

Application Type	Renewal
Facility Type	Non- Municipal
Major / Minor	Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

Application No.	PA0260118
APS ID	1032087
Authorization ID	1359112

Applicant and Facility Information

Applicant Name	New Ox	ford MHC Group, LLC	Facility Name	New Oxford MHC
Applicant Address	31200	lorthwestern Highway	Facility Address	575 Kohler School Road
	Farming	ton Hills, MI 48334-5900		New Oxford, PA 17350-9490
Applicant Contact	Ross Pa	artrich	Facility Contact	Mike Kreiser
Applicant Phone	(248) 626-0737		Facility Phone	(610) 589-4023
Client ID	360978		Site ID	2143
Ch 94 Load Status	Not Ove	erloaded	Municipality	Mount Pleasant Township
Connection Status	No Limi	tations	County	Adams
Date Application Receiv	/ed	June 24, 2021	EPA Waived?	Yes
Date Application Accepted Ju		June 30, 2021	If No, Reason	
Purpose of Application				

Summary of Review

Spotts, Stevens, and McCoy, Inc. (SSM); on behalf of the New Oxford MHC Group, LLC; has applied to the Pennsylvania Department of Environmental Protection (DEP) for issuance of the NPDES permit. This is a NPDES permit for the existing facility located at 575 Kohler School Road, New Oxford, PA. The permit was reissued on November 22, 2016 and became effective on December 1, 2016. The permit expired on November 30, 2021 but the terms and conditions of the permit have been extended since that time.

NPDES PA0260118 permit be amended to reflect a change in ownership from Chesapeake Estates of New Oxford LLP to New Oxford MHC Group, LLC. Which issued on February 26, 2021

The WQM Part II No. 0115403 issued on November 22, 2016, and transfer 0115403 T-1 issued on February 26, 2021.

This facility serves the areas of New Oxford MHC in Mt. Pleasant Township (100%). The flow design is 0.062328 MGD. The hydraulic capacity is 0.084 MGD.

Sludge use and disposal description and location(s): N/A due to the sludge is hauled by Kline's Services.

<u>Changes from the previous permit</u>: Unit of Fecal Coliform changed from CFU/100 ml to No./100 ml. The E. Coli. monitoring and report requirements will be added to the proposed permit.

Based on the review outline in this fact sheet, it is recommended that the permit be drafted and published in the Pennsylvania Bulletin for public comments for 30 days.

Approve	Deny	Signatures	Date
х		<i>Hilaryle</i> Hilary H. Le / Environmental Engineering Specialist	December 10, 2021
х		Maria D. Bebenek for Daniel W. Martin, P.E. / Environmental Engineer Manager	December 20, 2021

Discharge, Receiving Waters and Water Supply Inform	nation	
Outfall No. 001 Latitude 39° 50' 26" Quad Name McSherrystown Wastewater Description: Sewage Effluent	Design Flow (MGD) Longitude Quad Code	0.062328 -77º 4' 35"
South Branch Conewago Creek (WWF)NHD Com ID134353635Drainage Area63.4 mi.²Q7-10 Flow (cfs)4.07Elevation (ft)477Watershed No.7-FExisting UseExceptions to UseAssessment StatusAttaining Use(s)	Stream Code RMI Yield (cfs/mi ²) Q ₇₋₁₀ Basis Slope (ft/ft) Chapter 93 Class. Existing Use Qualifier Exceptions to Criteria	08813 6.31 miles 0.064 USGS StreamStas WWF
Cause(s) of Impairment Source(s) of Impairment TMDL Status	Name	
Nearest Downstream Public Water Supply IntakePWS WatersSouth Branch Conewago CreekPWS RMI4.79 miles	New Oxford Municipal Authori Flow at Intake (cfs) Distance from Outfall (mi)	ty Approximate 2.0 miles

Changes Since Last Permit Issuance:

Drainage Area

The discharges are to Tributary 08813 to South Branch Conewago Creek at RMI 6.31 miles. A drainage area upstream of the discharge is estimated to be 63.4 mi.², according to USGS PA StreamStats available at https://streamstats.usgs.gov/ss/.

Stream Flow

According to StreamStats, the discharge point on South Branch Conewago Creek has a Q_{7-10} of 4.07 cfs and a drainage area of 63.4 mi.², which results in a low flow yield of 0.064 cfs/mi.². This information is used to obtain a chronic or 30-day (Q_{30-10}), and an acute or 1-day (Q_{1-10}) exposure stream flow for the point of first use as follows (Guidance No. 391-2000-023):

 $\begin{array}{l} Q_{7\text{-}10} = 4.07 \mbox{ cfs} \\ \mbox{Low Flow Yield} = 4.07 \mbox{ cfs} / 63.4 \mbox{ mi.}^2 = 0.064 \mbox{ cfs/mi.}^2 \\ Q_{30\text{-}10} = 1.36 \mbox{ }^* \mbox{ 4.07 \mbox{ cfs}} = 5.53 \mbox{ cfs} \\ Q_{1\text{-}10} = 0.64 \mbox{ }^* \mbox{ 4.07 \mbox{ cfs}} = 2.60 \mbox{ cfs} \end{array}$

The resulting Q7-10 dilution ratio is: Qstream / Qdischarge = 4.07 cfs / [0.062328 MGD * (1.55 cfs/MGD)] = 42:1

South Branch Conewago Creek

25 Pa. Code § 93.90 classifies South Branch Conewago Creek as Warm Water and Migratory Fishes (WWF & MF) surface water. Based on the 2020 Integrated Report, South Branch Conewago Creek; assessment unit IDs 14256, 11598, 18831, & 18585; is not impaired. A TMDL currently does not exist for this stream segment, therefore, no TMDL has been taken into consideration during this review.

Public Water Supply

The nearest downstream public water supply intake is the New Oxford Municipal Authority on South Branch Conewago Creek, approximately 2.0 miles downstream of this discharge. Given the nature and dilution, the discharge is not expected to significantly impact the water supply.

Treatment Facility Summary						
Treatment Facility Na	me: New Oxford MHC					
WQM Permit No.	Issuance Date					
0115403	11/22/2016					
0115403 T-1	2/25/2021					
	Degree of			Avg Annual		
Waste Type	Treatment	Process Type	Disinfection	Flow (MGD)		
Sewage	Secondary With Total Nitrogen Reduction	Extended Aeration	Ultraviolet	0.062328		
Hydraulic Capacity	Organic Capacity			Biosolids		
(MGD)	(lbs/day)	Load Status	Biosolids Treatment	Use/Disposal		
0.062328		Not Overloaded	Aerobic Digestion	Other WWTP		

Changes Since Last Permit Issuance: none

The WWTP train is to be configured as follows:

Mechanical Screen (1) \Rightarrow EQ Tank (25,000 gal) \Rightarrow Anoxic tanks (22,322 gal) \Rightarrow Six Aeration Tanks (26,670 gal combined) \Rightarrow Two Clarifiers (12,784 gal) \Rightarrow UV Disinfection Unit \Rightarrow Discharge

The system is to incorporate the chemical addition of 340-ACP Dry Polymer to assist with flocculation and settling.

	Compliance History					
Summary of DMRs:	The DMRs reported from November 1, 2020 to October 31, 2021 is summarized in the Table below (Pages # 4, & 5).					
Summary of Inspections:	 1/29/2020: Brandon Bettinger, DEP WQS, conducted a compliance evaluation inspection. There were no violations noticed during inspection. There were recommendations such as calibrating flow meter one per year; inspect treatment units during plant operation to ensure all system components are operating as they should; ensure DMRs, bench sheets, and lab results are maintained on-site for review; maintain SOP on-site for references for non-certified operators; and need to consider the standby power for case of outage power. The outfall 001 appeared clear. 12/26/2019: Brandon Bettinger, DEP WQS, conducted a Chesapeake Bay Data Audit inspection. There were no violations noticed during inspection. The recommendation was to update the newest revisions of DMRs form. 2/8/2018: Patrick Bowen, DEP WQS, conducted a compliance evaluation inspection. There were no violations noticed during inspection. There were recommendations such as develop SOP within 30 days of receipt of this report and forward a copy when it completed via email to inspector; and maintain monitoring records on-site. Field test results were within the permit limits. 					
Other Comments:	There are currently no open violations associated to the permittee or the facility.					

Other Comments:

Compliance History

DMR Data for Outfall 001 (from November 1, 2020 to October 31, 2021)

Parameter	OCT-21	SEP-21	AUG-21	JUL-21	JUN-21	MAY-21	APR-21	MAR-21	FEB-21	JAN-21	DEC-20	NOV-20
Flow (MGD)												
Average Monthly	0.029	0.047	0.027	0.025	0.0261	0.029	0.028	0.04	0.039	0.032	0.038	0.023
Flow (MGD)												
Daily Maximum	0.076	0.142	0.038	0.036	0.072	0.061	0.04	0.141	0.067	0.07	0.131	0.033
pH (S.U.)												
Instantaneous												
Minimum	7.05	7.25	6.85	7.05	7.05	6.88	6.85	6.46	6.21			
pH (S.U.)												
Minimum										6.57	7.1	6.9
pH (S.U.)												
Instantaneous												
Maximum	8.05	7.8	8.45	8.87	8.64	7.92	8.23	8.01	8.11			
pH (S.U.)												
Maximum										8.13	8.3	7.9
DO (mg/L)												
Instantaneous												
Minimum	5.88	5.24	5.41	5.47	5.1	5.36	5.6	5.12	5.4			
DO (mg/L)												
Minimum										5.85	7.0	6.6
CBOD5 (mg/L)												
Average Monthly	2.6	< 2.7	5.3	3.8	< 5.5	6.4	7.7	3.9	38	4.5	< 4.0	< 3.0
TSS (mg/L)												
Average Monthly	< 4	< 5	< 4.6	< 4	< 4	< 4.3	< 4.8	< 4	123.3	8.2	6.0	4.0
Fecal Coliform												
(No./100 ml)												
Geometric Mean	< 1	< 23	< 1	< 1	< 1	< 1	< 1	1	< 2	< 1	< 1	< 1
Fecal Coliform												
(No./100 ml)												
Instantaneous												
Maximum	< 1	546	1	< 1	< 1	< 1	1	1	< 4	1	2	< 1
UV Intensity (µw/cm ²)												
Instantaneous												
Minimum	3.3	3.6	4.8	4.4	3.3	3.4	2.9	2.1	2			
UV Intensity (µw/cm ²)												
Minimum										2.1	2.8	3.8
Nitrate-Nitrite (mg/L)												
Average Monthly	5.12	10.6	4.36	3.28	4.29	4.17	3.94	7.64	6.47	11.74	< 6.2	< 8.3
Nitrate-Nitrite (lbs)												
Total Monthly	28	74	24	17	33	52	27	91	72	85	< 50	< 53

NPDES Permit No. PA0260118

Total Nitrogen (mg/L)												
Average Monthly	< 5.62	11.94	6.09	4.51	5.1	5.25	5.87	8.62	9.01	15.5	< 5.7	< 8.8
Total Nitrogen (lbs)												
Effluent Net												
Total Monthly	< 31	83	34	23	39	67	40	101	104	113	< 55	< 56
Total Nitrogen (lbs)												
Total Monthly	< 31	83	34	23	39	67	40	101	104	113	< 55	< 56
Total Nitrogen (lbs)												
Effluent Net												
Total Annual		< 780										
Total Nitrogen (lbs)												
Total Annual		< 780										
Ammonia (mg/L)												
Average Monthly	< 0.1	< 0.1	< 0.14	< 0.1	< 0.1	< 0.22	0.63	< 0.1	< 0.1	< 2.61	< 0.1	< 0.1
Ammonia (lbs)												
Total Monthly	< 0.6	< 0.7	< 0.8	< 0.5	< 0.8	< 3	4	< 1	< 1	< 20	< 1	< 0.6
Ammonia (lbs)												
Total Annual		< 34										
TKN (mg/L)												
Average Monthly	< 0.5	1.37	1.73	1.23	0.81	1.08	1.93	0.98	2.55	3.74	< 0.5	< 0.5
TKN (lbs)												
Total Monthly	< 3	9	10	6	6	14	13	10	32	28	< 5	< 3
Total Phosphorus												
(mg/L)												
Average Monthly	3.31	3.49	5.53	2.58	3.69	2.75	2.2	2.01	2.77	2.15	1.8	2.1
Total Phosphorus (lbs)												
Effluent Net												
Total Monthly	18	24	31	16	27	32	16	19	29	16	17	13
Total Phosphorus (lbs)												
Total Monthly	18	24	31	16	27	32	16	19	29	16	17	13
Total Phosphorus (lbs)												
Effluent Net												
Total Annual		242										
Total Phosphorus (lbs)												
Total Annual		253										

Development of Effluent Limitations

Outfall No.	001		Design Flow (MGD)	0.062328
Latitude	39º 50' 26.00	n	Longitude	-77º 4' 35.00"
Wastewater De	escription:	Sewage Effluent		

Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD5	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
рН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform				
(5/1 – 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform				
(5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform				
(10/1 – 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform				
(10/1 – 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)

Comments:

Water Quality-Based Limitations

Ammonia (NH₃-N):

NH₃-N calculations were first based on the Department's Implementation Guidance of Section 93.7 Ammonia Criteria, dated 11/4/97 (ID No. 391-2000-013). The following data is necessary to determine the in-stream NH₃-N criteria used in the attached computer model of the stream:

•	Discharge pH	=	7.0	(Default)
•	Discharge Temperature	=	25°C	(Default)
•	Stream pH	=	7.0	(Default)
•	Stream Temperature	=	25°C	(Default for WWF)
•	Background NH ₃ -N	=	0	(Default)

The model input data and results are attached. The printout of the WQM 7.0 stream model (version 1.1) indicates that a limit of 25.0 mg/L as a monthly average and 50.0 mg/L IMAX are necessary to protect the aquatic life from toxicity effects at the point of discharge. The existing limits of 25.0 mg/L monthly average (AML), and 50.0 mg/L instantaneous maximum (IMAX). However, the model results will not be applied as the permit limits since the dilution provided by the stream is very high (Q₇₋₁₀ dilution ratio = 42:1). As per 391-2000-013, since both the toxicity-based and D.O.-based ammonia effluent limitations are greater than 15.0 mg/L, no NH₃-N limitations are needed for this facility. The existing monitor and report requirement will remain in the proposed permit.

Carbonaceous Biochemical Oxygen Demand (CBOD₅):

The attached computer printout of the WQM 7.0 stream model (version 1.1) indicates that a monthly average limit of 25.0 mg/L, or secondary treatment, is adequate to protect the water quality of the stream. However, the existing limits of 25.0 mg/L monthly average (AML), and 50.0 mg/L instantaneous maximum (IMAX) will remain in the proposed permit as per guidance document 391-2000-014. Recent DMRs and inspection reports show that the facility has been consistently achieving these limits.

pH:

The effluent discharge pH should remain above 6.0 and below 9.0 standard units according to 25 Pa. Code § 95.2(1).

Dissolved Oxygen (D.O.):

A minimum D.O. of 5.0 mg/L is required per 25 Pa. Code § 93.7. It is recommended that this limit be maintained in the proposed permit to ensure the protection of water quality standards. This approach is consistent with DEP's current Standard Operating Procedure (SOP) No. BPNPSM-PMT-033 and has been applied to other point source dischargers throughout the state. The minimum monitoring frequency will remain the same as 2/month which is also consistent with Permit Writers Manual Table 6-3.

E. Coli:

As recommended by DEP's SOP no. BPNPSM-PMT-033, a routine monitoring for E. Coli will be included in the proposed permit under 25 Pa. Code §92a.61. This requirement applies to all sewage dischargers greater than 0.002 MGD in their new and reissued permits. A monitoring frequency of 2/month will be included permit to be consistent with the recommendation from this SOP.

Fecal Coliform:

The recent coliform guidance in 25 Pa. Code § 92a.47.(a)(4) requires a summer technology limit of 200/100 ml as a geometric mean and an instantaneous maximum not greater than 1,000/100ml and § 92a.47.(a)(5) requires a winter limit of 2,000/100ml as a geometric mean and an instantaneous maximum not greater than 10,000/100ml.

Total Suspended Solids (TSS):

The existing technology-based limits of 30.0 mg/L average monthly, and 60.0 mg/L instantaneous maximum will remain in the proposed permit based on the minimum level of effluent quality attainable by secondary treatment based on 25 Pa. Code § 92a.47. Recent DMRs and inspection reports show that the facility has been consistently achieving these limits. The minimum monitoring frequency will remain the same as 2/month.

UV:

The UV system monitor and report the UV intensity (mW/cm²) after update to replace chlorine disinfection to UV disinfection system will remain in the proposed permit.

Toxics:

DEP utilities a Toxics Management Spreadsheet (last modified on March 2021 ver. 1.3) to facilitate calculations necessary for completing a reasonable potential analysis and determining WQBELs for toxic pollutants. The worksheet output indicates that there are no toxic pollutants of concern.

Phosphorus:

The estimated phosphorus load (assuming no treatment at the plant) to the lower Susquehanna River is:

10 mg/L x 0.062 MGD x 8.34 = 5.17 lbs/day

This load represents 0.14% of the total estimated load to the lower Susquehanna River (3,814 lbs/day), which is below the "minimum requirement" of 0.25% required for the establishment of phosphorus limits. Therefore, no local phosphorus limits will be included in the permit. Phosphorus monitoring will be required, however, per the guidelines of the Chesapeake Bay Strategy.

Chesapeake Bay Strategy:

This facility falls under Phase 5 of the Pennsylvania's Chesapeake Bay Tributary Strategy Point Source Implementation Plan, which the previous protection report quoted as stating the following:

"Phase 5 – smaller dischargers (design annual average daily flow on August 29, 2005 less than 0.2 MGD and greater than 0.002 mgd): Any facility in this phase that undergoes an expansion prior to phase 5 implementation will be immediately subject to the requirements shown for phase 5, i.e. no net increase in loading, based on design annual average flow on August 29, 2005, and existing nutrient concentrations, but in no case will this load exceed 7,306 pounds of TN and 974 pounds of TP, annually."

Cap Loads were calculated based on the existing 0.02 MGD design flow for the sprayfield and the use of default concentration values of 22.0 mg/L and 4.0 mg/L for TN and TP, respectively. This method yielded the following results:

TN Cap Load = 22.0 mg/L x 0.02 MGD x 8.34 x 365 days = 1,339 lbs/year TP Cap Load = 4.0 mg/L x 0.02 MGD x 8.34 x 365 days = 243 lbs/year

The existing Cap Loads and monitoring frequency requirements will remain in the proposed permit.

NPDES Permit Fact Sheet New Oxford MHC Biosolids Management:

Sludge is digested on-site, via an aerobic sludge digester, and removed by a certified hauler.

Stormwater:

There is no known stormwater outfall associated with this facility.

Antidegradation (93.4):

The effluent limits for this discharge have been developed to ensure that existing in-stream water uses and the level of water quality necessary to protect the existing uses are maintained and protected. No High-Quality Waters are impacted by this discharge. No Exceptional Value Waters are impacted by this discharge.

303d Listed Streams:

This discharge is not located on a 303d listed stream segment.

Class A Wild Trout Fisheries:

No Class A Wild Trout Fisheries are impacted by this discharge.

WQM 7.0 model input data:

DO Goal = 5.0 mg/L

Node 1:	Outfall 001 on South	Outfall 001 on South Branch Conewago Creek (08813)					
	Elevation:	477 ft (USGS National Map Viewer)					
	Drainage Area:	63.4 mi ² (USGS PA StreamStats)					
	River Mile Index:	6.31 (PA DEP eMapPA)					
	Low Flow Yield:	0.064 cfs/mi ²					
	Discharge Flow:	0.062328 MGD					
Node 2:	Just before confluen	ce of South Branch Conewago Creek with UNT 08839					
	Elevation:	474 ft (USGS National Map Viewer)					
	Drainage Area:	64.0 mi ² (USGS PA StreamStats)					
	River Mile Index:	5.10 (PA DEP eMapPA)					
	Low Flow Yield:	0.064 cfs/mi ²					
	Discharge Flow:	0.000 MGD					

USGS StreamStats

SELECT A STATE / REGION	Basin
Pennsylvania 😈 🗸	Para
	DRN
Basin Delineated 🗸	BSL
	ROC
SELECT SCENARIOS 🗸	URB
	Low-I
Step 1: You can modify computed basin characteristics here then select the	Para
types of reports you wish to generate.	DRN
	BSL
Show Basin Characteristics	ROC
	URB
Select available reports to display:	Low-I
	PII: P
 Basin Characteristics Report 	(othe
 Scenario Flow Reports 	7.0a
Continue	30.0
	7 Da
	30 0
→ Tell us how you use StreamStats! ←	90 0
POWERED BY WIM	Low-F

Characteristics			
meter Code	Parameter Description	Value	Unit
REA	Area that drains to a point on a stream	63.4	square miles
PD	Mean basin slope measured in degrees	2.7955	degrees
DEP	Depth to rock	4.9	feet
N	Percentage of basin with urban development	8.6224	percent

w-Flow Statistics Parameters [99.9 Percent (63.4 square miles) Low Flow Region 1]

rameter Code	Parameter Name	Value	Units	Min Limit	Max Limit	
RNAREA	Drainage Area	63.4	square miles	4.78	1150	
SLOPD	Mean Basin Slope degrees	2.7955	degrees	1.7	6.4	
OCKDEP	Depth to Rock	4.9	feet	4.13	5.21	
RBAN	Percent Urban	8.6224	percent	0	89	

ow-Flow Statistics Flow Report [99.9 Percent (63.4 square miles) Low Flow Region 1]

Prediction Interval-Lower, Plu: Prediction Interval-Upper, SEp: Standard Error of Prediction, SE: Standard Error ner -- see report) xtistic Value Unit SE SEP

7 Day 2 Year Low Flow	9.01	ft^3/s	46	46	
30 Day 2 Year Low Flow	12.6	ft^3/s	38	38	
7 Day 10 Year Low Flow	4.07	ft^3/s	51	51	
30 Day 10 Year Low Flow	5.75	ft^3/s	46	46	
90 Day 10 Year Low Flow	10.7	ft^3/s	41	41	

Leaflet | Esr

Low-Flow Statistics Citations

NPDES Permit No. PA0260118
🗰 Report 🛛 About ? Help

							1	Report 🚯 About ? He
INTUTION & OTHER ADDA	Basin Characteristics							
Basin Delineated	Parameter Code	Parameter Description			Value	Unit	v S Spring	c Layers
	DRNAREA	Area that drains to a point on	a stream		64	square miles	Start C	Base Maps
SELECT SCENARIOS 🗸	BSLOPD	Mean basin slope measured i	n degrees		2.7948	degrees	Menges Mills	
	ROCKDEP	Depth to rock			4.8	feet	SA	Application Layers
LD A REPORT Report Built >	URBAN	Percentage of basin with urba	an developme	nt	8.5524	percent	2/3	✓ National Layers
Step 1: You can modify computed basin	et						Porte	S PA Map Layers
types of reports you wish to generate. Then click the "Build Report" button	Low-Flow Statistics Par	ameters [99.9 Percent (64 square miles)) Low Flow Regio	on 1]			- fl	Jefferson
77	Parameter Code	Parameter Name	Value	Units	Min Limi	t Max Limit	~ 3	
Show Basin Characteristics	DRNAREA	Drainage Area	64	square miles	4.78	1150		
	BSLOPD	Mean Basin Slope degrees	2.7948	degrees	1.7	6.4	and the second	
I I I I I I I I I I I I I I I I I I I	ROCKDEP	Depth to Rock	4.8	feet	4.13	5.21		
elect available reports to display:	URBAN	Percent Urban	8.5524	percent	0	89	1. 19	
Basin Characteristics Report	Low-Flow Statistics Flow	w Report [99.9 Percent (64 square miles) Low Flow Regio	on 1]			1.19	
 Scenario Flow Reports 	PII: Prediction Interv (other see report)	val-Lower, Plu: Prediction Interval	-Upper, SEp: S	tandard Error of	Prediction, S	SE: Standard Error	Ser.	
Continue	Statistic		Value	Unit	S	E SEp	1-	
	7 Day 2 Year Low F	low	8.31	ft^3/s	40	5 46		
	30 Day 2 Year Low	Flow	11.8	ft^3/s	31	3 38		
Tell us how you use StreamStats! 🗲	7 Day 10 Year Low	Flow	3.68	ft^3/s	5	1 51		Cithebara'
	30 Day 10 Year Low	/ Flow	5.28	ft^3/s	40	5 46		
POWERED BY WIM	90 Day 10 Year Low	/ Flow	9.98	ft*3/s	4	1 41		
SGS Home Contact USGS Search USGS Accessibility FOIA Privacy Policy &	Low-Flow Statistics Cita	tions					Disp See 1	

Analysis Results W	/QM 7.0				—	\times
Hydrodynamics	NH3-N Allocations	D.O. Allocations	D.O. Simulation	Effluent Lin	nitations	
_					-	
	PMI Disobara	Permit N	umber Disc Flow			
		e Name	(inga)			
	6.31 New Oxford MHC	- PA026	0.0623			
		Effluent Limit	Effluent Limit Effluen	ıt Limit		
	Parameter	30 Day Averag (mg/L)	e Maximum Minir (ma/l.) (ma	mum		
		25	(mg/L) (mg	<i>p</i> L)		
	NH3-N	25	50			
	Dissolved Oxygen			5		
R	lecord: I4 4 1 of 1	🕨 🕨 🕨 🏹 No Filte	Search			
,						
Print	< <u>B</u> ack	<u>N</u> ext >	Archive		<u>C</u> ancel	

NPDES Permit No. PA0260118

rptEffLimits	_	□ × III rpt_WLA	_	
rptEffLimits WOM 7.0 I MYP Badin Statem Code 07 8913 9 RMI Name Rom Ro	Effluent Limits Etram Name DOUTHBRANCH CONEVAGO GREEK Company Conevago (mac) (mac) (mac) (mac) (mac) (mac) (mac) (mac) (mac) M3N 25 50 Disedved Oxygon 5	□ × I rpt_WLA	WOM 7.0 Wasteload Allocations Intermediate Errem Case 977 813 Bourne Rame 077 813 Bourne Rame 078 813 Bourne Rame 1019 Baseline Bourne Rame Reach 1030 Induitie Mitiple Mitiple Reach 10310 Induitie Mitiple Mitiple Reach Percent 10310 Induitie Induitie Mitiple Offical Percent 10310 Baseline Baseline Baseline Mitiple Offical Percent 10310 Mitiple Mitiple Offical Percent Induition 10310 Baseline Baseline Baseline Mitiple Offical Percent 10310 Mitiple Mitiple Mitiple Offical Percent 10310 Mitiple Mitiple Mitiple Offical Percent 10310 Mitiple Mitiple Mitiple Offical	_ ×
Thursday, December 9, 2021 Ve	terion 1.1 Page 1 of 1		6.311Nav Oxford MHC 25 25 25 25 5 5 0 0	1
Page: 14 4 1 🛛 🕨 🕨 💺 No Filter		Page: 💷 🖣 1	🕨 🕨 🔭 No Filter	

NPDES Permit No. PA0260118

📱 rptDOSim 🥏 -	×	_	📓 rptModelSpecs – 🗆 🗙
PDUSIN PDUSIN			WOM 7.0 Modeling Specifications Planetars Ban Use inputs of Q1-10 Rate Image: Comparison of Q1-10 Rate
Page: I4 4 1 >> >1 >* 🐱 No Filter		Pa	Page: I4 4 1 >> >> >> To Filter

NPDES Permit No. PA0260118

🖬 rptGeneral —		×
Input Data WQM 7.0		
SWP Stream RMI Elevation Drainage Sope PWS Apply Basin Code Stream Name Area Withdrawal FC (ft) (sq.mi) (ftift) (mgd)		
07F 8813 SOUTH BRANCH CONEWAGO CRE 6.100 474.00 64.00 0.00000 0.00		
Stream Data LFY Trib Stream Rch Rch WD Rch Rch <u>Tributary Stream</u>		
Design Flow Flow Trav Velocity Ratio Wildth Depth Temp pH Temp pH Cond. (dsm) (cts) (ds) (days) (tps) (ft) (ft) (fC) (fC)		
G7-10 0.054 0.00 0.000 0.000 0.00 0.00 0.00 25.00 7.00 0.00 0.00 G1-10 0.00		
Discharge Data Existing Permitted Design Disc Disc Disc Disc Disc Disc Disc		
Name Permit Number Flow Flow Flow Flow Flow Flow Flow Flow		
New Oxford MHC PA02E0118 0.0000 0.0000 0.000 25.00 7.00 Parameter Data		
Disc Trib Stream Fate Conc Conc Conc Coef Parameter Name (mg/L) (mg/L) (1/days)		
CBCDD5 2500 200 0.00 1.50		
NH3-N 25.00 0.00 0.70		
	-	
Thursday, December 9, 2021 Version 1.1 Page 2 of 2		

Existing Effluent Limitations and Monitoring Requirements

		Monitoring Requirements						
Paramotor	Mass Units	(lbs/day) ⁽¹⁾		Concentrati	ons (mg/L)		Minimum ⁽²⁾	Required
Falameter	Average Monthly	Average Weekly	Instantaneous Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report Daily Max	XXX	XXX	xxx	xxx	Continuous	Measured
рН (S.U.)	XXX	ххх	6.0	XXX	xxx	9.0	1/day	Grab
D.O.	XXX	ххх	5.0	XXX	XXX	XXX	1/day	Grab
UV Intensity (µw/cm ²)	XXX	ХХХ	Report	XXX	XXX	XXX	1/day	Recorded
CBOD₅	XXX	XXX	XXX	25	xxx	50	2/month	8-Hr Composite
TSS	XXX	ххх	XXX	30	xxx	60	2/month	8-Hr Composite
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	ххх	XXX	200 Geo Mean	ххх	1,000	2/month	Grab
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	ххх	XXX	2,000 Geo Mean	xxx	10,000	2/month	Grab
Ammonia-Nitrogen	XXX	XXX	XXX	Report	XXX	XXX	2/month	8-Hr Composite

Existing Effluent Limitations and Monitoring Requirements

	Effluent Limitations							Monitoring Requirements	
Parameter	Mass Units (Ibs/day) ⁽¹⁾			Concentrat	Minimum ⁽²⁾	Required			
	Monthly	Annual	Monthly	Monthly Average	Maximum	Instant. Maximum	Measurement Frequency	Sample Type	
								8-Hr	
AmmoniaN	Report	Report	XXX	Report	XXX	XXX	2/month	Composite	
								8-Hr	
KjeldahlN	Report	XXX	XXX	Report	XXX	XXX	2/month	Composite	
								8-Hr	
Nitrate-Nitrite as N	Report	XXX	XXX	Report	XXX	XXX	2/month	Composite	
Total Nitrogen	Report	Report	XXX	Report	XXX	XXX	2/month	Calculation	
Total Phosphorus	Report	Report	ХХХ	Report	ХХХ	XXX	2/month	Calculation	
Net Total Nitrogen	Report	1,339	ххх	xxx	ххх	xxx	1/month	Calculation	
Net Total Phosphorus	Report	243	xxx	xxx	xxx	xxx	1/month	Calculation	

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

		Monitoring Requirements						
Parameter	Mass Units (Ibs/day) ⁽¹⁾			Concentrati	ons (mg/L)		Minimum ⁽²⁾	Required
	Average Monthly	Average Weekly	Instantaneous Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report Daily Max	XXX	XXX	xxx	xxx	Continuous	Measured
pH (S.U.)	xxx	ххх	6.0	XXX	xxx	9.0	1/day	Grab
D.O.	xxx	ххх	5.0	XXX	xxx	xxx	1/day	Grab
UV Intensity (µw/cm ²)	XXX	ххх	Report	XXX	xxx	XXX	1/day	Recorded
CBOD₅	XXX	xxx	XXX	25	xxx	50	2/month	8-Hr Composite
TSS	XXX	ххх	XXX	30	XXX	60	2/month	8-Hr Composite
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	ххх	XXX	200 Geo Mean	XXX	1,000	2/month	Grab
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	xxx	XXX	XXX	2,000 Geo Mean	xxx	10,000	2/month	Grab
E. Coli (No./100 ml)	XXX	ХХХ	XXX	Report	XXX	XXX	2/month	Grab
Ammonia-Nitrogen	xxx	xxx	XXX	Report	xxx	xxx	2/month	8-Hr Composite

Compliance Sampling Location:

Other Comments:

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

	Effluent Limitations							Monitoring Requirements	
Parameter	Mass Units (Ibs/day) ⁽¹⁾			Concentra	Minimum ⁽²⁾	Required			
	Monthly	Annual	Monthly	Monthly Average	Maximum	Instant. Maximum	Measurement Frequency	Sample Type	
		_						8-Hr	
AmmoniaN	Report	Report	XXX	Report	XXX	XXX	2/month	Composite	
								8-Hr	
KjeldahlN	Report	XXX	XXX	Report	XXX	XXX	2/month	Composite	
								8-Hr	
Nitrate-Nitrite as N	Report	XXX	XXX	Report	XXX	XXX	2/month	Composite	
Total Nitrogen	Report	Report	XXX	Report	XXX	XXX	2/month	Calculation	
Total Phosphorus	Report	Report	XXX	Report	ХХХ	XXX	2/month	Calculation	
Net Total Nitrogen	Report	1,339	xxx	xxx	ХХХ	xxx	1/month	Calculation	
Net Total Phosphorus	Report	243	XXX	XXX	XXX	XXX	1/month	Calculation	

Compliance Sampling Location:

Other Comments:

Tools and References Used to Develop Permit					
	WQM for Windows Model (see Attachment)				
	Toxics Management Spreadsheet (see Attachment)				
	TRC Model Spreadsheet (see Attachment)				
	Temperature Model Spreadsheet (see Attachment)				
	Water Quality Toxics Management Strategy, 361-0100-003, 4/06.				
	Technical Guidance for the Development and Specification of Effluent Limitations, 362-0400-001, 10/97.				
	Policy for Permitting Surface Water Diversions, 362-2000-003, 3/98.				
	Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 362-2000-008, 11/96.				
	Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97.				
	Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 362-2183-004, 12/97.				
	Pennsylvania CSO Policy, 385-2000-011, 9/08.				
	Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.				
	Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 391- 2000-002, 4/97.				
	Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97.				
	Implementation Guidance Design Conditions, 391-2000-006, 9/97.				
\square	Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004.				
	Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 391-2000-008, 10/1997.				
	Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 391-2000-010, 3/99.				
	Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 391-2000-011, 5/2004.				
	Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97.				
	Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 391-2000-014, 4/2008.				
	Implementation Guidance Total Residual Chlorine (TRC) Regulation, 391-2000-015, 11/1994.				
	Implementation Guidance for Temperature Criteria, 391-2000-017, 4/09.				
	Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/97.				
	Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97.				
	Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 391-2000-021, 3/99.				
	Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/1999.				
	Design Stream Flows, 391-2000-023, 9/98.				
	Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 391-2000-024, 10/98.				
	Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97.				
\square	Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.				
	SOP:				
	Other:				