pollutants do not require effluent limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharge concentration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QL).

Pollutants	Governing WQBEL	Units	Comments
Total Aluminum	2,242	µg/L	Discharge Conc ≤ 10% WQBEL
Total Iron	6,996	µg/L	Discharge Conc ≤ 10% WQBEL
Total Manganese	4,664	µg/L	Discharge Conc ≤ 10% WQBEL

ATTACHMENT C

USGS Stream Stats Output

Point of Discharge

StreamStats Report

Basin Characteristics			
Parameter Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	1.09	square miles
ELEV	Mean Basin Elevation	2183	feet
PRECIP	Mean Annual Precipitation	43	inches

Low-Flow Statistics Disclaimers [100.0 Percent (1.09 square miles) Low Flow Region 3]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors

Low-Flow Statistics Flow Report [100.0 Percent (1.09 square miles) Low Flow Region 3]

Statistic	Value	Unit
7 Day 2 Year Low Flow	0.142	ft^3/s
30 Day 2 Year Low Flow	0.205	ft^3/s
7 Day 10 Year Low Flow	0.0566	ft^3/s
30 Day 10 Year Low Flow	0.0781	ft^3/s
90 Day 10 Year Low Flow	0.117	ft^3/s

Low-Flow Statistics Citations

Stuckey, M.H.,2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p. (http://pubs.usgs.gov/sir/2006/5130/)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Downstream from the Point of Discharge

StreamStats Report

```
        Region ID:
        PA

        Workspace ID:
        PA20220112163544908000

        Clicked Point (Latitude, Longitude):
        40.08994, -79.08087

        Time:
        2022-01-12 11:36:05 -0500
```


Basin Characteristics			
Parameter Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	2.25	square miles
ELEV	Mean Basin Elevation	2162	feet
PRECIP	Mean Annual Precipitation	43	inches