

Application Type New Facility Type Industrial Major / Minor Minor

NPDES PERMIT FACT SHEET INDIVIDUAL INDUSTRIAL WASTE (IW) AND IW STORMWATER

 Application No.
 PA0255815

 APS ID
 1025060

 Authorization ID
 1330415

Applicant and Facility Information

Applicant Name	Cyprus Amax Minerals Company		Facility Name	Former American Zinc & Chemicals Smith Township Site
Applicant Address	333 No	rth Central Avenue	Facility Address	Bologna Industrial Road
	Phoeni	x, AZ 85004-2189	_	Smith Twp, PA 15078
Applicant Contact	Allen L	ong	Facility Contact	David Gosen
Applicant Phone	(724) 9	34-9562	Facility Phone	(602) 366-7312
Client ID	61799		Site ID	651304
SIC Code	562910		Municipality	Smith Township
SIC Description	Remediation Services, Cleanup of Former Smelter Site		County	Washington
Date Application Recei	ved	October 14, 2020	EPA Waived?	Yes
Date Application Accepted		October 16, 2020	If No, Reason	
Purpose of Application		New NPDES Permit for Treated C	ontaminated Stormwate	r

Summary of Review

The Department received an NPDES Permit application from Cyprus Amax Minerals Company on October 14, 2020. The Cyprus Amax Minerals Company (Cyprus) facility is the former American Zinc & Chemicals (AZC) Smith Township Site located in Smith Township, Washington County. The site is undergoing cleanup activities. The facility is classified by NAIC Code 562910 – Remediation Services, Cleanup of Former Smelter Site.

Beginning in 1913, AZC owned the site and operated there a coal-fired zinc smelter facility. To supply its smelter operation, AZC deep-mined coal under portions of the site. AZC ended its zinc smelter operations at the site in 1947 and ended the acid plant and residue mill operations in early 1948. During operations, AZC disposed of various waste at the site, including but not limited to slag; discarded retorts and condensers; brick; coal ash; and construction debris.

The Site consists of approximately 157 contiguous acres. The facility has been cleared of the buildings (Ore Bins, Roasting Furnaces, Distilling Furnaces and Pottery Buildings) with only the foundations remaining, refer to Attachment A Site Plan. The Eastern Area of the site, comprising approximately 120 acres, consists of an irregular ground surface with large stockpiles of smelter material located in different areas. Smelter material is also present on the ground surface in a layer of varying thicknesses on many areas of the Site. Remnants of some of the former processing structures and buildings remain at the Site and are in a state of disrepair. Foundations, dilapidated buildings, and concrete chambers/vessels are visible around the Site. Two former ore tunnel entrances are also present in the area where former manufacturing activities were located. The former underground coal mine entrance is apparent at the base of the hillside on the eastern boundary of the Site. Current property

Approve	Deny	Signatures	Date
Х		Curtis Holes, P.E. / Environmental Engineering Specialist	February 17, 2021
х		Michael E. Fifth, P.E. / Environmental Engineer Manager	February 18, 2021

Summary of Review

owners of the Eastern Area include the Bologna Coal Company (BCC) (approximately 84 acres), Peterson Industries (approximately 28 acres), Smith Township (approximately 5 acres), and the LMC (approximately 3 acres). The Western Area of the site, comprising approximately 37 acres, is primarily used by the Langeloth Metallurgical Company (LMC) as part of their molybdenum processing operations. The Western Area is owned by LMC and they reportedly covered and vegetated the balance of the Western Area with cover soil imported from nearby clean borrow areas in 1994.

The facility is in the process of going through remediation consisting of installing a soil cap, with a two-year estimated schedule to complete these activities. In 2009, the Department elected to enter into a settlement with Cyprus to share with Cyprus the funding of a portion of the site's remedial investigation, cleanup and post-remediation care. Smelter material will be relocated to one area and capped. Building foundations will be removed and backfilled as deemed necessary. Final grading plans will consist of three different cover system profiles (soil cap will be installed in the southern portion of the facility; geosynthetic cap installed in the northern portion; non-cap areas will be installed in all other areas). Refer to Figure 1 for the Cover System Profiles.

Summary of Review

Historical Site investigations have reported the presence of a "piped seep" located within the valley in the southern portion of the Site. Results of those investigations indicated the presence of cadmium, copper, lead and zinc at concentrations above their respective Surface Water Screening Criteria. The "piped seep" has been backfilled years ago and a gravel sump has been installed in the area of the "piped seep". Currently the gravel sump is then piped to sedimentation pond 1. Final design will convey the "piped seep" discharge to the treatment system prior to discharge to Burgetts Fork.

The flow rates from the piped seep are directly related to the amount of rainfall that is occurring in the area. The proposed soil cap that will be installed during remediation activities will be designed to mitigate stormwater runoff and will have a lower permeability than the existing exposed smelter material. The reduced permeability and proper management of stormwater will reduce the amount of rain infiltration into the area and thus reduce the total metals discharging to surface water. The remaining seep water, if any, will be collected via a subsurface collection drain and treated using a passive treatment system consisting of a sulfate reducing bioreactor, free water surface aerobic wetland, and limestone bed. On January 15, 2021, the Department received a Water Quality Management Part II permit application for the treatment system. The sulfate reducing bioreactor is used to remove metals from the piped seep. The free water surface aerobic wetland is used to remove managemese from the piped seep. The limestone bed is used to provide aeration allowing additional manganese removal.

Construction activities will generally consist of excavation and consolidation of impacted smelter materials, installation of soil and geosynthetic caps over the consolidated materials, development of access roads, and vegetative restoration; and will disturb approximately 134 acres within Washington County, Pennsylvania.

The total maximum pre-construction drainage area, including off-site upstream areas that run-on to the Site, is approximately 204 acres. This drainage area conveys contaminated stormwater runoff towards a number of on-site delineated wetlands and streams, which generally flow in the easterly direction and ultimately enter into Burgetts Fork.

The client has no open violations.

Residual waste disposal must meet solid waste regulations.

Part C language in the draft permit provides controls on floating solids, chemical additives, residual solids, stormwater discharges.

It is recommended that a draft permit be published for public comment in response to this application.

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Discharge, Receiving	Water	s and Water Supply Informa	ition		
Outfall No. 001	Outfall No. 001			0.00288	
Latitude 40° 2'	1' 22.63	"	Longitude	-80º 23' 33.81"	
Quad Name Ave	ella		Quad Code	1602	
Wastewater Descrip	tion:	"Piped Seep" discharge alor	g with contaminated stormwa	ter runoff.	
Receiving Waters	Burge	tts Fork	Stream Code	33846	
NHD Com ID	99690	694	RMI	3.2	
Drainage Area	10.5 n	niles ²	Yield (cfs/mi ²)	0.0142	
Q7-10 Flow (cfs)	0.149		Q7-10 Basis	USGS StreamStats	
Elevation (ft)	1006		Slope (ft/ft)		
Watershed No.	20-D		Chapter 93 Class.	WWF	
Assessed Use	Aqua	tic Life	Existing Use Qualifier		
Exceptions to Use	None		Exceptions to Criteria		
Assessment Status		Impaired	-		
Cause(s) of Impairm	nent	Metals, TSS, pH			
Source(s) of Impairr	nent	Acid Mine Drainage			
TMDL Status Final A		Final April 7, 2005	Name Raccoon Cr	eek	
Nearest Downstrear	n Publi	c Water Supply Intake			
PWS Waters		Flow at Intake (cfs)			
PWS RMI			Distance from Outfall (mi)	<50 on Ohio River	
_					

Changes Since Last Permit Issuance: None

Other Comments: None

Figure 2: Outfall 001 Drainage Basin

Discharge, Receiving Waters and Water Supply Information					
Outfall No. 002	Outfall No. 002			0.0	
Latitude 40º 21	' 57.2"		Longitude	-80º 23' 30.23"	
Quad Name Ave	lla		Quad Code	1602	
Wastewater Descrip	tion:	Stormwater runoff.			
	Dura		Chroom Code	220.40	
Receiving waters	Burge		Stream Code	33840	
NHD Com ID	99690	494	RMI	2.7	
Drainage Area	11.1 n	niles ²	Yield (cfs/mi ²)	0.0144	
Q7-10 Flow (cfs)	0.16		Q7-10 Basis	USGS StreamStats	
Elevation (ft)	993		Slope (ft/ft)		
Watershed No.	20-D		Chapter 93 Class.	WWF	
Assessed Use	Aquat	ic Life	Existing Use Qualifier		
Exceptions to Use	None		Exceptions to Criteria		
Assessment Status		Impaired			
Cause(s) of Impairm	ent	Metals, TSS, pH			
Source(s) of Impairn	nent	Acid Mine Drainage			
TMDL Status		Final April 7, 2005	Name Raccoon Cr	eek	
Nearest Downstream	n Public	c Water Supply Intake			
PWS Waters			Flow at Intake (cfs)		
PWS RMI			Distance from Outfall (mi)	<50 on Ohio River	
			_ ()		

Changes Since Last Permit Issuance: None

Other Comments: None

Figure 3: Outfall 002 Drainage Basin

	Compliance History				
Summary of DMRs:	The application is a new permit.				
Summary of Inspections:	The last inspection conducted by the Department was on October 27, 2020 by Curt Holes and Mike Tomei.				

Other Comments: None

Development of Effluent Limitations

Outfall No.	001	Design Flow (MGD)	0.00288
Latitude	40º 21' 22.63	Longitude	-80º 23' 33.81"
Wastewater I	Description:	"Piped Seep" discharge along with contaminated stormwater run	off

Technology-Based Limitations

Outfall 001 discharge consists of waters from the "piped seep" and contaminated stormwater runoff. The average discharge is based on the flowrate of the "piped seep" of approximately 0.00288 MGD (2 gpm). Outfall 001's discharge is not subject to Federal Effluent Limitation Guidelines (ELGs) as the SIC code is not listed under 40 CFR parts 405 through 471.

Regulatory Effluent Standards and Monitoring Requirements

Flow monitoring is required pursuant to 25 Pa. Code § 92a.61(d)(1).

Pursuant to 25 Pa. Code § 95.2(4) effluent standards for industrial wastes may not contain more than 7 mg/L of dissolved iron.

Effluent standards for pH (see Table 6) are also imposed on industrial wastes by 25 Pa. Code § 95.2(1).

Total Dissolved Solids (TDS)

Integral to the implementation of 25 Pa. Code § 95.10 is the principle that existing, authorized mass loadings of TDS are exempt from any treatment requirements under these provisions. Existing mass loadings of TDS up to and including the maximum daily discharge loading for any existing discharge, provided that the loading was authorized prior to August 21, 2010 are exempt. Discharge loadings of TDS authorized by the Department are typically exempt from the treatment requirements of Chapter 95.10 until the net TDS loading is increased, an existing discharge proposes a hydraulic expansion or a change in the waste stream. New and expanding discharge loadings of TDS equal to or less than 5,000 lbs./day, measured as an average daily discharge over the course of a calendar year, otherwise known as the annual average daily load.

The discharge flowrate of Outfall 001 is 0.00288 MGD (2 gpm) with a TDS concentration of 1,140 mg/L results in a TDS mass loading of under 30 lbs/day. The facility is well below the 5,000 lbs./day mass loading threshold; therefore, the facility is exempt from 25 Pa. Code § 95.10 treatment requirements.

Water Quality-Based Limitations

Total Maximum Daily Load (TMDL)

Wastewater discharges from the Former American Zinc & Chemicals Smith Township Site are located within the Raccoon Creek Watershed for which the Department has developed a TMDL. The TMDL was finalized on February 3, 2005 and establishes waste load allocations for the discharge of aluminum, iron, manganese and pH within the Raccoon Creek Watershed. Section 303(d) of the Clean Water Act and the U.S. Environmental Protection Agency's Water Quality Planning and Management Regulations (codified at Title 40 of the *Code of Federal Regulations* Part 130) require states to develop a TMDL for impaired water bodies. A TMDL establishes the amount of a pollutant that a water body can assimilate without exceeding the water quality criteria for that pollutant. TMDLs provide the scientific basis for a state to establish water quality-based controls to reduce pollution from both point and non-point sources in order to restore and maintain the quality of the state's water resources (USEPA 1991a).

The Former American Zinc & Chemicals Smith Township Site was inactive before the TMDL was finalized and is not identified in the TMDL. The TMDL was finalized on February 3, 2005 to address metals from acid mine drainage (Aluminum, Iron and Manganese) and pH in the Raccoon Creek Watershed. The industrial waste discharge for the facility consist of a "piped seep" and stormwater discharge. Since the facility's low flow discharge (0.00288 MGD) do not contain parameters at concentrations (all three parameters are reported to have the concentration of less than 1.0 mg/L of each parameter, which are below the standard treatment pond effluent limits contained in the TMDL) that have the potential to cause or contribute to the impairment of the Raccoon Creek, the Raccoon Creek TMDL are not imposed at the facility was inactive before the TMDL was finalized. The TMDL parameters of concern will still be analyzed through the Water Quality-Based Limitation evaluation to determine if these parameters are a concern for the facility discharges.

NPDES Permit Fact Sheet American Zinc & Chemicals Smith Township Site

Toxics Management Analysis

The Department's Toxics Management Spreadsheet (TMS) was utilized to facilitate calculations necessary for completing a reasonable potential analysis and determine Water Quality-Based Effluent Limitations (WQBELs) for discharges containing toxic pollutant concentrations. TMS combines the functionality of two (2) of the Department's analysis tools, Toxics Screening Analysis Spreadsheet and PENTOXSD water quality model.

DEP's procedures for evaluating reasonable potential are as follows:

- 1. For IW discharges, the design flow to use in modeling is the average flow during production or operation and may be taken form the permit application.
- 2. Perform a Toxics Screening Analysis to identify toxic pollutants of concern. All toxic pollutants, as reported in the permit application or on DMRs, are modeled by the TMS to determine the parameters of concern. [This includes pollutants reported as "Not Detectable" or as "<MDL" where the method detection limit for the analytical method used by the applicant is greater than the most stringent water quality criterion].
 - Establish limits in the draft permit where the maximum reported concentration equals or exceeds 50% of the WQBEL. Use the average monthly and maximum daily limits for the permit as recommended by TMS. Establish an IMAX limit at 2.5 times the average monthly limit.
 - For non-conservative pollutants, establish monitoring requirements where the maximum reported concentration is between 25% 50% of the WQBEL.
 - For conservative pollutants, establish monitoring requirements where the maximum reported concentration is between 10% 50% of the WQBEL.

Discharges from Outfall 001 are evaluated based on concentrations reported on the application are used as inputs into the TMS. A summary of TMS Inputs is contained in Table 1 below.

Parameter	Value
Discharge Inputs	
Facility	Former American Zinc & Chemical Co Cleanup
Evaluation Type	Industrial
NPDES Permit No.	PA0255815
Wastewater Description	Contaminated Seep and Stormwater
Outfall ID	001
Design Flow (MGD)	0.00288
Hardness (^{mg} /L)	794
pH (S.U.)	6.33
Partial Mix Factors	Unknown – Calculated by TMS
Complete Mix Times	
Q7-10 (min)	
Q _h (min)	
Stream Inputs	
Receiving Surface Water	Burgetts Fork
Number of Reaches to Model	1
Stream Code	033846
RMI	3.2 / 2.7*
Elevation (ft)	1006 / 993*
Drainage Area (mi ²)	10.5 / 11.1*
Slope (ft/ft)	N1/A
PWS Withdrawal (MGD)	N/A
Apply Fish Criteria	Yes
LOW FIOW YIEID (CTS/MI ²)	
FIOWS	0.440 / 0.40*
Stream (cis)	0.149 / 0.16" N/A
Midth (ft)	N/A 26 / 42*
Stroom Hardnoss (mg/s)	100
Stream pH (S II)	7
Stream Hardness (^{mg} / _L) Stream pH (S.U.)	100 7

Table 1: TMS Inputs

* Denotes discharge location/downstream location values.

Based on the recommendations of the TMS, weekly monitor and report for two (2) parameters: Total Copper; Total Lead; along with WQBEL for two (2) parameters: Total Cadmium; Total Zinc at Outfall 001, as summarized below in Table 2. Analysis Report from the TMS run is included in Attachment A.

Table 2: TMS Recommended WQBELs & Monitoring Requirements

	Concentration Limits (µg/L)				
Pollutant	Discharge	AML	MDL	IMAX	
Total Cadmium	30.00	10.70	16.70	26.70	
Total Copper	56.00	Report	Report	Report	
Total Lead	34.00	Report	Report	Report	
Total Zinc	2,500.00	3,090	4,821	7,726	
pH (S.U.)	7.60	Report	9.00	9.00	

WQM 7.0 Model

In general, WQM 7.0 Model is run if the maximum $BOD_5/CBOD_5$ concentrations exceeds 30/25 mg/L in the permit application or the DMRs. The permit application reports BOD_5 concentrations of 2.3 mg/L, therefore, WQM 7.0 Model is not required to be run.

Emerging Pollutants of Concern

Where the concentration of TDS in the discharge exceeds 1,000 ^{mg}/_L, or the net TDS load from a discharge exceeds 20,000 lbs/day, and the discharge flow exceeds 0.1 MGD, establish a monitoring requirement for TDS, sulfate, chloride, and bromide. For discharges of 0.1 MGD or less establish a monitoring requirement for TDS, sulfate, chloride, and bromide if the concentration of TDS in the discharge exceeds 5,000 mg/L. Outfall 001 has a discharge flowrate of 0.00288 MGD and reported maximum TDS concentration of 1,140 ^{mg}/_L. Therefore, the emerging pollutants of concern monitoring requirements are not imposed.

Effluent Limitations and Monitoring Requirements for Outfall 001

Effluent limits applicable at Outfall 002 are the more stringent of TBELs, regulatory effluent standards, previously permitted effluent limits and the monitoring requirements are summarized in Table 3.

	Mass		Concentration (µg/L)				
Parameter	Average Monthly	Daily Maximum	Instant. Minimum	Average Monthly	Daily Maximum	Instant Maximum	Basis
Flow (MGD)	Report	Report	—	—	—	—	25 Pa. Code § 92a.61(d)(1)
Total Cadmium	—	—	—	10.70	16.70		25 Pa. Code § 93.8
Total Copper	—	—		Report	Report	—	25 Pa. Code § 93.8
Total Lead				Report	Report		25 Pa. Code § 93.8
Total Zinc	—	_	—	3,090	4,821	—	25 Pa. Code § 93.8
pH (S.U.)			Report	—		9.0	25 Pa. Code § 95.2

Table 3: Final Effluent limits and monitoring requirements for Outfall 001

Monitoring requirements for the interim and final effluent limits are based on the previous permits monitoring requirements for the facility are displayed in Table 4 below.

Table 4: Monitoring Requirements for Outfall 001

Parameter	Sample Type	Minimum Sample Frequency
Flow (MGD)	Measured	2/month
Total Cadmium	Grab	2/month
Total Copper	Grab	2/month
Total Lead	Grab	2/month
Total Zinc	Grab	2/month
pH (S.U.)	Grab	2/month

STORMWATER Outfall 002

The Department's policy for stormwater discharges is to either (1) require that the stormwater is uncontaminated, (2) impose "Monitor and Report", to establish effluent goals and require the permittee to submit a Stormwater Pollution Prevention Plan (SWPPP), or (3) impose effluent limits. In all cases, a stormwater special condition is placed in the permit in Part C.

Stormwater effluent data reported in the application are compared to stream criteria, EPS's Multi-Sector General Permit "benchmark values", ELGs and other references while considering site specific conditions such as stream flow and location to determine if actual discharge concentrations of various pollutants in stormwater warrant further controls. If there is insufficient data available, or if pollutant levels are excessive, monitoring for specific pollutants and/or a SWPPP are required in the permit. Otherwise, the stormwater outfalls are simply listed as discharge points. In either case, a special condition is added to the permit to include some of the key components of the Department's General Permit (PAG-03) for Discharges of Stormwater Associated with Industrial Activities.

Outfall 002 (40° 21' 57.2", -80° 23' 30.23"): The drainage area consists of Red Dog coal waste. The Red Dog material might be used in constructing the cap system, if the material qualifies and meets design specifications. There might be an active borrow area in the drainage area during cap system construction, but at a minimum regrading and repair of erosion reels will be conducted. The final conditions of the Outfall 002 drainage area will direct the stormwater runoff to a constructed wetland that will ultimately discharge to Burgetts Fork. Current BMPs to control pollutants in the stormwater are housekeeping procedures, employee education and awareness.

The drainage area of Outfall 002 has two existing wetlands, one at the west and one at the north. The western wetland will be expanded to mitigate wetlands removed for the remediation process. The discharge of the northern wetland is the Outfall 002 location.

The burnt coal byproduct (Red Dog) of historic industrial activity has been disposed of throughout the drainage area of Outfall 002. These historic industrial activity for the facility by General Permit Appendix B – Primary Metals, with the monitoring requirements summarized below in Table 5.

Monitoring Requirements						
Minimum Sample						
Parameter	Frequency	Sample Type	Benchmark Values			
TSS (^{mg} / _L)	1 / 6 months	Grab	100			
Total Aluminum (^{mg} /∟)	1 / 6 months	Grab	XXX			
Total Zinc (^{mg} / _L)	1 / 6 months	Grab	XXX			
Total Copper (^{mg} / _L)	1 / 6 months	Grab	XXX			
Total Iron (^{mg} / _L)	1 / 6 months	Grab	XXX			
Total Lead (^{mg} / _L)	1 / 6 months	Grab	XXX			

Table 5: Stormwater Outfall 002 Monitoring Requirements.

The benchmark values listed above are not effluent limitations, and exceedances do not constitute permit violations. However, if the permittee's sampling demonstrates exceedances of benchmark values for two (2) consecutive monitoring periods, the permittee shall submit a corrective action plan within 90-days of the end of the monitoring period triggering the plan.

Tools and References Used to Develop Permit
WQM for Windows Model (see Attachment)
TMS for Windows Model (see Attachment C)
TRC Model Spreadsheet (see Attachment)
Temperature Model Spreadsheet (see Attachment)
Toxics Screening Analysis Spreadsheet (see Attachment)
Water Quality Toxics Management Strategy, 361-0100-003, 4/06.
Technical Guidance for the Development and Specification of Effluent Limitations, 362-0400-001, 10/97.
Policy for Permitting Surface Water Diversions, 362-2000-003, 3/98.
Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 362-2000-008, 11/96.
Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97.
Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 362-2183-004, 12/97.
Pennsylvania CSO Policy, 385-2000-011, 9/08.
Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.
Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 391-2000-002, 4/97.
Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97.
Implementation Guidance Design Conditions, 391-2000-006, 9/97.
Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004.
Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 391-2000-008, 10/1997.
Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 391-2000-010, 3/99.
Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 391-2000-011, 5/2004.
Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97.
Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 391-2000-014, 4/2008.
Implementation Guidance Total Residual Chlorine (TRC) Regulation, 391-2000-015, 11/1994.
Implementation Guidance for Temperature Criteria, 391-2000-017, 4/09.
Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/97.
Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97.
Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 391-2000-021, 3/99.
Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/1999.
Design Stream Flows, 391-2000-023, 9/98.
Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 391-2000-024, 10/98.
Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97.
Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.
SOP:
Other: Annual Stormwater Report
Other:

Attachment A – Site Location Maps

Attachment B – StreamStats Data

Attachment C – TMS Model Output File

Attachment A – Site Location Maps

Existing Site Map

Existing Conditions with Overlay of Historic Operations

Existing Conditions Plan

Final Grading Plan

Attachment B – StreamStats Data

StreamStats Report - Outfall 001

Basin Characteristics			
Parameter Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	10.5	square miles
STORAGE	Percentage of area of storage (lakes ponds reservoirs wetlands)	0.22	percent
ELEV	Mean Basin Elevation	1201	feet
PRECIP	Mean Annual Precipitation	39	inches
FOREST	Percentage of area covered by forest	41.6856	percent
URBAN	Percentage of basin with urban development	5.9293	percent
CARBON	Percentage of area of carbonate rock	0	percent

Peak-Flow Statistics Parameterspeak Rev Report 2 (28) 2019 SON

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	10.5	square miles	0.92	1160
STORAGE	Percent Storage	0.22	percent	0	8.9
Peak-Flow Statistics Flow Re	portpeak Row Region 2188 2019 Store				
Pil: Prediction Interval-Lowe	rr, Plu: Prediction Interval-Upper, SEp: 5	Standard Error of Pre	diction, SE: Stendard Err	or (other - see report)	
Statistic			Value	Unit	SEp
2 Year Peak Flood			453	ft^3/s	26.1
5 Year Peak Flood			726	ft^3/s	27
10 Year Peak Flood			940	ft^3/s	28.9
25 Year Peak Flood			1250	ft^3/s	31.6
50 Year Peak Flood			1500	ft^3/s	34.8
100 Year Dask Flood			1780	ft^3/s	37.8
Too fear Peak Flood			2090	ft*3/s	41.6
200 Year Peak Flood					

Roland, M.A., and Stuckey, M.H.,2019, Development of regression equations for the estimation of flood flows at ungaged streams in Pennsylvania: U.S. Geological Survey Scientific Investigations Report 2019–5094, 36 p. (https://doi.org/10.3133/sir20195094)

Low-Flow Statistics Parameters(Low Rev Region ()							
Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit		
DRNAREA	Drainage Area	10.5	square miles	2.26	1400		
ELEV	Mean Basin Elevation	1201	feet	1050	2580		

Low-Flow Statistics Flow Reports or Row Region 4

Pil: Prediction Interval-Lower, Piu: Prediction Interval-Upper, SEp: Standard Error of Prediction, SE: Standard Error (other - see report)

Statistic	Value	Unit	SE	SEp
7 Day 2 Year Low Flow	0.409	ft*3/s	43	43
30 Day 2 Year Low Flow	0.708	ft*3/s	38	38
7 Day 10 Year Low Flow	0.149	ft*3/s	66	66
30 Day 10 Year Low Flow	0.268	ft*3/s	54	54
90 Day 10 Year Low Flow	0.489	ft*3/s	41	41

Low-Flow Statistics Citations

Stuckey, M.H., 2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p. (http://pubs.usgs.gov/sir/2006/5130/)

Annual Flow Statistics Parameterspassede laws and lase Fire)							
Parameter Name	Value	Units	Min Limit	Max Limit			
Drainage Area	10.5	square miles	2.26	1720			
Mean Basin Elevation	1201	feet	130	2700			
Mean Annual Precipitation	39	inches	33.1	50.4			
Percent Forest	41.6856	percent	5.1	100			
Percent Urban	5.9293	percent	0	89			
Percent Carbonate	0	percent	0	99			
	Spoteetic line and line Fire] Parameter Name Drainage Area Mean Basin Elevation Mean Annual Precipitation Percent Forest Percent Urban Percent Carbonate	Parameter Name Value Drainage Area 10.5 Mean Basin Elevation 1201 Mean Annual Precipitation 39 Percent Forest 41.6856 Percent Urban 5.9293 Percent Carbonate 0	Parameter Name Value Units Drainage Area 10.5 square miles Mean Basin Elevation 1201 feet Mean Annual Precipitation 39 inches Percent Forest 41.6856 percent Percent Urban 5.9293 percent Percent Carbonate 0 percent	Parameter Name Value Units Min Limit Drainage Area 10.5 square miles 2.26 Mean Basin Elevation 1201 feet 130 Mean Annual Precipitation 39 inches 33.1 Percent Forest 41.6856 percent 5.1 Percent Urban 5.9293 percent 0			

Annual Flow Statistics Flow Report statewide Mean and Base Row]

PII: Prediction Interval-Lower, Plu: Prediction Interval-Upper, SEp: Standard Error of Prediction, SE: Standard Error (other - see report)							
Statistic	Value	Unit	SE	SEp			
Mean Annual Flow	13.1	ft*3/s	12	12			
Harmonic Mean Streamflow	2.2	ft^3/s	38	38			

Annual Flow Statistics Citations

Stuckey, M.H., 2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p. (http://pubs.usgs.gov/sir/2006/5130/)

Base Flow Statistics Parameterspacewite Mean and Base Flow]							
Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit		
DRNAREA	Drainage Area	10.5	square miles	2.26	1720		
PRECIP	Mean Annual Precipitation	39	inches	33.1	50.4		
CARBON	Percent Carbonate	0	percent	0	99		
FOREST	Percent Forest	41.6856	percent	5.1	100		
URBAN	Percent Urban	5.9293	percent	0	89		

Base Flow Statistics Flow Reportstatewide Mean and Base Flow]

PII: Prediction Interval-Lower, Plu: Prediction Interval-Upper, SEp: Standard Error of Prediction, SE: Standard Error (other - see report)								
Statistic	Value	Unit	SE	SEp				
Base Flow 10 Year Recurrence Interval	3.96	ft^3/s	21	21				
Base Flow 25 Year Recurrence Interval	3.43	ft^3/s	21	21				
Base Flow 50 Year Recurrence Interval	3.13	ft*3/s	23	23				

Base Flow Statistics Otations

Stuckey, M.H., 2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p. (http://pubs.usgs.gov/sir/2006/5130/)

Bankfull Statistics Parameterspanwas sental Nanastones 2018 5059

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	10.5	square miles	2.62	207
CARBON	Percent Carbonate	0	percent		

Bankfull Statistics Flow Reportstatewise Bankfull Noncestorate 2018 5056]

PII: Prediction Interval-Lower, Plu: Prediction Interval-Upper, SEp: Standard Error of Prediction, SE: Standard Error (other - see report)

Statistic	Value	Unit	SE
Bankfull Area	80	ft*2	64
Bankfull Streamflow	350	ft^3/s	74
Bankfull Width	42	ft	59
Bankfull Depth	1.94	ft	56

Bankfull Statistics Citations

Clune, J.W., Chaplin, J.J., and White, K.E., 2018, Comparison of regression relations of bankfull discharge and channel geometry for the glaciated and nonglaciated settings of Pennsylvania and southern New York: U.S. Geological Survey Scientific Investigations Report 2018 -5066, 20 p. (https://doi.org/10.3133/sir20185066)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Application Version: 4.4.0

Attachment C – TMS Model Output File

Toxics Management Spreadsheet Version 1.1, October 2020

Discharge Information

Instructions	Discharg	e Stream					
Facility:	Former An	erican Zinc & C	hemical Co - Cleanu	NPDES Permit No.:	PA0255815	Outfall No.: 001	
Evaluation T	ype: Ma	jor Sewage / Inc	lustrial Waste	Wastewater Descrip	tion: Contaminated S	eep/SW Discharge	
Discharge Characteristics							

Discharge characteristics										
Design Flow	Hardnore (mg/l)t		Partial Mix Factors (PMFs)				Complete Mix Times (min)			
(MGD)*	Haroness (mg/l)*	рн (50)*	AFC	CFC	THH	CRL	Q ₇₋₁₀	Qh		
0.00288	794	6.33								

						0 If le	ft blank	0.5 lf le	eft blank	0	lf left blan	k	1 If left	blank
	Discharge Pollutant	Units	Ma	x Discharge Conc	T C	rib onc	Stream Conc	Daily CV	Hourly CV	Strea m CV	Fate Coeff	FOS	Criteri a Mod	Chem Transl
	Total Dissolved Solids (PWS)	mg/L		1140										
5	Chloride (PWS)	mg/L		26.6										
0	Bromide	mg/L	۷	0.6	_		-							
5	Sulfate (PWS)	mg/L		694										
	Fluoride (PWS)	mg/L		0.36										
	Total Aluminum	µg/L		419										
	Total Antimony	µg/L		1.6			-							
	Total Arsenic	µg/L	<	1.5			-							
	Total Barium	µg/L		44										
	Total Beryllium	µg/L	<	0.5										
	Total Boron	µg/L		150										
	Total Cadmium	µg/L		30			_							
	Total Chromium (III)	µg/L		1.6		++	-							
	Hexavalent Chromium	µg/L		1.5										
	Total Cobalt	µg/L		6.6										
	Total Copper	µg/L		56										
2	Free Cyanide	µg/L												
1 m	Total Cyanide	µg/L	<	2										
5	Dissolved Iron	µg/L		110	+									
-	Total Iron	µg/L		130										
	Total Lead	µg/L		34										
	Total Manganese	µg/L		890			-							
	Total Mercury	µg/L		0.0016		++								
	Total Nickel	µg/L		17		Ħ								
	Total Phenols (Phenolics) (PWS)	µg/L	<	0.005										
	Total Selenium	µg/L	<	2										
	Total Silver	µg/L	<	0.5										
	Total Thallium	µg/L	<	0.5		Ħ								
	Total Zinc	µg/L		2500										
	Total Molybdenum	µg/L		82										
	Acrolein	µg/L	<	2.5		++								
	Acrylamide	µg/L				+								
	Acrylonitrile	µg/L	<	5		Ħ								
	Benzene	µg/L	<	0.5										
	Bromoform	µg/L	<	0.5			-							

1	Carbon Tetrachloride	uall	1	1													i
	Carbon renactionde	Pg/L	-	0.5			_		<u> </u>	<u> </u>		<u> </u>			⊢	_	
	Chlorobenzene	µg/L		0.5													
	Chlorodibromomethane	µg/L	<	0.5													
	Chloroethane	µg/L	<	1		ĻĻļ	_								\square		
	2-Chloroethyl Vinyl Ether	ua/L	<	5													l
	Chloroform	ug/l	<	0.5	E		-	-									l
	Disblorobromomothano	- 19/L	-	0.0		╞╡	+	-		<u> </u>		<u> </u>		H	=	=	
	Dichlorobromomethane	µg/L	<u> </u>		+	H	+	<u> </u>		<u> </u>	<u> </u>	<u> </u>		H	4	_	
	1,1-Dichloroethane	µg/L	<	0.5		Ц	_								4		
0	1,2-Dichloroethane	µg/L	<	0.5		ĻĻļ	_	-						\square	4		
₽	1,1-Dichloroethylene	µg/L	<		—												l
ō	1.2-Dichloropropage	ug/l	<	0.5	E		-	-							=		1
6	1.2 Dichlessessulass	Pg/L		0.0		╞╡	+			<u> </u>		<u> </u>		H	=	=	-
-	1,3-Dicnioropropylene	µg/L	<			\square	_								$ \rightarrow$	_	
	1,4-Dioxane	µg/L	<	2.9													
	Ethylbenzene	µg/L	<				_	-									
	Methyl Bromide	ua/L	<					-									l
	Methyl Chloride	ug/l	1	1	Ħ	H	+	-				<u> </u>			=	=	1
	meany childre	Pg/L				⊢	+	-				<u> </u>		⊢	⇒	_	
	Methylene Chloride	µg/L	<			Ц	_								4		
	1,1,2,2-Tetrachloroethane	µg/L	<	0.5	_		_										
	Tetrachloroethylene	µg/L	<	0.5			_	-									
	Toluene	µa/l	<	0.5	H			-									ļ
	1.2-trans-Dichloroethylene	µa/l	1	0.5	F		-							Ħ	\Rightarrow	=	ļ
	1.1.1 Tricklessethers	Part		0.5	+	-	_								-	_	ļ
	1, 1, 1-1 nonioroethane	hð\r	<	0.5	-	4	_								4		ļ
	1,1,2-Trichloroethane	µg/L	<	0.5			_	-									
	Trichloroethylene	µg/L	<	0.5			_	-							_	_	
	Vinvl Chloride	ua/L	<	0.5	E		+	-							=	=	1
	2.Chlorophonol	ug/l	1		Ħ	Ħ	+			<u> </u>		<u> </u>		Ħ	=	=	1
	2-Chlorophenol	Pg/L				\vdash	+	<u> </u>	<u> </u>	<u> </u>		<u> </u>			\rightarrow	_	
	2,4-Dichlorophenol	µg/L	<			⊢	+	<u> </u>						\models	\Rightarrow		
	2,4-Dimethylphenol	µg/L	<					-									
	4,6-Dinitro-o-Cresol	µg/L	<					-								-	
4	2.4-Dinitrophenol	ua/L	<		F	Ħ	+	-						Ħ	=	=	1
8	2-Nitrophenol	ug/l	<		F	H	+			<u> </u>		<u> </u>		Ħ	=	=	1
2	4 Missels and	P8/2				\vdash	+	<u> </u>	<u> </u>	<u> </u>		<u> </u>		\vdash	+	+	
0	4-INItrophenoi	µg/L	<			╞╡	+	<u> </u>				L			\Rightarrow		
	p-Chloro-m-Cresol	µg/L	<					-									
	Pentachlorophenol	µg/L	<			H											
	Phenol	ua/L	<					-						F		=	l
	2.4.6-Trichlorophenol	uo/l	<		H	H	+							H	+	7	1
\vdash	Assesshifters	Pg/L		15		┝─┼	÷	<u> </u>	H	+	-						
	Acenaphthene	µg/L	<u> </u>	1.0		H	+							H	=	=	
	Acenaphthylene	µg/L	<	1.5													1
	Anthracene	µg/L	<	1.5		H								H		۲	1
	Benzidine	µg/L	<	3.9	F	F								F	=	=	Î
	Benzo(a)Anthracene		<	15	T	H	+	<u> </u>						H	\neg		1
	Benze(a)Pirane	- 197		1.5		H	÷		<u> </u>	<u> </u>	<u> </u>	<u> </u>		Ħ	Ħ	=	1
	Benzo(a)r yrene	Pg/L		1.0		Ħ	÷	<u> </u>		<u> </u>	<u> </u>	<u> </u>		Ħ	Ħ	=	-
	3,4-Benzofluoranthene	µg/L	<	1.5			-										
	Benzo(ghi)Perylene	µg/L	<	1.5			Ť										ľ
	Benzo(k)Fluoranthene	µg/L	<	1.5			Ĩ	1							- Î		ĺ
	Bis(2-Chloroethoxy)Methane	µg/L	<	2.9													ĺ
	Bis(2-Chlornethyl)Ether	µo/l	<	2.0											T		l
	Dis(2-Chloroleuryr)Eurer	Pg/L		2.0		H	+	<u> </u>		<u> </u>		<u> </u>			Ŧ	7	l
	bis(2-Chioroisopropyi)Ether	hð/r	<	2.8											J		ĺ
	Bis(2-Ethylhexyl)Phthalate	µg/L	<	2.9													ļ
	4-Bromophenyl Phenyl Ether	µg/L	<	2.9													ĺ
	Butyl Benzyl Phthalate	µg/L	<	2.9													ĺ
	2-Chloronaphthalene	ug/l	<	29													ĺ
	4 Chlorophonyl Bhonyl Ethor	- 100/L	-	2.0		H		<u> </u>		<u> </u>		<u> </u>				=	1
	Charges	Pg/L		2.8													1
	Unrysene	µg/L	<	1.5													ļ
	Dibenzo(a,h)Anthrancene	µg/L	<	1.5													ļ
	1,2-Dichlorobenzene	µg/L	<	1		ļĻļ		-									ĺ
	1,3-Dichlorobenzene	µa/L	<	1				-									ĺ
	1 4-Dichlorohenzene	ug/l	-	4	E		-	-									ļ
50	2.2 Dishlarahanaidina	Part		2.0			-	-							\Rightarrow	-	1
1	3,3-Dichlorobenzidine	µg/L	<	2.9			_								$ \rightarrow$		
2	Diethyl Phthalate	µg/L	<	2.9													
0	Dimethyl Phthalate	µg/L	<	2.9													ļ
	Di-n-Butyl Phthalate	µg/L	<	2.9	F			-							_		l
	2.4-Dinitrotoluene	µa/l	<	2.9	F		-							E	=		i
1		F0-															1

	2,6-Dinitrotoluene	µg/L	<	2.9	Н	-		-						_	F
	Di-n-Octyl Phthalate	µg/L	<	2.9	F	-							=	=	F
	1.2-Diphenylhydrazine	ua/L	<	2.9	Ħ	-	Ħ					Ħ	Ŧ	=	Ē
	Fluoranthene	uo/l	<	15	H		H	<u> </u>				H	Ť	-	h
	Elverage	1975	-	1.5	Ħ	=	Ħ	-			 	Ħ	Ŧ	=	Ē
	Fluorene	Pg/L	-	1.0			H	1			 	H	Ŧ	_	F
	Hexachiorobenzene	µg/L	<	2.9							 				Ę
	Hexachlorobutadiene	µg/L	<	2.9									_	_	Ļ
	Hexachlorocyclopentadiene	µg/L	<	2.9											L
	Hexachloroethane	µg/L	<	2.9				-							-
	Indeno(1,2,3-cd)Pyrene	µg/L	٨	1.5	Н	_		-					_	_	F
	Isophorone	µg/L	<	2.9	F	-		-						=	F
	Naphthalene	ua/L	<	1.5	Ħ	=	Ħ						=	=	Ē
	Nitrobenzene	ug/l	<	2.9	H		+			 	 	H	+	-	t
	n Nitrosodimethylamine	10/L	-	2.0	Ħ		Ħ				 	Ħ	Ť	-	Ē
	n Nitrosodi n Dravdanine	pg/L	-	2.0	Ħ		Ħ	1			 	Ħ	Ŧ	=	F
	n-Nitrosodi-n-Propylamine	Pg/L	-	2.8							 		\exists	_	£
	n-ivitrosocipnenylamine	µg/L	<	2.8					 	 	 		4	_	Ļ
	Phenanthrene	µg/L	<	1.5											L
	Pyrene	µg/L	<	1.5											-
	1,2,4-Trichlorobenzene	µg/L	<	2.9		_		-						_	
	Aldrin	µg/L	<		Н								-	-	F
	alpha-BHC	µg/L	<		F	-							=	=	ĩ
	beta-BHC	ua/L	<		Ħ								Ť	_	ľ
	aamma-BHC	ug/l	<		H					 	 	H	Ť		Ē
	delta BHC	199/E	-		Ħ		Ħ	1					Ŧ	=	F
	Chlandana	Pg/L	-							 	 		-	_	f
	Chiordane	µg/L	~							 	 		4	_	Ļ
	4,4-DDT	µg/L	<						 		 		_		L
	4,4-DDE	µg/L	<												L
	4,4-DDD	µg/L	<					-							-
	Dieldrin	µg/L	>		Н			-					_	_	F
	alpha-Endosulfan	µg/L	<		F	-							=	=	F
	beta-Endosulfan	µa/L	<		Ħ	-	Ħ					Ħ	=	=	Ē
9	Endosulfan Sulfate	uo/l	<		H		+			 	 	H	+	-	t
₽	Endosunan ounate	1975 110/	-		Ħ	=	Ħ	-				Ħ	Ŧ	=	F
2	Endrin Fadria Aldabuda	Pg/L	-		Ħ		Ħ	1			 	H	Ŧ	=	Ē
G	Endrin Aldenyde	µg/L	~					<u> </u>			 		_	_	E
	Heptachlor	µg/L	<								 		_		Ļ
	Heptachlor Epoxide	µg/L	<												L
	PCB-1016	µg/L	<												-
	PCB-1221	µg/L	<		Н		\vdash							_	ŀ
	PCB-1232	µg/L	<		H	-		-						=	F
	PCB-1242	µg/L	<		F		Ħ						=	=	Ē
	PCB-1248	uo/l	<		Ħ		H							-	ī
	PCB-1254	ug/l	<		Ħ		Ħ				 	Ħ	Ť	-	Ē
	PCB-1260	ug/L	e					1			 		E	=	Ē
	DCBs Tabl	P9/E	-										-	_	f
	FCBS, Total	µg/L	~		H		4			 	 		≓	_	ł
	Toxaphene	µg/L	<		\square				 	 	 		_	_	+
	2,3,7,8-1CDD	ng/L	<		H		╞╡	<u> </u>					\Rightarrow	_	4
	Gross Alpha	pCi/L			Н									_	h
5	Total Beta	pCi/L	<												h
9	Radium 226/228	pCi/L	٨		F								-	-	F
ē	Total Strontium	µg/L	<		Π			1				T			Ē
G	Total Uranium	µg/L	<												Γ
	Osmotic Pressure	mOs/ka								 	 				f
	osmolo riessure	moung											-	-	-
					╞╡	_	+				 		—	-	_
					H									_	-
					H		_		 	 	 			_	_
						_									_
					Н	_									
					H										
					F			1							
															Ī
															Ī
															Ī
					$ \rightarrow $							_	_	_	-

Toxics Management Spreadsheet Version 1.1, October 2020

Stream / Surface Water Information

Former American Zinc & Chemical Co - Cleanup, NPDES Permit No. PA0255815, Outfall 001

Instructions Discl	narge Str	ream													
Receiving Surface V	Vater Name:	Burgetts Fo	ork				No. Rea	aches to I	Model:	1	 Sta Gre 	tewide Criter	ia teria		
Location	Stream Co	de* RMI	Elevati	on DA (mi ²)*	Slope (ft/ft)	PWS (Withdraw MGD)	al Apply F Criteri	ish a*		SANCO Crite	eria		
Point of Discharge	033846	3.2	1006	10).5				Yes						
End of Reach 1	033846	2.7	993	11	1.1				Yes						
Q 7-10															
Location	DMI	LFY	Flow	(cfs)	W/I	D Width	Depth	Velocit	Time	Tributa	ary	Strea	m	Analy	sis
Location	15 Mil	(cfs/mi ²)*	Stream	Tributary	/ Rati	io (ft)	(ft)	y (fps)	(days)	Hardness	pН	Hardness*	pH*	Hardness	
Point of Discharge	3.2	0.1	0.149			26						100	7		
End of Reach 1	2.7	0.1	0.16			40									

Qn

Location	DMI	LFY	Flow	(cfs)	W/D	Width	Depth	Velocit	Time	Tributa	iry	Stream	m	Analys	is
Location	r.mi	(cfs/mi ²)	Stream	Tributary	Ratio	(ft)	(ft)	y (fps)	(days)	Hardness	pН	Hardness	pН	Hardness	pН
Point of Discharge	3.2														
End of Reach 1	2.7														

pН

Toxics Management Spreadsheet Version 1.1, October 2020

Model Results

Former American Zinc & Chemical Co - Cleanup, NPDES Permit No. PA0255815, Outfall 001

Instructions Results	RETURN	TO INPU	TS) (SAVE AS	PDF	PRINT	n) () A	NI 🔿 Inputs 🔿 Results 🔿 Limits							
☐ Hydrodynamics ✓ Wasteload Allocations	Hydrodynamics Wasteload Allocations														
AFC cc	T (min): 1	5	PMF:	0.244	Ana	lysis Hardne	ss (mg/l):	175.71 Analysis pH: 6.85							
Pollutants	Conc	Stream	Trib Conc	Fate	WQC	WQ Obj	WLA (µg/L)	Comments							
Total Disseland Collide (DMC)	(100/1)	0	(µg/L)	Coer	(pg/L)	(µg/L)	AU/A								
Total Dissolved Solids (PWS)	0			0	N/A	N/A	N/A								
Chionde (PWS)	0			0	N/A	N/A	N/A								
Suitate (PWS)	0			0	N/A	N/A	N/A								
Fluonde (FWS)	0	0		0	750	750	N/A								
Total Authinum				0	750	750	0,875								
Total Antimony	0			0	1,100	1,100	10,083	Ober Translater of Lenglish							
Total Arsenic	0	0		0	340	340	3,117	Chem Translator of 1 applied							
Total Banum	0	0		0	21,000	21,000	192,490								
Total Boron	0	0		0	8,100	8,100	/4,248	Ohan Taradaha (0.00 and ind							
Total Cadmium	0	0		0	3.482	3.78	34.7	Chem Translator of 0.92 applied							
Total Chromium (III)	0	0		0	904.033	2,861	26,224	Chem Translator of 0.316 applied							
Hexavalent Chromium	0	0		0	16	16.3	149	Chem Translator of 0.982 applied							
Total Cobalt	0	0		0	95	95.0	8/1								
Total Copper	0	0		0	22.857	23.8	218	Chem Translator of 0.96 applied							
Dissolved Iron	0	0		0	N/A	N/A	N/A								
Total Iron	0	0		0	N/A	N/A	N/A								
Total Lead	0	0		0	118.611	167	1,534	Chem Translator of 0.709 applied							
Total Manganese	0	0		0	N/A	N/A	N/A								
Total Mercury	0	0		0	1.400	1.65	15.1	Chem Translator of 0.85 applied							
Total Nickel	0	0		0	754.335	756	6,928	Chem Translator of 0.998 applied							
Total Phenols (Phenolics) (PWS)	0	0		0	N/A	N/A	N/A								
Total Selenium	0	0		0	N/A	N/A	N/A	Chem Translator of 0.922 applied							
Total Silver	0	0		0	8.481	9.98	91.5	Chem Translator of 0.85 applied							
Total Thallium	0	0		0	65	65.0	596								
Total Zinc	0	0		0	188.918	193	1,771	Chem Translator of 0.978 applied							
Acrolein	0	0		0	3	3.0	27.5								

Acrylonitrile	0	0	╂─┼─┼─┼─┼	0	650	650	5,958	
Benzene	0	0		0	640	640	5,867	
Bromoform	0	0		0	1,800	1,800	16,500	
Carbon Tetrachloride	0	0		0	2,800	2,800	25,666	
Chlorobenzene	0	0		0	1,200	1,200	11,000	
Chlorodibromomethane	0	0		0	N/A	N/A	N/A	
2-Chloroethyl Vinyl Ether	0	0		0	18,000	18,000	164,996	
Chloroform	0	0		0	1,900	1,900	17,416	
1,2-Dichloroethane	0	0		0	15,000	15,000	137,497	
1,2-Dichloropropane	0	0		0	11,000	11,000	100,831	
Methyl Chloride	0	0		0	28,000	28,000	256,661	
1,1,2,2-Tetrachloroethane	0	0		0	1,000	1,000	9,166	
Tetrachloroethylene	0	0		0	700	700	6,417	
Toluene	0	0		0	1,700	1,700	15,583	
1,2-trans-Dichloroethylene	0	0		0	6,800	6,800	62,332	
1,1,1-Trichloroethane	0	0		0	3,000	3,000	27,499	
1,1,2-Trichloroethane	0	0		0	3,400	3,400	31,166	
Trichloroethylene	0	0		0	2,300	2,300	21,083	
Vinyl Chloride	0	0		0	N/A	N/A	N/A	
Acenaphthene	0	0		0	83	83.0	761	
Anthracene	0	0		0	N/A	N/A	N/A	
Benzidine	0	0		0	300	300	2,750	
Benzo(a)Anthracene	0	0		0	0.5	0.5	4.58	
Benzo(a)Pyrene	0	0		0	N/A	N/A	N/A	
3,4-Benzofluoranthene	0	0		0	N/A	N/A	N/A	
Benzo(k)Fluoranthene	0	0		0	N/A	N/A	N/A	
Bis(2-Chloroethyl)Ether	0	0		0	30,000	30,000	274,994	
Bis(2-Chloroisopropyl)Ether	0	0		0	N/A	N/A	N/A	
Bis(2-Ethylhexyl)Phthalate	0	0		0	4,500	4,500	41,249	
4-Bromophenyl Phenyl Ether	0	0		0	270	270	2,475	
Butyl Benzyl Phthalate	0	0		0	140	140	1,283	
2-Chloronaphthalene	0	0		0	N/A	N/A	N/A	
Chrysene	0	0		0	N/A	N/A	N/A	
Dibenzo(a,h)Anthrancene	0	0		0	N/A	N/A	N/A	
1,2-Dichlorobenzene	0	0		0	820	820	7,516	
1,3-Dichlorobenzene	0	0		0	350	350	3,208	
1,4-Dichlorobenzene	0	0		0	730	730	6,692	
3,3-Dichlorobenzidine	0	0		0	N/A	N/A	N/A	
Diethyl Phthalate	0	0		0	4,000	4,000	36,666	
Dimethyl Phthalate	0	0		0	2,500	2,500	22,916	
Di-n-Butyl Phthalate	0	0		0	110	110	1,008	
2,4-Dinitrotoluene	0	0		0	1,600	1,600	14,666	
2,6-Dinitrotoluene	0	0		0	990	990	9,075	
1,2-Diphenylhydrazine	0	0		0	15	15.0	137	
Fluoranthene	0	0		0	200	200	1,833	
Fluorene	0	0		0	N/A	N/A	N/A	
Hexachlorobenzene	0	0		0	N/A	N/A	N/A	
Hexachlorobutadiene	0	0		0	10	10.0	91.7	

				_	-			
Hexachlorocyclopentadiene	0	0		0	5	5.0	45.8	
Hexachloroethane	0	0		0	60	60.0	550	
Indeno(1,2,3-cd)Pyrene	0	0		0	N/A	N/A	N/A	
Isophorone	0	0		0	10,000	10,000	91,665	
Naphthalene	0	0		0	140	140	1,283	
Nitrobenzene	0	0		0	4,000	4,000	36,666	
n-Nitrosodimethylamine	0	0		0	17,000	17,000	155,830	
n-Nitrosodi-n-Propylamine	0	0		0	N/A	N/A	N/A	
n-Nitrosodiphenylamine	0	0		0	300	300	2,750	
Phenanthrene	0	0		0	5	5.0	45.8	
Pyrene	0	0		0	N/A	N/A	N/A	
1,2,4-Trichlorobenzene	0	0		0	130	130	1,192	
	CT (min): ###	· · · · · · · · · · · · · · · · · · ·	PMF:	1	Ana	alysis Hardne	ess (mg/l):	120.15 Analysis pH: 6.96
Pollutants	Conc (uo/L)	CV	(µg/L)	Fate Coef	(µg/L)	(µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Fluoride (PWS)	0	0		0	N/A	N/A	N/A	
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Antimony	0	0		0	220	220	7,577	
Total Arsenic	0	0		0	150	150	5,166	Chem Translator of 1 applied
Total Barium	0	0		0	4,100	4,100	141.216	
Total Boron	0	0		0	1.600	1.600	55,109	
Total Cadmium	0	0		0	0.279	0.31	10.7	Chem Translator of 0.901 applied
Total Chromium (III)	0	0		0	86 138	100	3 450	Chem Translator of 0.88 applied
Hexavalent Chromium	0	0		0	10	10.4	358	Chem Translator of 0.962 applied
Total Cobalt	0	0		0	19	19.0	654	
Total Conner	0	0		0	10.477	10.0	376	Chem Translator of 0.08 applied
Dissolved Iron		0		0	N/A	N/A	N/A	Chem Hanslator of 0.80 applied
Total Iron		0		0	1.500	1.500	51.884	WOC = 20 day average: BME = 1
Total I and		0		0	2,072	1,000	120	WGC - SU day average, FMF - 1
Total Managanasa		0		0	3.072	4.02	130 N/A	Chem Translator or 0.764 applied
Total Marganese		0		0	0.770	0.01	21.2	Cham Translater of 0.95 applied
Total Mercury		0		0	0.770	0.91	31.2	Chem Translator of 0.80 applied
I OTAL NICKEL		0		0	00.744	00.9	2,098	Chem Translator of 0.997 applied
Total Phenois (Phenolics) (PWS)	0	0		0	N/A	N/A	N/A	
Total Selenium	0	0		0	4.600	4.99	172	Chem Translator of 0.922 applied
Total Silver	0	0		0	N/A	N/A	N/A	Chem Translator of 1 applied
Total Thallium	0	0		0	13	13.0	448	
Total Zinc	0	0		0	138.020	140	4,821	Chem Translator of 0.986 applied
Acrolein	0	0		0	3	3.0	103	
Acrylonitrile	0	0.		0	130	130	4,478	
Benzene	0	0		0	130	130	4,478	

Bromoform	0	0	0	370	370	12,744	
Carbon Tetrachloride	0	0	0	560	560	19,288	
Chlorobenzene	0	0	0	240	240	8,266	
Chlorodibromomethane	0	0	0	N/A	N/A	N/A	
2-Chloroethyl Vinyl Ether	0	0	0	3,500	3,500	120,550	
Chloroform	0	0	0	390	390	13,433	
1,2-Dichloroethane	0	0	0	3,100	3,100	106,773	
1,2-Dichloropropane	0	0	0	2,200	2,200	75,774	
Methyl Chloride	0	0	0	5,500	5,500	189,436	
1,1,2,2-Tetrachloroethane	0	0	0	210	210	7,233	
Tetrachloroethylene	0	0	0	140	140	4,822	
Toluene	0	0	0	330	330	11,366	
1,2-trans-Dichloroethylene	0	0	0	1,400	1,400	48,220	
1,1,1-Trichloroethane	0	0	0	610	610	21,010	
1,1,2-Trichloroethane	0	0	0	680	680	23,421	
Trichloroethylene	0	0	0	450	450	15,499	
Vinyl Chloride	0	0	0	N/A	N/A	N/A	
Acenaphthene	0	0	0	17	17.0	586	
Anthracene	0	0	0	N/A	N/A	N/A	
Benzidine	0	0	0	59	59.0	2,032	
Benzo(a)Anthracene	0	0	0	0.1	0.1	3.44	
Benzo(a)Pyrene	0	0	0	N/A	N/A	N/A	
3,4-Benzofluoranthene	0	0	0	N/A	N/A	N/A	
Benzo(k)Fluoranthene	0	0	0	N/A	N/A	N/A	
Bis(2-Chloroethyl)Ether	0	0	0	6,000	6,000	206,657	
Bis(2-Chloroisopropyl)Ether	0	0	0	N/A	N/A	N/A	
Bis(2-Ethylhexyl)Phthalate	0	0	0	910	910	31,343	
4-Bromophenyl Phenyl Ether	0	0	0	54	54.0	1,860	
Butyl Benzyl Phthalate	0	0	0	35	35.0	1,206	
2-Chloronaphthalene	0	0	0	N/A	N/A	N/A	
Chrysene	0	0	0	N/A	N/A	N/A	
Dibenzo(a,h)Anthrancene	0	0	0	N/A	N/A	N/A	
1.2-Dichlorobenzene	0	0	0	160	160	5,511	
1,3-Dichlorobenzene	0	0	0	69	69.0	2,377	
1,4-Dichlorobenzene	0	0	0	150	150	5,166	
3,3-Dichlorobenzidine	0	0	0	N/A	N/A	N/A	
Diethyl Phthalate	0	0	0	800	800	27,554	
Dimethyl Phthalate	0	0	0	500	500	17,221	
Di-n-Butyl Phthalate	0	0	0	21	21.0	723	
2,4-Dinitrotoluene	0	0	0	320	320	11,022	
2,6-Dinitrotoluene	0	0	0	200	200	6,889	
1,2-Diphenvlhvdrazine	0	0	0	3	3.0	103	
Fluoranthene	0	0	0	40	40.0	1,378	
Fluorene	0	0	0	N/A	N/A	N/A	
Hexachlorobenzene	0	0	0	N/A	N/A	N/A	

Hexachlorobutadiene	0	0		0	2	2.0	68.9	
Hexachlorocyclopentadiene	0	0		0	1	1.0	34.4	
Hexachloroethane	0	0		0	12	12.0	413	
Indeno(1,2,3-cd)Pyrene	0	0		0	N/A	N/A	N/A	
Isophorone	0	0		0	2,100	2,100	72,330	
Naphthalene	0	0		0	43	43.0	1,481	
Nitrobenzene	0	0		0	810	810	27,899	
n-Nitrosodimethylamine	0	0		0	3,400	3,400	117,106	
n-Nitrosodi-n-Propylamine	0	0		0	N/A	N/A	N/A	
n-Nitrosodiphenylamine	0	0		0	59	59.0	2,032	
Phenanthrene	0	0		0	1	1.0	34.4	
Pyrene	0	0		0	N/A	N/A	N/A	
1.2.4-Trichlorobenzene	0	0		0	26	26.0	896	
J	I					I	I	
I THH CC	T (min): ###		PMF:	1	Ana	alvsis Hardne	ss (ma/l):	N/A Analysis pH: N/A
						,		
	oream	Stream	Trib Conc	Eate	woc	WQ Obi		
Pollutants	Conc	CV	(µg/L)	Coef	(ug/L)	(µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	(ua/l)	0	(F8)	0	500.000	500,000	N/A	
Chloride (PWS)	0	0		0	250,000	250,000	N/A	
Sulfate (PWS)	0	0		0	250,000	250,000	N/A	
Eluoride (PWS)	0	0		0	2,000	2,000	N/A	
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Antimony	0	0		0	5.6	5.6	193	
Total Arsenic	0	0		0	10	10.0	344	
Total Barium	0	0		0	2 400	2 400	82.663	
Total Boron	0	0		0	3 100	3 100	106 773	
Total Cadmium	0	0		0	N/A	N/A	N/A	
Total Chromium (III)	0	0		0	N/A	N/A	N/A	
Hexavalent Chromium	0	0		0	N/A	N/A	N/A	
Total Cobalt	0	0		0	N/A	NVA	N/A	
Total Copper	0	0		0	N/A	N/A	N/A	
Dissolved Iron	0	6		0	300	300	10.333	
Total Iron	0	6		0	N/A	N/A	N/A	
Total Lead	0	0		0	N/A	N/A	N/A	
Total Mangapasa	0			0	1,000	1,000	24 442	
Total Margunese	0	0		0	0.050	0.05	1 72	
Total Nickol	0	0		0	810	810	21.010	
Total Phonols (Phonolise) (PMIC)	0			0	8	50	21,010	
Total Selenium	0			0	U NIA	0.0 N/A	N/A	
Total Selenium	0	0		0	N/A	N/A	N/A	
Total Thellium	0	0		0	N/A	N/A	N/A 9.27	
Total Thailium	0			0	0.24	0.24	0.27	
	0	0		0	N/A	N/A	N/A	
Acrolein	0	0		0	6	6.0	207	

Acrylonitrile	0	0		0	N/A	N/A	N/A	
Benzene	0	0		0	N/A	N/A	N/A	
Bromoform	0	0		0	N/A	N/A	N/A	
Carbon Tetrachloride	0	0		0	N/A	N/A	N/A	
Chlorobenzene	0	0		0	130	130	4,478	
Chlorodibromomethane	0	0		0	N/A	N/A	N/A	
2-Chloroethyl Vinyl Ether	0	0		0	N/A	N/A	N/A	
Chloroform	0	0		0	N/A	N/A	N/A	
1,2-Dichloroethane	0	0		0	N/A	N/A	N/A	
1,2-Dichloropropane	0	0		0	N/A	N/A	N/A	
Methyl Chloride	0	0		0	N/A	N/A	N/A	
1,1,2,2-Tetrachloroethane	0	0		0	N/A	N/A	N/A	
Tetrachloroethylene	0	0		0	N/A	N/A	N/A	
Toluene	0	0		0	1,300	1,300	44,776	
1,2-trans-Dichloroethylene	0	0		0	140	140	4,822	
1,1,1-Trichloroethane	0	0		0	N/A	N/A	N/A	
1,1,2-Trichloroethane	0	0		0	N/A	N/A	N/A	
Trichloroethylene	0	0		0	N/A	N/A	N/A	
Vinyl Chloride	0	0		0	N/A	N/A	N/A	
Acenaphthene	0	0		0	670	670	23,077	
Anthracene	0	0		0	8,300	8,300	285,876	
Benzidine	0	0		0	N/A	N/A	N/A	
Benzo(a)Anthracene	0	0		0	N/A	N/A	N/A	
Benzo(a)Pyrene	0	0		0	N/A	N/A	N/A	
3,4-Benzofluoranthene	0	0		0	N/A	N/A	N/A	
Benzo(k)Fluoranthene	0	0		0	N/A	N/A	N/A	
Bis(2-Chloroethyl)Ether	0	0		0	N/A	N/A	N/A	
Bis(2-Chloroisopropyl)Ether	0	0		0	1,400	1,400	48,220	
Bis(2-Ethylhexyl)Phthalate	0	0		0	N/A	N/A	N/A	
4-Bromophenyl Phenyl Ether	0	0		0	N/A	N/A	N/A	
Butyl Benzyl Phthalate	0	0		0	150	150	5,166	
2-Chloronaphthalene	0	0		0	1,000	1,000	34,443	
Chrysene	0	0		0	N/A	N/A	N/A	
Dibenzo(a,h)Anthrancene	0	0		0	N/A	N/A	N/A	
1,2-Dichlorobenzene	0	0		0	420	420	14,466	
1,3-Dichlorobenzene	0	0		0	420	420	14,466	
1,4-Dichlorobenzene	0	0		0	420	420	14,466	
3,3-Dichlorobenzidine	0	0		0	N/A	N/A	N/A	
Diethyl Phthalate	0	0	╟┼┼┼┼	0	17,000	17,000	585,529	
Dimethyl Phthalate	0	0		0	270,000	270,000	9,299,573	
Di-n-Butyl Phthalate	0	0		0	2,000	2,000	68,886	
2,4-Dinitrotoluene	0	0		0	N/A	N/A	N/A	
2,6-Dinitrotoluene	0	0		0	N/A	N/A	N/A	
1,2-Diphenylhydrazine	0	0		0	N/A	N/A	N/A	
Fluoranthene	0	0		0	130	130	4,478	

Eluorene	0	0		0	1 100	1 100	37 997	
Hexachlorphonzono		0		0	N/A	N/A	57,007	
Hexachiorobenzene				0	N/A	N/A	NVA NVA	
Hexachiorobutadiene	0	0		0	N/A	N/A	N/A	
Hexachiorocyclopentadiene	0	0		0	40	40.0	1,378	
Hexachloroethane	0	0		0	N/A	N/A	N/A	
Indeno(1,2,3-cd)Pyrene	0	0		0	0.0038	0.004	0.13	
Isophorone	0	0		U	35	35.0	1,206	
Naphthalene	0	0.		0	N/A	N/A	N/A	
Nitrobenzene	0	0		0	17	17.0	586	
n-Nitrosodimethylamine	0	0		0	N/A	N/A	N/A	
n-Nitrosodi-n-Propylamine	0	0		0	N/A	N/A	N/A	
n-Nitrosodiphenylamine	0	0		0	N/A	N/A	N/A	
Phenanthrene	0	0		0	N/A	N/A	N/A	
Pyrene	0	0		0	830	830	28,588	
1,2,4-Trichlorobenzene	0	0		0	35	35.0	1,206	
CRL CC	T (min): 61.	292	PMF:	1	Ana	ilysis Hardne	ss (mg/l):	N/A Analysis pH: N/A
Dellutente	Steam	Stream	Trib Conc	Fate	WQC	WQ Obj		Community
Pollutants	Cone	CV	(µg/L)	Coef	(µg/L)	(µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Fluoride (PWS)	0	0		0	N/A	N/A	N/A	
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Antimony	0	0		0	N/A	N/A	N/A	
Total Arsenic	0	0		0	N/A	N/A	N/A	
Total Barium	0	0		0	N/A	N/A	N/A	
Total Boron	0	0		0	N/A	N/A	N/A	
Total Cadmium	0	0		0	N/A	N/A	N/A	
Total Chromium (III)	0	0		0	N/A	N/A	N/A	
Hexavalent Chromium	0	0		0	N/A	N/A	N/A	
Total Cobalt	0	0		0	N/A	N/A	N/A	
Total Copper	0	0		0	N/A	N/A	N/A	
Dissolved Iron	0	0		0	N/A	N/A	N/A	
Total Iron	0	0		0	N/A	N/A	N/A	
Total Lead	0	0		0	N/A	N/A	N/A	
Total Manganese	0	0		0	N/A	N/A	N/A	
Total Mercury	0	0		0	N/A	N/A	N/A	
Total Nickel	0	0		0	N/A	N/A	N/A	
Total Phenols (Phenolics) (PWS)		0		0	N/A	N/A	N/A	
Total Selenium	0			0	N/A	N/A	N/A	
Total Silver	0	0		0	N/A	N/A	N/A	
		0		0	IN/A	N/A	N/A	

Total Zinc	0	0		0	N/A	N/A	N/A	
Acrolein	0	0		0	N/A	N/A	N/A	
Acrylonitrile	0	0		0	0.051	0.051	16.2	
Benzene	0	0		0	1.2	1.2	380	
Bromoform	0	0		0	4.3	4.3	1,362	
Carbon Tetrachloride	0	0		0	0.23	0.23	72.9	
Chlorobenzene	0	0		0	N/A	N/A	N/A	
Chlorodibromomethane	0	0		0	0.4	0.4	127	
2-Chloroethyl Vinyl Ether	0	0		0	N/A	N/A	N/A	
Chloroform	0	0		0	5.7	5.7	1,806	
1,2-Dichloroethane	0	0		0	0.38	0.38	120	
1,2-Dichloropropane	0	0		0	N/A	N/A	N/A	
Methyl Chloride	0	0		0	N/A	N/A	N/A	
1,1,2,2-Tetrachloroethane	0	0		0	0.17	0.17	53.9	
Tetrachloroethylene	0	0		0	0.69	0.69	219	
Toluene	0	0		0	N/A	N/A	N/A	
1,2-trans-Dichloroethylene	0	0		0	N/A	N/A	N/A	
1,1,1-Trichloroethane	0	0		0	N/A	N/A	N/A	
1,1,2-Trichloroethane	0	0		0	0.59	0.59	187	
Trichloroethylene	0	0		0	2.5	2.5	792	
Vinyl Chloride	0	0		0	0.025	0.025	7.92	
Acenaphthene	0	0		0	N/A	N/A	N/A	
Anthracene	0	0		0	N/A	N/A	N/A	
Benzidine	0	0		0	0.000086	0.00009	0.027	
Benzo(a)Anthracene	0	0		0	0.0038	0.004	1.2	
Benzo(a)Pyrene	0	0		0	0.0038	0.004	1.2	
3,4-Benzofluoranthene	0	0		0	0.0038	0.004	1.2	
Benzo(k)Fluoranthene	0	0		0	0.0038	0.004	1.2	
Bis(2-Chloroethyl)Ether	0	0		0	0.03	0.03	9.51	
Bis(2-Chloroisopropyl)Ether	0	0		0	N/A	N/A	N/A	
Bis(2-Ethylhexyl)Phthalate	0	0		0	1.2	1.2	380	
4-Bromophenyl Phenyl Ether	0	0		0	N/A	N/A	N/A	
Butyl Benzyl Phthalate	0	0		0	N/A	N/A	N/A	
2-Chloronaphthalene	0	0		0	N/A	N/A	N/A	
Chrysene	0	0		0	0.0038	0.004	1.2	
Dibenzo(a,h)Anthrancene	0	0		0	0.0038	0.004	1.2	
1,2-Dichlorobenzene	0	0		0	N/A	N/A	N/A	
1,3-Dichlorobenzene	0	0		0	N/A	N/A	N/A	
1,4-Dichlorobenzene	0	0		0	N/A	N/A	N/A	
3,3-Dichlorobenzidine	0	0		0	0.021	0.021	6.65	
Diethyl Phthalate	0	0		0	N/A	N/A	N/A	
Dimethyl Phthalate	0	0		0	N/A	N/A	N/A	
Di-n-Butyl Phthalate	-		 					
	0	0		0	N/A	N/A	N/A	
2,4-Dinitrotoluene	0	0		0	N/A 0.05	N/A 0.05	N/A 15.8	

NPDES Permit Fact Sheet American Zinc & Chemicals Smith Township Site

1,2-Diphenylhydrazine	0	0	0	0.036	0.036	11.4	
Fluoranthene	0	0	0	N/A	N/A	N/A	
Fluorene	0	0	0	N/A	N/A	N/A	
Hexachlorobenzene	0	0	0	0.00028	0.0003	0.089	
Hexachlorobutadiene	0	0	0	0.44	0.44	139	
Hexachlorocyclopentadiene	0	0	0	N/A	N/A	N/A	
Hexachloroethane	0	0	0	1.4	1.4	444	
Indeno(1,2,3-cd)Pyrene	0	0	0	N/A	N/A	N/A	
Isophorone	0	0	0	N/A	N/A	N/A	
Naphthalene	0	0	0	N/A	N/A	N/A	
Nitrobenzene	0	0	0	N/A	N/A	N/A	
n-Nitrosodimethylamine	0	0	0	0.00069	0.0007	0.22	
n-Nitrosodi-n-Propylamine	0	0	0	0.005	0.005	1.58	
n-Nitrosodiphenylamine	0	0	0	3.3	3.3	1,046	
Phenanthrene	0	0	0	N/A	N/A	N/A	
Pyrene	0	0	0	N/A	N/A	N/A	
1,2,4-Trichlorobenzene	0	0	0	N/A	N/A	N/A	

Recommended WQBELs & Monitoring Requirements

No. Samples/Month: 4

	Mass	Limits		Concentra	Concentration Limits				
Pollutants	AML	MDL	AML	MDL	IMAX	Units	Governing	WQBEL	Comments
	(lbs/day)	(lbs/day)					WQBEL	Basis	Comments
Total Cadmium	0.0003	0.0004	10.7	16.7	26.7	µg/L	10.7	CFC	Discharge Conc ≥ 50% WQBEL (RP)
Total Copper	Report	Report	Report	Report	Report	µg/L	140	AFC	Discharge Conc > 10% WQBEL (no RP)
Total Lead	Report	Report	Report	Report	Report	µg/L	138	CFC	Discharge Conc > 10% WQBEL (no RP)
Total Zinc	0.027	0.043	1,135	1,771	2,837	µg/L	1,135	AFC	Discharge Conc ≥ 50% WQBEL (RP)

Other Pollutants without Limits or Monitoring

The following pollutants do not require effluent limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharge concentration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QL).

Pollutants	Governing WQBEL	Units	Comments
Total Dissolved Solids (PWS)	N/A	N/A	PWS Not Applicable
Chloride (PWS)	N/A	N/A	PWS Not Applicable
Bromide	N/A	N/A	No WQS
Sulfate (PWS)	N/A	N/A	PWS Not Applicable
Fluoride (PWS)	N/A	N/A	PWS Not Applicable
Total Aluminum	4,406	µg/L	Discharge Conc ≤ 10% WQBEL

Total Antimony	193	µg/L	Discharge Conc ≤ 10% WQBEL
Total Arsenic	N/A	N/A	Discharge Conc < TQL
Total Barium	82,663	µg/L	Discharge Conc ≤ 10% WQBEL
Total Beryllium	N/A	N/A	No WQS
Total Boron	47,590	µg/L	Discharge Conc ≤ 10% WQBEL
Total Chromium (III)	3,450	µg/L	Discharge Conc ≤ 10% WQBEL
Hexavalent Chromium	95.7	µg/L	Discharge Conc ≤ 10% WQBEL
Total Cobalt	558	µg/L	Discharge Conc ≤ 10% WQBEL
Total Cyanide	N/A	N/A	No WQS
Dissolved Iron	10,333	µg/L	Discharge Conc ≤ 10% WQBEL
Total Iron	51,664	µg/L	Discharge Conc ≤ 10% WQBEL
Total Manganese	34,443	µg/L	Discharge Conc ≤ 10% WQBEL
Total Mercury	1.72	µg/L	Discharge Conc ≤ 10% WQBEL
Total Nickel	2,098	µg/L	Discharge Conc ≤ 10% WQBEL
Total Phenols (Phenolics) (PWS)		µg/L	Discharge Conc < TQL
Total Selenium	172	µg/L	Discharge Conc < TQL
Total Silver	58.6	µg/L	Discharge Conc ≤ 10% WQBEL
Total Thallium	8.27	µg/L	Discharge Conc < TQL
Total Molybdenum	N/A	N/A	No WQS
Acrolein	17.6	µg/L	Discharge Conc ≤ 25% WQBEL
Acrylonitrile	16.2	µg/L	Discharge Conc < TQL
Benzene	380	µg/L	Discharge Conc < TQL
Bromoform	1,362	µg/L	Discharge Conc < TQL
Carbon Tetrachloride	72.9	µg/L	Discharge Conc ≤ 25% WQBEL
Chlorobenzene	4,478	µg/L	Discharge Conc ≤ 25% WQBEL
Chlorodibromomethane	127	µg/L	Discharge Conc < TQL
Chloroethane	N/A	N/A	No WQS
2-Chloroethyl Vinyl Ether	105,756	µg/L	Discharge Conc < TQL
Chloroform	1,806	µg/L	Discharge Conc < TQL
1,1-Dichloroethane	N/A	N/A	No WQS
1,2-Dichloroethane	120	µg/L	Discharge Conc < TQL
1,2-Dichloropropane	64,629	µg/L	Discharge Conc < TQL
1,4-Dioxane	N/A	N/A	No WQS
Methyl Chloride	164,509	µg/L	Discharge Conc ≤ 25% WQBEL
1,1,2,2-Tetrachloroethane	53.9	µg/L	Discharge Conc < TQL
Tetrachloroethylene	219	µg/L	Discharge Conc < TQL
Toluene	9,988	µg/L	Discharge Conc < TQL
1,2-trans-Dichloroethylene	4,822	µg/L	Discharge Conc < TQL
1,1,1-Trichloroethane	17,626	µg/L	Discharge Conc < TQL
1,1,2-Trichloroethane	187	µg/L	Discharge Conc < TQL
Trichloroethylene	792	µg/L	Discharge Conc < TQL
Vinyl Chloride	7.92	µg/L	Discharge Conc < TQL
Acenaphthene	488	µg/L	Discharge Conc < TQL
Acenaphthylene	N/A	N/A	No WQS
Anthracene	285,876	µg/L	Discharge Conc < TQL

Benzidine	0.027	µg/L	Discharge Conc < TQL
Benzo(a)Anthracene	1.2	µg/L	Discharge Conc < TQL
Benzo(a)Pyrene	1.2	µg/L	Discharge Conc < TQL
3,4-Benzofluoranthene	1.2	µg/L	Discharge Conc < TQL
Benzo(ghi)Perylene	N/A	N/A	No WQS
Benzo(k)Fluoranthene	1.2	µg/L	Discharge Conc < TQL
Bis(2-Chloroethoxy)Methane	N/A	N/A	No WQS
Bis(2-Chloroethyl)Ether	9.51	µg/L	Discharge Conc < TQL
Bis(2-Chloroisopropyl)Ether	48,220	µg/L	Discharge Conc < TQL
Bis(2-Ethylhexyl)Phthalate	380	µg/L	Discharge Conc < TQL
4-Bromophenyl Phenyl Ether	1,586	µg/L	Discharge Conc < TQL
Butyl Benzyl Phthalate	823	µg/L	Discharge Conc < TQL
2-Chloronaphthalene	34,443	µg/L	Discharge Conc < TQL
4-Chlorophenyl Phenyl Ether	N/A	N/A	No WQS
Chrysene	1.2	µg/L	Discharge Conc < TQL
Dibenzo(a,h)Anthrancene	1.2	µg/L	Discharge Conc < TQL
1,2-Dichlorobenzene	4,818	µg/L	Discharge Conc ≤ 25% WQBEL
1,3-Dichlorobenzene	2,056	µg/L	Discharge Conc ≤ 25% WQBEL
1,4-Dichlorobenzene	4,289	µg/L	Discharge Conc ≤ 25% WQBEL
3,3-Dichlorobenzidine	6.65	µg/L	Discharge Conc < TQL
Diethyl Phthalate	23,501	µg/L	Discharge Conc < TQL
Dimethyl Phthalate	14,688	µg/L	Discharge Conc < TQL
Di-n-Butyl Phthalate	646	µg/L	Discharge Conc < TQL
2,4-Dinitrotoluene	15.8	µg/L	Discharge Conc < TQL
2,6-Dinitrotoluene	15.8	µg/L	Discharge Conc < TQL
Di-n-Octyl Phthalate	N/A	N/A	No WQS
1,2-Diphenylhydrazine	11.4	µg/L	Discharge Conc < TQL
Fluoranthene	1,175	µg/L	Discharge Conc < TQL
Fluorene	37,887	µg/L	Discharge Conc < TQL
Hexachlorobenzene	0.089	µg/L	Discharge Conc < TQL
Hexachlorobutadiene	58.8	µg/L	Discharge Conc ≤ 25% WQBEL
Hexachlorocyclopentadiene	29.4	µg/L	Discharge Conc < TQL
Hexachloroethane	353	µg/L	Discharge Conc < TQL
Indeno(1,2,3-cd)Pyrene	0.13	µg/L	Discharge Conc < TQL
Isophorone	1,206	µg/L	Discharge Conc < TQL
Naphthalene	823	µg/L	Discharge Conc ≤ 25% WQBEL
Nitrobenzene	586	µg/L	Discharge Conc < TQL
n-Nitrosodimethylamine	0.22	µg/L	Discharge Conc < TQL
n-Nitrosodi-n-Propylamine	1.58	µg/L	Discharge Conc < TQL
n-Nitrosodiphenylamine	1,046	µg/L	Discharge Conc < TQL
Phenanthrene	29.4	µg/L	Discharge Conc < TQL
Pyrene	28,588	µg/L	Discharge Conc < TQL
1,2,4-Trichlorobenzene	764	µg/L	Discharge Conc ≤ 25% WQBEL