

Application Type	Renewal
Facility Type	Municipal
Major / Minor	Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

 Application No.
 PA0261670

 APS ID
 762640

 Authorization ID
 1411610

Applicant and Facility Information

Applicant Name	Freder	icksburg S&W Authority	Facility Name	Fredericksburg Little Swatara STP
Applicant Address	PO Box	x 161	Facility Address	North Side Sr022
	Frederi	cksburg, PA 17026-0161		Fredericksburg, PA 17026
Applicant Contact	Dale B	evans	Facility Contact	Dustin Keller
Applicant Phone	(717) 8	65-7452	Facility Phone	(717) 865-0774
Client ID	85895		Site ID	753917
Ch 94 Load Status	Not Ov	erloaded	Municipality	Bethel Township
Connection Status	No Exc	eptions Allowed	County	Lebanon
Date Application Receive	ved	September 26, 2022	EPA Waived?	No
Date Application Accept	oted	October 11, 2022	If No, Reason	Significant CB Discharge
Purpose of Application		Permit renewal to discharge trea	ated sewage	

Summary of Review

1.0 General Discussion

This fact sheet supports the renewal of an existing NPDES permit for discharge of treated domestic wastewater from Fredericksburg Sewer and Water Authority (Authority) wastewater treatment plant. The Authority owns, operates, and maintains the wastewater treatment plant. The facility is located in Bethel Township, Lebanon County. The sewer collection system is not combined and there are no bypasses or overflows approved in the collection system. The facility receives influent via gravity with the aid of three collection system pump stations. Influent enters wet well of influent pump station where it is combined with internal plant flows such as filter backwash, filtrate from sludge dewatering and decant from digesters. Influent pump station has 3 pumps to pump flow to the mechanical screen/backup manual bar screen. Influent is directed to one of three SBRs. SBRs complete cycle in 320-minute, which include mix/fill, react/fill, react, settle, and decant phases. SBRs are monitored for pH, DO and ORP. Delpac is added for phosphorus removal. Five blowers are available to support the SBRs process. SBR decants are directed to the post EQ tank and then pumped to the two cloth disc filters. Filtered effluent is directed to one of four UV units for disinfection. Final effluent flows over a cascade prior to discharging to Little Swatara Creek which is classified for warm water fishes (WWF) and Migratory Fishes (MF). The facility has a hydraulic capacity of 0.65MGD and organic capacity of 2994 lbs/day- BOD5). The existing NPDES permit was issued on June 15, 2018 with an effective date of July 1, 2018 and expiration date of June 30, 2023. The permit was amended on August 18, 2020 to increase the hydraulic and organic capacities to 0.65MGD and 2994 lbs/day- BOD5 respectively. The applicant submitted a timely permit renewal application to the Department and is currently operating under the terms and conditions in the existing permit pending Department action on the renewal application. A topographic map showing the discharge location is presented in attachment Α.

Approve	Deny	Signatures	Date
×		J. Pascal Kwedza	_
^		J. Pascal Kwedza, P.E. / Environmental Engineer	December 8, 2023
х		Maria D. Bebenek for Daniel W. Martin Daniel W. Martin, P.E. / Environmental Engineer Manager	December 8, 2023
х		Maria D. Bebenek Maria D. Bebenek, P.E./ Program Manager	December 8, 2023

Summary of Review

1.1 Sludge use and disposal description and location(s):

Digested sludge is dewatered with a trailer mounted volute press prior to ultimate disposal at Greater Lebanon Refuse Authority Landfill.

1.2 Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

1.3 Changes to the existing Permit

Quarterly E. Coli monitoring has been added.

NPDES Permit Fact Sheet Fredericksburg Little Swatara STP

1.4 Existing limitation and Monitoring Requirements

			Monitoring Requirements					
Parameter	Mass Units	s (Ibs/day) ⁽¹⁾		Concentrat	Minimum ⁽²⁾	Required		
Falameter	Average Monthly	Weekly Average	Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report Daily Max	xxx	xxx	XXX	xxx	Continuous	Measured
pH (S.U.)	XXX	xxx	6.0 Daily Min	xxx	9.0 Daily Max	xxx	1/day	Grab
DO	XXX	xxx	5.0 Daily Min	xxx	xxx	xxx	1/day	Grab
CBOD5	136	217	xxx	25	40	50	1/week	24-Hr Composite
BOD5 Raw Sewage Influent	Report	Report Daily Max	ххх	Report	xxx	ххх	1/week	24-Hr Composite
TSS Raw Sewage Influent	Report	Report Daily Max	ххх	Report	xxx	ххх	1/week	24-Hr Composite
TSS	163	244	ххх	30	45	60	1/week	24-Hr Composite
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2,000 Geo Mean	XXX	10,000	1/week	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	XXX	xxx	200 Geo Mean	xxx	1,000	1/week	Grab
Ammonia-Nitrogen Nov 1 - Apr 30	XXX	ХХХ	ххх	Report	xxx	ХХХ	1/week	24-Hr Composite
Ammonia-Nitrogen May 1 - Oct 31	73	XXX	ххх	13.5	XXX	27.0	1/week	24-Hr Composite
Total Phosphorus	11	ХХХ	ххх	2.0	xxx	4	2/week	24-Hr Composite
Total Zinc	Report	ХХХ	ххх	Report	xxx	ХХХ	1/week	24-Hr Composite
Ultraviolet Light Transmittance (%)	XXX	xxx	Report	xxx	xxx	xxx	1/day	Recorded

1.4.1 Chesapeake Bay Requirements

		Monitoring Requirements						
Parameter	Mass Units	(lbs/day) ⁽¹⁾		Concentrat	Minimum ⁽²⁾	Required		
rarameter	Monthly	Annual	Monthly Monthly Average		Maximum	Instant. Maximum	Measurement Frequency	Sample Type
AmmoniaN	Report	Report	xxx	Report	xxx	xxx	2/week	24-Hr Composite
KjeldahlN	Report	XXX	XXX	Report	xxx	XXX	2/week	24-Hr Composite
Nitrate-Nitrite as N	Report	XXX	XXX	Report	XXX	XXX	2/week	24-Hr Composite
Total Nitrogen	Report	Report	xxx	Report	xxx	xxx	1/month	Calculation
Total Phosphorus	Report	Report	xxx	Report	xxx	XXX	2/week	24-Hr Composite
Net Total Nitrogen	Report	7,306	xxx	XXX	xxx	XXX	1/month	Calculation
Net Total Phosphorus	Report	974	XXX	XXX	xxx	XXX	1/month	Calculation

1.5 Discharge, Receiving Waters and Water Supply In	nformation					
Outfall No. 001	Design Flow (MGD)	.65				
Latitude 40° 24' 40.59"	Longitude	-76º 25' 55.81"				
Quad Name Fredericksburg	Quad Code	1534				
Wastewater Description: Sewage Effluent						
Receiving Waters Little Swatara Creek	Stream Code	09888				
NHD Com ID56396387	RMI	3.52				
Drainage Area 86.15	Yield (cfs/mi ²)	0.0565				
Q ₇₋₁₀ Flow (cfs) <u>5.65</u>	Q ₇₋₁₀ Basis	USGS Gage Station				
Elevation (ft)	Slope (ft/ft)					
Watershed No. 7-D	Chapter 93 Class.	WWF				
Existing Use	Existing Use Qualifier					
Exceptions to Use	Exceptions to Criteria					
Assessment Status Attaining Use(s)						
Cause(s) of Impairment						
Source(s) of Impairment						
TMDL Status	Name					
Background/Ambient Data	Data Source					
pH (SU)						
Temperature (°F)						
Hardness (mg/L)						
Other:						
Nearest Downstream Public Water Supply Intake	Pennsylvania American Water	Company				
PWS Waters Swatara Creek						
	Distance from Outfall (mi) 33					

Changes Since Last Permit Issuance:

1.6 Water Supply Intake:

The closest water supply intake located downstream from the discharge is Pennsylvania American Water Company in South Hanover Township, Dauphin County on Swatara Creek. The distance downstream from the discharge to the intake is approximately 33 miles. No impact is expected from this discharge

2.0 Treatment Facility Summary

Treatment Facility Name: Fredericksburg Little Swatara STP

WQM Permit No.	Issuance Date
3811404	02/27/2012
3811404 A-1	03/2/2017
3811404 A-2	07/01/2020
3811404 A-3	05/19/2023

Waste Type	Degree of Treatment	Process Type	Disinfection	Avg Annual Flow (MGD)
	Secondary With			
	Ammonia And	Sequencing Batch		
Sewage	Phosphorus	Reactor	Ultraviolet	0.65
Hydraulic Capacity	Organic Capacity			Biosolids
(MGD)	(lbs/day)	Load Status	Biosolids Treatment	Use/Disposal
0.650	2,994	Not Overloaded	Aerobic Digestion	Landfill

Changes Since Last Permit Issuance: Permit was amended on 07/01/2020 to add an additional SBR treatment train to the 2 existing SBRs trains to increase the hydraulic capacity to 0.65MGD and organic capacity to 2994lb/day-BOB5. The permit was amended again on 05/19/2023 to eliminate a sidestream aerated flow equalization tank that was proposed but never built.

2.1 Treatment Facility Details

The existing wastewater Treatment facility consists of influent pumping station, screening unit with grit removal, 3 SBRs, 2 cloth media filters, ultraviolet disinfection, cascade aeration, alum feed system, supplemental carbon feed system, a caustic feed system and aerobic sludge digesters to process sludge generated at the site and sludge received from the Authority's Camp Strauss Monroe Valley treatment facility. Digested sludge is dewatered utilizing a trailer mounted volute press prior to hauling out to landfill.

3.0 Compliance History

3.1 DMR Data for Outfall 001 (from September 1, 2022 to August 31, 2023)

Parameter	AUG-23	JUL-23	JUN-23	MAY-23	APR-23	MAR-23	FEB-23	JAN-23	DEC-22	NOV-22	OCT-22	SEP-22
Flow (MGD)												
Average Monthly	0.3196	0.3436	0.321	0.3089	0.2977	0.317	0.3332	0.3863	0.3749	0.2926	0.3214	0.3576
Flow (MGD)												
Daily Maximum	0.4062	0.4665	0.5175	0.4166	0.3816	0.4679	0.4995	0.5376	0.6878	0.4271	0.4973	0.5228
pH (S.U.)												
Daily Minimum	6.73	7.14	6.53	6.85	6.69	6.89	6.92	6.66	7.04	7.22	6.64	6.78
pH (S.U.)												
Daily Maximum	7.75	7.95	7.52	7.66	8.12	7.76	7.66	8.18	8.37	8.41	7.71	7.41
DO (mg/L)												
Daily Minimum	6.76	7.34	7.44	7.81	7.84	8.03	8.39	8.36	8.39	7.65	7.31	7.21
CBOD5 (lbs/day)												
Average Monthly	< 8.8	< 7.7	< 7.9	7.6	12.6	< 13.8	< 6.7	9.2	< 8.7	10.9	18.6	< 11.6
CBOD5 (lbs/day)												
Weekly Average	11.2	10.3	11.2	10.7	20.9	38.6	7.0	9.9	9.8	14.1	25.4	15.4
CBOD5 (mg/L)												
Average Monthly	< 2.9	< 2.3	< 2.6	2.6	4.3	< 4.6	< 2.1	2.6	< 2.7	3.8	5.7	< 3.4
CBOD5 (mg/L)												
Weekly Average	3.8	3.2	4.5	3.4	7.0	12.1	2.4	3.2	3.1	4.9	7.9	5.2
BOD5 (lbs/day)												
Raw Sewage Influent	700	075	4400		4000	005	4450				044	004
<pre> <</pre>	736	875	1169	688	1222	825	1158	892	806	806	911	804
BOD5 (lbs/day)												
Raw Sewage Influent	000	1000	4000	1010	4500	4400	4740	4404	1110	4000	1107	005
 	933	1090	1360	1016	1520	1196	1740	1134	1119	1089	1137	985
BOD5 (mg/L)												
Raw Sewage Initient	270	200	409	240	422	202	250	262	270	212	216	250
TSS (lbs/day)	270	290	400	249	432	302	309	203	219	312	310	259
Average Monthly	- 14.2	~ 13.5	~ 12.6	- 11 7	~ 11.8	~ 12 0	- 126	- 14.8	~ 13.2	~ 11 5	- 14 3	~ 20.8
TSS (lbs/day)	< 14.Z	< 15.5	< 12.0	< 11.7	< 11.0	< 12.0	< 12.0	< 14.0	< 15.2	< 11.5	< 14.5	< 20.0
Raw Sewage Influent												
<pre>chr/> Ave Monthly</pre>	636	729	711	532	732	454	465	406	622	517	636	604
TSS (lbs/day)		120	, , ,	002	102	101	100	100	022	017		001
Raw Sewage Influent												
 br/> Daily Maximum	725	762	788	887	966	737	689	517	916	585	1096	791
TSS (lbs/dav)	-	-				-		_				-
Weekly Average	23.7	< 14.3	< 17.2	< 12.6	< 12.4	15.3	< 13.8	< 16.5	< 13.8	< 14.2	< 16.6	40.3

NPDES Permit Fact Sheet Fredericksburg Little Swatara STP

NPDES Permit No. PA0261670

TSS (mg/L)												
Average Monthly	< 4.6	< 4.0	< 4.0	< 4.0	< 4.0	< 4.2	< 4.0	< 4.0	< 4.0	< 4.0	< 4.3	< 5.8
TSS (mg/L)												
Raw Sewage Influent												
 http://www.worthly	240	243	250	190	258	168	145	119	216	200	225	173
TSS (mg/L)												
Weekly Average	7.0	< 4.0	< 4.0	< 4.0	< 4.0	4.8	< 4.0	< 4.0	< 4.0	< 4.0	5.0	11.0
Fecal Coliform												
(No./100 ml)		-				_	_	_				
Geometric Mean	< 2	< 3	< 2	< 2	< 2	2	< 3	< 2	< 1	< 1	< 1	< 1
Fecal Coliform												
(No./100 ml)												
Instant. Maximum	8	10	3	3	20	14	10	5	3	< 1	2	4
UV Transmittance (%)												
Daily Minimum	54	57	57	58	60	60	64	65	65	65	60	48
Nitrate-Nitrite (mg/L)												
Average Monthly	4.56	3.22	3.78	3.2	2.49	3.6	3.07	4.51	4.64	4.39	6.39	6.51
Nitrate-Nitrite (lbs)												
Total Monthly	377	270	265	248	176	290	226	455	434	336	500	549
Total Nitrogen (mg/L)												
Average Monthly	5.8	< 4.43	5.32	4.91	4.22	< 15	< 4.86	< 5.51	< 5.38	< 5.45	8.28	< 8.01
Total Nitrogen (lbs)												
Effluent Net 												
Total Monthly	< 471.3	< 368	370.0	376	< 299	< 452	< 362	< 547	< 499	< 410	640	< 667
Total Nitrogen (lbs)												
Total Monthly	471	< 368	370.0	376	< 299	< 452	< 362	< 547	< 499	< 410	640	< 667
Total Nitrogen (lbs)												
Effluent Net 												
Total Annual												< 4336
Total Nitrogen (lbs)												
Total Annual												< 4336
Ammonia (lbs/day)												
Average Monthly	< 0.3	< 0.4	< 0.3	< 1.0	< 0.7	< 0.5	< 1.9	< 0.7	< 0.3	< 0.2	< 0.3	< 0.3
Ammonia (mg/L)												
Average Monthly	< 0.1	< 0.16	< 0.12	< 0.36	< 0.25	< 0.18	< 0.61	< 0.24	< 0.1	< 0.1	< 0.1	< 0.1
Ammonia (lbs)												
Total Monthly	< 7.9	< 13.5	< 8.4	< 31.4	< 19.8	< 14.0	< 53.4	< 21.2	< 8.7	< 6.9	< 9.4	< 8.0
Ammonia (lbs)												
Total Annual												< 1958
TKN (mg/L)												
Average Monthly	1.24	< 1.22	1.54	1.71	< 1.73	< 1.98	< 1.8	< 1	< 0.75	< 1.06	1.89	< 1.5
TKN (lbs)												
Total Monthly	94	< 98	105	127	< 123	< 161	< 139	< 92	< 65	< 74	140	< 117

Total Phosphorus												
(lbs/day) Ave. Monthly	2.0	1.3	1.0	1.0	1.4	1.4	0.4	0.5	< 0.4	0.5	1.2	3.2
Total Phosphorus												
(mg/L)Ave. Monthly	0.85	0.57	0.42	0.4	0.55	0.5	0.14	0.16	< 0.13	0.21	0.52	1.2
Total Phosphorus (lbs)												
Effluent Net 												
Total Monthly	60.9	41.4	28.9	32.3	41.8	43.5	9.9	14.4	< 11.0	14.5	37.9	96.7
Total Phosphorus (lbs)												
Total Monthly	60.9	41.4	28.9	32.3	41.8	43.5	9.9	14.4	< 11.0	14.5	37.9	96.7
Total Phosphorus (lbs)												
Effluent Net 												
Total Annual												< 412
Total Phosphorus (lbs)												
Total Annual												< 412
Total Zinc (lbs/day)												
Average Monthly	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.3	0.5	0.4
Total Zinc (mg/L)												
Average Monthly	0.075	0.065	0.078	0.079	0.084	0.085	0.073	0.062	0.064	0.095	0.139	0.114

3.2 Summary of Discharge Monitoring Reports (DMRs):

DMRs reviewed for the facility for the last 12 months of operation, presented on the table above in section 3.1 indicate permit limits have been met consistently. No effluent violations were noted on DMRs for the period reviewed.

3.3 Summary of Inspections:

The facility has been inspected a couple times during last permit cycle. No effluent violations were found during plant inspections. The facility is operated and maintained well.

4.0 Development of Effluent Limitations									
Outfall No.	_ 001	Design Flow (MGD)	.65						
Latitude	40° 24' 41.00"	Longitude	-76º 25' 56.00"						
Wastewater D	escription: Sewage Effluent								

4.1 Basis for Effluent Limitations

In general, the Clean Water Act (CWA) requires that the effluent limits for a particular pollutant be the more stringent of either technology-based limits or water quality-based limits. Technology-based limits are set according to the level of treatment that is achievable using available technology. A water quality-based effluent limit is designed to ensure that the water quality standards applicable to a waterbody are being met and may be more stringent than technology-based effluent limits.

4.2 Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD5	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
рН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform				
(5/1 – 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform				
(5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform				
(10/1 – 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform				
(10/1 – 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)

Comments: TRC is not applicable to this facility

4.3 Water Quality-Based Limitations

4.3.1 Mass-Based Limits

The federal regulation at 40 CFR 122.45(f) requires that effluent limits be expressed in terms of mass, if possible. The regulation at 40 CFR 122.45(b) requires that effluent limitations for POTWs be calculated based on the design flow of the facility. The mass-based limits are expressed in pounds per day and are calculated as follows:

Mass based limit (lb/day) = concentration limit (mg/L) × design flow (mgd) × 8.34

4.3.2 WQM 7.0 Stream Model

WQM 7.0 is a water quality model DEP utilizes to establish appropriate effluent limits for CBOD₅, NH₃-N and DO in permits. The model simulates mixing and degradation of NH₃-N in the stream and compares calculated instream NH₃-N concentrations to NH₃-N water quality criteria and also simulates mixing and consumption of D.O. in the stream due to the degradation of CBOD₅ and NH₃N and compares calculated instream D.O. concentrations to D.O. water quality criteria and recommends effluent limits.

4.3.3 Receiving Stream

The receiving stream is the Little Swatara Creek. According to 25 PA § 93.90, this stream is protected for Warm Water Fishes (WWF) and Migratory Fishes (MF). It is located in Drainage List o and State Watershed 7-D. It has been assigned stream code 09888. According to eMapPA, Little Swatara Creek is attaining its designated uses.

4.3.4 Streamflow

Streamflows for the water quality analysis were determined by correlating with the yield of USGS gauging station No 01573000 on Swatara Creek at Harper Tavern. The Q7-10 and drainage area at the gage is 22.1ft3/s and 337 mi² respectively. The resulting yields are as follows:

- $Q_{7-10} = (22.1 \text{ ft}^3/\text{s})/337 \text{ mi}^2 = 0.0656 \text{ ft}^3/\text{s}/\text{ mi}^2$
- $Q_{30-10} / Q_{7-10} = 1.40$
- $Q_{1-10} / Q_{7-10} = 0.80$

The drainage area at discharge is calculated by USGS StreamStats = 86.15mi²

The Q_{7-10} at discharge = 86.15 mi² x 0.0.0656ft³/s/mi² = 5.65 ft³/s.

4.3.5 NH₃N Calculations

NH₃N calculations will be based on the Department's Implementation Guidance of Section 93.7 Ammonia Criteria, dated 11/4/97 (ID No. 391-2000-013). The following data is necessary to determine the instream NH₃N criteria used in the WQM 7.0 model:

= 6.45 (July -Sept DMR median)

- Discharge pH *
 - Discharge Temperature
- * Stream pH

- Stream Temperature
- = 0.45 (our) copt = 25 ° C (Default) = 7.0 (Default) = 20°C (Default) = 0.0 (Default) Background NH₃-N

4.3.6 CBOD₅

Due to their proximity, the discharges from Keystone Protein IW and Fredericksburg STP were modelled together. The results of the WQM 7.0 Model presented in attachment B indicate that for a discharge of 0.65 MGD from Fredericksburg STP, an average monthly limit (AML) of 25mg/l CBOD₅ is required to protect the water quality of the stream. This limit is consistent with the existing permit and the STP is consistently complying with the limitation. Therefore, a limit of 25mg/l AML, 40mg/l average weekly limit (AWL) and 50 mg/l IMAX are again recommended for the current permit renewal. Mass limits are calculated as follows:

Mass based AML (lb/day) = $25 (mg/L) \times 0.65 (mgd) \times 8.34 = 136$ Mass based AWL (lb/day) = $40(mg/L) \times 0.65(mgd) \times 8.34 = 217$

4.3.7 NH₃-N

The attached results of the WQM 7.0 stream model (attachment B) also indicates that a summer limitation of 15 NH₃ as a monthly average and 30 mg/l instantaneous maximum is necessary to protect the aquatic life from toxicity effects. The existing summer limitation of 13.5 NH₃ as a monthly average and 27 mg/l instantaneous maximum are more stringent and will remain in the permit due to anti-backsliding restrictions. Existing monitoring requirement for ammonia will continue for winter months in the permit to ensure treatment efficiency.

Mass limits are calculated as follows:

Mass based summer AML (lb/day) = $13.5 \text{ (mg/L)} \times 0.65 \text{(mgd)} \times 8.34 = 73$

4.3.8 Dissolved Oxygen

The existing permit contains a limit of 5 mg/l for Dissolved Oxygen (DO). DEP's Technical Guidance for the Development and Specification of Effluent Limitations (362-0400-001, 10/97) suggests that either the adopted minimum stream D.O. criteria for the receiving stream or the effluent level determined through water quality modeling be used for the limit. Since the WQM 7.0 model was run using a minimum D.O. of 5.0 mg/l, this limit will be continued in the renewed permit with a daily monitoring requirement.

4.3.9 Total Suspended Solids (TSS)

There is no water quality criterion for TSS. A limit of 30 mg/l AML will be required based on the minimum level of effluent quality attainable by secondary treatment as defined in 40 CFR 133.102b(1) and 25 PA § 92a.47(a)(1) and an AWL of 45mg/l per 40CFR 133.102(b)(2) and 25 PA § 92a.47(a)(2). Mass limits are calculated as follows:

Mass based AML (lb/day) = $30 \text{ (mg/L)} \times 0.65 \text{(mgd)} \times 8.34 = 163$ Mass based AWL (lb/day) = $45 \text{(mg/L)} \times 0.65 \text{(mgd)} \times 8.34 = 244$

4.3.10 Total Residual Chlorine

The discharge does not have any reasonable potential to cause or contribute to a water quality standards violation for total residual chlorine since the permittee utilizes UV instead of chlorine for wastewater disinfection. Therefore, the proposed permit does not contain effluent limits for total residual chlorine. The permittee may use chlorine-based chemicals for cleaning and is required to optimize chlorine usage to prevent negative impacts on receiving stream. Daily UV intensity monitoring (mW/cm²) is required in the permit to ensure efficiency of the UV unit.

4.3.11 Toxics

A reasonable potential (RP) analysis was done for pollutants sampled in support of the permit renewal application. All pollutants that were presented in the application sampling and additional sampling data submitted were entered into DEP's Toxics Management Spreadsheet (TMS) to calculate WQBELs. The facility has been monitoring Total Zinc and the data was analyzed using TOXCON to determine Average Monthly Effluent Concentration (Amec) of 0.093 mg/l and a daily coefficient of variation (CV) of 0.292 for Total Zinc presented in attachment C. The results from the TOXCON analysis were also added to the TMS for further analysis. The results of the TMS presented in attachment D indicate discharge levels for all pollutants except Total Zinc are well below DEP's target quantitation limits and the calculated WQBELs, therefore, no monitoring or limitation is recommended. Monitoring is recommended for Total Zinc; therefore the facility will continue monitoring Total Zinc.

Limitation and /or monitoring recommendation on the spreadsheet follow the logic presented in DEPs SOP, to establish limits in the permit where the maximum reported concentration exceeds 50% of the WQBEL, or for non-conservative pollutants to establish monitoring requirements where the maximum reported concentration is between 25% - 50% of the WQBEL, or to establish monitoring requirements for conservative pollutants where the maximum reported concentration is between 25% - 50% of the WQBEL, or to establish monitoring requirements for conservative pollutants where the maximum reported concentration is between 10% - 50% of the WQBEL.

4.3.12 Fecal Coliform and E. Coli

The existing Fecal Coliform limit is consistent with the technology limits recommended in 92a.47(a)(4) and (a)(5) and will remain in the permit. In March of 2021, EPA approved DEP's Triennial Review of Water Quality Standards, which included a new swimming season criterion for E.coli. As a result, DEP is including monitoring requirements for E. Coli in new and renewed sewage permits above 2000gpd. Monitoring frequency is based on annual average flow as follows: 1/month for design flows \geq 1 MGD, 1/quarter for design flows \geq 0.05 and < 1 MGD and 1/year for design flows of 0.002 – 0.05 MGD. Your discharge of 0.65 MGD requires 1/quarter monitoring as included in the permit

4.3.13 Chesapeake Bay Strategy

The facility is a phase 5 facility that was expanded from 0.15mgd to 0.433mgd and to 0.65MGD. Under the Chesapeake Bay Strategy, implementation of Phase 4 & 5 cap loads if needed was to start after Phases 1 through 3 were completed. However, any facility in phases 4 & 5 that undergoes expansion gets a cap load immediately based on approved flow prior to August 29, 2005 with no net increase in loading. Planning approval for the expanded flow of 0.65mgd was granted after

the August 29, 2005 CBS date, hence the facility's cap load was based on 0.15MGD. For phases 4 & 5 that undergoes expansion, DEP's strategy is to establish cap loads for TN and TP based upon the lesser of existing performance levels at design annual average daily flow approved prior to August 29, 2005 or cap loads equivalent to 6 mg/I TN and 0.8mg/I TP using a flow of 0.4 mgd (7306 lbs. TN and 974 lbs. TP). Since this was a new wastewater treatment plant at the time of the phase1 expansion, there was no existing performance data. The facility's cap load was based on default values of 4mg/I TP and 22mg/I TN using a flow of 0.15mgd (1,850lbs/yr TP and 10,051lbs/yr) compared to 974lbs/yr TP and 7,306lbs/yr TN. The lesser of the two scenarios is 974lbs/year TP and 7306 lbs/year TN has been allocated to the facility. The cap load was transferred from the abandoned facility with permit number PA0080705 to PA0261670 and it has been documented in the Department's Phase III WIP Supplement. Treatment and/or credits or offsets maybe used to meet the cap load. The facility is in compliance with the Bay Cap Load requirement.

4.3.14 Total Phosphorus

The limit of 2 mg/l established in the existing permit was for the protection of the Lower Susquehanna River basin which has been superseded by the Chesapeake Bay Strategy but will remain in the permit due to anti-backsliding restrictions. Mass limits are calculated as follows:

Mass based AML (lb/day) = $2 (mg/L) \times 0.65 (mgd) \times 8.34 = 11$

4.3.15 Influent BOD and TSS Monitoring

The permit includes influent BOD5 and TSS monitoring at the same frequency as is done for effluent in order to implement Chapter 94.12 and assess percent removal requirements.

4.3.16 Pretreatment Requirements

The design annual average flow of the treatment plant is 0.65 MGD and the facility only receives sewage flow from significant Industrial users. EPA does not require development of pretreatment program for facilities with design flow less than 5MGD. However, the permit contains standard conditions requiring the permittee to monitor and control industrial users if applicable.

5.0 Other Requirements

5.1 The permit contains the following special conditions:

The permit contains the following special conditions:

Stormwater Prohibition, Approval Contingencies, Proper Waste/solids Management, Restriction on receipt of hauled in waste under certain conditions and Chlorine minimization requirement

5.2 Stormwater

There is no stormwater outfall associated with this facility.

5.3 Anti-backsliding

Not applicable to this permit

5.4 Antidegradation (93.4):

The effluent limits for this discharge have been developed to ensure that existing instream water uses and the level of water quality necessary to protect the existing uses are maintained and protected. No High-Quality Waters are impacted by this discharge. No Exceptional Value Waters are impacted by this discharge.

5.5 Class A Wild Trout Fisheries:

No Class A Wild Trout Fisheries are impacted by this discharge.

5.6 303d listed stream

The discharge is not located on a 303d listed stream segment.

5.7 Basis for Effluent and Surface Water Monitoring

Section 308 of the CWA and federal regulation 40 CFR 122.44(i) require monitoring in permits to determine compliance with effluent limitations. Monitoring may also be required to gather effluent and surface water data to determine if additional effluent limitations are required and/or to monitor effluent impacts on receiving water quality. The permittee is responsible for conducting the monitoring and for reporting results on Discharge Monitoring Reports (DMRs).

5.8 Effluent Monitoring Frequency

Monitoring frequencies are based on the nature and effect of the pollutant, as well as a determination of the minimum sampling necessary to adequately monitor the facility's performance. Permittees have the option of taking more frequent samples than are required under the permit. These samples can be used for averaging if they are conducted using EPA-approved test methods (generally found in 40 CFR 136) and if the Method Detection Limits are less than the effluent limits. The sampling location must be after the last treatment unit and prior to discharge to the receiving water. If no discharge occurs during the reporting period, "no discharge" shall be reported on the DMR.

6.0 Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (386-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

			Effluent L	imitations			Monitoring Re	quirements
Baramatar	Mass Units	(lbs/day) ⁽¹⁾		Concentrati	ions (mg/L)		Minimum ⁽²⁾	Required
Parameter	Average	Weekly	Daily Minimum	Average	Weekly	Instant.	Measurement	Sample
	wontiny	Average	wiininun	wontiny	Average	IVIAXIIIIUIII	Frequency	туре
Flow (MGD)	Report	Daily Max	XXX	XXX	XXX	XXX	Continuous	Measured
pH (S.U.)	ххх	xxx	6.0 Inst Min	xxx	XXX	9.0	1/day	Grab
DO	ххх	XXX	5.0	XXX	XXX	XXX	1/day	Grab
CBOD5	136	217	XXX	25.0	40.0	50	1/week	24-Hr Composite
BOD5		Report						24-Hr
Raw Sewage Influent	Report	Daily Max	XXX	Report	XXX	XXX	1/week	Composite
TSS	163	244	XXX	30.0	45.0	60	1/week	24-Hr Composite
TSS		Report						24-Hr
Raw Sewage Influent	Report	Daily Max	XXX	Report	XXX	XXX	1/week	Composite
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	ххх	xxx	xxx	2000 Geo Mean	XXX	10000	1/week	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	ххх	xxx	xxx	200 Geo Mean	XXX	1000	1/week	Grab
E. Coli (No./100 ml)	ххх	xxx	xxx	XXX	XXX	Report	1/quarter	Grab
UV Intensity (mW/cm ²)	ххх	xxx	Report	xxx	XXX	xxx	1/day	Recorded
Nitrate-Nitrite	XXX	xxx	XXX	Report	XXX	ХХХ	2/week	24-Hr Composite
Nitrate-Nitrite (lbs)	Report Total Mo	xxx	XXX	XXX	XXX	XXX	1/month	Calculation

NPDES Permit Fact Sheet Fredericksburg Little Swatara STP

Outfall 001, Continued (from Permit Effective Date through Permit Expiration Date)

		Monitoring Requirements						
Baramotor	Mass Units	(lbs/day) ⁽¹⁾		Concentrat	ions (mg/L)		Minimum ⁽²⁾	Required
Falametei	Average	Weekly	Daily	Average	Weekly	Instant.	Measurement	Sample
	wonthly	Average	Minimum	Monthly	Average	Maximum	Frequency	гуре
Total Nitrogen	xxx	XXX	XXX	Report	XXX	XXX	1/month	Calculation
	Report							
Total Nitrogen (lbs)	Total Mo	XXX	XXX	XXX	XXX	XXX	1/month	Calculation
Ammonia								24-Hr
Nov 1 - Apr 30	Report	XXX	XXX	Report	XXX	XXX	2/week	Composite
Ammonia								24-Hr
May 1 - Oct 31	73	XXX	XXX	13.5	XXX	27	2/week	Composite
	Report							
Ammonia (Ibs)	Total Mo	XXX	XXX	XXX	XXX	XXX	1/month	Calculation
								24-Hr
TKN	XXX	XXX	XXX	Report	XXX	XXX	2/week	Composite
	Report							
TKN (lbs)	Total Mo	XXX	XXX	XXX	XXX	XXX	1/month	Calculation
								24-Hr
Total Phosphorus	11.0	XXX	XXX	2.0	XXX	4	2/week	Composite
	Report							
Total Phosphorus (lbs)	Total Mo	XXX	XXX	XXX	XXX	XXX	1/month	Calculation
								24-Hr
Total Zinc	Report	XXX	XXX	Report	XXX	XXX	1/week	Composite

Compliance Sampling Location: At Outfall 001

6.1 Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, to comply with Pennsylvania's Chesapeake Bay Tributary Strategy.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

				Monitoring Requirements				
Paramotor	Mass Units	(lbs/day) ⁽¹⁾		Concentrat	Minimum ⁽²⁾	Required		
Farameter	Monthly	Annual	Monthly	Monthly Average	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Ammonia N	Denert	Dement	XXXX	Dement	VVV	XXXX	0/weak	24-Hr
AmmoniaN	Report	Report	***	Report	***	***	Z/week	Composite
								24-Hr
KjeldahlN	Report	XXX	XXX	Report	XXX	XXX	2/week	Composite
								24-Hr
Nitrate-Nitrite as N	Report	XXX	XXX	Report	XXX	XXX	2/week	Composite
Total Nitrogen	Report	Report	XXX	Report	XXX	XXX	1/month	Calculation
								24-Hr
Total Phosphorus	Report	Report	XXX	Report	XXX	XXX	2/week	Composite
Net Total Nitrogen	XXX	7306	XXX	ХХХ	ХХХ	XXX	1/year	Calculation
Net Total Phosphorus	XXX	974	XXX	ХХХ	ХХХ	XXX	1/year	Calculation

Compliance Sampling Location: At Outfall 001

	7.0 Tools and References Used to Develop Permit
	WQM for Windows Model (see Attachment B)
	Toxics Management Spreadsheet (see Attachment C)
	TRC Model Spreadsheet (see Attachment)
	Temperature Model Spreadsheet (see Attachment)
	Water Quality Toxics Management Strategy, 361-0100-003, 4/06.
	Technical Guidance for the Development and Specification of Effluent Limitations, 386-0400-001, 10/97.
	Policy for Permitting Surface Water Diversions, 386-2000-019, 3/98.
	Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 386-2000-018, 11/96.
	Technology-Based Control Requirements for Water Treatment Plant Wastes, 386-2183-001, 10/97.
	Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 386-2183-002, 12/97.
	Pennsylvania CSO Policy, 386-2000-002, 9/08.
	Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.
	Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 386-2000-008, 4/97.
	Determining Water Quality-Based Effluent Limits, 386-2000-004, 12/97.
	Implementation Guidance Design Conditions, 386-2000-007, 9/97.
	Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 386-2000-016, 6/2004.
	Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 386-2000-012, 10/1997.
	Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 386-2000-009, 3/99.
	Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 386-2000-015, 5/2004.
\square	Implementation Guidance for Section 93.7 Ammonia Criteria, 386-2000-022, 11/97.
	Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 386-2000-013, 4/2008.
	Implementation Guidance Total Residual Chlorine (TRC) Regulation, 386-2000-011, 11/1994.
	Implementation Guidance for Temperature Criteria, 386-2000-001, 4/09.
\square	Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 386-2000-021, 10/97.
	Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 386-2000-020, 10/97.
	Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 386-2000-005, 3/99.
	Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 386-2000-010, 3/1999.
\square	Design Stream Flows, 386-2000-003, 9/98.
	Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 386-2000-006, 10/98.
	Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 386-3200-001, 6/97.
	Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.
	SOP: Establishing Effluent limitation for individual sewage permit
	Other: WIP III and Supplement

NPDES Permit Fact Sheet Fredericksburg Little Swatara STP

8. Attachments

A. Topographical Map

B. WQM Model Results

		<u>WQM</u> :	7.0 Eff	fluent Limits	3		
	<u>SWP Basin</u> S	tream Code		Stream Name	2		
	07D	9888		LITTLE SWATARA	CREEK		
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl, Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
6.970	Keystone Prot	PA0266345	3.000	CBOD5	10.25		
				NH3-N	3.07	6.14	
				Dissolved Oxygen			5
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L.)	Effl. Limit Minimum (mg/L)
3.520	Fredericksburg	PA026160	0.650	CBOD5	25		
				NH3-N	15.14	30.28	
				Dissolved Oxygen			5

Friday, November 3, 2023

Version 1.1

Input Data WQM 7.0

	SWP Basii	Strea 1 Coo	ım le	Stre	am Name		RMI	Elev (f	ation t)	Drainage Area (sq mi)	Slope (ft/ft)	PWS Withdra (mgd	wal)	Apply FC
	07D	98	388 LITTLI	E SWATA	RA CREEI	<	6.97	0	435.00	69.70	0.00000		0.00	\checkmark
					S	tream Da	ta							
Design Cond	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	<u>Tributary</u> p pH	Ten	<u>Stream</u> ıp	pН	
Contai	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)	(°C)		
Q7-10	0.066	0.00	0.00	0.000	0.000	0.0	0.00	0.00	2	0.00 7.	00	0.00	0.00	
Q1-10		0.00	0.00	0.000	0,000									
Q30-10		0.00	0.00	0.000	0.000									

Name	Permit Number	Existing Disc Flow (mgd)	Permitte Disc Flow (mgd)	ed Des Di Flo (m	ilgn sc Rei ow Fa gd)	serve actor	Disc ſemp (ºC)	Disc pH
Keystone Prot	PA0266345	3.0000	3.000	0 3.	0000	0.000	20,00	6.60
	Pa	rameter D	ata					
D	remeter Nome	Dis Col	nc T	Trib Conc	Stream Conc	Fate Coef		
Fe		(mg	/L) (n	ng/L)	(mg/L)	(1/days)	i	
CBOD5		2	5.00	2.00	0.00) 1.5	0	
Dissolved C	xygen	:	5.00	8.24	0.00	0.0	D	
NH3-N		2	5.00	0.00	0.00	0.7	D	

Friday, November 3, 2023

Version 1.1

Input Data WQM 7.0

	SWF Basi	P Strea n Coo	im le	Stre	eam Name		RMI	Elevati (ft)	on Dra A (se	inage \rea q mi)	Siope (ft/ft)	PW: Withdr (mg	S awal d)	Apply FC
	07D	98	388 LITTLI	E SWATA	RA CREEK		3.52	20 42	3.00	86.15	0.00000		0.00	
					St	ream Dat	a							
Design	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	<u>Trib</u> Temp	<u>utary</u> pH	Tem	<u>Stream</u> p	pН	
00110.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C))		
Q7-10	0.066	0.00	0.00	0.000	0.000	0.0	0.00	0.00	20.00	7.0	0 (0.00	0.00	
Q1-10		0,00	0.00	0.000	0.000									
Q30-10		0.00	0.00	0.000	0.000									
					Dì	scharge I	Data							
			Name	Per	mit Number	Existing Disc Flow	Permitte Disc Flow	ed Design Disc Flow	Reserve Factor	Disc Tem	p p	sc H		
						(mgd)	(mgd)	(mgd)		(°C)				
		Frede	ericksburg	PAC	26160	0.6500	0.650	0 0.6500	0.00	0 25	5.00	6.45		
					Pa	ırameter I	Data							

Disc Conc

(mg/L)

25.00

5.00

25.00

Parameter Name

CBOD5

NH3-N

Dissolved Oxygen

Stream Conc

Trib

Conc

(mg/L)

2.00

8.24

0.00

Fate Coef

1.50

0.00

0.70

(mg/L) (1/days)

0.00

0.00

0.00

Friday, November 3, 2023

Version 1.1

Page 2 of 4

Input Data WQM 7.0

	SWP Basii	Strea	m e	Stre	am Name		RMI	Elev (1	ation ft)	Drainage Area (sq mi)	Slope (ft/ft)	PWS Withdrawa (mgd)	Apply I FC
	07D	98	888 LITTLE	E SWATA	RA CREEł	K	3.10	00	414.00	94,20	0.00000	0.0	0
					S	tream Dat	ta						
Design Cond.	LFY (cfsm)	Trib Flow (cfs)	Stream Flow (cfs)	Rch Trav Time (days)	Rch Velocity (fps)	WD Ratio	Rch Width (ft)	Rch Depth (ft)	Ten (°C	<u>Tributary</u> np pH	Ten (ºC	<u>Stream</u> np pH ;)	
Q7-10 Q1-10 Q30-10	0.066	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00	0.00) 2	0.00 7.1	00	0.00 0.	00
					D	lischarge	Data						

	Dia	ionalge D	ata					
Name	Permit Number	Existing Disc Flow (mgd)	Permitted Disc Flow (mgd)	d Des Dis Flo (mg	ign sc Rese ow Fae gd)	E erve T ctor (Disc emp (°C)	Disc pH
		0.0000	0.0000	0.0	0000 (0.000	25.00	7.00
	Pa	rameter D	ata					
Pa	ramatar Nama	Dis Co	ic Ti inc Co	ib Inc	Stream Conc	Fate Coef		
Га		(m <u></u>	g/L) (m	g/L)	(mg/L)	(1/days)		
 CBOD5		2	5.00	2.00	0.00	1.50		
Dissolved O	xygen		3.00	8.24	0.00	0.00	I	
NH3-N		2	5.00	0.00	0.00	0.70	i	

Version 1.1

Page 3 of 4

Input Data WQI	М	7.0
----------------	---	-----

	SWF Basi	? Strea n Coo	im le	Stre	eam Name		RMI	Eleva (ft)	tion)	Drainage Area (sq mi)	Slope (ft/ft)	P\ With (n	WS drawal ngd)	Apply FC
	07D	98	388 LITTL	E SWATA	RA CREEK		2.95	50 4 [.]	10.00	97.10	0.0000)	0.00	
					St	ream Dat	a							
Design Cond.	LFY (cfsm)	Trib Flow (cfs)	Stream Flow (cfs)	Rch Trav Time (days)	Rch Velocity (fps)	WD Ratio	Rch Width (ft)	Rch Depth (ft)	Temp (°C)	<u>Tributary</u> o pH	Te (%	<u>Strea</u> mp C)	и <u>т</u> рН	
Q7-10 Q1-10 Q30-10	0.066	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00	0.00	20	0.00 7.0	10	0.00	0.00	
					DI	scharge I	Data						7	
			Name	Per	mit Number	Existing Disc Flow (mgd)	Permitte Disc Flow (mgd)	ed Design Disc Flow (mgd)	Rese Fac	Dise erve Terre tor (°C)	o E IP))isc pH		
		##				0.0000	0.000	0 0.000	0 0	.000 2	5.00	7.00	-	
					Pa	rameter I	Data							
			I	Paramete	r Name	Dis Co (mi	sc T onc C g/L) (m	īrib Str onc C ng/L) (m	ream conc ng/L)	Fate Coef (1/days)				

25.00

5.00

25.00

2.00

8.24

0.00

0.00

0.00

0.00

1.50

0.00

0.70

Friday, November 3, 2023

CBOD5

NH3-N

Dissolved Oxygen

Version 1.1

Page 4 of 4

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	\checkmark
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.8	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.4	Temperature Adjust Kr	✓
D.O. Saturation	90.00%	Use Balanced Technology	\checkmark
D.O. Goal	5		

Friday, November 3, 2023

Version 1.1

4	SWP Basin Stre	am Code		St	ream Name		
	07D	9888		LITTLE S	WATARA CR	EEK	
NH3-N	Acute Allocatio	ns					
RMI	Discharge Nam	Baseline criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multipie WLA (mg/L)	Critical Reach	Percent Reduction
6.97	0 Keystone Prot	20.31	36.31	20,31	36.31	0	0
3.52	0 Fredericksburg	17.67	50	19.74	50	0	0
3.10	0	NA	NA	19.67	NA	NA	NA
NH3-N (Chronic Alloca	lions					
RMI	Discharge Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
6.97	0 Keystone Prot	2.02	4.8	2.02	4.34	2	10
3.52	0 Fredericksburg	1.89	16.76	1.98	15.14	2	10
3 10	0	NA	NA	1.98	NA	NA	NA

			<u> </u>	INC	2-14	DISSUME	<u>u Oxygen</u>	Critical	Doroont	
RMI	Discharge Name	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Reach	Reduction	
6.971	Keystone Prot	10.25	10.25	3.07	3.07	5	5	0	0	
3.52	Fredericksburg	25	25	15.14	15.14	5	5	0	0	
3.10		NA	NA	NA	NA	NA	NA	NA	NA	
	₹MI 6.97 3.52 3.10	MI Discharge Name 6.97 Keystone Prot 3.52 Fredericksburg 3.10	Image: Mile Discharge Name Baseline (mg/L) 6.97 Keystone Prot 10.25 3.52 Fredericksburg 25 3.10 NA	Image: NameDischarge NameBaseline (mg/L)Multiple (mg/L)6.97 Keystone Prot10.2510.253.52 Fredericksburg25253.10NANA	Image: NameBaseline (mg/L)Multiple (mg/L)Baseline (mg/L)6.97 Keystone Prot10.2510.253.073.52 Fredericksburg252515.143.10NANANA	MIDischarge NameBaseline (mg/L)Multiple (mg/L)Baseline (mg/L)Multiple (mg/L)6.97 Keystone Prot10.2510.253.073.073.52 Fredericksburg252515.1415.143.10NANANANA	MIDischarge NameBaseline (mg/L)Multiple (mg/L)Baseline (mg/L)Multiple (mg/L)Baseline (mg/L)Baseline (mg/L)Baseline (mg/L)Baseline (mg/L)Baseline (mg/L)Baseline (mg/L)Baseline (mg/L)Baseline (mg/L)Baseline 	MIDischarge NameBaseline (mg/L)Multiple (mg/L)Baseline (mg/L)Multiple (mg/L)Baseline (mg/L)Multiple (mg/L)6.97 Keystone Prot10.2510.253.073.07553.52 Fredericksburg252515.1415.14553.10NANANANANANA	MIDischarge NameBaseline (mg/L)Multiple (mg/L)Baseline (mg/L)Multiple (mg/L)Baseline (mg/L)Multiple (mg/L)Baseline (mg/L)Multiple (mg/L)Critical Reach6.97 Keystone Prot10.2510.253.073.075503.52 Fredericksburg252515.1415.145503.10NANANANANANANA	

.

Version 1.1

			_				******					
	<u>sw</u>	<u>P Basin</u>	<u>Strea</u>	ım Code				Stream	Name			
		07D	ę	888								
RMI	Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow	Reach Slope	Depth	Width	W/D Ratio	Velocity	Reach Trav Time	Analysis Temp	Analysis pH
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)	
Q7-1	0 Flow											
6.970	4.57	0.00	4.57	4.641	0.00066	.78	48.82	62.61	0.24	0.871	20.00	6.75
3.520	5.65	0.00	5.65	5.6465	0.00406	.77	48.69	63.19	0.30	0.085	20.45	6.73
3.100	6.18	0.00	6.18	5.6465	0.00505	.779	49.23	63.22	0.31	0.030	20.43	6.74
Q1-1	0 Flow											
6.970	3.66	0.00	3.66	4.641	0.00066	NA	NA	NA	0.23	0.924	20.00	6.73
3.520	4.52	0.00	4.52	5.6465	0.00406	NA	NA	NA	0.28	0.090	20.49	6.71
3.100	4.94	0.00	4.94	5.6465	0.00505	NA	NA	NA	0.29	0.032	20.47	6.72
Q30-	10 Flow	r										
6.970	6.40	0.00	6.40	4.641	0.00066	NA	NA	NA	0.27	0.787	20.00	6.79
3.520	7.91	0.00	7.91	5.6465	0.00406	NA	NA	NA	0.33	0.077	20.37	6.77
3.100	8,65	0.00	8.65	5.6465	0.00505	NA	NA	NA	0.34	0.027	20.35	6.78

WQM 7.0 Hydrodynamic Outputs

Friday, November 3, 2023

Version 1.1

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	✓
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.8	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.4	Temperature Adjust Kr	•
D.O. Saturation	90.00%	Use Balanced Technology	✓
D.O. Goal	5		

Friday, November 3, 2023

Version 1.1

	<u>ream Code</u>			Stream Name	
07D	9888		LITTI	E SWATARA CREEK	
RMI	Total Discharge	Flow (mgd)	<u>Ana</u>	lysis Temperature (°C)	Analysis pH
6.970	3.00	0		20.000	6.754
Reach Width (ft)	<u>Reach De</u>	<u>pth (ft)</u>		Reach WDRatio	Reach Velocity (fps)
48.819	0.78	0		62.615	0.242
Reach CBOD5 (mg/L)	<u>Reach Kc (</u>	<u>1/days)</u>	<u>R</u>	each NH3-N (mg/L)	Reach Kn (1/days)
6.15	0.49	1		1.55	0.700
Reach DO (mg/L)	<u>Reach Kr (</u>	1/days)		Kr Equation	<u>Reach DO Goal (mg/L)</u>
6.609	1.51	5		Tsivoglou	5
<u>Reach Travel Time (days)</u> 0.871	TravTime (days)	Subreach CBOD5 (mg/L)	Results NH3-N (mg/L)	D.O. (mg/L)	
	0.087	5.90	1.46	6.17	
	0.174	5.65	1.37	5.83	
	0.261	5.41	1.29	5.56	
	0.348	5.19	1.21	5.36	
	0.436	4,97	1.14	5,22	
	0.523	4.76	1.07	5.12	
	0.610	4.56	1.01	5.07	
	0.697	4.37	0.95	5.05	
	0.784	4.19	0.89	5.06	
	0.871	4.01	0.84	5,10	
RMI	Total Discharge	Flow (mad) Ana	lysis Temperature (°C)	Analysis pH
2 500	<u>1010110100110190</u>	o	1 1.110	00.115	0 700
3.520 Booch Width (#)	3.65	0 nth (ft)	1 1100	20.445	6.733
3.520 <u>Reach Width (ft)</u> 48.688	3.65 <u>Reach De</u>	0 0 <u>pth (ft)</u> 0	<u>, 1104</u>	20.445 <u>Reach WDRatio</u> 63.102	6.733 <u>Reach Velocity (fps)</u> 0.301
3.520 <u>Reach Width (ft)</u> 48.688 Reach CBOD5 (mg/l.)	3.65 <u>Reach De</u> 0.77 Beach Ko	0 p <u>th (ft)</u> 0 1/days)	- <u></u> R	20.445 <u>Reach WDRatio</u> 63.192 Seach NH3-N (mg/i)	6.733 <u>Reach Velocity (fps)</u> 0.301 Reach Kn (1/days)
3.520 <u>Reach Width (ft)</u> 48.688 <u>Reach CBOD5 (mg/L)</u> 5.69	3.65 <u>Reach De</u> 0.77 <u>Reach Kc (</u> 0.83	0 p <u>th (ft)</u> 0 (<u>1/days)</u> 9	<u>E</u>	20.445 <u>Reach WDRatio</u> 63.192 Reach NH3-N (mg/L) 2.03	6.733 <u>Reach Velocity (fps)</u> 0.301 <u>Reach Kn (1/days)</u> 0.724
3.520 <u>Reach Width (ft)</u> 48.688 <u>Reach CBOD5 (mg/L)</u> 5.69 Reach DO (mg/L)	3.65 <u>Reach De</u> 0.77 <u>Reach Kc (</u> 0.83 <u>Reach Kr (</u>	0 p <u>th (ft)</u> 0 (<u>1/days)</u> 9 1/days)	E	20.445 <u>Reach WDRatio</u> 63.192 <u>Reach NH3-N (mg/L)</u> 2.03 <u>Kr Equation</u>	6.733 <u>Reach Velocity (fps)</u> 0.301 <u>Reach Kn (1/days)</u> 0.724 <u>Reach DO Goal (mg/L)</u>
3.520 <u>Reach Width (ft)</u> 48.688 <u>Reach CBOD5 (mg/L)</u> 5.69 <u>Reach DO (mg/L)</u> 5.388	<u>1010 Diotrine</u> 3.65 <u>Reach De</u> 0.77 <u>Reach Kc (</u> 0.83 <u>Reach Kr (</u> 8.43	0 p <u>th (ft)</u> 0 (<u>1/days)</u> 9 <u>1/days)</u> 0	Ē	20.445 <u>Reach WDRatio</u> 63.192 <u>Reach NH3-N (mg/L)</u> 2.03 <u>Kr Equation</u> Tsivoglou	6.733 <u>Reach Velocity (fps)</u> 0.301 <u>Reach Kn (1/days)</u> 0.724 <u>Reach DO Goal (mg/L)</u> 5
3.520 <u>Reach Width (ft)</u> 48.688 <u>Reach CBOD5 (mg/L)</u> 5.69 <u>Reach DO (mg/L)</u> 5.388 <u>Reach Travel Time (days)</u> 0.085	3.65 <u>Reach De</u> 0.77 <u>Reach Kc (</u> 0.83 <u>Reach Kr (</u> 8.43	0 <u>pth (ft)</u> 0 <u>1/days)</u> 9 <u>1/days)</u> 0 Subreach	Results	20.445 <u>Reach WDRatio</u> 63.192 <u>Reach NH3-N (mg/L)</u> 2.03 <u>Kr Equation</u> Tsivoglou	6.733 <u>Reach Velocity (fps)</u> 0.301 <u>Reach Kn (1/days)</u> 0.724 <u>Reach DO Goal (mg/L)</u> 5
3.520 <u>Reach Width (ft)</u> 48.688 <u>Reach CBOD5 (mg/L)</u> 5.69 <u>Reach DO (mg/L)</u> 5.388 <u>Reach Travel Time (days)</u> 0.085	<u>Reach De</u> 0.77 <u>Reach Kc (</u> 0.83 <u>Reach Kr (</u> 8.43 TravTime (days)	0 pth (ft) 0 (1/days) 9 1/days) 0 Subreach CBOD5 (mg/L)	Results NH3-N (mg/L)	20.445 <u>Reach WDRatio</u> 63.192 <u>Reach NH3-N (mg/L)</u> 2.03 <u>Kr Equation</u> Tsivoglou D.O. (mg/L)	6.733 <u>Reach Velocity (fps)</u> 0.301 <u>Reach Kn (1/days)</u> 0.724 <u>Reach DO Goal (mg/L)</u> 5
3.520 <u>Reach Width (ft)</u> 48.688 <u>Reach CBOD5 (mg/L)</u> 5.69 <u>Reach DO (mg/L)</u> 5.388 <u>Reach Travel Time (days)</u> 0.085	Reach De 3.65 Reach De 0.77 Reach Kc (0.83 Reach Kr (8.43 TravTime (days) 0.009	0 pth (ft) 0 <u>1/days)</u> 9 <u>1/days)</u> 0 Subreach CBOD5 (mg/L) 5.65	Results NH3-N (mg/L) 2.02	20.445 <u>Reach WDRatio</u> 63.192 <u>Reach NH3-N (mg/L)</u> 2.03 <u>Kr Equation</u> Tsivoglou D.O. (mg/L) 5.53	6.733 <u>Reach Velocity (fps)</u> 0.301 <u>Reach Kn (1/days)</u> 0.724 <u>Reach DO Goal (mg/L)</u> 5
3.520 <u>Reach Width (ft)</u> 48.688 <u>Reach CBOD5 (mg/L)</u> 5.69 <u>Reach DO (mg/L)</u> 5.388 <u>Reach Travel Time (days)</u> 0.085	Total Distribute 3.65 Reach De 0.77 Reach Kc (0.83 Reach Kr (8.43 TravTime (days) 0.009 0.017	0 p <u>th (ft)</u> 0 <u>1/days)</u> 9 <u>1/days)</u> 0 Subreach CBOD5 (mg/L) 5.65 5.61	EResults NH3-N (mg/L) 2.02 2.01	20.445 <u>Reach WDRatio</u> 63.192 <u>Reach NH3-N (mg/L)</u> 2.03 <u>Kr Equation</u> Tsivoglou D.O. (mg/L) 5.53 5.66	6.733 <u>Reach Velocity (fps)</u> 0.301 <u>Reach Kn (1/days)</u> 0.724 <u>Reach DO Goal (mg/L)</u> 5
3.520 <u>Reach Width (ft)</u> 48.688 <u>Reach CBOD5 (mg/L)</u> 5.69 <u>Reach DO (mg/L)</u> 5.388 <u>Reach Travel Time (days)</u> 0.085	Total Distribute 3.65 Reach De 0.77 Reach Kc (0.83 Reach Kr (8.43 TravTime (days) 0.009 0.017 0.026	0 p <u>th (ft)</u> 0 <u>1/days)</u> 9 <u>1/days)</u> 0 Subreach CBOD5 (mg/L) 5.65 5.61 5.57	E Results NH3-N (mg/L) 2.02 2.01 2.00	20.445 <u>Reach WDRatio</u> 63.192 <u>Reach NH3-N (mg/L)</u> 2.03 <u>Kr Equation</u> Tsivoglou D.O. (mg/L) 5.53 5.66 5.78	6.733 <u>Reach Velocity (fps)</u> 0.301 <u>Reach Kn (1/days)</u> 0.724 <u>Reach DO Goal (mg/L)</u> 5
3.520 <u>Reach Width (ft)</u> 48.688 <u>Reach CBOD5 (mg/L)</u> 5.69 <u>Reach DO (mg/L)</u> 5.388 <u>Reach Travel Time (days)</u> 0.085	Total Distribute 3.65 Reach De 0.77 Reach Kc (0.83 Reach Kr (8.43 TravTime (days) 0.009 0.017 0.026 0.034	0 p <u>th (ft)</u> 0 <u>1/days)</u> 9 <u>1/days)</u> 0 Subreach CBOD5 (mg/L) 5.65 5.61 5.57 5.53	E Results NH3-N (mg/L) 2.02 2.01 2.00 1.98	20.445 <u>Reach WDRatio</u> 63.192 <u>Reach NH3-N (mg/L)</u> 2.03 <u>Kr Equation</u> Tsivoglou D.O. (mg/L) 5.53 5.66 5.78 5.90	6.733 <u>Reach Velocity (fps)</u> 0.301 <u>Reach Kn (1/days)</u> 0.724 <u>Reach DO Goal (mg/L)</u> 5
3.520 <u>Reach Width (ft)</u> 48.688 <u>Reach CBOD5 (mg/L)</u> 5.69 <u>Reach DO (mg/L)</u> 5.388 <u>Reach Travel Time (days)</u> 0.085	Total Diometric 3.65 Reach De 0.77 Reach Kc (0.83 Reach Kr (8.43 TravTime (days) 0.009 0.017 0.026 0.034	0 p <u>th (ft)</u> 0 <u>1/days)</u> 9 <u>1/days)</u> 0 Subreach CBOD5 (mg/L) 5.65 5.61 5.57 5.53 5.49	E Results NH3-N (mg/L) 2.02 2.01 2.00 1.98 1.97	20.445 <u>Reach WDRatio</u> 63.192 <u>Reach NH3-N (mg/L)</u> 2.03 <u>Kr Equation</u> Tsivoglou D.O. (mg/L) 5.53 5.66 5.78 5.90 6.01	6.733 <u>Reach Velocity (fps)</u> 0.301 <u>Reach Kn (1/days)</u> 0.724 <u>Reach DO Goal (mg/L)</u> 5
3.520 <u>Reach Width (ft)</u> 48.688 <u>Reach CBOD5 (mg/L)</u> 5.69 <u>Reach DO (mg/L)</u> 5.388 <u>Reach Travel Time (days)</u> 0.085	TravTime (days) 0.009 0.017 0.026 0.017 0.026 0.034 0.034 0.031	0 <u>pth (ft)</u> 0 <u>1/days)</u> 9 <u>1/days)</u> 0 Subreach CBOD5 (mg/L) 5.65 5.61 5.57 5.53 5.49 5.45	E Results NH3-N (mg/L) 2.02 2.01 2.00 1.98 1.97 1.96	20.445 <u>Reach WDRatio</u> 63.192 <u>Reach NH3-N (mg/L)</u> 2.03 <u>Kr Equation</u> Tsivoglou D.O. (mg/L) 5.53 5.66 5.78 5.90 6.01 6.11	6.733 <u>Reach Velocity (fps)</u> 0.301 <u>Reach Kn (1/days)</u> 0.724 <u>Reach DO Goal (mg/L)</u> 5
3.520 <u>Reach Width (ft)</u> 48.688 <u>Reach CBOD5 (mg/L)</u> 5.69 <u>Reach DO (mg/L)</u> 5.388 <u>Reach Travel Time (days)</u> 0.085	TravTime (days) 0.017 Reach Ce 0.83 Reach Kr (0.83 Reach Kr (8.43 TravTime (days) 0.009 0.017 0.026 0.034 0.043 0.051 0.060	0 <u>pth (ft)</u> 0 <u>1/days)</u> 9 <u>1/days)</u> 0 Subreach CBOD5 (mg/L) 5.65 5.61 5.57 5.53 5.49 5.45 5.41	E Results NH3-N (mg/L) 2.02 2.01 2.00 1.98 1.97 1.96 1.95	20.445 <u>Reach WDRatio</u> 63.192 <u>Reach NH3-N (mg/L)</u> 2.03 <u>Kr Equation</u> Tsivoglou D.O. (mg/L) 5.53 5.66 5.78 5.90 6.01 6.11 6.21	6.733 <u>Reach Velocity (fps)</u> 0.301 <u>Reach Kn (1/days)</u> 0.724 <u>Reach DO Goal (mg/L)</u> 5
3.520 <u>Reach Width (ft)</u> 48.688 <u>Reach CBOD5 (mg/L)</u> 5.69 <u>Reach DO (mg/L)</u> 5.388 <u>Reach Travel Time (days)</u> 0.085	TravTime (days) 0.017 Reach Kc (0.83 Reach Kr (0.83 Reach Kr (8.43 TravTime (days) 0.009 0.017 0.026 0.034 0.043 0.051 0.060	0 p <u>th (ft)</u> 0 <u>1/days)</u> 9 <u>1/days)</u> 0 Subreach CBOD5 (mg/L) 5.65 5.61 5.57 5.53 5.49 5.45 5.41 5.37	E Results NH3-N (mg/L) 2.02 2.01 2.00 1.98 1.97 1.96 1.95 1.94	20.445 <u>Reach WDRatio</u> 63.192 <u>Reach NH3-N (mg/L)</u> 2.03 <u>Kr Equation</u> Tsivoglou D.O. (mg/L) 5.53 5.66 5.78 5.90 6.01 6.11 6.21 6.30	6.733 <u>Reach Velocity (fps)</u> 0.301 <u>Reach Kn (1/days)</u> 0.724 <u>Reach DO Goal (mg/L)</u> 5
3.520 <u>Reach Width (ft)</u> 48.688 <u>Reach CBOD5 (mg/L)</u> 5.69 <u>Reach DO (mg/L)</u> 5.388 <u>Reach Travel Time (days)</u> 0.085	TravTime (days) 0.017 Reach Kc (0.83 Reach Kr (0.83 Reach Kr (8.43 TravTime (days) 0.009 0.017 0.026 0.034 0.043 0.051 0.060 0.068 0.077	0 pth (ft) 0 <u>1/days)</u> 9 <u>1/days)</u> 0 Subreach CBOD5 (mg/L) 5.65 5.61 5.57 5.53 5.49 5.45 5.41 5.37 5.33	E Results NH3-N (mg/L) 2.02 2.01 2.00 1.98 1.97 1.96 1.95 1.94 1.92	20.445 <u>Reach WDRatio</u> 63.192 <u>Reach NH3-N (mg/L)</u> 2.03 <u>Kr Equation</u> Tsivoglou D.O. (mg/L) 5.53 5.66 5.78 5.90 6.01 6.11 6.21 6.30 6.38	6.733 <u>Reach Velocity (fps)</u> 0.301 <u>Reach Kn (1/days)</u> 0.724 <u>Reach DO Goal (mg/L)</u> 5

WQM 7.0 D.O.Simulation

ay, I 3, 2

age

<u>SWP Basin</u> St	<u>eam Code</u>			Stream Name	
07D	9888		LITTL	E SWATARA CREEK	
RMI	Total Discharge	Flow (mgd) <u>Anal</u>	lysis Temperature (°C)	Analysis pH
3.100	3.65	0		20.425	6.742
Reach Width (ft)	<u>Reach De</u>	pth (ft)		Reach WDRatio	Reach Velocity (fps)
49.228	0.77	9		63.221	0.309
Reach CBOD5 (mg/L)	<u>Reach Kc (</u>	1/days)	<u>R</u>	<u>each NH3-N (mg/L)</u>	Reach Kn (1/days)
5.14	5.14 0.806			1.83	0.723
Reach DO (mg/L) Reach Kr (1/days)		<u>1/days)</u>		Kr Equation	Reach DO Goal (mg/L)
6.539	10.74	1		Tsivoglou	5
Reach Travel Time (days)		Subreach	Results		
0.030	TravTime	CBOD5	NH3-N	D.O.	
	(days)	(mg/L)	(mg/L)	(mg/L)	
	0.003	5.13	1.82	6.58	
	0.006	5.12	1.82	6.63	
	0.009	5.10	1.81	6.67	
	0.012	5.09	1.81	6.71	
	0.015	5.08	1.81	6.75	
	0.018	5.07	1.80	6.78	
	0.021	5.06	1.80	6.82	
	0.024	5.04	1.80	6.86	
	0.027	5.03	1.79	6.89	
	0.030	5.02	1.79	6.92	

WQM 7.0 D.O.Simulation

Friday, November 3, 2023

Version 1.1

Page 2 of 2

C. TOXCON Results

	E							
	Facility:			Fredericksbur	g Se	wer and Water	Auth	
	NPDES #:			PA0261670				
	Outfall No:			001				
	n (Samples/Mor	nth):		4				
Parameter Name	Total Zinc				_			
Number of Samples	100							
Samples Nondetected	0							
LOCNODINAL					_			
LOGNORMAL								
Log MEAN	-2.7413803							
Log VAR.	0.0818777							
(LTA) [E(x)]	0.0671758							
Variance [V(x)]	0.0003850							
CV (raw)	0.2921011							
CV (n)	0.1460505							
Monthly Avg. (99%, n-day)	0.0931940							
			R	eviewer/Pe	ermit	Engineer:	Pase	cal Kwedza
Facility:	Fredericksbu	rg Sewer	and W	ater Auth				
NPDES #:	PA0261670							
Outfall No:	001							
n (Samples/Month):	4							
in (Sumplesimentity.	-							
Deremotor	Distribution	Applied	Coof	ficient of V	ariat	ion (daily)	Ave	Monthly
Falameter	Distribution	Applied	Coel		anat	ion (dany)	Avg	. wonuny
Total Zinc (mg/l)	Lognor	mal		0.2921	1011		0.	0931940

D. TMS Analysis Results

Discharge Information

Stream

6.45

100

Instructions Discharge

0.65

Toxics Management Spreadsheet Version 1.4, May 2023

Facility:	redericksburg SW Au	th Little Swatara		NPDES Per	mit No.: PA	0261670	Outfall	No.: 001			
Evaluation Ty	Major Sewage	e	Wastewater	Description:	Industrial W	Vaste					
	Discharge Characteristics										
Design Flo			F	Partial Mix Factors (PMFs) Complete							
(MGD)* Hardness (mg/l)* pH (SU)* AFC			AFC	CFC	THH	CRL	Q ₇₋₁₀	Q _h			

										-			
					0 if lef	t blank	0.5 if le	eft blank	0) if left blan	k	1 if lef	t blank
	Discharge Pollutant	Units	Ма	x Discharge Conc	Trib Conc	Stream Conc	Daily CV	Hourly CV	Strea m CV	Fate Coeff	FOS	Criteri a Mod	Chem Transl
	Total Dissolved Solids (PWS)	mg/L		756									
5	Chloride (PWS)	mg/L		367									
o	Bromide	mg/L	۷	1									
ច	Sulfate (PWS)	mg/L		73.4									
	Fluoride (PWS)	mg/L											
	Total Aluminum	µg/L											
	Total Antimony	µg/L											
	Total Arsenic	µg/L											
	Total Barium	µg/L											
	Total Beryllium	µg/L											
	Total Boron	µg/L											
	Total Cadmium	µg/L											
	Total Chromium (III)	µg/L											
	Hexavalent Chromium	µg/L											
	Total Cobalt	µg/L											
	Total Copper	mg/L											
5	Free Cyanide	µg/L											
1 m	Total Cyanide	µg/L											
5	Dissolved Iron	µg/L											
	Total Iron	µg/L											
	Total Lead	µg/L											
	Total Manganese	µg/L											
	Total Mercury	µg/L											
	Total Nickel	µg/L											
	Total Phenols (Phenolics) (PWS)	µg/L											
	Total Selenium	µg/L											
	Total Silver	µg/L											
	Total Thallium	µg/L											
	Total Zinc	mg/L		0.09			0.292						
	Total Molybdenum	µg/L											

Stream / Surface Water Information

Fredericksburg SW Auth Little Swatara, NPDES Permit No. PA0261670, Outfall 001

Instructions Discharge Stream

Receiving Surface Water Name: Little Swatara Creek

Location	Stream Code*	RMI*	Elevation (ft)*	DA (mi ²)*	Slope (ft/ft)	PWS Withdrawal (MGD)	Apply Fish Criteria*
Point of Discharge	009888	3.52	423	85.15			Yes
End of Reach 1	009888	3.1	414	94.2			Yes

Statewide Criteria
 Great Lakes Criteria

Q 7-10

Location	PMI	LFY	Flow (cfs)		W/D	Width	Depth	pth Velocit Time		Time Tributary		Stream		Analysis	
Location	TXIVII	(cfs/mi ²)*	Stream	Tributary	Ratio	(ft)	(ft)	y (fps)	(dave)	Hardness	рΗ	Hardness*	pH*	Hardness	pН
Point of Discharge	3.52	0.066										100	7		
End of Reach 1	3.1	0.066													

No. Reaches to Model:

1

Q_h

Location	PMI	LFY	Flow (cfs)		W/D	Width	Depth	epth Velocit Time		er Tributary		Stream		Analysis	
Location	EXIVII	(cfs/mi ²)	Stream	Tributary	Ratio	(ft)	(ft)	y (fps)	(days)	Hardness	pН	Hardness	pН	Hardness	pН
Point of Discharge	3.52														
End of Reach 1	3.1														

Model Results

Fredericksburg SW Auth Little Swatara, NPDES Permit No. PA0261670, Outfall 001

Instructions Results	RETURN TO INPL	лтя я	SAVE AS I	PDF	PRINT) () A	II O Inputs	O Results	○ Limits
Hydrodynamics									
✓ Wasteload Allocations									
✓ AFC CC	T (min): 15	PMF:	0.603	Anal	ysis Hardne	ss (mg/l):	100	Analysis pH:	6.80
Pollutants	Conc Conc CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)		Co	mments
Total Dissolved Solids (PWS)	0 0		0	N/A	N/A	N/A			
Chloride (PWS)	0 0		0	N/A	N/A	N/A			
Sulfate (PWS)	0 0		0	N/A	N/A	N/A			
Total Zinc	0 0		0	117.180	120	524		Chem Transla	tor of 0.978 applied

ORSANCO Criteria

NPDES Permit Fact Sheet Fredericksburg Little Swatara STP

✓ CFC CC	CT (min): 41	.210	PMF:	1	Ana	alysis Hardne	ess (mg/l):	100 Analysis pH: 6.86	
Pollutants	Conc (ug/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments	
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A		
Chloride (PWS)	0	0		0	N/A	N/A	N/A		
Sulfate (PWS)	0	0		0	N/A	N/A	N/A		
Total Zinc	0	0		0	118.139	120	789	Chem Translator of 0.986 applied	
 CC	THH CCT (min): 41.210 PMF: 1 Analysis Hardness (mg/l): N/A Analysis pH: N/A								
Pollutants	Conc	CV	(µg/L)	Coef	(µg/L)	(µg/L)	WLA (µg/L)	Comments	
Total Dissolved Solids (PWS)	0	0		0	500,000	500,000	N/A		
Chloride (PWS)	0	0		0	250,000	250,000	N/A		
Sulfate (PWS)	0	0		0	250,000	250,000	N/A		
Total Zinc	0	0		0	N/A	N/A	N/A		
☑ CRL CC	T (min): 18.	137	PMF:	1	Ana	I Ilysis Hardne	ss (mg/l):	N/A Analysis pH: N/A	
Pollutants	Conc (ug/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments	
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A		
Chloride (PWS)	0	0		0	N/A	N/A	N/A		
Sulfate (PWS)	0	0		0	N/A	N/A	N/A		
Total Zinc	0	0		0	N/A	N/A	N/A		

NPDES Permit Fact Sheet Fredericksburg Little Swatara STP

Recommended WQBELs & Monitoring Requirements

No. Samples/Month: 4

	Mass	Limits		Concentra	tion Limits				
Pollutants	AML (Ibs/day)	MDL (lbs/day)	AML	MDL	IMAX	Units	Governing WQBEL	WQBEL Basis	Comments
Total Zinc	Report	Report	Report	Report	Report	mg/L	0.27	AFC	Discharge Conc > 10% WQBEL (no RP)

Model Results

12/1/2023

Page

☑ Other Pollutants without Limits or Monitoring

The following pollutants do not require effluent limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharge concentration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QL).

Pollutants	Governing WQBEL	Units	Comments
Total Dissolved Solids (PWS)	N/A	N/A	PWS Not Applicable
Chloride (PWS)	N/A	N/A	PWS Not Applicable
Bromide	N/A	N/A	No WQS
Sulfate (PWS)	N/A	N/A	PWS Not Applicable