

Southwest Regional Office CLEAN WATER PROGRAM

Application TypeNewFacility TypeIndustrialMajor / MinorMinor

NPDES PERMIT FACT SHEET INDIVIDUAL INDUSTRIAL WASTE (IW) AND IW STORMWATER

 Application No.
 PA0256081

 APS ID
 1052606

 Authorization ID
 1377867

Applicant and Facility Information

Applicant Name	Northern Cambria Municipal Authority	Facility Name	Miller Hollow Water Treatment Facility
Applicant Address	1202 Philadelphia Avenue	Facility Address	Old Miller Road
	Northern Cambria, PA 15714-1385		Northern Cambria, PA 15714
Applicant Contact	Paul Weaver	Facility Contact	Ron Depto
Applicant Phone	(814) 948-5791	Facility Phone	(814) 948-5791
Client ID	213850	Site ID	848623
SIC Code	4941	Municipality	Susquehanna Township
SIC Description	Trans. & Utilities – Water Supply	County	Cambria
Date Application Receiv	ved November 24, 2021	EPA Waived?	Yes
Date Application Accep	ted December 10, 2021	If No, Reason	
Purpose of Application	New NPDES permit for the new dis	charge of process was	tewater from the water treatment plant.

Summary of Review

Background

The Department received a new NPDES permit application from Northern Cambria Borough Municipal Authority on November 24, 2021 for coverage of the new discharge from its Miller Hollow Water Treatment Facility in Susquehanna Township of Cambria County. The facility is a new municipal water treatment plant with an SIC Code 4941 (Water Supply).

The Miller Hollow Water Treatment Facility (WTP) was issued a PAG-02 NPDES Permit to cover the discharges of stormwater associated with construction activities on July 12, 2021. Construction of the facility is anticipated to start in May of 2022. The facility is also covered under Chapter 105 GP-4 and GP-5 Permits and a Public Water Supply Construction Permit.

Property and Operations

Miller Hollow WTP operates as a new municipal water treatment plant that treats raw water from the existing Miller Hollow Mine Source through membrane filtration. Construction of the Miller Hollow WTP is in response to a Consent Order and Agreement for violations of the Pennsylvania Safe Drinking Water Act and regulations from the Safe Drinking Water Program. Construction of the facility is anticipated to be complete by the end date of the Consent Order in July of 2024. Construction of the Miller Hollow WTP involved an earth disturbance of 5.13 acres and construction/modification of a water treatment plant, source, pump stations, transmission main and storage facility. The Miller Hollow WTP will supply drinking water to serve 4813 people through 2270 connections.

Approve	Deny	Signatures	Date
х		Lauren Nolfi, E.I.T. / Environmental Engineering Specialist	March 11, 2022
х		Michael E. Fifth, P.E. / Environmental Engineer Manager	March 11, 2022

Summary of Review

The Miller Hollow WTP is a membrane filtration plant and utilizes microfiltration and reverse osmosis technologies in its water treatment system. The treatment system includes two microfiltration units, a 5000-gallon equalization tank, a 5000-gallon microfiltration break (filtrate) tank, two reverse osmosis (RO) units, a neutralization tank, and a backwash equalization tank. Chemical treatment includes orthophosphate for corrosion inhibition, sodium bisulphite for chlorine removal, anti-scalent to prevent RO membrane scaling and fouling, citric acid softener, sodium hypochlorite for disinfection, and sodium hydroxide to control acidity and remove metals. Flux maintenance is performed at scheduled intervals to loosen and remove foulant from the membrane fibers. Finished water is used in the flush and backwash water that is discharged to a 1350-gallon backwash equalization tank.

<u>Outfalls</u>

The facility has one outfall, Outfall 001, which discharges to the Unnamed Tributary to Walnut Run, designated in 25 PA Code Chapter 93 as a Cold Water Fishery (WWF) and Migratory Fishery (MF). Outfall 001 discharges filter backwash water from the equalization tank at a design, average and maximum flow of 0.02 MGD. Outfall 001 will not begin discharging until construction of the facility is complete.

Public Participation

Northern Cambria Municipal Authority provided evidence of Act 14 municipal and county notifications to Susquehanna Township and Cambria County on October 8, 2021.

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Conclusion

Draft permit issuance is recommended.

Discharge, Receivi	ing Water	s and Water Supply Inform	ation	
Outfall No. 00 ²	1		Design Flow (MGD)	0.02
Latitude 40 ^c	^o 39' 57.89)"	Longitude	-78º 45' 53.33"
Quad Name _ E	Barnesbor	0	Quad Code	1315
Wastewater Desc	cription:	Filter backwash water from	equalization tank.	
	Unnar	med Tributary to Walnut Run		
Receiving Waters			Stream Code	27255
NHD Com ID	61837	/293	RMI	0.36
Drainage Area	2.08 n	ni²	Yield (cfs/mi ²)	0.0468
Q ₇₋₁₀ Flow (cfs)	0.097	4	Q7-10 Basis	USGS StreamStats
Elevation (ft)	1506		Slope (ft/ft)	0.012
Watershed No.	8-B		Chapter 93 Class.	CWF, MF
Existing Use			Existing Use Qualifier	
Exceptions to Use	e N/A		Exceptions to Criteria	N/A
Assessment State	us	Impaired		
Cause(s) of Impa	irment	Habitat Alterations, Siltation	n	
Source(s) of Impa	airment	Channelization, Erosion fro	om derelict land (barren land)	
TMDL Status		N/A	Name N/A	
Nearest Downstre	eam Publi	c Water Supply Intake	Indiana County Municipal Ser Cherrytree	vices Authority (ICMSA)
PWS Waters	West Bra	anch Susquehanna River	Flow at Intake (cfs)	0
PWS RMI	231		Distance from Outfall (mi)	6

Other Comments:

Miller Hollow WTP has not been inspected since it is a proposed facility. The Miller Hollow Mine Source has a Consent Order and Agreement for violations of the Pennsylvania Safe Drinking Water Act and regulations from the Safe Drinking Water Program.

The client has no open violations.

The USGS Stream Stats Data for the drainage area is displayed in Attachment A.

Development of Effluent Limitations

Outfall No.	001		Design Flow (MGD)	0.02
Latitude	40º 39' 57.89	п	Longitude	-78º 45' 53.33"
Wastewater De	escription:	Filter backwash water from equalizati	on tank.	

Technology-Based Limitations (TBELs)

Miller Hollow Water WTP is not subject to Federal Effluent Limitation Guidelines (ELGs) as the SIC code is not listed under 40 CFR parts 405 through 471.

Regulatory Effluent Standards and Monitoring Requirements

Flow monitoring is required pursuant to 25 Pa. Code § 92a.61(d)(1) as indicated in Table 1.

Effluent standards for pH pursuant to 25 Pa. Code § 92a.48(a)(2) and 25 Pa. Code § 95.2(1), as indicated in Table 1, are also imposed on all industrial wastes.

Pennsylvania regulations at 25 Pa. Code § 92a.48(b) require the imposition of technology-based TRC limits for facilities that use chlorination and that are not already subject to TRC limits based on applicable federal ELGs or a facility-specific BPJ evaluation as indicated in Table 1.

Ta	able 1: Regulatory Eff	luent Standards	
Parameter	Monthly Average	Daily Maximum	IMAX
Flow (MGD)	Monitor	Monitor	
pH (S.U.)	Not less than 6.0 no	r greater than 9.0 at all times	
Total Residual Chlorine	0.5 mg/l	1.0 mg/l	1.6 mg/l

Best Practicable Control Technology Currently Achievable (BPT)

BPT for wastewater from treatment of water treatment plant (WTP) sludges and filter backwash is found in DEPs Technology-Based Control Requirements for Water Treatment Plant Wastes Document which recommends effluent limitations be imposed under Best Professional Judgement in accordance with 40 CFR § 125.3, and detailed in Table 2.

Table 2: BPT Limits for W	TP sludge and filter backwas	sh wastewater
Parameter	Monthly Average (mg/L)	Daily Maximum (mg/L)
Total Suspended solids	30.0	60.0
Total Iron	2.0	4.0
Total Aluminum	4.0	8.0
Total Manganese	1.0	2.0
Flow (MGD)	Monitor an	d Report
pH (S.U.)	Not less than 6.0 nor grea	ater than 9.0 at all times
Total Residual Chlorine	0.5 mg/l	1.0 mg/l

Water Quality-Based Effluent Limitations (WQBELs)

Toxics Management Analysis

The Department's Toxics Management Spreadsheet (TMS) was utilized to facilitate calculations necessary for completing a reasonable potential analysis and determine Water Quality-Based Effluent Limitations (WQBELs) for discharges containing toxic pollutant concentrations. TMS combines the functionality of two (2) of the Department's analysis tools, Toxics Screening Analysis Spreadsheet and PENTOXSD water quality model.

DEP's procedures for evaluating reasonable potential are as follows:

- 1. For IW discharges, the design flow to use in modeling is the average flow during production or operation and may be taken form the permit application.
- 2. Perform a Toxics Screening Analysis to identify toxic pollutants of concern. All toxic pollutants, as reported in the permit application or on DMRs, are modeled by the TMS to determine the parameters of concern. [This includes pollutants reported as "Not Detectable" or as "<MDL" where the method detection limit for the analytical method used by the applicant is greater than the most stringent water quality criterion].
 - Establish limits in the draft permit where the maximum reported concentration equals or exceeds 50% of the WQBEL. Use the average monthly and maximum daily limits for the permit as recommended by TMS. Establish an IMAX limit at 2.5 times the average monthly limit.
 - For non-conservative pollutants, establish monitoring requirements where the maximum reported concentration is between 25% 50% of the WQBEL.
 - For conservative pollutants, establish monitoring requirements where the maximum reported concentration is between 10% 50% of the WQBEL.

Discharges from Outfall 001 are evaluated based on concentrations reported on the application and contained in the DMRs; data from those sources are used as inputs into the TMS. A summary of TMS Inputs is contained in Tables 3 and 4 below.

Table 3: TMS Design	Inputs
Parameter	Value
Design Flow (MGD)	0.2
Hardness (mg/L)	575
pH (S.U.)	7.79
Partial Mix Factors	(PMFs)
AFC	calc.
CFC	calc.
ТНН	calc.
CRL	calc.
Complete Mix Tir	nes
Q ₇₋₁₀ (min)	calc.
Q _h (min)	calc.

Table 4: TMS Stream I	nputs
Parameter	Value
Stream Code	27255
RMI	0.36
Elevation	1506
Drainage Area (mi ²)	2.08
Slope (ft/ft)	0.12
PWS Withdrawal (MGD)	
Apply Fish Criteria	Yes
Low Flow Yield (cfs/mi ²)	0.0468
Stream Flow (cfs)	0.0974
Tributary Flow (cfs)	N/A
Width (ft)	
Stream Hardness (mg/L)	100
Stream pH (S.U.)	7

Based on the recommendations of the TMS, no WQBELs are recommended at Outfall 001. Analysis Report from the TMS run is included in Attachment B.

Total Residual Chlorine

To determine if WQBELs are required for discharges containing total residual chlorine (TRC), a discharge evaluation is performed using a DEP program called TRC_CALC created with Microsoft Excel for Windows. TRC_CALC calculates TRC Waste Load Allocations (WLAs) through the application of a mass balance model which considers TRC losses due to stream and discharge chlorine demands and first-order chlorine decay. Input values for the program include flow rates and discharge chlorine demands for the receiving stream, the number of samples taken per month, coefficients of TRC variability, partial mix factors, and an optional factor of safety. The mass balance model calculates WLAs for acute and chronic criteria that are then converted to long term averages using calculated multipliers. The multipliers are functions of the number of samples taken per month and the TRC variability coefficients (normally kept at default values unless site specific information is available). The most stringent limitation between the acute and chronic long-term averages is converted to an average monthly limit for comparison to the BAT average monthly limit of 0.5 mg/L from 25 Pa. Code § 92a.48(b)(2). The more stringent of these average monthly TRC limitations is then proposed. The results of the modeling, included in Attachment C, identify that BAT is the most stringent criteria for TRC at an average monthly limit of 0.5 mg/L. The maximum daily limit is 2 times the average monthly limit resulting in a 1.0 mg/L limit for maximum daily.

Anti-Backsliding

Miller Hollow WTP was not previously covered under an NPDES permit since the facility is a new discharge.

Effluent Limitations and Monitoring Requirements

Effluent limitations and monitoring requirements applicable at Outfall 001 are the most stringent of TBELs, WQBELs, and regulatory effluent standards and monitoring requirements, as summarized below in Table 5. The applicable limits and monitoring requirements provided below are based on those in Tables 1-4 of this Fact Sheet.

	Table 5: Ef	fluent Limits	and Monitoring R	equirements – Out	fall 001	
	Ма	ISS	Concer	ntration	Monitoring R	equirements
Parameter	Average Monthly	Daily Maximum	Average Monthly (mg/L)	Daily Maximum (mg/L)	Monitoring Frequency	Sample Type
Flow (MGD)	Monitor	& Report			2/ month	Measured
Total Residual Chlorine	-	-	0.5	1.0	2/ month	Grab
Total Suspended Solids	-	-	30.0	60.0	2/ month	Grab
Aluminum, total	-	-	4.0	8.0	2/ month	Grab
Iron, total	-	-	2.0	4.0	2/ month	Grab
Manganese, total	-	-	1.0	2.0	2/ month	Grab
pH (S.U.)	-	-	Not less than 6.0	nor greater than	2/ month	Grab

Tools and References Used to Develop Permit
WQM for Windows Model (see Attachment
Toxics Management Spreadsheet (see Attachment B)
TRC Model Spreadsheet (see Attachment C)
Temperature Model Spreadsheet (see Attachment)
Water Quality Toxics Management Strategy, 361-0100-003, 4/06.
Technical Guidance for the Development and Specification of Effluent Limitations, 362-0400-001, 10/97.
Policy for Permitting Surface Water Diversions, 362-2000-003, 3/98.
Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 362-2000-008, 11/96.
Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97.
Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 362-2183-004, 12/97.
Pennsylvania CSO Policy, 385-2000-011, 9/08.
Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.
Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 391-2000-002, 4/97.
Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97.
Implementation Guidance Design Conditions, 391-2000-006, 9/97.
Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004.
Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges,
391-2000-008, 10/1997.
Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 391-2000-010, 3/99.
Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 391-2000-011, 5/2004.
Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97.
Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 391-2000-014, 4/2008.
Implementation Guidance Total Residual Chlorine (TRC) Regulation, 391-2000-015, 11/1994.
Implementation Guidance for Temperature Criteria, 391-2000-017, 4/09.
Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/97.
Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97.
Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 391-2000-021, 3/99.
Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/1999.
Design Stream Flows, 391-2000-023, 9/98.
Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 391-2000-024, 10/98.
Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97.
Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.
SOP:
Other:

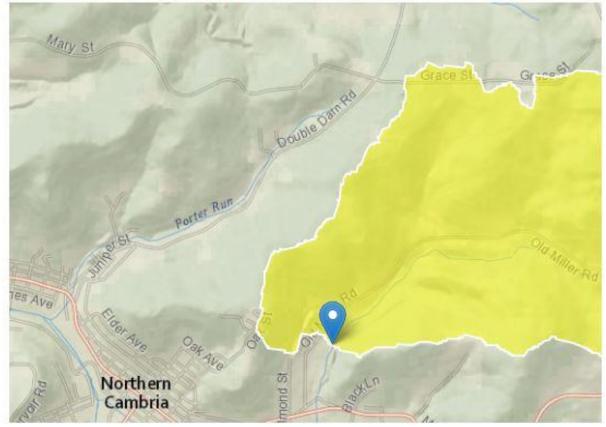
Attachments

Attachment A: USGS StreamStats Report

Attachment B: Toxics Management Spreadsheet Model Output

Attachment C: TRC Modeling Results

ATTACHMENT A: USGS StreamStats Report


StreamStats Report

 Region ID:
 PA

 Workspace ID:
 PA20220223191743688000

 Clicked Point (Latitude, Longitude):
 40.66602, -78.76470

 Time:
 2022-02-23 14:18:12 -0500

Basin Charad	clensues		
Parameter			
Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a	2.08	square
	stream		miles

Code	Parameter Description	Value	Unit
ELEV	Mean Basin Elevation	1818	feet
PRECIP	Mean Annual Precipitation	43	inches

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	2.08	square miles	2.33	1720
ELEV	Mean Basin Elevation	1818	feet	898	2700
PRECIP	Mean Annual Precipitation	43	inches	38.7	47.9

Low-Flow Statistics Disclaimers [Low Flow Region 3]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors

Low-Flow Statistics Flow Report [Low Flow Region 3]

Statistic	Value	Unit
7 Day 2 Year Low Flow	0.239	ft^3/s
30 Day 2 Year Low Flow	0.346	ft^3/s
7 Day 10 Year Low Flow	0.0974	ft^3/s
30 Day 10 Year Low Flow	0.137	ft^3/s
90 Day 10 Year Low Flow	0.205	ft^3/s

Low-Flow Statistics Citations

Stuckey, M.H.,2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p. (http://pubs.usgs.gov/sir/2006/5130/)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Application Version: 4.7.0 StreamStats Services Version: 1.2.22 NSS Services Version: 2.1.2

ATTACHMENT B: Toxics Management Spreadsheet Model Output

Discharge Information

Toxics Management Spreadsheet Version 1.3, March 2021

nstructions Discharge Stream Outfall No.: 001 Facility: Miller Hollow Water Treatment Plant NPDES Permit No.: PA0256081 Evaluation Type: Major Sewage / Industrial Waste Wastewater Description: Filter backwash water **Discharge Characteristics** Partial Mix Factors (PMFs) Complete Mix Times (min) **Design Flow** Hardness (mg/l)* pH (SU)* (MGD)* AFC CFC THH CRL Q7-10 Qh 575 0.2 7.79 0 if left blank 0 if left blank 0.5 if left blank 1 if left blank Max Discharge Trib Stream Daily Hourly Strea Fate Criteri Chem **Discharge Pollutant** Units FOS Conc Conc Conc CV CV m CV Coeff a Mod Transl Total Dissolved Solids (PWS) 676 mg/L mg/L Chloride (PWS) 17.8 Group Bromide mg/L 0.4 Sulfate (PWS) 312 mg/L Fluoride (PWS) mg/L 2 0.0467 Total Aluminum µg/L Total Antimony 0.001 µg/L Total Arsenic 0.0015 µg/L Total Barium 0.0213 µg/L Total Beryllium µg/L 0.0005 Total Boron 0.0682 µg/L Total Cadmium µg/L 0.0005 Total Chromium (III) 0.00199 µg/L Hexavalent Chromium 0.00025 µg/L Total Cobalt 0.0004 µg/L Total Copper Hg/L 0.0025 N Free Cyanide Hg/L Group Total Cyanide 0.01 µg/L 0.02 Dissolved Iron µg/L Total Iron µg/L 1.1 Total Lead µg/L 0.0002 0.0097 Total Manganese Hg/L Total Mercury Hg/L 0.0002 Total Nickel Hg/L 0.006 Total Phenois (Phenolics) (PWS) µg/L 0.005 Total Selenium 0.0125 µg/L Total Silver 0.000274 µg/L Total Thallium 0.0001 µg/L Total Zinc 0.0123 µg/L Total Molybdenum Hg/L 0.0001 Acrolein µg/L Acrylamide µg/L 1 Acrylonitrile < Hg/L Benzene µg/L < Bromoform <

Discharge Information

2/24/2022

µg/L

Page 1

		12 100010	_	- Pass	 <u> </u>	10 0			r	
	Carbon Tetrachloride	µg/L	<			Ĩ				
	Chlorobenzene	µg/L	<		2		(
	Chlorodibromomethane	µg/L	<			1	1			
	Chloroethane	µg/L	<		2					
	2-Chloroethyl Vinyl Ether	µg/L	<							
	Chloroform	µg/L	<			10 1	1 20		1 1	
	Dichlorobromomethane	µg/L	<				s 19		0	
	1.1-Dichloroethane	µg/L	<				- 7		s - 6	
	1.2-Dichloroethane		<		 2 21 21	80 9	s 18		2 12	
3		µg/L	-	<u>.</u>		2 3				
Group	1,1-Dichloroethylene	µg/L	<				2 15		2 10	
ž.	1,2-Dichloropropane	µg/L	<				1 - S		1	
-	1,3-Dichloropropylene	µg/L	<							
	1,4-Dioxane	µg/L	<		2					
	Ethylbenzene	µg/L	<							
	Methyl Bromide	µg/L	<			8 3	1 2			
	Methyl Chloride	µg/L	<							
	Methylene Chloride	µg/L	<	3	S	3 3	((ž		1 A	
	1,1,2,2-Tetrachloroethane	µg/L	<							
	Tetrachloroethylene	µg/L	<				- <u>7</u>		6 - 4	
	Toluene	µg/L	<		2 30	20 5	5 10		S 0.	
	1,2-trans-Dichloroethylene	µg/L µg/L	<			100			1	
	1,1,1-Trichloroethane				 -	12				
		µg/L	<				4		1	
	1,1,2-Trichloroethane	µg/L	<				-			
	Trichloroethylene	µg/L	<			1				
	Vinyl Chloride	µg/L	<							
	2-Chlorophenol	µg/L	\sim	S	S	8 3	(- (ŝ	}		
	2,4-Dichlorophenol	µg/L	<		S					
	2,4-Dimethylphenol	µg/L	<			<u></u>	° î			
	4.6-Dinitro-o-Cresol	µg/L	<	2	() ()	22 3	(K		16 V	
4	2.4-Dinitrophenol	µg/L	<			100	• ~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		-	
Group 4	2-Nitrophenol	µg/L	<			2 2	e 38		0	
5	4-Nitrophenol	µg/L	<						-	
0			<				e		1	
	p-Chloro-m-Cresol	µg/L	<				<u>a 3</u> 2		10	
	Pentachlorophenol	µg/L	-						6 5	
	Phenol	µg/L	۲	61		S 2	k (8	-	S (1	
_	2,4,6-Trichlorophenol	µg/L	<		 					
	Acenaphthene	µg/L	<							
	Acenaphthylene	µg/L	<	8		8 1	1			
	Anthracene	µg/L	<			1				
	Benzidine	µg/L	<			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 3			
	Benzo(a)Anthracene	µg/L	<							
	Benzo(a)Pyrene	µg/L	<			12 1	1 - 21		1	
	3.4-Benzofluoranthene	µg/L	<				-			
	Benzo(ghi)Perylene	µg/L	<		3 3	1	20			
	Benzo(k)Fluoranthene	µg/L	<			-	s 19		2	
			<				- 2 8		8 6	
	Bis(2-Chloroethoxy)Methane	µg/L					2 18		2 10	
	Bis(2-Chloroethyl)Ether	µg/L	<							
	Bis(2-Chloroisopropyl)Ether	µg/L	<				2			
	Bis(2-Ethylhexyl)Phthalate	µg/L	<		S	6	1 S		1 1	
	4-Bromophenyl Phenyl Ether	µg/L	<							
	Butyl Benzyl Phthalate	µg/L	<		<u> </u>					
	2-Chloronaphthalene	µg/L	<							
	4-Chlorophenyl Phenyl Ether	µg/L	<			8 1				
	Chrysene	µg/L	<							
	Dibenzo(a,h)Anthrancene	µg/L	1			3	((d.		1 1	
	1.2-Dichlorobenzene	µg/L	<							
	1.3-Dichlorobenzene	µg/L	<			12 A	, 3		6 - 4	
	1,4-Dichlorobenzene		<		2	20 5	5 0.5		8 18	
2		µg/L	_				<u> </u>			
Group	3,3-Dichlorobenzidine	µg/L	<							
25	Diethyl Phthalate	µg/L	<							
-	Dimethyl Phthalate	µg/L	<				-			
	Di-n-Butyl Phthalate	µg/L	<				1 3			
	2,4-Dinitrotoluene	µg/L	<							

Discharge Information

2/24/2022

Page 2

2,6-	Dinitrotoluene	µg/L	<					8	¢	8	6		
Di-n	-Octyl Phthalate	µg/L	<			1							
1.2-	Diphenylhydrazine	µg/L				§ ?				46 - B	1 9		
	pranthene	µg/L	<	11 I				N 3		Q	6 8		
-	orene	µg/L	<	-		<u>i</u>		9 3		× 1	6 - X		
-	achlorobenzene	µg/L	<	1 1		2		a - 3		80 S	6 18		
	achlorobutadiene	µg/L	<	3			-		-	()) ()			
			~							e -			
	achlorocyclopentadiene	µg/L	<					a		8	6		
-	achioroethane	µg/L	-				-	-		1.1			
	eno(1,2,3-cd)Pyrene	µg/L	<	2 <u>-</u>	-	-		<u>1</u>		8	6 3		
	phorone	µg/L	<			1							
	hthalene	µg/L	<	M 8		<u> </u>		3 <u>1</u> - 3		S - 2	k 18		
Nitre	obenzene	µg/L	<			ξ				0 3			
n-N	itrosodimethylamine	µg/L	<							1	1		
n-N	itrosodi-n-Propylamine	µg/L	<			ŝ		4 3			1 1		
n-N	itrosodiphenylamine	µg/L	<										
Phe	nanthrene	µg/L	~			š. – 1					1 3		
Pyre	ene	µg/L	<			5				1			
1.2.	4-Trichlorobenzene	µg/L	<						-	S	1 0		
Aldr		µg/L	<			2							
	a-BHC	µg/L	<			3 3		1		\$ 3	6 8		
	a-BHC	µg/L	<										
6	nma-BHC	µg/L	<	<u>e</u>		2		1 (-	12 B	6 - X		
~	a BHC	µg/L	<					QU - 2		શ્ર ક	5 13		
_	ordane		<					<u>i</u>	-	82 3			
		µg/L					<u> </u>		-				
	DDT	µg/L	<				-	9 <u>.</u>		<u>1</u>	1 2		
	DDE	µg/L	<			<u> </u>					-		
	DDD	µg/L	<	1				1			1 3		
Diel		µg/L	<			ŝ							
alph	na-Endosulfan	µg/L	<	8		<u> </u>		8 3		Si 3	6 8		
beta	a-Endosulfan	µg/L	<			ŝ							
End	losulfan Sulfate	µg/L	<			1					1		
End	Irin	µg/L				S - 1		3 S		8	£ 8		
End	Irin Aldehyde	µg/L	<			2		-		2 · · · ·	Î		
Hep	tachlor	µg/L	<							£. 3	1 3		
Hep	tachlor Epoxide	µg/L	<			5							
	3-1016	µg/L	<	1				1 3		8 3			
PCF	3-1221	µg/L	<	-		1	-						
_	3-1232	µg/L	<					di di		10 1	0		
1.00	3-1242	µg/L	<	51 E				61 - 6		S1	S 10		
	3-1248	µg/L		-				1 1	-	45 - A	2 4		
1.1.1	3-1254		~					21 - 2		201	2 13		
	0.05.47124	µg/L			-	<u> </u>				8			
	8-1260	µg/L	<					01 - 0		201 3	2 13		
	Bs, Total	µg/L	<			-	-		-	6			
_	aphene	µg/L	<		-	2							
	7,8-TCDD	ng/L	<			÷				8 3			
-	ss Alpha	pCi/L				1							
_	al Beta	pCi/L	<		-	()		1		8	3		
Rad	lium 226/228	pCi/L	<										
Tota	al Strontium	µg/L	1	1		ş		3 - B	-	3	£ - 8		
Tota	al Uranium	µg/L	<			ŝ.,							
Osn	notic Pressure	mOs/kg								2	1		
		1				3		3 - 3		않 응	5 8	3	
						3							
		1				2				8 3	1 3		
						2					-		
		1 1						<u>.</u>			·		-
6			-					-	-	10			
-		15 24	-	-		-		1 2		50 - 1 851 - 8	1 2		5
		25. 70	_	811 - E		2		41 - 3		6) 3	s 6		
_		12 50		6				÷ 3		12 B	2 2		2
		1				<u> </u>		Q		8 B	6 8		2
										8		E	

Discharge Information

2/24/2022

Page 3

Toxics Management Spreadsheet Version 1.3, March 2021

Stream / Surface Water Information

Miller Hollow Water Treatment Plant, NPDES Permit No. PA0256081, Outfall 001

Instructions Discharge Stream

Receiving Surface Water Name: Unnamed Tributary to Walnut Run

No. Reaches to Model: 1

Statewide Criteria
 Great Lakes Criteria

O ORSANCO Criteria

Location	Stream Code*	RMI*	Elevation (ft)*	DA (mi ²)*	Slope (ft/ft)	PWS Withdrawal (MGD)	Apply Fish Criteria*
Point of Discharge	027255	0.36	1506	2	0.12		Yes
End of Reach 1	027255	0	1483	2.19			Yes

Q 7-10

Location	RMI	LFY	Flow	(cfs)	W/D	Width	Depth	Velocit	Time	Tributa	ary	Stream	m	Analys	is
Location	EXIVIE	(cfs/mi ²)*	Stream	Tributary	Ratio	(ft)	(ft)	y (fps)	(dave)	Hardness	pН	Hardness*	pH*	Hardness	pH
Point of Discharge	0.36	0.0468	0.0974			i i	2	· · · · · ·				100	7		
End of Reach 1	0	0.0466	0.102		-	S 3	í.	2				100	7		2

Qn

Location	RMI	LFY	Flow	(cfs)	W/D	Width	Depth	Velocit	Time	Tributa	ary	Stream	m	Analys	is
Location	P.IVII	(cfs/mi ²)	Stream	Tributary	Ratio	(ft)	(ft)	y (fps)	(dave)	Hardness	pН	Hardness	pH	Hardness	pН
Point of Discharge	0.36					11	2	· · · · · · ·					63.00		1.56.0
End of Reach 1	0		5			8		2							2 - X

Toxics Management Spreadsheet Version 1.3, March 2021

Model Results

Miller Hollow Water Treatment Plant, NPDES Permit No. PA0256081, Outfall 001

ructions Results	Current	TO INPU		SAVE AS		PRIN	T O A	All 🔾 Inputs 🔿 Results 🔿 Limits
Hydrodynamics								
Wasteload Allocations								
AFC CC	Г (min): 0.	012	PMF:	1	Anal	ysis Hardne	ss (mg/l):	461.27 Analysis pH: 7.44
				- 120-0	n 1992-00 V 1992-00	·		
Pollutants	Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Fluoride (PWS)	0	0		0	N/A	N/A	N/A	
Total Aluminum	0	0		0	750	750	986	
Total Antimony	0	0		0	1,100	1,100	1,446	
Total Arsenic	0	0		0	340	340	447	Chem Translator of 1 applied
Total Barium	0	0		0	21,000	21,000	27,611	
Total Boron	0	0		0	8,100	8,100	10,650	
Total Cadmium	0	0		0	8.882	10.1	13.3	Chem Translator of 0.88 applied
Total Chromium (III)	0	0		0	1992.850	6,306	8,292	Chem Translator of 0.316 applied
Hexavalent Chromium	0	0		0	16	16.3	21.4	Chem Translator of 0.982 applied
Total Cobalt	0	0		0	95	95.0	125	
Total Copper	0	0		0	56.748	59.1	77.7	Chern Translator of 0.96 applied
Dissolved Iron	0	0		0	N/A	N/A	N/A	
Total Iron	0	0		0	N/A	N/A	N/A	
Total Lead	0	0		0	324.843	572	752	Chem Translator of 0.568 applied
Total Manganese	0	0		0	N/A	N/A	N/A	
Total Mercury	0	0		0	1.400	1.65	2.17	Chem Translator of 0.85 applied
Total Nickel	0	0		0	1706.756	1,710	2,249	Chem Translator of 0.998 applied
Total Phenols (Phenolics) (PWS)	0	0		0	N/A	N/A	N/A	
Total Selenium	0	0		0	N/A	N/A	N/A	Chem Translator of 0.922 applied
Total Silver	0	0		0	44.609	52.5	69.0	Chem Translator of 0.85 applied
Total Thallium	0	0		0	65	65.0	85.5	
Total Zinc	0	0		0	427,982	438	575	Chem Translator of 0.978 applied

CFC CC	T (min): 0.	.012	PMF:	1	Ana	ilysis Hardni	ess (mg/l):	461.27 Analysis pH: 7.44
Pollutants	Conc (ug/l.)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Fluoride (PWS)	0	0		0	N/A	N/A	N/A	
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Antimony	0	0		0	220	220	289	
Total Arsenic	0	0		0	150	150	197	Chem Translator of 1 applied
Total Barium	0	0		0	4,100	4,100	5,391	
Total Boron	0	0		0	1,600	1,600	2,104	
Total Cadmium	0	0		0	0.710	0.84	1.1	Chem Translator of 0.845 applied
Total Chromium (III)	0	0		0	259.229	301	396	Chem Translator of 0.86 applied
Hexavalent Chromium	0	0		0	10	10.4	13.7	Chem Translator of 0.962 applied
Total Cobalt	0	0		0	19	19.0	25.0	
Total Copper	0	0		0	33.071	34.4	45.3	Chem Translator of 0.96 applied
Dissolved Iron	0	0		0	N/A	N/A	N/A	
Total Iron	0	0		0	1,500	1,500	1,972	WQC = 30 day average; PMF = 1
Total Lead	0	0		0	12.659	22.3	29.3	Chem Translator of 0.568 applied
Total Manganese	0	0		0	N/A	N/A	N/A	
Total Mercury	0	0		0	0.770	0.91	1.19	Chem Translator of 0.85 applied
Total Nickel	0	0		0	189.568	190	250	Chem Translator of 0.997 applied
otal Phenols (Phenolics) (PWS)	0	0		0	N/A	N/A	N/A	
Total Selenium	0	0		0	4,600	4.99	6.56	Chem Translator of 0.922 applied
Total Silver	0	0		0	N/A	N/A	N/A	Chem Translator of 1 applied
Total Thallium	0	0		0	13	13.0	17.1	
Total Zinc	0	0		0	431,483	438	575	Chem Translator of 0.986 applied
⊘ THH CC	T (min): 0.	012	PMF:	1		Ilysis <mark>Hardn</mark> e	ess (mg/l):	N/A Analysis pH: N/A
Pollutants	Conc (uoll.)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	500,000	500,000	N/A	2
Chloride (PWS)	0	0		0	250,000	250,000	N/A	
Sulfate (PWS)	0	0		0	250,000	250,000	N/A	
Fluoride (PWS)	0	0		0	2,000	2,000	N/A	
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Antimony	0	0		0	5.6	5.6	7.36	
Total Arsenic	0	0		0	10	10.0	13.1	
Total Barium	0	0		0	2,400	2,400	3,156	
Total Boron	0	0		0	3,100	3,100	4,076	
Total Cadmium	0	0		0	N/A	N/A	N/A	5 5
Total Chromium (III)	0	0		0	N/A	N/A	N/A	

		1				1	T	
Hexavalent Chromium	0	0		0	N/A	N/A	N/A	
Total Cobalt	0	0		0	N/A	N/A	N/A	
Total Copper	0	0		0	N/A	N/A	N/A	
Dissolved Iron	0	0		0	300	300	394	
Total Iron	0	0		0	N/A	N/A	N/A	
Total Lead	0	0	2	0	N/A	N/A	N/A	
Total Manganese	0	0		0	1,000	1,000	1,315	
Total Mercury	0	0		0	0.050	0.05	0.066	
Total Nickel	0	0		0	610	610	802	
Total Phenols (Phenolics) (PWS)	0	0		0	5	5.0	N/A	
Total Selenium	0	0		0	N/A	N/A	N/A	
Total Silver	0	0		0	N/A	N/A	N/A	
Total Thallium	0	0		0	0.24	0.24	0.32	
Total Zinc	0	0		0	N/A	N/A	N/A	
CCI CCI	f (min): 0. Suream Conc	059 Stream	PMF: Trib Conc	1 Fate	WQC	alysis Hardne WQ Obj	wLA (µg/L)	N/A Analysis pH: N/A
	(un/L)	CV	(µg/L)	Coef	(µg/L)	(µg/L)	MEA (Pg/L)	Commenta
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Fluoride (PWS)	0	0		0	N/A	N/A	N/A	
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Antimony	0	0		0	N/A	N/A	N/A	
Total Arsenic	0	0		0	N/A	N/A	N/A	
Total Barium	0	0		0	N/A	N/A	N/A	
Total Boron	0	0		0	N/A	N/A	N/A	
Total Boron Total Cadmium	0	0		0		CA 2(2)/00	N/A N/A	
	12 J	1			N/A	N/A		
Total Cadmium	0	0		0	N/A N/A	N/A N/A	N/A	
Total Cadmium Total Chromium (III)	0	0		0	N/A N/A N/A	N/A N/A N/A	N/A N/A	
Total Cadmium Total Chromium (III) Hexavalent Chromium	0	0 0 0		0 0 0	N/A N/A N/A N/A	N/A N/A N/A N/A	N/A N/A N/A	
Total Cadmium Total Chromium (III) Hexavalent Chromium Total Cobalt	0 0 0 0 0	0 0 0 0 0		0 0 0 0 0	N/A N/A N/A N/A	N/A N/A N/A N/A	N/A N/A N/A N/A	
Total Cadmium Total Chromium (III) Hexavalent Chromium Total Cobalt Total Copper	0 0 0 0	0 0 0 0 0 0 0		0 0 0 0	N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A	
Total Cadmium Total Chromium (III) Hexavalent Chromium Total Cobalt Total Copper Dissolved Iron	0 0 0 0 0	0 0 0 0 0		0 0 0 0 0	N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A	
Total Cadmium Total Chromium (III) Hexavalent Chromium Total Cobalt Total Copper Dissolved Iron Total Iron Total Lead	0 0 0 0 0 0	0 0 0 0 0 0		0 0 0 0 0	N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A	
Total Cadmium Total Chromium (III) Hexavalent Chromium Total Cobalt Total Copper Dissolved Iron Total Iron Total Iron Total Lead Total Manganese	0 0 0 0 0 0 0	0 0 0 0 0 0 0 0		0 0 0 0 0 0	N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A	
Total Cadmium Total Chromium (III) Hexavalent Chromium Total Cobalt Total Copper Dissolved Iron Total Iron Total Lead	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0		0 0 0 0 0 0 0 0	N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A N/A	
Total Cadmium Total Chromium (III) Hexavalent Chromium Total Cobalt Total Copper Dissolved Iron Total Iron Total Iron Total Lead Total Manganese Total Manganese Total Mercury Total Nickel	0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0		0 0 0 0 0 0 0 0	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A N/A N/A	
Total Cadmium Total Chromium (III) Hexavalent Chromium Total Cobalt Total Copper Dissolved Iron Total Iron Total Iron Total Lead Total Manganese Total Mercury	0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0		0 0 0 0 0 0 0 0 0 0 0	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A N/A N/A	
Total Cadmium Total Chromium (III) Hexavalent Chromium Total Cobalt Total Copper Dissolved Iron Total Iron Total Iron Total Lead Total Manganese Total Manganese Total Mercury Total Nickel Total Phenols (Phenolics) (PWS) Total Selenium	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	
Total Cadmium Total Chromium (III) Hexavalent Chromium Total Cobalt Total Copper Dissolved Iron Total Iron Total Iron Total Lead Total Manganese Total Manganese Total Mercury Total Nickel Total Phenols (Phenolics) (PWS)	0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	

Recommended WQBELs & Monitoring Requirements

No. Samples/Month: 4

	Mass	Limits		Concentra	tion Limits				
Pollutants	AML (lbs/day)	MDL (lbs/day)	AML	MDL	IMAX	Units	Governing WQBEL	WQBEL Basis	Comments

Other Pollutants without Limits or Monitoring

The following pollutants do not require effluent limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharge concentration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QL).

Pollutants	Governing WQBEL	Units	Comments
Total Dissolved Solids (PWS)	N/A	N/A	PWS Not Applicable
Chloride (PWS)	N/A	N/A	PWS Not Applicable
Bromide	N/A	N/A	No WQS
Sulfate (PWS)	N/A	N/A	PWS Not Applicable
Fluoride (PWS)	N/A	N/A	PWS Not Applicable
Total Aluminum	750	µg/L	Discharge Conc ≤ 10% WQBEL
Total Antimony	7.36	µg/L	Discharge Conc ≤ 10% WQBEL
Total Arsenic	13.1	µg/L	Discharge Conc ≤ 10% WQBEL
Total Barium	3,156	µg/L	Discharge Conc ≤ 10% WQBEL
Total Beryllium	N/A	N/A	No WQS
Total Boron	2,104	µg/L	Discharge Conc ≤ 10% WQBEL
Total Cadmium	1.1	µg/L	Discharge Conc ≤ 10% WQBEL
Total Chromium (III)	396	µg/L	Discharge Conc ≤ 10% WQBEL
Hexavalent Chromium	13.7	µg/L	Discharge Conc ≤ 10% WQBEL
Total Cobalt	25.0	µg/L	Discharge Conc ≤ 10% WQBEL
Total Copper	45.3	µg/L	Discharge Conc ≤ 10% WQBEL
Total Cyanide	N/A	N/A	No WQS
Dissolved Iron	394	µg/L	Discharge Conc ≤ 10% WQBEL
Total Iron	1,972	µg/L	Discharge Conc ≤ 10% WQBEL
Total Lead	29.3	µg/L	Discharge Conc ≤ 10% WQBEL
Total Manganese	1,315	µg/L	Discharge Conc ≤ 10% WQBEL
Total Mercury	0.066	µg/L	Discharge Conc ≤ 10% WQBEL
Total Nickel	250	µg/L	Discharge Conc ≤ 10% WQBEL
Total Phenols (Phenolics) (PWS)		µg/L	PWS Not Applicable
Total Selenium	6.56	µg/L	Discharge Conc ≤ 10% WQBEL
Total Silver	52.5	µg/L	Discharge Conc ≤ 10% WQBEL
Total Thallium	0.32	µg/L	Discharge Conc ≤ 10% WQBEL
Total Zinc	438	µg/L	Discharge Conc ≤ 10% WQBEL
Total Molybdenum	N/A	N/A	No WQS

2/24/2022

ATTACHMENT C: TRC Modeling Results

TRC EVALUATION

0 = Chlorine 0.5 = BAT/BPJ		arge (MGD) ples • Demand of Stream • Demand of Discharge			Mix Factor Compliance Time (min) Compliance Time (min)
Source	Reference	AFC Calculations		Reference	CFC Calculations
TRC	1.3.2.iii	WLA afc = 1.023		1.3.2.iii	WLA cfc = 0.990
PENTOXSD TRG	5.1a	LTAMULT afc = 0.373		5.1c	LTAMULT cfc = 0.581
PENTOXSD TRG	5.1b	LTA_afc	= 0.381	5.1d	LTA_cfc = 0.576
Source		Efflue	nt Limit Calcu	lations	
PENTOXSD TRG	5.1f	AML MULT = 1.720			
PENTOXSD TRG	5.1g AVG MON LIMIT (mg/l) = 0.500 BAT/BPJ				
WLA afc		c)) + [(AFC_Yc*Qs*.019)		_tc))	
WLA afc	+ Xd + (AFC_Y	*Qs*Xs/Qd)]*(1-FOS/10	0)	<u>tc))</u>	
WLA afc LTAMULT afc LTA_afc	+ Xd + (AFC_Y	*Qs*Xs/Qd)]*(1-FOS/10 ^2+1))-2.326*LN(cvh^2+	0)	<u>tc))</u>	
LTAMULT afc	+ Xd + (AFC_YC EXP((0.5*LN(cvh wla_afc*LTAMUL (.011/e(-k*CFC_t	*Qs*Xs/Qd)]*(1-FOS/10 ^2+1))-2.326*LN(cvh^2+	0) 1)^0.5) Qd*e(-k*CFC_1		
LTAMULT afc LTA_afc	+ Xd + (AFC_YC EXP((0.5*LN(cvh wla_afc*LTAMUL (.011/e(-k*CFC_t + Xd + (CFC_YC	5*Qs*Xs/Qd)]*(1-FOS/10 ^2+1))-2.326*LN(cvh^2+ .T_afc c) + [(CFC_Yc*Qs*.011/0	0) 1)^0.5) Qd*e(-k*CFC_1 0)	tc))	0.5)
LTAMULT afc LTA_afc WLA_cfc LTAMULT_cfc	+ Xd + (AFC_YC EXP((0.5*LN(cvh wla_afc*LTAMUL (.011/e(-k*CFC_t + Xd + (CFC_YC	*Qs*Xs/Qd)]*(1-FOS/10 ^2+1))-2.326*LN(cvh^2+ .T_afc c) + [(CFC_Yc*Qs*.011/c *Qs*Xs/Qd)]*(1-FOS/10 ^2/no_samples+1))-2.3/	0) 1)^0.5) Qd*e(-k*CFC_1 0)	tc))	0.5)
LTAMULT afc LTA_afc WLA_cfc	+ Xd + (AFC_YC EXP((0.5*LN(cvh wla_afc*LTAMUL (.011/e(-k*CFC_t + Xd + (CFC_YC EXP((0.5*LN(cvd wla_cfc*LTAMUL	*Qs*Xs/Qd)]*(1-FOS/10 ^2+1))-2.326*LN(cvh^2+ .T_afc c) + [(CFC_Yc*Qs*.011/c *Qs*Xs/Qd)]*(1-FOS/10 ^2/no_samples+1))-2.3/	0) 1)^0.5) Qd*e(-k*CFC_1 0) 26*LN(cvd^2/n	tc)) o_samples+1)^	
LTAMULT afc LTA_afc WLA_cfc LTAMULT_cfc LTA_cfc	+ Xd + (AFC_YC EXP((0.5*LN(cvh wla_afc*LTAMUL (.011/e(-k*CFC_t + Xd + (CFC_YC EXP((0.5*LN(cvd wla_cfc*LTAMUL EXP(2.326*LN((c	*Qs*Xs/Qd)]*(1-FOS/10 ^2+1))-2.326*LN(cvh^2+ .T_afc c) + [(CFC_Yc*Qs*.011/c c*Qs*Xs/Qd)]*(1-FOS/10 ^2/no_samples+1))-2.32 .T_cfc	0) 1)*0.5) Qd*e(-k*CFC_1 0) 26*LN(cvd*2/n 5)-0.5*LN(cvd	tc)) o_samples+1)^	