

Summary of Review

1.0 General Discussion

This fact sheet supports the renewal of an existing NPDES permit for discharge of treated domestic wastewater from Fredericksburg Sewer and Water Authority (Authority) wastewater treatment plant. The Authority owns, operates, and maintains the wastewater treatment plant. The facility is located in Bethel Township, Lebanon County. The sewer collection system is not combined and there are no bypasses or overflows approved in the collection system. The facility receives influent via gravity with the aid of three collection system pump stations. Influent enters wet well of influent pump station where it is combined with internal plant flows such as filter backwash, filtrate from sludge dewatering and decant from digesters. Influent pump station has 3 pumps to pump flow to the mechanical screen/backup manual bar screen. Influent is directed to one of three SBRs. SBRs complete cycle in 320-minute, which include mix/fill, react/fill, react, settle, and decant phases. SBRs are monitored for pH , DO and ORP. Delpac is added for phosphorus removal. Five blowers are available to support the SBRs process. SBR decants are directed to the post EQ tank and then pumped to the two cloth disc filters. Filtered effluent is directed to one of four UV units for disinfection. Final effluent flows over a cascade prior to discharging to Little Swatara Creek which is classified for warm water fishes (WWF) and Migratory Fishes (MF). The facility has a hydraulic capacity of 0.65MGD and organic capacity of $2994 \mathrm{lbs} /$ day- BOD5). The existing NPDES permit was issued on June 15, 2018 with an effective date of July 1, 2018 and expiration date of June 30, 2023. The permit was amended on August 18, 2020 to increase the hydraulic and organic capacities to 0.65 MGD and $2994 \mathrm{lbs} /$ day- BOD5 respectively. The applicant submitted a timely permit renewal application to the Department and is currently operating under the terms and conditions in the existing permit pending Department action on the renewal application. A topographic map showing the discharge location is presented in attachment A.

Approve	Deny	Signatures	Date
X		2. Pascal Zuedza J. Pascal Kwedza, P.E. / Environmental Engineer	December 8, 2023
X		Maria D. Bebenel for Daniel TV. Martiu Daniel W. Martin, P.E. / Environmental Engineer Manager	December 8, 2023
X		Maria D. Bebencek Maria D. Bebenek, P.E./ Program Manager	December 8, 2023

Summary of Review

1.1 Sludge use and disposal description and location(s):

Digested sludge is dewatered with a trailer mounted volute press prior to ultimate disposal at Greater Lebanon Refuse Authority Landfill.

1.2 Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the Pennsy/vania Bulletin in accordance with 25 Pa . Code § 92a.82. Upon publication in the Pennsy/vania Bulletin, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the Pennsy/vania Bulletin at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

1.3 Changes to the existing Permit

Quarterly E. Coli monitoring has been added.

1.4 Existing limitation and Monitoring Requirements

Parameter	Effluent Limitations						Monitoring Requirements	
	Mass Units (lbs/day) ${ }^{(1)}$		Concentrations (mg/L)				$\begin{aligned} & \text { Minimum }{ }^{(2)} \\ & \text { Measurement } \\ & \text { Frequency } \\ & \hline \end{aligned}$	Required Sample Type
	Average Monthly	Weekly Average	Minimum	Average Monthly	Weekly Average	Instant. Maximum		
Flow (MGD)	Report	Report Daily Max	XXX	XXX	XXX	XXX	Continuous	Measured
pH (S.U.)	XXX	XXX	$\begin{gathered} 6.0 \\ \text { Daily Min } \\ \hline \end{gathered}$	XXX	$\begin{gathered} 9.0 \\ \text { Daily Max } \end{gathered}$	XXX	1/day	Grab
DO	XXX	XXX	$\begin{gathered} \hline 5.0 \\ \text { Daily Min } \\ \hline \end{gathered}$	XXX	XXX	XXX	1/day	Grab
CBOD5	136	217	XXX	25	40	50	1/week	$24-\mathrm{Hr}$ Composite
BOD5 Raw Sewage Influent	Report	Report Daily Max	XXX	Report	XXX	XXX	1/week	$24-\mathrm{Hr}$ Composite
TSS Raw Sewage Influent	Report	Report Daily Max	XXX	Report	XXX	XXX	1/week	$24-\mathrm{Hr}$ Composite
TSS	163	244	XXX	30	45	60	1/week	$24-\mathrm{Hr}$ Composite
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	$\begin{gathered} 2,000 \\ \text { Geo Mean } \end{gathered}$	XXX	10,000	1/week	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	XXX	XXX	200 Geo Mean	XXX	1,000	1/week	Grab
Ammonia-Nitrogen Nov 1 - Apr 30	XXX	XXX	XXX	Report	XXX	XXX	1/week	$24-\mathrm{Hr}$ Composite
Ammonia-Nitrogen May 1 - Oct 31	73	XXX	XXX	13.5	XXX	27.0	1/week	$24-\mathrm{Hr}$ Composite
Total Phosphorus	11	XXX	XXX	2.0	XXX	4	2/week	$24-\mathrm{Hr}$ Composite
Total Zinc	Report	XXX	XXX	Report	XXX	XXX	1/week	$24-\mathrm{Hr}$ Composite
Ultraviolet Light Transmittance (\%)	XXX	XXX	Report	XXX	XXX	XXX	1/day	Recorded

NPDES Permit Fact Sheet
Fredericksburg Little Swatara STP

1.4.1 Chesapeake Bay Requirements

Parameter	Effluent Limitations						Monitoring Requirements	
	Mass Units (Ibs/day) ${ }^{(1)}$		Concentrations (mg/L)				$\begin{aligned} & \text { Minimum }{ }^{(2)} \\ & \text { Measurement } \\ & \text { Frequency } \\ & \hline \end{aligned}$	Required Sample Type
	Monthly	Annual	Monthly	Monthly Average	Maximum	Instant. Maximum		
Ammonia--N	Report	Report	XXX	Report	XXX	XXX	2/week	$24-\mathrm{Hr}$ Composite
Kjeldahl--N	Report	XXX	XXX	Report	XXX	XXX	2/week	$24-\mathrm{Hr}$ Composite
Nitrate-Nitrite as N	Report	XXX	XXX	Report	XXX	XXX	2/week	$24-\mathrm{Hr}$ Composite
Total Nitrogen	Report	Report	XXX	Report	XXX	XXX	1/month	Calculation
Total Phosphorus	Report	Report	XXX	Report	XXX	XXX	2/week	$24-\mathrm{Hr}$ Composite
Net Total Nitrogen	Report	7,306	XXX	XXX	XXX	XXX	1/month	Calculation
Net Total Phosphorus	Report	974	XXX	XXX	XXX	XXX	1/month	Calculation

1.5 Discharge, Receiving Waters and Water Supply Information

Outfall No. 001		Design Flow (MGD)	. 65
Latitude 40ㅇ24'40		Longitude	-760 25' 55.81"
Quad Name Frederic	urg	Quad Code	1534
Wastewater Description	Sewage Effluent		
Receiving Waters Litt	watara Creek	Stream Code	09888
NHD Com ID 56	387	RMI	3.52
Drainage Area 86		Yield (cfs/mi ${ }^{\text {2 }}$)	0.0565
Q7-10 Flow (cfs) 5.65		Q7-10 Basis	USGS Gage Station
Elevation (ft)		Slope (ft/ft)	
Watershed No. 7-D		Chapter 93 Class.	WWF
Existing Use		Existing Use Qualifier	
Exceptions to Use		Exceptions to Criteria	
Assessment Status	Attaining Use(s)		
Cause(s) of Impairment			
Source(s) of Impairment			
TMDL Status		Name	

Background/Ambient Data $\mathrm{pH}(\mathrm{SU})$	Data Source	
Temperature $\left({ }^{\circ} \mathrm{F}\right)$		
Hardness $(\mathrm{mg} / \mathrm{L})$		

Changes Since Last Permit Issuance:

1.6 Water Supply Intake:

The closest water supply intake located downstream from the discharge is Pennsylvania American Water Company in South Hanover Township, Dauphin County on Swatara Creek. The distance downstream from the discharge to the intake is approximately 33 miles. No impact is expected from this discharge

2.0 Treatment Facility Summary

Treatment Facility Name: Fredericksburg Little Swatara STP

WQM Permit No.	Issuance Date
3811404	$02 / 27 / 2012$
3811404 A-1	$03 / 2 / 2017$
3811404 A-2	$07 / 01 / 2020$
3811404 A-3	$05 / 19 / 2023$

Waste Type	Degree of Treatment	Process Type	Disinfection	Avg Annual Flow (MGD)
Sewage	Secondary With Ammonia And Phosphorus	Sequencing Batch Reactor	Ultraviolet	0.65
Hydraulic Capacity (MGD)	Organic Capacity (lbs/day)	Load Status	Biosolids Treatment	Biosolids Use/Disposal
0.650	2,994	Not Overloaded	Aerobic Digestion	Landfill

Changes Since Last Permit Issuance: Permit was amended on 07/01/2020 to add an additional SBR treatment train to the 2 existing SBRs trains to increase the hydraulic capacity to 0.65 MGD and organic capacity to 2994lb/day-BOB5. The permit was amended again on 05/19/2023 to eliminate a sidestream aerated flow equalization tank that was proposed but never built.

2.1 Treatment Facility Details

The existing wastewater Treatment facility consists of influent pumping station, screening unit with grit removal, 3 SBRs, 2 cloth media filters, ultraviolet disinfection, cascade aeration, alum feed system, supplemental carbon feed system, a caustic feed system and aerobic sludge digesters to process sludge generated at the site and sludge received from the Authority's Camp Strauss Monroe Valley treatment facility. Digested sludge is dewatered utilizing a trailer mounted volute press prior to hauling out to landfill.

3.1 DMR Data for Outfall 001 (from September 1, 2022 to August 31, 2023)

Parameter	AUG-23	JUL-23	JUN-23	MAY-23	APR-23	MAR-23	FEB-23	JAN-23	DEC-22	NOV-22	OCT-22	SEP-22
Flow (MGD) Average Monthly	0.3196	0.3436	0.321	0.3089	0.2977	0.317	0.3332	0.3863	0.3749	0.2926	0.3214	0.3576
Flow (MGD) Daily Maximum	0.4062	0.4665	0.5175	0.4166	0.3816	0.4679	0.4995	0.5376	0.6878	0.4271	0.4973	0.5228
$\begin{aligned} & \mathrm{pH} \text { (S.U.) } \\ & \text { Daily Minimum } \end{aligned}$	6.73	7.14	6.53	6.85	6.69	6.89	6.92	6.66	7.04	7.22	6.64	6.78
pH (S.U.) Daily Maximum	7.75	7.95	7.52	7.66	8.12	7.76	7.66	8.18	8.37	8.41	7.71	7.41
DO (mg/L) Daily Minimum	6.76	7.34	7.44	7.81	7.84	8.03	8.39	8.36	8.39	7.65	7.31	7.21
CBOD5 (lbs/day) Average Monthly	<8.8	<7.7	<7.9	7.6	12.6	<13.8	<6.7	9.2	<8.7	10.9	18.6	< 11.6
CBOD5 (lbs/day) Weekly Average	11.2	10.3	11.2	10.7	20.9	38.6	7.0	9.9	9.8	14.1	25.4	15.4
CBOD5 (mg/L) Average Monthly	<2.9	<2.3	<2.6	2.6	4.3	<4.6	<2.1	2.6	<2.7	3.8	5.7	<3.4
CBOD5 (mg/L) Weekly Average	3.8	3.2	4.5	3.4	7.0	12.1	2.4	3.2	3.1	4.9	7.9	5.2
BOD5 (lbs/day) Raw Sewage Influent Ave. Monthly	736	875	1169	688	1222	825	1158	892	806	806	911	804
BOD5 (lbs/day) Raw Sewage Influent Daily Maximum	933	1090	1360	1016	1520	1196	1740	1134	1119	1089	1137	985
BOD5 (mg/L) Raw Sewage Influent Ave. Monthly	278	290	408	249	432	302	359	263	279	312	316	259
TSS (lbs/day) Average Monthly	< 14.2	< 13.5	< 12.6	<11.7	< 11.8	< 12.0	<12.6	<14.8	< 13.2	<11.5	<14.3	< 20.8
TSS (lbs/day) Raw Sewage Influent Ave. Monthly	636	729	711	532	732	454	465	406	622	517	636	604
TSS (lbs/day) Raw Sewage Influent Daily Maximum	725	762	788	887	966	737	689	517	916	585	1096	791
TSS (lbs/day) Weekly Average	23.7	< 14.3	<17.2	<12.6	< 12.4	15.3	<13.8	< 16.5	< 13.8	<14.2	<16.6	40.3

NPDES Permit Fact Sheet
Fredericksburg Little Swatara STP

TSS (mg/L) Average Monthly	< 4.6	< 4.0	< 4.0	< 4.0	< 4.0	< 4.2	< 4.0	< 4.0	<4.0	<4.0	<4.3	< 5.8
TSS (mg/L) Raw Sewage Influent Ave. Monthly	240	243	250	190	258	168	145	119	216	200	225	173
TSS (mg/L) Weekly Average	7.0	< 4.0	<4.0	<4.0	<4.0	4.8	< 4.0	< 4.0	< 4.0	<4.0	5.0	11.0
Fecal Coliform (No./100 ml) Geometric Mean	<2	<3	<2	<2	<2	2	<3	<2	<1	<1	<1	<1
Fecal Coliform (No./100 ml) Instant. Maximum	8	10	3	3	20	14	10	5	3	<1	2	4
UV Transmittance (\%) Daily Minimum	54	57	57	58	60	60	64	65	65	65	60	48
Nitrate-Nitrite (mg/L) Average Monthly	4.56	3.22	3.78	3.2	2.49	3.6	3.07	4.51	4.64	4.39	6.39	6.51
Nitrate-Nitrite (lbs) Total Monthly	377	270	265	248	176	290	226	455	434	336	500	549
Total Nitrogen (mg/L) Average Monthly	5.8	< 4.43	5.32	4.91	4.22	<15	< 4.86	< 5.51	< 5.38	< 5.45	8.28	< 8.01
Total Nitrogen (lbs) Effluent Net Total Monthly	< 471.3	< 368	370.0	376	< 299	< 452	< 362	< 547	< 499	<410	640	< 667
Total Nitrogen (lbs) Total Monthly	471	< 368	370.0	376	< 299	< 452	< 362	< 547	<499	< 410	640	< 667
Total Nitrogen (lbs) Effluent Net Total Annual												<4336
Total Nitrogen (lbs) Total Annual												<4336
Ammonia (lbs/day) Average Monthly	<0.3	< 0.4	<0.3	< 1.0	< 0.7	< 0.5	< 1.9	< 0.7	<0.3	<0.2	<0.3	<0.3
Ammonia (mg/L) Average Monthly	< 0.1	< 0.16	< 0.12	< 0.36	< 0.25	< 0.18	< 0.61	<0.24	< 0.1	< 0.1	< 0.1	< 0.1
Ammonia (lbs) Total Monthly	<7.9	< 13.5	< 8.4	< 31.4	< 19.8	< 14.0	< 53.4	<21.2	< 8.7	<6.9	< 9.4	< 8.0
Ammonia (lbs) Total Annual												< 1958
TKN (mg/L) Average Monthly	1.24	< 1.22	1.54	1.71	< 1.73	< 1.98	< 1.8	<1	< 0.75	< 1.06	1.89	< 1.5
TKN (lbs) Total Monthly	94	<98	105	127	< 123	< 161	< 139	<92	<65	<74	140	< 117

Total Phosphorus (lbs/day) Ave. Monthly	2.0	1.3	1.0	1.0	1.4	1.4	0.4	0.5	< 0.4	0.5	1.2	3.2
Total Phosphorus (mg/L)Ave. Monthly	0.85	0.57	0.42	0.4	0.55	0.5	0.14	0.16	<0.13	0.21	0.52	1.2
Total Phosphorus (lbs) Effluent Net Total Monthly	60.9	41.4	28.9	32.3	41.8	43.5	9.9	14.4	< 11.0	14.5	37.9	96.7
Total Phosphorus (lbs) Total Monthly	60.9	41.4	28.9	32.3	41.8	43.5	9.9	14.4	< 11.0	14.5	37.9	96.7
Total Phosphorus (lbs) Effluent Net Total Annual												< 412
Total Phosphorus (lbs) Total Annual												< 412
Total Zinc (lbs/day) Average Monthly	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.3	0.5	0.4
Total Zinc (mg/L) Average Monthly	0.075	0.065	0.078	0.079	0.084	0.085	0.073	0.062	0.064	0.095	0.139	0.114

3.2 Summary of Discharge Monitoring Reports (DMRs):

DMRs reviewed for the facility for the last 12 months of operation, presented on the table above in section 3.1 indicate permit limits have been met consistently. No effluent violations were noted on DMRs for the period reviewed.

3.3 Summary of Inspections:

The facility has been inspected a couple times during last permit cycle. No effluent violations were found during plant inspections. The facility is operated and maintained well.

4.0 Development of Effluent Limitations

Outfall No.
Latitude
001
40응́ 41.00"
Wastewater Description:
Sewage Effluent

Design Flow (MGD) Longitude
.65
$-76^{\circ} 25^{\prime} 56.00^{\prime \prime}$

4.1 Basis for Effluent Limitations

In general, the Clean Water Act (CWA) requires that the effluent limits for a particular pollutant be the more stringent of either technology-based limits or water quality-based limits. Technology-based limits are set according to the level of treatment that is achievable using available technology. A water quality-based effluent limit is designed to ensure that the water quality standards applicable to a waterbody are being met and may be more stringent than technology-based effluent limits.

4.2 Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
CBOD_{5}	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended Solids	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
pH	6.0-9.0 S.U.	Min - Max	133.102(c)	95.2(1)
Fecal Coliform $(5 / 1-9 / 30)$	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform $(5 / 1-9 / 30)$	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform (10/1-4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform (10/1-4/30)	$10,000 / 100 \mathrm{ml}$	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)

Comments: TRC is not applicable to this facility

4.3 Water Quality-Based Limitations

4.3.1 Mass-Based Limits

The federal regulation at 40 CFR $122.45(\mathrm{f})$ requires that effluent limits be expressed in terms of mass, if possible. The regulation at 40 CFR 122.45(b) requires that effluent limitations for POTWs be calculated based on the design flow of the facility. The mass-based limits are expressed in pounds per day and are calculated as follows:
Mass based limit (lb/day) = concentration limit $(\mathrm{mg} / \mathrm{L}) \times$ design flow $(\mathrm{mgd}) \times 8.34$

4.3.2 WQM 7.0 Stream Model

WQM 7.0 is a water quality model DEP utilizes to establish appropriate effluent limits for $\mathrm{CBOD}_{5}, \mathrm{NH}_{3}-\mathrm{N}$ and DO in permits. The model simulates mixing and degradation of $\mathrm{NH}_{3}-\mathrm{N}$ in the stream and compares calculated instream $\mathrm{NH}_{3}-\mathrm{N}$ concentrations to $\mathrm{NH}_{3}-\mathrm{N}$ water quality criteria and also simulates mixing and consumption of D.O. in the stream due to the degradation of CBOD ${ }_{5}$ and $\mathrm{NH}_{3} \mathrm{~N}$ and compares calculated instream D.O. concentrations to D.O. water quality criteria and recommends effluent limits.

4.3.3 Receiving Stream

The receiving stream is the Little Swatara Creek. According to 25 PA § 93.90 , this stream is protected for Warm Water Fishes (WWF) and Migratory Fishes (MF). It is located in Drainage List o and State Watershed 7-D. It has been assigned stream code 09888. According to eMapPA, Little Swatara Creek is attaining its designated uses.

4.3.4 Streamflow

Streamflows for the water quality analysis were determined by correlating with the yield of USGS gauging station No 01573000 on Swatara Creek at Harper Tavern. The Q_{7-10} and drainage area at the gage is $22.1 \mathrm{ft} 3 / \mathrm{s}$ and $337 \mathrm{mi}^{2}$ respectively. The resulting yields are as follows:

- $\mathrm{Q}_{7-10}=\left(22.1 \mathrm{ft}^{3} / \mathrm{s}\right) / 337 \mathrm{mi}^{2}=0.0656 \mathrm{ft}^{3} / \mathrm{s} / \mathrm{mi}^{2}$
- $Q_{30-10} / Q_{7-10}=1.40$
- $Q_{1-10} / Q_{7-10}=0.80$

The drainage area at discharge is calculated by USGS StreamStats $=86.15 \mathrm{mi}^{2}$
The Q7-10 at discharge $=86.15 \mathrm{mi}^{2} \times 0.0 .0656 \mathrm{ft}^{3} / \mathrm{s} / \mathrm{mi}^{2}=5.65 \mathrm{ft}^{3} / \mathrm{s}$.

4.3.5 $\mathrm{NH}_{3} \mathrm{~N}$ Calculations

$\mathrm{NH}_{3} \mathrm{~N}$ calculations will be based on the Department's Implementation Guidance of Section 93.7 Ammonia Criteria, dated 11/4/97 (ID No. 391-2000-013). The following data is necessary to determine the instream $\mathrm{NH}_{3} \mathrm{~N}$ criteria used in the WQM 7.0 model:

* Discharge pH
* Discharge Temperature
* Stream pH
* Stream Temperature
* Background $\mathrm{NH}_{3}-\mathrm{N}$
$=6.45$ (July -Sept DMR median)
$=25^{\circ} \mathrm{C}$ (Default)
$=7.0$ (Default)
$=20^{\circ} \mathrm{C}$ (Default)
$=0.0$ (Default)

4.3.6 CBOD_{5}

Due to their proximity, the discharges from Keystone Protein IW and Fredericksburg STP were modelled together. The results of the WQM 7.0 Model presented in attachment B indicate that for a discharge of 0.65 MGD from Fredericksburg STP, an average monthly limit (AML) of $25 \mathrm{mg} / \mathrm{CBOD} 5$ is required to protect the water quality of the stream. This limit is consistent with the existing permit and the STP is consistently complying with the limitation. Therefore, a limit of $25 \mathrm{mg} / \mathrm{l}$ AML, $40 \mathrm{mg} / \mathrm{l}$ average weekly limit (AWL) and $50 \mathrm{mg} / \mathrm{I}$ IMAX are again recommended for the current permit renewal. Mass limits are calculated as follows:

Mass based AML ($\mathrm{lb} /$ day) $=25(\mathrm{mg} / \mathrm{L}) \times 0.65(\mathrm{mgd}) \times 8.34=136$
Mass based AWL ($\mathrm{lb} /$ day) $=40(\mathrm{mg} / \mathrm{L}) \times 0.65(\mathrm{mgd}) \times 8.34=217$

4.3.7 $\mathrm{NH}_{3}-\mathrm{N}$

The attached results of the WQM 7.0 stream model (attachment B) also indicates that a summer limitation of $15 \mathrm{NH}_{3}$ as a monthly average and $30 \mathrm{mg} / \mathrm{I}$ instantaneous maximum is necessary to protect the aquatic life from toxicity effects. The existing summer limitation of $13.5 \mathrm{NH}_{3}$ as a monthly average and $27 \mathrm{mg} / \mathrm{l}$ instantaneous maximum are more stringent and will remain in the permit due to anti-backsliding restrictions. Existing monitoring requirement for ammonia will continue for winter months in the permit to ensure treatment efficiency.

Mass limits are calculated as follows:
Mass based summer AML ($\mathrm{lb} /$ day) $=13.5(\mathrm{mg} / \mathrm{L}) \times 0.65(\mathrm{mgd}) \times 8.34=73$

4.3.8 Dissolved Oxygen

The existing permit contains a limit of $5 \mathrm{mg} / \mathrm{I}$ for Dissolved Oxygen (DO). DEP's Technical Guidance for the Development and Specification of Effluent Limitations (362-0400-001, 10/97) suggests that either the adopted minimum stream D.O. criteria for the receiving stream or the effluent level determined through water quality modeling be used for the limit. Since the WQM 7.0 model was run using a minimum D.O. of $5.0 \mathrm{mg} / \mathrm{l}$, this limit will be continued in the renewed permit with a daily monitoring requirement.

4.3.9 Total Suspended Solids (TSS)

There is no water quality criterion for TSS. A limit of $30 \mathrm{mg} / \mathrm{IML}$ will be required based on the minimum level of effluent quality attainable by secondary treatment as defined in 40 CFR 133.102 b (1) and 25 PA § 92a.47(a)(1) and an AWL of $45 \mathrm{mg} / \mathrm{per} 40 \mathrm{CFR}$ 133.102(b)(2) and 25 PA § 92a.47(a)(2). Mass limits are calculated as follows:

Mass based AML ($\mathrm{lb} /$ day) $=30(\mathrm{mg} / \mathrm{L}) \times 0.65(\mathrm{mgd}) \times 8.34=163$
Mass based AWL $(\mathrm{lb} /$ day $)=45(\mathrm{mg} / \mathrm{L}) \times 0.65(\mathrm{mgd}) \times 8.34=244$

4.3.10 Total Residual Chlorine

The discharge does not have any reasonable potential to cause or contribute to a water quality standards violation for total residual chlorine since the permittee utilizes UV instead of chlorine for wastewater disinfection. Therefore, the proposed permit does not contain effluent limits for total residual chlorine. The permittee may use chlorine-based chemicals for cleaning and is required to optimize chlorine usage to prevent negative impacts on receiving stream. Daily UV intensity monitoring ($\mathrm{mW} / \mathrm{cm}^{2}$) is required in the permit to ensure efficiency of the UV unit..

4.3.11 Toxics

A reasonable potential (RP) analysis was done for pollutants sampled in support of the permit renewal application. All pollutants that were presented in the application sampling and additional sampling data submitted were entered into DEP's Toxics Management Spreadsheet (TMS) to calculate WQBELs. The facility has been monitoring Total Zinc and the data was analyzed using TOXCON to determine Average Monthly Effluent Concentration (Amec) of $0.093 \mathrm{mg} / \mathrm{I}$ and a daily coefficient of variation (CV) of 0.292 for Total Zinc presented in attachment C. The results from the TOXCON analysis were also added to the TMS for further analysis. The results of the TMS presented in attachment D indicate discharge levels for all pollutants except Total Zinc are well below DEP's target quantitation limits and the calculated WQBELs, therefore, no monitoring or limitation is recommended. Monitoring is recommended for Total Zinc; therefore the facility will continue monitoring Total Zinc.

Limitation and /or monitoring recommendation on the spreadsheet follow the logic presented in DEPs SOP, to establish limits in the permit where the maximum reported concentration exceeds 50% of the WQBEL, or for non-conservative pollutants to establish monitoring requirements where the maximum reported concentration is between $25 \%-50 \%$ of the WQBEL, or to establish monitoring requirements for conservative pollutants where the maximum reported concentration is between $10 \%-50 \%$ of the WQBEL.

4.3.12 Fecal Coliform and E. Coli

The existing Fecal Coliform limit is consistent with the technology limits recommended in 92a.47(a)(4) and (a)(5) and will remain in the permit. In March of 2021, EPA approved DEP's Triennial Review of Water Quality Standards, which included a new swimming season criterion for E.coli. As a result, DEP is including monitoring requirements for E. Coli in new and renewed sewage permits above 2000gpd. Monitoring frequency is based on annual average flow as follows: $1 /$ month for design flows >= 1 MGD, 1 /quarter for design flows >= 0.05 and <1 MGD and 1/year for design flows of $0.002-0.05$ MGD. Your discharge of 0.65 MGD requires $1 /$ quarter monitoring as included in the permit

4.3.13 Chesapeake Bay Strategy

The facility is a phase 5 facility that was expanded from 0.15 mgd to 0.433 mgd and to 0.65 MGD . Under the Chesapeake Bay Strategy, implementation of Phase 4 \& 5 cap loads if needed was to start after Phases 1 through 3 were completed. However, any facility in phases $4 \& 5$ that undergoes expansion gets a cap load immediately based on approved flow prior to August 29, 2005 with no net increase in loading. Planning approval for the expanded flow of 0.65 mgd was granted after
the August 29, 2005 CBS date, hence the facility's cap load was based on 0.15MGD. For phases $4 \& 5$ that undergoes expansion, DEP's strategy is to establish cap loads for TN and TP based upon the lesser of existing performance levels at design annual average daily flow approved prior to August 29, 2005 or cap loads equivalent to $6 \mathrm{mg} / \mathrm{TN}$ and $0.8 \mathrm{mg} / \mathrm{TP}$ using a flow of 0.4 mgd (7306 lbs . TN and 974 lbs . TP). Since this was a new wastewater treatment plant at the time of the phase1 expansion, there was no existing performance data. The facility's cap load was based on default values of $4 \mathrm{mg} / \mathrm{l}$ TP and $22 \mathrm{mg} / \mathrm{IN}$ using a flow of $0.15 \mathrm{mgd}(1,850 \mathrm{lbs} / \mathrm{yr}$ TP and $10,051 \mathrm{lbs} / \mathrm{yr}$) compared to $974 \mathrm{lbs} / \mathrm{yr}$ TP and $7,306 \mathrm{lbs} / \mathrm{yr}$ TN. The lesser of the two scenarios is $974 \mathrm{lbs} /$ year TP and $7306 \mathrm{lbs} /$ year TN has been allocated to the facility. The cap load was transferred from the abandoned facility with permit number PA0080705 to PA0261670 and it has been documented in the Department's Phase III WIP Supplement. Treatment and/or credits or offsets maybe used to meet the cap load. The facility is in compliance with the Bay Cap Load requirement.

4.3.14 Total Phosphorus

The limit of $2 \mathrm{mg} / \mathrm{l}$ established in the existing permit was for the protection of the Lower Susquehanna River basin which has been superseded by the Chesapeake Bay Strategy but will remain in the permit due to anti-backsliding restrictions. Mass limits are calculated as follows:

Mass based AML ($\mathrm{lb} /$ day) $=2(\mathrm{mg} / \mathrm{L}) \times 0.65(\mathrm{mgd}) \times 8.34=11$

4.3.15 Influent BOD and TSS Monitoring

The permit includes influent BOD5 and TSS monitoring at the same frequency as is done for effluent in order to implement Chapter 94.12 and assess percent removal requirements.

4.3.16 Pretreatment Requirements

The design annual average flow of the treatment plant is 0.65 MGD and the facility only receives sewage flow from significant Industrial users. EPA does not require development of pretreatment program for facilities with design flow less than 5MGD. However, the permit contains standard conditions requiring the permittee to monitor and control industrial users if applicable.

5.0 Other Requirements

5.1 The permit contains the following special conditions:

The permit contains the following special conditions:
Stormwater Prohibition, Approval Contingencies, Proper Waste/solids Management, Restriction on receipt of hauled in waste under certain conditions and Chlorine minimization requirement

5.2 Stormwater

There is no stormwater outfall associated with this facility.

5.3 Anti-backsliding

Not applicable to this permit

5.4 Antidegradation (93.4):

The effluent limits for this discharge have been developed to ensure that existing instream water uses and the level of water quality necessary to protect the existing uses are maintained and protected. No High-Quality Waters are impacted by this discharge. No Exceptional Value Waters are impacted by this discharge.

5.5 Class A Wild Trout Fisheries:

No Class A Wild Trout Fisheries are impacted by this discharge.

5.6 303d listed stream

The discharge is not located on a 303d listed stream segment.

5.7 Basis for Effluent and Surface Water Monitoring

Section 308 of the CWA and federal regulation 40 CFR 122.44(i) require monitoring in permits to determine compliance with effluent limitations. Monitoring may also be required to gather effluent and surface water data to determine if additional effluent limitations are required and/or to monitor effluent impacts on receiving water quality. The permittee is responsible for conducting the monitoring and for reporting results on Discharge Monitoring Reports (DMRs).

5.8 Effluent Monitoring Frequency

Monitoring frequencies are based on the nature and effect of the pollutant, as well as a determination of the minimum sampling necessary to adequately monitor the facility's performance. Permittees have the option of taking more frequent samples than are required under the permit. These samples can be used for averaging if they are conducted using EPAapproved test methods (generally found in 40 CFR 136) and if the Method Detection Limits are less than the effluent limits. The sampling location must be after the last treatment unit and prior to discharge to the receiving water. If no discharge occurs during the reporting period, "no discharge" shall be reported on the DMR.

6.0 Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (386-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

Parameter	Effluent Limitations						Monitoring Requirements	
	Mass Units (lbs/day) ${ }^{(1)}$		Concentrations (mg/L)				Minimum ${ }^{(2)}$ Measurement Frequency	Required Sample Type
	Average Monthly	Weekly Average	Daily Minimum	Average Monthly	Weekly Average	Instant. Maximum		
Flow (MGD)	Report	Report Daily Max	XXX	XXX	XXX	XXX	Continuous	Measured
pH (S.U.)	XXX	XXX	$\begin{gathered} 6.0 \\ \text { Inst Min } \\ \hline \end{gathered}$	XXX	XXX	9.0	1/day	Grab
DO	XXX	XXX	5.0	XXX	XXX	XXX	1/day	Grab
CBOD5	136	217	XXX	25.0	40.0	50	1/week	$24-\mathrm{Hr}$ Composite
BOD5 Raw Sewage Influent	Report	Report Daily Max	XXX	Report	XXX	XXX	1/week	$24-\mathrm{Hr}$ Composite
TSS	163	244	XXX	30.0	45.0	60	1/week	$24-\mathrm{Hr}$ Composite
TSS Raw Sewage Influent	Report	Report Daily Max	XXX	Report	XXX	XXX	1/week	$24-\mathrm{Hr}$ Composite
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	$\begin{gathered} 2000 \\ \text { Geo Mean } \end{gathered}$	XXX	10000	1/week	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	XXX	XXX	$\begin{gathered} 200 \\ \text { Geo Mean } \end{gathered}$	XXX	1000	1/week	Grab
E. Coli (No./100 ml)	XXX	XXX	XXX	XXX	XXX	Report	1/quarter	Grab
UV Intensity (mW/cm²)	XXX	XXX	Report	XXX	XXX	XXX	1/day	Recorded
Nitrate-Nitrite	XXX	XXX	XXX	Report	XXX	XXX	2/week	$24-\mathrm{Hr}$ Composite
Nitrate-Nitrite (lbs)	Report Total Mo	XXX	XXX	XXX	XXX	XXX	1/month	Calculation

Outfall 001, Continued (from Permit Effective Date through Permit Expiration Date)

Parameter	Effluent Limitations						Monitoring Requirements	
	Mass Units (Ibs/day) ${ }^{(1)}$		Concentrations (mg/L)				$\begin{aligned} & \text { Minimum }{ }^{(2)} \\ & \text { Measurement } \\ & \text { Frequency } \\ & \hline \end{aligned}$	Required Sample Type
	Average Monthly	Weekly Average	Daily Minimum	Average Monthly	Weekly Average	Instant. Maximum		
Total Nitrogen	XXX	XXX	XXX	Report	XXX	XXX	1/month	Calculation
Total Nitrogen (lbs)	Report Total Mo	XXX	XXX	XXX	XXX	XXX	1/month	Calculation
Ammonia Nov 1 - Apr 30	Report	XXX	XXX	Report	XXX	XXX	2/week	$24-\mathrm{Hr}$ Composite
Ammonia May 1 - Oct 31	73	XXX	XXX	13.5	XXX	27	2/week	$24-\mathrm{Hr}$ Composite
Ammonia (lbs)	Report Total Mo	XXX	XXX	XXX	XXX	XXX	1/month	Calculation
TKN	XXX	XXX	XXX	Report	XXX	XXX	2/week	$24-\mathrm{Hr}$ Composite
TKN (lbs)	Report Total Mo	XXX	XXX	XXX	XXX	XXX	1/month	Calculation
Total Phosphorus	11.0	XXX	XXX	2.0	XXX	4	2/week	$24-\mathrm{Hr}$ Composite
Total Phosphorus (lbs)	Report Total Mo	XXX	XXX	XXX	XXX	XXX	1/month	Calculation
Total Zinc	Report	XXX	XXX	Report	XXX	XXX	1/week	$24-\mathrm{Hr}$ Composite

Compliance Sampling Location: At Outfall 001

6.1 Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, to comply with Pennsylvania's Chesapeake Bay Tributary Strategy.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

Parameter	Effluent Limitations						Monitoring Requirements	
	Mass Units (Ibs/day) ${ }^{(1)}$		Concentrations (mg/L)				Minimum ${ }^{(2)}$ Measurement Frequency	Required Sample Type
	Monthly	Annual	Monthly	Monthly Average	Maximum	Instant. Maximum		
Ammonia--N	Report	Report	XXX	Report	XXX	XXX	2/week	$24-\mathrm{Hr}$ Composite
Kjeldahl--N	Report	XXX	XXX	Report	XXX	XXX	2/week	$24-\mathrm{Hr}$ Composite
Nitrate-Nitrite as N	Report	XXX	XXX	Report	XXX	XXX	2/week	$24-\mathrm{Hr}$ Composite
Total Nitrogen	Report	Report	XXX	Report	XXX	XXX	1/month	Calculation
Total Phosphorus	Report	Report	XXX	Report	XXX	XXX	2/week	$24-\mathrm{Hr}$ Composite
Net Total Nitrogen	XXX	7306	XXX	XXX	XXX	XXX	1/year	Calculation
Net Total Phosphorus	XXX	974	XXX	XXX	XXX	XXX	1/year	Calculation

Compliance Sampling Location: At Outfall 001

7．0 Tools and References Used to Develop Permit	
，	WQM for Windows Model（see Attachment B）
】	Toxics Management Spreadsheet（see Attachment C）
	TRC Model Spreadsheet（see Attachment ）
	Temperature Model Spreadsheet（see Attachment ）
区	Water Quality Toxics Management Strategy，361－0100－003，4／06．
区	Technical Guidance for the Development and Specification of Effluent Limitations，386－0400－001，10／97．
	Policy for Permitting Surface Water Diversions，386－2000－019，3／98．
】	Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications，386－2000－018，11／96．
	Technology－Based Control Requirements for Water Treatment Plant Wastes，386－2183－001，10／97．
\square	Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry，386－2183－002， 12／97．
	Pennsylvania CSO Policy，386－2000－002，9／08．
区	Water Quality Antidegradation Implementation Guidance，391－0300－002，11／03．
\square	Implementation Guidance Evaluation \＆Process Thermal Discharge（316（a））Federal Water Pollution Act，386－ 2000－008，4／97．
区	Determining Water Quality－Based Effluent Limits，386－2000－004，12／97．
	Implementation Guidance Design Conditions，386－2000－007，9／97．
区	Technical Reference Guide（TRG）WQM 7.0 for Windows，Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen，Version 1．0，386－2000－016，6／2004．
\square	Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams，Brines，and Industrial Discharges， 386－2000－012，10／1997．
\square	Implementation Guidance for Section 95．6 Management of Point Source Phosphorus Discharges to Lakes，Ponds， and Impoundments，386－2000－009，3／99．
\square	Technical Reference Guide（TRG）PENTOXSD for Windows，PA Single Discharge Wasteload Allocation Program for Toxics，Version 2．0，386－2000－015，5／2004．
区	Implementation Guidance for Section 93．7 Ammonia Criteria，386－2000－022，11／97．
\square	Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams，Drainage Channels and Swales，and Storm Sewers，386－2000－013，4／2008．
	Implementation Guidance Total Residual Chlorine（TRC）Regulation，386－2000－011，11／1994．
	Implementation Guidance for Temperature Criteria，386－2000－001，4／09．
【	Implementation Guidance for Section 95．9 Phosphorus Discharges to Free Flowing Streams，386－2000－021，10／97．
\square	Implementation Guidance for Application of Section 93．5（e）for Potable Water Supply Protection Total Dissolved Solids，Nitrite－Nitrate，Non－Priority Pollutant Phenolics and Fluorides，386－2000－020，10／97．
\square	Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness，386－2000－005，3／99．
\square	Implementation Guidance for the Determination and Use of Background／Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances，386－2000－010，3／1999．
区	Design Stream Flows，386－2000－003，9／98．
\square	Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation（CV） and Other Discharge Characteristics，386－2000－006，10／98．
	Evaluations of Phosphorus Discharges to Lakes，Ponds and Impoundments，386－3200－001，6／97．
இ	Pennsylvania＇s Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting，4／07．
区	SOP：Establishing Effluent limitation for individual sewage permit
【	Other：WIP III and Supplement

8. Attachments

A. Topographical Map

B. WQM Model Results

WQM 7.0 Effluent Limits

Input Data WQM 7.0

Input Data WQM 7.0

Input Data WQM 7.0

Input Data WQM 7.0

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	
WLA Method	EMPR	Use Inputted WID Ratio	\square
Q1-10/Q7-10 Ratio	0.8	Use Inputted Reach Travel Times	\square
Q30-10/Q7-10 Ratio	1.4	Temperature Adjust Kr	\square
D.O. Saturation	90.00%	Use Balanced Technology	\square
D.O. Goal	5		\square

WQM 7.0 Wasteload Allocations

SWP Basin	Stream Code	9888
07D	Stream Name	
LITTLE SWATARA CREEK		

NH3-N Acute Allocations						
RMI Discharge Name	Baseline Criterion (mg / L)	Baseline WLA (mg / L)	Multiple Criterion (mg / L)	Multiple WLA (mg / L.)	Critical Reach	Percent Reduction
6.970 Keystone Prot	20.31	36.31	20.31	36.31	0	0
3.520 Fredericksburg	17.67	50	19.74	50	0	0
3.100	NA	NA	19.67	NA	NA	NA
NH3-N Chronic Allocations						
RMI Discharge Name	Baseline Criterion (mg / L)	Baseline WLA (mg / L)	Multiple Criterion (mg / L)	Multiple WLA (mg / L)	Critical Reach	Percent Reduction
6.970 Keystone Prot	2.02	4.8	2.02	4.34	2	10
3.520 Fredericksburg	1.89	16.76	1.98	15.14	2	10
3.100	NA	NA	1.98	NA	NA	NA

Dissolved Oxygen Allocations

Discharge Name	CBOD5		$\mathrm{NH} 3-\mathrm{N}$		Dissolved Oxygen		Critical Reach	Percent Reduction
	Baseline (mg / L)	Multiple (mg / L)	Baseline (mg / L)	Multiple (mg / L)	Baseline (mg / L)	Multiple (mg/L)		
6.97 Keystone Prot	10.25	10.25	3.07	3.07	5	5	0	0
3.52 Fredericksburg	25	25	15.14	15.14	5	5	0	0
3.10	NA							

WQM 7.0 Hydrodynamic Outputs

		Basin	Strea	m Code				tream	Name			
	07D		9888		LITTLE SWATARA CREEK							
RMI	Stream Flow (cfs)	PWS With (cfs)	Net Stream Flow (ofs)	Disc Analysis Flow (cfs)	Reach Slope (ft/ft)	Depth (ft)	Width (ft)	W/D Ratio	Velocity (fps)	Reach Trav Time (days)	Analysis Temp ($\left.{ }^{\circ} \mathrm{C}\right)$	Analysis pH
Q7-10 Flow												
6.970	4.57	0.00	4.57	4.641	0.00066	. 78	48.82	62.61	0.24	0.871	20.00	6.75
3.520	5.65	0.00	5.65	5.6465	0.00406	. 77	48.69	63.19	0.30	0.085	20.45	6.73
3.100	6.18	0.00	6.18	5.6465	0.00505	. 779	49.23	63.22	0.31	0.030	20.43	6.74
Q1-10 Flow												
6.970	3.66	0.00	3.66	4.641	0.00066	NA	NA	NA	0.23	0.924	20.00	6.73
3.520	4.52	0.00	4.52	5.6465	0.00406	NA	NA	NA	0.28	0.090	20.49	6.71
3.100	4.94	0.00	4.94	5.6465	0.00505	NA	NA	NA	0.29	0.032	20.47	6.72
Q30-10 Flow												
6.970	6.40	0.00	6.40	4.641	0.00066	NA	NA	NA	0.27	0.787	20.00	6.79
3.520	7.91	0.00	7.91	5.6465	0.00406	NA	NA	NA	0.33	0.077	20.37	6.77
3.100	8.65	0.00	8.65	5.6465	0.00505	NA	NA	NA	0.34	0.027	20.35	6.78

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	
WLA Method	EMPR	Use Inputted WID Ratio	\square
Q1-10/Q7-10 Ratio	0.8	Use Inputted Reach Travel Times	\square
Q30-10/Q7-10 Ratio	1.4	Temperature Adjust Kr	\square
D.O. Saturation	90.00%	Use Balanced Technology	\square
D.O. Goal	5		\square

WQM 7.0 D.O.Simulation

SWP Basin	Stream Code		Stream Name		
07D	9888		LITTLE SWATARA CREEK		
RMI	Total Discharge Flow (mgd)		Ana	lysis Temperature (${ }^{\circ} \mathrm{C}$)	Analysis pH
6.970	3.000			20.000	6.754
Reach Width (f)	Reach Depth (ft)			Reach WDRatio	Reach Velocity (fps)
48.819	0.780			62.615	0.242
Reach CBOD5 (mg/L)	Reach Kc (1/days)			Reach $\mathrm{NH} 3-\mathrm{N}$ (mg/L)	Reach Kn (1/days)
6.15	$\begin{gathered} 0.491 \\ \text { Reach } \operatorname{Kr}(1 / \text { days }) \end{gathered}$			1.55 Kr Equation	$\begin{gathered} 0.700 \\ \text { Reach DO Goal (mg/L) } \end{gathered}$
6.609	1.515			Tsivoglou	5
0.871	TravTime (days)	Subreach CBOD5 (mg / L)	$\mathrm{NH} 3-\mathrm{N}$ $\mathrm{D} . \mathrm{O}$. $(\mathrm{mg} / \mathrm{L})$ $(\mathrm{mg} / \mathrm{L})$.
	0.087	5.90	1.46	6.17	
	0.174	5.65	1.37	5.83	
	0.261	5.41	1.29	5.56	
	0.348	5.19	1.21	5.36	
	0.436	4.97	1.14	5.22	
	0.523	4.76	1.07	5.12	
	0.610	4.56	1.01	5.07	
	0.697	4.37	0.95	5.05	
	0.784	4.19	0.89	5.06	
	0.871	4.01	0.84	5.10	
RMI	Total Discharge Flow (mgd)		Ana	lysis Temperature (${ }^{\circ} \mathrm{C}$)	Analysis pH
3.520	3.650			20.445	6.733
Reach Width (ft)	Reach Depth (ft)			Reach WDRatio	Reach Velocity (fps)
48.688	0.770			63.192	0.301
Reach CBOD5 (mg/L)	Reach Kc (1/days)			Reach $\mathrm{NH} 3-\mathrm{N}$ (mg/L)	Reach Kn (1/days)
5.69	$\begin{gathered} 0.839 \\ \text { Reach Kr (1/days) } \end{gathered}$			2.03	0.724
Reach DO (mg/L)				Kr Equation	Reach DO Goal (mg/L)
5.388	8.430		Tsivoglou		5
Reach Travel Time (days)	s) Subreach Results				
0.085	TravTime (days)	CBOD5 (mg / L)	NH3-N (mg / L)	$\begin{gathered} \mathrm{D} . \mathrm{O} . \\ (\mathrm{mg} / \mathrm{L}) \end{gathered}$	
	0.009	5.65	2.02	5.53	
	0.017	5.61	2.01	5.66	
	0.026	5.57	2.00	5.78	
	0.034	5.53	1.98	5.90	
	0.043	5.49	1.97	6.01	
	0.051	5.45	1.96	6.11	
	0.060	5.41	1.95	6.21	
	0.068	5.37	1.94	6.30	
	0.077	5.33	1.92	6.38	
	0.085	5.29	1.91	6.46	

WQM 7.0 D.O.Simulation

SWP Basin S	Stream Code			Stream Name	
07D	9888	LITTLE SWATARA CREEK			
RMI	Total Discharge Flow (mgd)			lysis Temperature (${ }^{\circ} \mathrm{C}$)	Analysis pH
3.100	3.650			20.425	6.742
Reach Width (ft)	Reach Depth (ft)			Reach WDRatio	Reach Velocity (fps)
49.228	0.779			63.221	0.309
Reach CBOD5 (mg/L)) Reach Kc (1/days)			Reach $\mathrm{NH} 3-\mathrm{N}$ (mq/L)	Reach Kn (1/days)
$\begin{gathered} 5.14 \\ \text { Reach DO }(\mathrm{mg} / \mathrm{L}) \end{gathered}$	0.806Reach $\mathrm{Kr}(1 /$ days $)$			$\begin{gathered} 1.83 \\ \text { Kr Equation } \\ \hline \end{gathered}$	$\begin{gathered} 0.723 \\ \text { Reach DO Goal (mg/L) } \end{gathered}$
$\frac{6.539}{}$	10.741		Tsivoglou		5
0.030	Subreach Results TravTime CBOD5 NH3-N D.O. (days) (mg/L) (mg/L) (mg/L)				
	0.003	5.13	1.82	6.58	
	0.006	5.12	1.82	6.63	
	0.009	5.10	1.81	6.67	
	0.012	5.09	1.81	6.71	
	0.015	5.08	1.81	6.75	
	0.018	5.07	1.80	6.78	
	0.021	5.06	1.80	6.82	
	0.024	5.04	1.80	6.86	
	0.027	5.03	1.79	6.89	
	0.030	5.02	1.79	6.92	

C. TOXCON Results

D. TMS Analysis Results

Discharge Information

Instructions	Discharge	Stream

Facility:
Outfall No.:

Evaluation Type:
Major Sewage / Industrial Waste
Wastewater Description: Industrial Waste

| Discharge Characteristics | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Design Flow
 (MGD)* | Hardness (mg/l)* | $\mathrm{pH}(\mathrm{SU})^{*}$ | Partial Mix Factors (PMFs) | | | Complete Mix Times (min) | | |
| | | | AFC | CFC | THH | CRL | \mathbf{Q}_{7-10} | \mathbf{Q}_{h} |
| 0.65 | 100 | 6.45 | | | | | | |

			Max Discharge Conc		0 if left blank		0.5 if left blank		Oif left blank			1 if left blank	
	Discharge Pollutant	Units			Trib Conc	Stream Conc	Daily CV	Hourly CV	Strea m CV	Fate Coeff	FOS	Criteri a Mod	Chem Transl
	Total Dissolved Solids (PWS)	mg/L		756									
	Chloride (PWS)	mg/L		367									
\%	Bromide	mg/L	<	1									
\bigcirc	Sulfate (PWS)	mg/L		73.4									
	Fluoride (PWS)	mg/L											
	Total Aluminum	$\mu \mathrm{g} / \mathrm{L}$											
	Total Antimony	$\mu \mathrm{g} / \mathrm{L}$											
	Total Arsenic	$\mu \mathrm{g} / \mathrm{L}$											
	Total Barium	$\mu \mathrm{g} / \mathrm{L}$											
	Total Beryllium	$\mu \mathrm{g} / \mathrm{L}$											
	Total Boron	$\mu \mathrm{g} / \mathrm{L}$											
	Total Cadmium	$\mu \mathrm{g} / \mathrm{L}$											
	Total Chromium (III)	$\mu \mathrm{g} / \mathrm{L}$											
	Hexavalent Chromium	$\mu \mathrm{g} / \mathrm{L}$											
	Total Cobalt	$\mu \mathrm{g} / \mathrm{L}$											
	Total Copper	mg/L											
0	Free Cyanide	$\mu \mathrm{g} / \mathrm{L}$											
-	Total Cyanide	$\mu \mathrm{g} / \mathrm{L}$											
O	Dissolved Iron	$\mu \mathrm{g} / \mathrm{L}$											
	Total Iron	$\mu \mathrm{g} / \mathrm{L}$											
	Total Lead	$\mu \mathrm{g} / \mathrm{L}$											
	Total Manganese	$\mu \mathrm{g} / \mathrm{L}$											
	Total Mercury	$\mu \mathrm{g} / \mathrm{L}$											
	Total Nickel	$\mu \mathrm{g} / \mathrm{L}$											
	Total Phenols (Phenolics) (PWS)	$\mu \mathrm{g} / \mathrm{L}$											
	Total Selenium	$\mu \mathrm{g} / \mathrm{L}$											
	Total Silver	$\mu \mathrm{g} / \mathrm{L}$											
	Total Thallium	$\mu \mathrm{g} / \mathrm{L}$											
	Total Zinc	mg/L		0.09			0.292						
	Total Molybdenum	$\mu \mathrm{g} / \mathrm{L}$											

Stream / Surface Water Information

Q_{7-10}															
Location	RMI	$\begin{gathered} \text { LFY } \\ \left(\mathrm{cfs} / \mathrm{mi}^{2}\right)^{*} \end{gathered}$	Flow (cfs)		$\begin{aligned} & \text { W/D } \\ & \text { Ratio } \end{aligned}$	Width (t)	Depth (ft)	$\begin{array}{\|l\|l\|} \hline \text { Velocit } \\ \text { y (fps) } \end{array}$	$\begin{aligned} & \text { Traver } \\ & \text { Time } \\ & \text { Cdoure) } \end{aligned}$	Tributary		Stream		Analysis	
			Stream	Tributary						Hardness	pH	Hardness*	pH^{*}	Hardness	pH
Point of Discharge	3.52	0.066										100	7		
End of Reach 1	3.1	0.066													

Q_{h}

Location	RMI	$\begin{gathered} \text { LFY } \\ \left(\mathrm{cfs} / \mathrm{mi}^{2}\right) \end{gathered}$	Flow (cfs)		$\begin{aligned} & \hline \text { W/D } \\ & \text { Ratio } \\ & \hline \end{aligned}$	Width (t)	Depth (ft)	$\begin{array}{\|l\|l\|} \hline \text { Velocit } \\ \text { y (fps) } \end{array}$	Time (Cavis)	Tributary		Stream		Analysis	
			Stream	Tributary						Hardness	pH	Hardness	pH	Hardness	pH
Point of Discharge	3.52														
End of Reach 1	3.1														

Model Results
Instructions Results \quad RETURNTOINPUTS SAVE AS PDF PRINT OAll O Inputs \bigcirc Results O Limits

Hydrodynamics
Wasteload Allocations

\square AFC \quad CCT (min): | 15 | PMF: 0.603 | Analysis Hardness (mgll): 0100 | Analysis pH: 6.80 |
| :--- | :--- | :--- | :--- | :--- | :--- |

Pollutants	Conc	$\begin{array}{c\|} \hline \text { Stream } \\ \mathrm{CV} \end{array}$	Trib Conc ($\mathrm{\mu g} / \mathrm{L}$)	Fate Coef	$\begin{aligned} & \text { WQC } \\ & (\mathrm{Lg} \mathrm{~L}) \end{aligned}$	WQ Obj ($\mathrm{\mu gL} \mathrm{~L}$)	WLA (rgiL)	Comments
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Total Zinc	0	0		0	117.180	120	524	Chem Translator of 0.978 applied
\longrightarrow								

CRL CCT (min): 18.137 PMF: 1 Analysis Hardness (mgll): $\begin{array}{ll} & \\ \text { N/A Analysis pH: } & \text { N/A }\end{array}$

Polutants	Jutean Conc	$\begin{gathered} \text { Stream } \\ \mathrm{CV} \end{gathered}$	Trib Conc ($\mathrm{\mu g} \mathrm{~L}$)	$\begin{array}{\|l} \hline \text { Fate } \\ \text { Coef } \end{array}$	$\begin{aligned} & \text { WQC } \\ & (\mathrm{g} / \mathrm{L}) \end{aligned}$	$\begin{aligned} & \hline \text { WQ Obj } \\ & (\mathrm{ggLL}) \end{aligned}$	WLA (ggl)	Comments
Total Dissolved Solids (PWS)	0	0		0	NA	N/A	N/A	
Chloride (PWS)	0	0		0	NA	N/A	N/A	
Sulfate (PWS)	0	0		0	NA	N/A	N/A	
Total Zinc	0	0		0	NA	N/A	N/A	

\square Recommended WQBELs \& Monitoring Requirements

No. Samples/Month:	4									
		Mass Limits		Concentration Limits						
Pollutants		AML (bs/day)	$\begin{gathered} \text { MDL } \\ \text { (bs/day) } \end{gathered}$	AML ${ }^{\text {c }}$ Concentration Limits			Units	Governing WQBEL	$\begin{aligned} & \hline \text { WQBEL } \\ & \text { Basis } \end{aligned}$	Comments
Total Zinc		Report	Report	Report	Report	Report	mg/L	0.27	AFC	Discharge Conc > 10\% WQBEL (no RP)

Model Results $12 / 1 / 2023 \quad$ Page

Other Pollutants without Limits or Monitoring

The following pollutants do not require effluent limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharge concentration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QL).

Pollutants	Governing WQBEL	Units	Comments
Total Dissolved Solids (PWS)	N/A	N/A	PWS Not Applicable
Chloride (PWS)	N/A	N/A	PWS Not Applicable
Bromide	N/A	N/A	No WQS
Sulfate (PWS)	N/A	N/A	PWS Not Applicable

