

Southcentral Regional Office CLEAN WATER PROGRAM

Application Type

Renewal

Non
Municipal

Maior / Minor

Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

Application No. PA0262137

APS ID **820007**

Authorization ID 1308381

	Applicant and Facility Information								
g Cabin Court Mobile Home Park	_ Facility Name	Log Cabin Court MHP							
3 Gilpin Drive	Facility Address	Lobin Road							
est Chester, PA 19382	<u>-</u>	Earl Township, PA 17519							
C.S. Chadaga	_ Facility Contact	P.C.S Chadaga							
34) 887-8247	_ Facility Phone	(484) 887-8247							
6529	_ Site ID	2332							
ot Overloaded	_ Municipality	Earl Township							
Limitations	County	Lancaster							
March 4, 2020	EPA Waived?	Yes							
March 13, 2020	If No, Reason								
		3 Gilpin Drive Facility Address est Chester, PA 19382 C.S. Chadaga Facility Contact 84) 887-8247 Facility Phone 6529 Site ID ot Overloaded Municipality c Limitations County March 4, 2020 EPA Waived?							

Summary of Review

Log Cabin Court MHP has applied to the Pennsylvania Department of Environmental Protection (DEP) for reissuance of its National Pollutant Discharge Elimination System (NPDES) permit. The permit was issued September 15, 2015 and became effective on October 1, 2015, authorizing discharge of treated sewage from the existing wastewater treatment plant (WWTP) located in Earl Township, Lancaster County into UNT to Conestoga River. The existing permit expiration date was September 30, 2020, and the permit has been administratively extended since that time.

Per the previous fact sheet, the WWTP has been designed to serve an existing 16.5 acre mobile home park, which contains 82 mobile home sites. A point of first use survey was performed by a DEP biologist on December 22, 2011. Three different potential discharge points were examined for the proposed facility. It was determined that the point of first use for all three sites was at the proposed discharge points. On January 25, 2012, DEP sent a letter to the Applicant which included preliminary effluent limitations for the three proposed outfall locations. The application received on August 2, 2013 indicated the intent to use proposed "Discharge Point C." The previous permit limitations were developed for this discharge point.

Changes in this renewal: Monthly calculation of Net TN and Net TP has been removed from the permit. E.Coli monitoring has been added to the permit.

Sludge use and disposal description and location(s): Offsite WWTP

Supplemental information for this report is provided at the end of the fact sheet.

Public Participation

Approve	Deny	Signatures	Date
Х		Benjamin R. Lockwood Benjamin R. Lockwood / Environmental Engineering Specialist	June 7, 2021
Х		Maria D. Bebenek for Daniel W. Martin Daniel W. Martin, P.E. / Environmental Engineer Manager	June 15, 2021
Х		Maria D.Bebenek Maria D. Bebenek, P.E. / Program Manager	June 15, 2021

Summary of Review

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

ischarge, Receiving	Waters and Water Supply Info	rmation			
Outfall No. 001		Design Flow (MGD)	.014		
Latitude 40° 7'	45"	Longitude	76° 4' 44"		
Quad Name Ter	re Hill	Quad Code	1737		
Wastewater Descrip	otion: Sewage Effluent				
Receiving Waters	Unnamed Tributary to Conestog River (CWF, MF)	ga Stream Code	07792		
NHD Com ID	57462453	RMI	1.6		
Drainage Area	1.49 mi ²	Yield (cfs/mi²)	0.039		
Q ₇₋₁₀ Flow (cfs)	0.0585	Q ₇₋₁₀ Basis	USGS PA StreamStats		
Elevation (ft)	369	Slope (ft/ft)			
Watershed No.	7-J	Chapter 93 Class.	CWF, MF		
Existing Use	N/A	Existing Use Qualifier	N/A		
Exceptions to Use	N/A	Exceptions to Criteria	N/A		
Assessment Status	Impaired				
Cause(s) of Impairm	nent Pathogens, Pathogens, I	Nutrients			
Source(s) of Impairr	ment Agriculture, Urban Runo	ff/Storm Sewers, Agriculture			
TMDL Status	N/A	Name <u>N/A</u>			
	n Public Water Supply Intake	Lancaster City Water Bureau			
PWS Waters C	Conestoga River	Flow at Intake (cfs)	,		
PWS RMI		Distance from Outfall (mi) 22.5			

Changes Since Last Permit Issuance: USGS PA StreamStats provided a drainage area of 1.49 mi^2 and a Q_{7-10} of 0.0585 cfs at the point of discharge.

Other Comments: None

	Treatment Facility Summary									
Waste Type	Degree of Treatment	Process Type	Disinfection	Avg Annual Flow (MGD)						
Sewage	Secondary	Extended Aeration	Hypochlorite	0.014						
Hydraulic Capacity (MGD)	Organic Capacity (Ibs/day)	Load Status	Biosolids Treatment	Biosolids Use/Disposal						
0.014	28	Not Overloaded	Sludge Holding	Other WWTP						

Changes Since Last Permit Issuance: None

Other Comments: The WWTP process consists of the following:

Equalization Tank – 2 Aeration Tanks – Clarifier – Chlorine Contact Tank (with tablet feed) – Post Aeration Tank – Outfall 001 to UNT to Conestoga River.

	Compliance History							
Summary of DMRs:	A summary of the past 12-month DMR effluent data is presented on the next page of this fact sheet.							
Summary of Inspections:	12/6/2017: A routine inspection was conducted. The treatment units appeared to be operating normally. No other issues were noted.							
	6/23/2020: An administrative inspection was conducted. The WWTP was operating normally, and all units were online. At the time of inspection there were no outstanding issues or needs at the facility.							

Other Comments: There are currently no open violations associated with the permittee or facility.

Compliance History

DMR Data for Outfall 001 (from April 1, 2020 to March 31, 2021)

Parameter	MAR-21	FEB-21	JAN-21	DEC-20	NOV-20	OCT-20	SEP-20	AUG-20	JUL-20	JUN-20	MAY-20	APR-20
Flow (MGD)								0.00659			0.00675	
Average Monthly	0.0063	0.00612	0.00586	0.00693	0.00674	0.00611	0.00606	7	0.00676	0.00627	2	0.00686
Flow (MGD)											0.01119	
Daily Maximum	0.00973	0.01346	0.0085	0.01369	0.01008	0.00976	0.01005	0.01312	0.0117	0.00817	7	0.01118
pH (S.U.)												
Minimum	7.26	7.19	7.39	7.39	7.41	7.32	7.42	7.37	7.33	7.26	7.19	7.11
pH (S.U.)												
Maximum	7.57	7.68	7.74	7.66	7.65	7.67	7.71	7.74	7.84	7.65	7.8	7.82
DO (mg/L)												
Minimum	7.2	8.18	8.75	8.16	7.2	7.85	6.67	6.09	5.46	7.3	6.83	7.01
CBOD5 (mg/L)												
Average Monthly	5.1	2.6	< 2.1	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2.1	< 2.2
TSS (mg/L)												
Average Monthly	< 12	< 4	< 4	< 4	< 4	< 4	< 4	< 4	< 4	< 4	< 4	< 4
Fecal Coliform												
(CFU/100 ml)												
Geometric Mean	552	2	< 1	< 50	< 1	< 1	< 1	< 6	< 1	< 1	< 1	< 1
Fecal Coliform												
(CFU/100 ml)												
Instantaneous												
Maximum	1200	3	< 1	2500	2	1	< 1	31	1	2	< 1	1
UV Intensity (mW/cm²)												
Minimum	19.47	11.27	18.48	20.79	20.79	22.88	24.9	20.79	22.11	24.09	24.41	22.11
UV Intensity (mW/cm²)												
Average Monthly	24.53	21.03	23.02	24.47	24.53	26.09	26.75	26.71	26.16	27.09	27.27	26.68
Nitrate-Nitrite (mg/L)												
Average Monthly	7.01	18.87	17.5	28.2	43.8	35	31.8	15.99	15.1	17.7	28.9	12.69
Nitrate-Nitrite (lbs)		0.4		40								4.0
Total Monthly	11	24	22	49	66	50	44	21	28	27	32	18
Total Nitrogen (mg/L)	0.04	00.0	40.0	00.7	44.0	05.0	00.0	40.40	40.4	40.0	00.0	47.4
Average Monthly	9.61	26.3	18.3	< 28.7	< 44.3	< 35.6	32.9	< 16.49	16.1	18.8	< 30.3	17.4
Total Nitrogen (lbs)												
Effluent Net Tatal Manthly	4.5	20	22	. 50	. 67	. 54	40	. 20	20	20	. 24	25
Total Monthly	15	32	23	< 50	< 67	< 51	46	< 22	30	29	< 34	25
Total Nitrogen (lbs)	4.5	00	00	50	0.7	54	40	00	00	00	0.4	05
Total Monthly	15	32	23	< 50	< 67	< 51	46	< 22	30	29	< 34	25

NPDES Permit No. PA0262137

Total Nitrogen (lbs) Effluent Net 							< NULL59					
Total Annual							2					
Total Nitrogen (lbs) Total Annual							< 483					
Ammonia (mg/L)												
Average Monthly	0.79	4.72	< 0.11	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.5	< 3.4
Ammonia (lbs)												
Total Monthly	1	5	< 0.1	< 0.2	< 0.2	< 0.1	< 0.1	< 0.1	< 0.2	< 0.2	< 0.6	< 5
Ammonia (lbs)												
Total Annual							< 22					
TKN (mg/L)												
Average Monthly	2.61	7.4	0.81	< 0.5	< 0.5	< 0.6	1.15	< 0.5	0.96	1.12	< 1.44	4.7
TKN (lbs)												
Total Monthly	5	8	1	< 0.9	< 0.8	< 0.8	2	< 0.7	2	2	< 2.0	7
Total Phosphorus												
(mg/L)												
Average Monthly	0.56	0.23	0.23	0.14	0.14	0.21	0.32	0.68	0.8	0.64	0.57	0.69
Total Phosphorus (lbs)												
Effluent Net 	4	0.0	0.0	0.0	0.0		0.4					
Total Monthly	1	0.2	0.3	0.2	0.2	0.3	0.4	1	1	1	0.6	1
Total Phosphorus (lbs)	4	0.0	0.0	0.0	0.0	0.0	0.4	1		4	0.0	1
Total Monthly	1	0.2	0.3	0.2	0.2	0.3	0.4	1	1	1	0.6	ı l
Total Phosphorus (lbs)												
Effluent Net Total Appual							< NULL					
Total Annual							< NULL					
Total Phosphorus (lbs) Total Annual							< 8					
Tutai Affilial							< 0					

Existing Effluent Limitations and Monitoring Requirements

The tables below summarize the effluent limits and monitoring requirements implemented in the existing NPDES permit.

Outfall 001

			Effluent Lii	mitations			Monitoring Re	quirements
Parameter	Mass Units	(lbs/day) (1)		Concentrati		Minimum ⁽²⁾		
rai ailletei	Average Monthly	Average Weekly	Instantaneous Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report Daily Max	XXX	XXX	XXX	XXX	Continuous	Measured
pH (S.U.)	XXX	XXX	6.0	XXX	XXX	9.0	1/day	Grab
DO	XXX	XXX	5.0	XXX	XXX	XXX	1/day	Grab
UV Intensity (mW/cm²)	XXX	XXX	Report	Report	XXX	XXX	1/day	Recorded
CBOD5	XXX	XXX	XXX	25	XXX	50	2/month	8-Hr Composite
TSS	XXX	XXX	XXX	30	XXX	60	2/month	8-Hr Composite
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2,000 Geo Mean	XXX	10,000	2/month	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	XXX	XXX	200 Geo Mean	XXX	1,000	2/month	Grab
Ammonia Nov 1 - Apr 30	XXX	XXX	XXX	12	XXX	24	2/month	8-Hr Composite
Ammonia May 1 - Oct 31	XXX	XXX	XXX	4.0	XXX	8.0	2/month	8-Hr Composite
Total Phosphorus	XXX	XXX	XXX	0.8	XXX	1.6	2/month	8-Hr Composite

Compliance Sampling Location: At discharge from facility

Outfall 001

		Į.	Effluent Limitation	ıs		Monitoring Red	uirements
Parameter	Mass Units	Mass Units (lbs/day) (1)		ncentrations (mg/	Minimum ⁽²⁾	Required	
i didilictor	Monthly	Annual	Monthly	Monthly Average	Maximum	Measurement Frequency	Sample Type
AmmoniaN	Report	Report	XXX	Report	XXX	2/month	8-Hr Composite
KjeldahlN	Report	XXX	XXX	Report	XXX	2/month	8-Hr Composite
Nitrate-Nitrite as N	Report	XXX	XXX	Report	XXX	2/month	8-Hr Composite
Total Nitrogen	Report	Report	XXX	Report	XXX	2/month	Calculation
Total Phosphorus	Report	Report	XXX	Report	XXX	2/month	8-Hr Composite
Net Total Nitrogen	Report	0	XXX	XXX	XXX	1/month	Calculation
Net Total Phosphorus	Report	0	XXX	XXX	XXX	1/month	Calculation

Compliance Sampling Location: At discharge from facility

• The existing NPDES Permit authorizes the permittee to use 2,075 lbs/year as Total Nitrogen (TN) Offsets toward compliance with the Annual Net TN mass load limitations.

Development of Effluent Limitations							
Outfall No.	001		Design Flow (MGD)	.014			
Latitude	40° 7' 45"		Longitude	76° 4' 44"			
Wastewater Description:		Sewage Effluent					

Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
CBOD₅	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD5	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
pН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform				
(5/1 - 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform				
(5/1 - 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform				
(10/1 - 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform				
(10/1 - 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)

Water Quality-Based Limitations

Pursuant to 40 CFR § 122.44(d)(1)(i), more stringent requirements should be considered when pollutants are discharged at the levels which have the reasonable potential to cause or contribute to excursions above water quality standards.

WQM 7.0 ver. 1.1b is a water quality model designed to assist DEP in determining appropriate water quality based effluent limits (WQBELs) for carbonaceous biochemical oxygen demand (CBOD5), ammonia (NH3-N) and dissolved oxygen (D.O.). DEP's Technical Guidance No. 391-2000-007 provides the technical methods contained in WQM 7.0 for determining wasteload allocations and for determining recommended NPDES effluent limits for point source discharges. The model was utilized for this permit renewal. An existing discharge (Nexans Inc PA0084247) was included in the modeling, as it is located less than 0.01 miles away. The model output indicated a CBOD5 average monthly limit of 25 mg/l, an NH3-N average monthly limit of 4.82 mg/l, and a D.O. minimum limit of 5.0 mg/l were protective of water quality. The flow data used to run the model was acquired from USGS PA StreamStats, and is included as an attachment. Rounded in accordance with DEP's Technical Guidance No. 362-0400-001, an NH3-N average monthly limit of 4.8 mg/l would be required. The CBOD5 limit is the same as the limit in the existing permit, which will remain. The existing NH3-N permit limit of 4.0 mg/l is more stringent and will remain in the permit.

There are no industrial/commercial users contributing industrial wastewater to the system and Log Cabin Court MHP does not currently have an EPA-approved pretreatment program. Accordingly, evaluating reasonable potential of toxic pollutants is not necessary as effluent levels of toxic pollutants are expected to be insignificant.

Best Professional Judgement (BPJ) Limitations

Dissolved Oxygen

A minimum D.O. limit of 5.0 mg/L is a D.O. water quality criterion found in 25 Pa. Code § 93.7(a). This limit is included in the existing NPDES permit. This limit will remain in the permit to ensure that the facility will achieve compliance with DEP water quality standards.

Total Phosphorus

For Total Phosphorus (TP), the current NPDES permit requires the permittee to comply with average monthly and IMAX limits of 0.8 mg/l and 1.6 mg/l, respectively. Due to the nutrient-based impairment for the receiving stream, these limits were put into place with coordination from the permittee. The TP limit of 0.8 mg/l was used for operational reasons, as the small facility would be able to meet this limit more easily than a limit of 0.5 mg/l. These limits will remain in the renewal permit.

Additional Considerations

Chesapeake Bay Total Maximum Daily Load (TMDL)

DEP developed a strategy to comply with the EPA and Chesapeake Bay Foundation requirements by reducing point source loadings of Total Nitrogen (TN) and Total Phosphorus (TP). This strategy can be located in the *Pennsylvania Chesapeake Watershed Implementation Plan* (WIP), dated January 11, 2011. Subsequently, an update to the WIP was published as the Phase 2 WIP. As part of the Phase 2 WIP, a *Phase 2 Watershed Implementation Plan Wastewater Supplement* (Phase 2 Supplement) was developed, providing an update on TMDL implementation for point sources and DEP's current implementation strategy for wastewater. A new update to the WIP was published as the Phase 3 WIP in August 2019. As part of the Phase 3 WIP, a *Phase 3 Watershed Implementation Plan Wastewater Supplement* (Phase 3 Supplement) was developed, and was most recently revised on December 17, 2019, and is the basis for the development of any Chesapeake Bay related permit parameters. Sewage discharges have been prioritized based on their design flow to the Bay. The highest priority (Phases 1, 2, and 3) dischargers will receive annual Cap Loads based on their design flow on August 29, 2005 and concentrations of 6 mg/l TN and 0.8 mg/l TP. These limits may be achieved through a combination of treatment technology, credits, or offsets. For Phase 4 and 5 facilities, Cap Loads are not currently being implemented for renewed or amended permits for facilities that do not increase design flow. For new Phase 4 and 5 sewage dischargers, in general DEP will issue new permits containing Cap Loads of "0" and new facilities will be expected to purchase credits and/or apply offsets to achieve compliance.

This facility is considered a Phase 5 non-significant discharger with a design flow less than 0.2 MGD but greater than 0.002 MGD. As this was a new facility, per the Phase 3 Supplement, a Cap Load of "0" was placed in the permit for TN and TP. For TN, the use of offsets was allowed. The permit authorizes the use of 2,075 lbs/year as TN Offsets for the connection of on-lot sewage disposal systems to the WWTP serving 83 EDUs. These Cap Loads will remain in the renewal permit. DEP no longer offers any tools to calculate the monthly loads for Net TN and Net TP, and these calculations are no longer needed since offsets and credits are applied annually. Therefore, this reporting requirement is no longer needed and will be removed from the permit.

Fecal Coliform

PA Code § 92a.47.(a)(4) requires a monthly average limit of 200/100 mL as a geometric mean and an instantaneous maximum limit not greater than 1,000/100 mL from May through September for fecal coliform. PA Code § 92a.47.(a)(5) requires a monthly average limit of 2,000/100 mL as a geometric mean and an instantaneous maximum limit not greater than 10,000/100 mL from October through April for fecal coliform. These limits are included in the existing permit, and will remain in the permit.

E. Coli

PA Code § 92a.61 requires IMAX reporting of E. Coli. Per DEP's SOP No. BCW-PMT-033, sewage dischargers with a design flow of 0.002 – 0.05 mgd will include E. Coli monitoring with a frequency of 1/year. This parameter has been added to the renewal permit.

UV Monitoring

DEP's SOP No. BPNPSM-PMT-033 recommends at a minimum, routine monitoring of UV transmittance, dosage, or intensity when the facility is utilizing a UV disinfection system. The monitoring should occur at the same frequency as would be used for TRC. This recommendation was implemented as a part of the proper operation and maintenance requirement specified in Part B of the NPDES permit, requesting permittees to demonstrate the effectiveness of UV disinfection system. This approach has been assigned to other facilities equipped with similar technology. The existing permit has a monitoring requirement for UV intensity, which will remain in the permit.

Sampling Frequency & Sample Type

The monitoring requirements were established based on the BPJ and/or Table 6-3 of DEP's technical guidance No. 362-0400-001.

Flow Monitoring

Flow monitoring is recommended by DEP's technical guidance and is also required by 25 PA Code §§ 92a.27 and 92a.61.

Anti-Degradation

The effluent limits for this discharge have been developed to ensure that existing instream water uses and the level of water quality necessary to protect the existing uses are maintained and protected. No High Quality Waters are impacted by this discharge. No Exceptional Value Waters are impacted by this discharge.

303(d) Listed Streams

The discharge is located on a stream segment that is designated on the 303(d) list as impaired. There is a recreational impairment for pathogens due to agriculture and urban/runoff storm sewers. There is an aquatic life impairment for nutrients due to agriculture.

Class A Wild Trout Fisheries

No Class A Wild Trout Fisheries are impacted by this discharge.

Anti-Backsliding

Pursuant to 40 CFR § 122.44(I)(1), all proposed permit requirements addressed in this fact sheet are at least as stringent as the requirements implemented in the existing NPDES permit unless any exceptions addressed by DEP in this fact sheet.

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

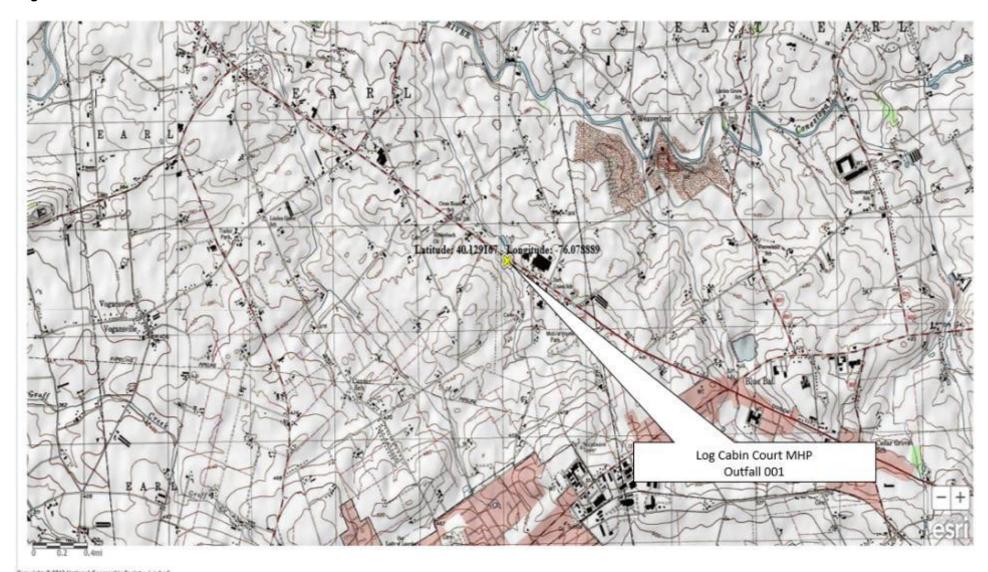
			Effluent Lir	nitations			Monitoring Red	quirements
Parameter	Mass Units	(lbs/day) ⁽¹⁾		Concentrati	ons (mg/L)		Minimum (2)	Required
i arameter	Average Monthly	Average Weekly	Instantaneous Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report Daily Max	XXX	XXX	XXX	XXX	Continuous	Measured
pH (S.U.)	XXX	XXX	6.0	XXX	XXX	9.0	1/day	Grab
DO	XXX	XXX	5.0	XXX	XXX	XXX	1/day	Grab
CBOD5	XXX	XXX	XXX	25	XXX	50	2/month	8-Hr Composite
TSS	XXX	XXX	XXX	30	XXX	60	2/month	8-Hr Composite
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2,000 Geo Mean	XXX	10,000	2/month	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	XXX	XXX	200 Geo Mean	XXX	1,000	2/month	Grab
E. Coli (No./100 ml)	XXX	XXX	XXX	XXX	XXX	Report	1/year	Grab
UV Intensity (mW/cm²)	XXX	XXX	Report	Report	XXX	XXX	1/day	Recorded
Ammonia Nov 1 - Apr 30	XXX	XXX	XXX	12	XXX	24	2/month	8-Hr Composite
Ammonia May 1 - Oct 31	XXX	XXX	XXX	4.0	XXX	8.0	2/month	8-Hr Composite
Total Phosphorus	XXX	XXX	XXX	0.8	XXX	1.6	2/month	8-Hr Composite

Compliance Sampling Location: At discharge from facility

Other Comments: None

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, to comply with Pennsylvania's Chesapeake Bay Tributary Strategy.


Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

			Effluent L	imitations			Monitoring Requirem		
Parameter	Mass Uni	ts (lbs) ⁽¹⁾		Concentrat	tions (mg/L)		Minimum ⁽²⁾	Required	
Farameter	Monthly	Annual	Monthly	Monthly Average	Maximum	Instant. Maximum	Measurement Frequency	Sample Type	
	_	_		_			_,	8-Hr	
Ammonia-N	Report	Report	XXX	Report	XXX	XXX	2/month	Composite	
								8-Hr	
Kjeldahl-N	Report	XXX	XXX	Report	XXX	XXX	2/month	Composite	
								8-Hr	
Nitrate-Nitrite as N	Report	XXX	XXX	Report	XXX	XXX	2/month	Composite	
Total Nitrogen	Report	Report	xxx	Report	xxx	XXX	1/month	Calculation	
-	·	•						8-Hr	
Total Phosphorus	Report	Report	XXX	Report	XXX	XXX	2/month	Composite	
Net Total Nitrogen	xxx	0	XXX	XXX	XXX	XXX	1/year	Calculation	
Net Total Phosphorus	XXX	0	XXX	XXX	XXX	XXX	1/year	Calculation	

Compliance Sampling Location: At discharge from facility

Other Comments: 2,075 lbs/year of TN Offsets are approved to be used for compliance with the TN Cap Load of 0 lbs/year.

	Tools and References Used to Develop Permit
\square	WOME WELL AND LAND L
	WQM for Windows Model (see Attachment)
	Toxics Management Spreadsheet (see Attachment)
$ \frac{\square}{\square}$	TRC Model Spreadsheet (see Attachment)
	Temperature Model Spreadsheet (see Attachment)
	Water Quality Toxics Management Strategy, 361-0100-003, 4/06.
	Technical Guidance for the Development and Specification of Effluent Limitations, 362-0400-001, 10/97.
	Policy for Permitting Surface Water Diversions, 362-2000-003, 3/98.
<u> </u>	Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 362-2000-008, 11/96.
	Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97.
	Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 362-2183-004, 12/97.
	Pennsylvania CSO Policy, 385-2000-011, 9/08.
\boxtimes	Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.
	Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 391-2000-002, 4/97.
\boxtimes	Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97.
	Implementation Guidance Design Conditions, 391-2000-006, 9/97.
\boxtimes	Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004.
	Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 391-2000-008, 10/1997.
	Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 391-2000-010, 3/99.
	Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 391-2000-011, 5/2004.
	Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97.
	Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 391-2000-014, 4/2008.
	Implementation Guidance Total Residual Chlorine (TRC) Regulation, 391-2000-015, 11/1994.
	Implementation Guidance for Temperature Criteria, 391-2000-017, 4/09.
	Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/97.
	Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97.
	Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 391-2000-021, 3/99.
	Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/1999.
	Design Stream Flows, 391-2000-023, 9/98.
	Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 391-2000-024, 10/98.
	Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97.
	Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.
	SOP:
	Other:

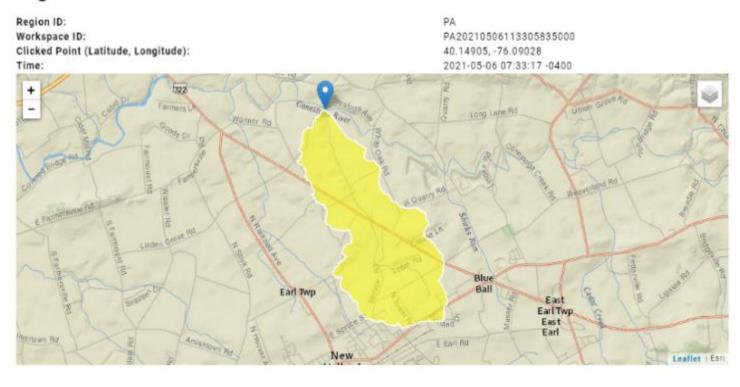
Enter report title:	
Log Cabin Court MHP PA0262137 Outfall 001	
Enter comments:	
Some comments here	

Log Cabin Court MHP PA0262137 Outfall 001

Basin Characteristics			
Parameter Code	Parameter Description	Value Unit	t
DRNAREA	Area that drains to a point on a stream	1.49 squ	are miles
BSLOPD	Mean basin slope measured in degrees	2.0273 deg	rees
ROCKDEP	Depth to rock	5 feet	
URBAN	Percentage of basin with urban development	14.0822 per	cent

arameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
RNAREA	Drainage Area	1.49	square miles	4.78	1150
SLOPD	Mean Basin Slope degrees	2.0273	degrees	1.7	6.4
ROCKDEP	Depth to Rock	5	feet	4.13	5.21
JRBAN	Percent Urban	14.0822	percent	0	89
	ors is outside the suggested range. Estimates were extrapol				
ow-Flow Statistics Disclaimers One or more of the paramete, ow-Flow Statistics Flow Report Statistic	ors is outside the suggested range. Estimates were extrapol		Value	Uni	it
One or more of the parameter ow-Flow Statistics Flow Report statistic	ors is outside the suggested range. Estimates were extrapol		Value 0.165	Uni ft*3	
One or more of the parameter ow-Flow Statistics Flow Report statistic Day 2 Year Low Flow	ors is outside the suggested range. Estimates were extrapol				3/s
One or more of the parameter	ors is outside the suggested range. Estimates were extrapol		0.165	ft*3	3/s 3/s
One or more of the parameter ow-Flow Statistics Flow Report Statistic 1 Day 2 Year Low Flow 10 Day 2 Year Low Flow	ors is outside the suggested range. Estimates were extrapol		0.165 0.253	ft*3 ft*3	3/s 3/s
One or more of the parameters ow-Flow Statistics Flow Report statistic Day 2 Year Low Flow Day 2 Year Low Flow Day 10 Year Low Flow	ors is outside the suggested range. Estimates were extrapol		0.165 0.253 0.0585	ft*3 ft*3 ft*3	3/s 3/s 3/s

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.


USSS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

USBS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Application Version: 4.5.2 StreamState Services Version: 1.2.22 NSS Services Version: 2.1.1

Enter report title:	
Log Cabin Court MHP PA0262137 Downstream Point RMI = 0.0	
Enter comments:	
Some comments here	
	and the second s

Log Cabin Court MHP PA0262137 Downstream Point RMI = 0.0

Basin Characteristics			
Parameter Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	2.74	square miles
BSLOPD	Mean basin slope measured in degrees	1.8089	degrees
ROCKDEP	Depth to rock	5	feet
URBAN	Percentage of basin with urban development	8.0522	percent

1150 5.4 5.21	
.21	
19	
ft*3/s ft*3/s	

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and reliated material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unsuthorized use.

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptire purposes only and does not imply endorsement by the U.S. Government.

Application Version: 4.5.2 StreamState Services Version: 1.2.22 NSS Services Version: 2.1.1

Input Data WQM 7.0

	SWP Basin			Stre	eam Name		RMI		ation t)	Drainage Area (sq mi)	Slope (ft/ft)	PW Withda (mg	rawal	Apply FC
	07J	77	792 Trib 07	792 to Co	onestoga Ri	iver	1.60	00 :	369.00	1.49	0.00000)	0.00	✓
					St	ream Dat	a							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	Tributary p pH	Ter	<u>Stream</u> mp	pH	
Conu.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)	(°0	C)		
Q7-10 Q1-10 Q30-10	0.100	0.00 0.00 0.00	0.06 0.00 0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00	0.00	2	0.00 7.0	00	0.00	0.00	
					Di	ischarge l	Data							
			Name	Per	mit Number	Disc	Permitte Disc Flow (mgd)	Disc Flow	Res Fa	Dis erve Ten ctor (°C	np	isc pH		
		Log C	Cabin	PAC	262137	0.014	0.014	0 0.01	40 (0.000 2	25.00	7.00		
					Pa	arameter	Data							
				Parameter	r Name				tream Conc	Fate Coef				
				and meter		(m	g/L) (n	ng/L) (mg/L)	(1/days)				
			CBOD5				25.00	2.00	0.00	1.50				
			Dissolved	Oxygen			5.00	8.24	0.00	0.00				
			NH3-N				25.00	0.00	0.00	0.70				

Input Data WQM 7.0

	SWP Basin			Stre	eam Name		RMI		ation ft)	Drainage Area (sq mi)	Slope (ft/ft)	PW Withdi (mg	rawal	Apply FC
	07J	7	792 Trib 07	7792 to Co	onestoga Ri	ver	1.59	90	368.00	1.50	0.0000	0	0.00	✓
					St	ream Dat	ta							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	<u>Tributary</u> p pH	Те	<u>Stream</u> mp	pH	
cona.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)	(°	C)		
Q7-10 Q1-10 Q30-10	0.100	0.00 0.00 0.00	0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00	0.00) 2	0.00 7	.00	0.00	0.00	
					Di	scharge	Data							
			Name	Per	mit Number	Disc	Permitto Disc Flow (mgd)	Disc Flow	Res V Fa	erve Te ctor	sc (mp C)	Disc pH		
		Nexa	ns Inc.	PAC	0084247	0.007	5 0.007	75 0.00	75	0.000	25.00	7.00		
					Pa	arameter	Data							
				Parameter	r Name				Conc	Fate Coef				
						(m	ng/L) (n	ng/L)	(mg/L)	(1/days)				
			CBOD5				25.00	2.00	0.00	1.50				
			Dissolved	Oxygen			5.00	8.24	0.00	0.00				
			NH3-N				25.00	0.00	0.00	0.70				

Input Data WQM 7.0

	SWP Basir			Stre	eam Name		RMI		vation (ft)	Drainage Area (sq mi)	Slope (ft/ft)	Witho	VS Irawal gd)	Apply FC
	07J	7	792 Trib 07	7792 to C	onestoga Ri	ver	0.0	00	338.00	2.7	4 0.000	00	0.00	✓
					St	ream Dat	a							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth		Tributary p ph	н т	<u>Strear</u> emp	n pH	
oona.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)	((°C)		
Q7-10 Q1-10 Q30-10	0.100	0.00 0.00 0.00	0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00	0.0	0 20	0.00 7	7.00	0.00	0.00	
					Di	scharge [Data						1	
			Name	Per	mit Number	Disc	Permitt Disc Flow (mgd)	Disi Flo	c Res w Fa	erve Te ctor	isc emp °C)	Disc pH		
						0.000	0.000	0.0	0000	0.000	0.00	7.00		
					Pa	rameter l	Data							
				Paramete	r Name			Trib Conc	Stream Conc	Fate Coef				
				urumete	radine	(m	g/L) (r	ng/L)	(mg/L)	(1/days)				
			CBOD5				25.00	2.00	0.00	1.50				
			Dissolved	Oxygen			5.00	8.24	0.00	0.00				
			NH3-N			:	25.00	0.00	0.00	0.70				

WQM 7.0 Hydrodynamic Outputs

	SW	P Basin	Strea	m Code				Stream	Name					
		07J	7	7792		Trib 07792 to Conestoga River								
RMI	Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow	Reach Slope	Depth	Width	W/D Ratio	Velocity	Reach Trav Time	Analysis Temp	Analysis pH		
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)			
Q7-1	0 Flow													
1.600	0.06	0.00	0.06	.0217	0.01894	.338	4.53	13.4	0.05	0.012	21.35	7.00		
1.590	0.06	0.00	0.06	.0333	0.00357	.355	5.44	15.33	0.05	1.906	21.69	7.00		
Q1-1	0 Flow													
1.600	0.04	0.00	0.04	.0217	0.01894	NA	NA	NA	0.04	0.014	21.83	7.00		
1.590	0.04	0.00	0.04	.0333	0.00357	NA	NA	NA	0.04	2.220	22.22	7.00		
Q30-	10 Flow	1												
1.600	0.08	0.00	0.08	.0217	0.01894	NA	NA	NA	0.06	0.010	21.07	7.00		
1.590	0.09	0.00	0.09	.0333	0.00357	NA	NA	NA	0.06	1.691	21.37	7.00		

Friday, June 4, 2021 Version 1.1 Page 1 of 1

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	~
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	~
D.O. Saturation	90.00%	Use Balanced Technology	~
D.O. Goal	R		

Friday, June 4, 2021 Version 1.1 Page 1 of 1

WQM 7.0 Wasteload Allocations

Stream Name

	07J 7	792	92 Trib 07792 to Conestoga River					
IH3-N A	cute Allocation	s						
RMI	Discharge Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction	
1.600	Log Cabin	14.4	39.29	14.4	28.84	2	27	
1.590	Nexans Inc.	15.31	50	13.94	36.71	2	27	

NH3-N Chronic Allocations

SWP Basin Stream Code

RMI Discharge Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
1.600 Log Cabin	1.76	8.23	1.76	4.82	2	41
1.590 Nexans Inc.	1.82	15.67	1.73	9.18	2	41

Dissolved Oxygen Allocations

			CBC	DD5	NH:	3-N	Dissolved	i Oxygen	Critical	Percent
	RMI	Discharge Name	Baseline (mg/L)	Multiple (mg/L)		Multiple (mg/L)	Baseline	Multiple (mg/L)		Reduction
_	1.60 Lo	g Cabin	25	25	4.82	4.82	5	5	0	0
	1.59 Ne	xans Inc.	25	25	9.18	9.18	5	5	0	0

Friday, June 4, 2021 Version 1.1 Page 1 of 1

Friday, June 4, 2021

Page 1 of 1

WQM 7.0 D.O.Simulation

	ream Code			Stream Name	
07J	7792		Trib 07	792 to Conestoga Rive	er
RMI 1.600	Total Discharge 0.01	4	<u>Ana</u>	lysis Temperature (°C) 21.351	Analysis pH 7.000
Reach Width (ft)	Reach De			Reach WDRatio	Reach Velocity (fps)
4.532	0.33 Reach Ko			13.405 leach NH3-N (mg/L)	0.052 Reach Kn (1/days)
Reach CBOD5 (mg/L) 8.21	1.23		<u> </u>	1.30	0.777
Reach DO (mg/L)	Reach Kr			Kr Equation	Reach DO Goal (mg/L)
7.367	23.0	37		Owens	6
Reach Travel Time (days)		Subreach	Results		
0.012	TravTime (days)	CBOD5 (mg/L)	NH3-N (mg/L)	D.O. (mg/L)	
	0.001	8.20	1.30	7.38	
	0.002	8.19	1.30	7.40	
	0.004	8.18	1.30	7.42	
	0.005	8.16	1.30	7.44	
	0.006	8.15	1.30	7.45	
	0.007	8.14	1.30	7.47	
	0.008		1.30	7.48	
	0.009		1.29	7.50	
	0.011		1.29	7.51	
	0.012	8.09	1.29	7.53	
<u>RMI</u>	Total Discharge		l) Ana	lysis Temperature (°C)	Analysis pH
1.590	0.02	2	i) Ana	21.692	7.000
1.590 Reach Width (ft)	0.02 Reach De	2 epth (ft)	i) Ana	21.692 Reach WDRatio	7.000 Reach Velocity (fps)
1.590 Reach Width (ft) 5.437	0.02 Reach De 0.35	2 epth (ft) 5		21.692 Reach WDRatio 15.332	7.000 Reach Velocity (fps) 0.051
1.590 Reach Width (ft)	0.02 Reach De	2 epth (ft) 5 (1/days)		21.692 Reach WDRatio	7.000 Reach Velocity (fps)
1.590 Reach Width (ft) 5.437 Reach CBOD5 (mg/L)	0.02 <u>Reach De</u> 0.35 Reach Ko	2 epth (ft) 5 (1/days) 5		21.692 <u>Reach WDRatio</u> 15.332 leach NH3-N (mg/L)	7.000 Reach Velocity (fps) 0.051 Reach Kn (1/days)
1.590 <u>Reach Width (ft)</u> 5.437 <u>Reach CBOD5 (mg/L)</u> 9.68	0.02 <u>Reach De</u> 0.35 <u>Reach Ko</u> 0.76	2 epth (ft) 5 (1/days) 5 (1/days)		21.692 <u>Reach WDRatio</u> 15.332 each NH3-N (mg/L) 2.14	7.000 <u>Reach Velocity (fps)</u> 0.051 <u>Reach Kn (1/days)</u> 0.797
1.590 Reach Width (ft) 5.437 Reach CBOD5 (mg/L) 9.68 Reach DO (mg/L)	0.02 <u>Reach De</u> 0.35 <u>Reach Ko</u> 0.76 <u>Reach Kr</u>	22 epth (ft) 5 (1/days) 5 (1/days) 29 Subreach	В	21.692 <u>Reach WDRatio</u> 15.332 <u>leach NH3-N (mg/L)</u> 2.14 <u>Kr Equation</u>	7.000 Reach Velocity (fps) 0.051 Reach Kn (1/days) 0.797 Reach DO Goal (mg/L)
1.590 Reach Width (ft) 5.437 Reach CBOD5 (mg/L) 9.68 Reach DO (mg/L) 7.275 Reach Travel Time (days)	Reach De 0.35 Reach Kc 0.76 Reach Kr 20.90 TravTime (days)	22 epth (ft) 5 (1/days) 5 (1/days) 29 Subreach CBOD5 (mg/L)	n Results NH3-N (mg/L)	21.692 Reach WDRatio 15.332 Reach NH3-N (mg/L) 2.14 Kr Equation Owens D.O. (mg/L)	7.000 Reach Velocity (fps) 0.051 Reach Kn (1/days) 0.797 Reach DO Goal (mg/L)
1.590 Reach Width (ft) 5.437 Reach CBOD5 (mg/L) 9.68 Reach DO (mg/L) 7.275 Reach Travel Time (days)	Reach De 0.35 Reach Kc 0.76 Reach Kr 20.90 TravTime (days)	22 epth (ft) 5 (1/days) 5 (1/days) 29 Subreach CBOD5 (mg/L) 8.27	Results NH3-N (mg/L)	21.692 Reach WDRatio 15.332 Reach NH3-N (mg/L) 2.14 Kr Equation Owens D.O. (mg/L) 7.99	7.000 Reach Velocity (fps) 0.051 Reach Kn (1/days) 0.797 Reach DO Goal (mg/L)
1.590 Reach Width (ft) 5.437 Reach CBOD5 (mg/L) 9.68 Reach DO (mg/L) 7.275 Reach Travel Time (days)	0.02 Reach De 0.35 Reach Kc 0.76 Reach Kr 20.90 TravTime (days) 0.191 0.381	22 epth (ft) 5 (1/days) 5 (1/days) 29 Subreach CBOD5 (mg/L) 8.27 7.06	Results NH3-N (mg/L) 1.84 1.58	21.692 Reach WDRatio 15.332 Reach NH3-N (mg/L) 2.14 Kr Equation Owens D.O. (mg/L) 7.99 7.99	7.000 Reach Velocity (fps) 0.051 Reach Kn (1/days) 0.797 Reach DO Goal (mg/L)
1.590 Reach Width (ft) 5.437 Reach CBOD5 (mg/L) 9.68 Reach DO (mg/L) 7.275 Reach Travel Time (days)	Reach De 0.35 Reach Kc 0.76 Reach Kr 20.90 TravTime (days)	22 ppth (ft) 5 (1/days) 5 (1/days) 29 Subreach CBOD5 (mg/L) 8.27 7.06 6.03	Results NH3-N (mg/L)	21.692 Reach WDRatio 15.332 Reach NH3-N (mg/L) 2.14 Kr Equation Owens D.O. (mg/L) 7.99	7.000 Reach Velocity (fps) 0.051 Reach Kn (1/days) 0.797 Reach DO Goal (mg/L)
1.590 Reach Width (ft) 5.437 Reach CBOD5 (mg/L) 9.68 Reach DO (mg/L) 7.275 Reach Travel Time (days)	0.02 Reach De 0.35 Reach Kc 0.76 Reach Kr 20.95 TravTime (days) 0.191 0.381 0.572	22 ppth (ft) 5 (1/days) 5 (1/days) 29 Subreach CBOD5 (mg/L) 8.27 7.06 6.03 5.15	Results NH3-N (mg/L) 1.84 1.58 1.36	21.692 Reach WDRatio 15.332 Reach NH3-N (mg/L) 2.14 Kr Equation Owens D.O. (mg/L) 7.99 7.99 7.99	7.000 Reach Velocity (fps) 0.051 Reach Kn (1/days) 0.797 Reach DO Goal (mg/L)
1.590 Reach Width (ft) 5.437 Reach CBOD5 (mg/L) 9.68 Reach DO (mg/L) 7.275 Reach Travel Time (days)	0.02 Reach De 0.35 Reach Kc 0.76 Reach Kr 20.90 TravTime (days) 0.191 0.381 0.572 0.763	22 ppth (ft) 5 (1/days) 5 (1/days) 29 Subreach CBOD5 (mg/L) 8.27 7.06 6.03 5.15 4.40	Results NH3-N (mg/L) 1.84 1.58 1.36 1.16	21.692 Reach WDRatio 15.332 Reach NH3-N (mg/L) 2.14 Kr Equation Owens D.O. (mg/L) 7.99 7.99 7.99 7.99	7.000 Reach Velocity (fps) 0.051 Reach Kn (1/days) 0.797 Reach DO Goal (mg/L)
1.590 Reach Width (ft) 5.437 Reach CBOD5 (mg/L) 9.68 Reach DO (mg/L) 7.275 Reach Travel Time (days)	0.02 Reach De 0.35 Reach Kc 0.76 Reach Kr 20.90 TravTime (days) 0.191 0.381 0.572 0.763 0.953	22 ppth (ft) 5 (1/days) 5 (1/days) 29 Subreach CBOD5 (mg/L) 8.27 7.06 6.03 5.15 4.40 3.76	Results NH3-N (mg/L) 1.84 1.58 1.36 1.16	21.692 Reach WDRatio 15.332 Reach NH3-N (mg/L) 2.14 Kr Equation Owens D.O. (mg/L) 7.99 7.99 7.99 7.99 7.99 7.99	7.000 Reach Velocity (fps) 0.051 Reach Kn (1/days) 0.797 Reach DO Goal (mg/L)
1.590 Reach Width (ft) 5.437 Reach CBOD5 (mg/L) 9.68 Reach DO (mg/L) 7.275 Reach Travel Time (days)	0.02 Reach De 0.35 Reach Kc 0.76 Reach Kr 20.9: TravTime (days) 0.191 0.381 0.572 0.763 0.953 1.144	22 ppth (ft) 5 (1/days) 5 (1/days) 29 Subreach CBOD5 (mg/L) 8.27 7.06 6.03 5.15 4.40 3.76 3.21	Results NH3-N (mg/L) 1.84 1.58 1.36 1.10 0.88	21.692 Reach WDRatio 15.332 Reach NH3-N (mg/L) 2.14 Kr Equation Owens D.O. (mg/L) 7.99 7.99 7.99 7.99 7.99 7.99 7.99 7.	7.000 Reach Velocity (fps) 0.051 Reach Kn (1/days) 0.797 Reach DO Goal (mg/L)
1.590 Reach Width (ft) 5.437 Reach CBOD5 (mg/L) 9.68 Reach DO (mg/L) 7.275 Reach Travel Time (days)	0.02 Reach De 0.35 Reach Kc 0.76 Reach Kr 20.9: TravTime (days) 0.191 0.381 0.572 0.763 0.953 1.144 1.334	22 ppth (ft) 5 (1/days) 5 (1/days) 5 (1/days) 29 Subreact CBOD5 (mg/L) 8.27 7.06 6.03 5.15 4.40 3.76 3.21 2.74	Results NH3-N (mg/L) 1.84 1.58 1.36 1.16 1.00 0.86 0.74	21.692 Reach WDRatio 15.332 Reach NH3-N (mg/L) 2.14 Kr Equation Owens D.O. (mg/L) 7.99 7.99 7.99 7.99 7.99 7.99 7.99 7.	7.000 Reach Velocity (fps) 0.051 Reach Kn (1/days) 0.797 Reach DO Goal (mg/L)
1.590 Reach Width (ft) 5.437 Reach CBOD5 (mg/L) 9.68 Reach DO (mg/L) 7.275 Reach Travel Time (days)	0.02 Reach De 0.35 Reach Kc 0.76 Reach Kr 20.9: TravTime (days) 0.191 0.381 0.572 0.763 0.953 1.144 1.334 1.525	22 ppth (ft) 5 (1/days) 5 (1/days) 5 (1/days) 29 Subreact CBOD5 (mg/L) 8.27 7.06 6.03 5.15 4.40 3.76 3.21 2.74 2.34	1.84 1.58 1.36 1.16 1.00 0.86 0.74 0.63	21.692 Reach WDRatio 15.332 leach NH3-N (mg/L) 2.14 Kr Equation Owens D.O. (mg/L) 7.99 7.99 7.99 7.99 7.99 7.99 7.99 7.	7.000 Reach Velocity (fps) 0.051 Reach Kn (1/days) 0.797 Reach DO Goal (mg/L)
1.590 Reach Width (ft) 5.437 Reach CBOD5 (mg/L) 9.68 Reach DO (mg/L) 7.275 Reach Travel Time (days)	0.02 Reach De 0.35 Reach Kc 0.76 Reach Kr 20.9: TravTime (days) 0.191 0.381 0.572 0.763 0.953 1.144 1.334 1.525 1.716	22 ppth (ft) 5 (1/days) 5 (1/days) 5 (1/days) 29 Subreact CBOD5 (mg/L) 8.27 7.06 6.03 5.15 4.40 3.76 3.21 2.74 2.34	1.84 1.58 1.36 1.16 1.00 0.86 0.74 0.63 0.54	21.692 Reach WDRatio 15.332 leach NH3-N (mg/L) 2.14 Kr Equation Owens D.O. (mg/L) 7.99 7.99 7.99 7.99 7.99 7.99 7.99 7.	7.000 Reach Velocity (fps) 0.051 Reach Kn (1/days) 0.797 Reach DO Goal (mg/L)

Version 1.1

WQM 7.0 Effluent Limits

	SWP Basin	Stream Code		Stream Name	È		
	07J	7792	Т	rib 07792 to Conesto	oga River		
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
1.600	Log Cabin	PA0262137	0.014	CBOD5	25		
				NH3-N	4.82	9.64	
				Dissolved Oxygen			5
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
1.590	Nexans Inc	. PA0084247	0.007	CBOD5	25		
				NH3-N	9.18	18.36	
				Dissolved Oxygen			5