

Northwest Regional Office CLEAN WATER PROGRAM

Application Type

Facility Type

Major / Minor

Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

Application No. PA0264784

APS ID 1054864

Authorization ID 1381831

Applicant Name	Mercer Township	Facility Name	Mercer Township Forestville STP
Applicant Address	PO Box 380	Facility Address	202 Boyers Road
	Harrisville, PA 16038-0380	_	Harrisville, PA 16038
Applicant Contact	Lori Giesler, Township Secretary (mercertownship@zoominternet.net)	Facility Contact	Lori Giesler, Township Secretary (mercertownship@zoominternet.net)
Applicant Phone	(724) 735-2705	Facility Phone	(724) 735-2705
Client ID	143726	Site ID	818384
Ch 94 Load Status	Not Overloaded	Municipality	Mercer Township
Connection Status	No Limitations	County	Butler
Date Application Rece	eived January 18, 2022	EPA Waived?	Yes
Date Application Acce	epted January 19, 2022	If No, Reason	-

Summary of Review

Act 14 - Proof of Notification was submitted and received.

A Part II Water Quality Management permit is not required at this time.

The applicant should be able to meet the limits of this permit, which will protect the uses of the receiving stream.

I. OTHER REQUIREMENTS:

SPECIAL CONDITIONS:

Solids Management

- A. Stormwater into Sewers
- B. Right of Way
- C. Solids Handling
- D. Effluent Chlorine Optimization and Minimization
- E. Little or no assimilative capacity

There are no open violations in efacts associated with the subject Client ID (143726) as of 10/20/2023. 10/27/2023 CWY

Approve	Deny	Signatures	Date
V		Stephen A. McCauley	10/20/2023
^		Stephen A. McCauley, E.I.T. / Environmental Engineering Specialist	10/20/2023
V		Chad W. Yurisic	10/27/2022
^		Chad W. Yurisic, P.E. / Environmental Engineer Manager	10/27/2023

ischarge, Receivin	g Waters and Water Supply Info	ormation	
Quad Name	06' 14.00"	Design Flow (MGD) Longitude Quad Code	0.022 -80° 00' 7.00"
Receiving Waters NHD Com ID Drainage Area Q ₇₋₁₀ Flow (cfs) Elevation (ft) Watershed No. Existing Use Exceptions to Use Assessment Status Cause(s) of Impair Source(s) of Impair	Attaining Use(s) ment -	Slope (ft/ft) Chapter 93 Class.	N/A N/A 0.076 calculated 0.0172 CWF -
TMDL Status	-	Name -	
Background/Ambie pH (SU) Temperature (°F) Hardness (mg/L) Other:	ent Data	Data Source	
PWS Waters	am Public Water Supply Intake Slippery Rock Creek 0.1	Pennsylvania American Wate Flow at Intake (cfs) Distance from Outfall (mi)	r Company - Ellwood City 53.1 40.0

Sludge use and disposal description and location(s): <u>All sludge is sent to the Mahoning Township STP where it is</u> disposed of at an approved landfill.

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the Pennsylvania Bulletin in accordance with 25 Pa. Code § 92a.82. Upon publication in the Pennsylvania Bulletin, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the Pennsylvania Bulletin at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Narrative: This Fact Sheet details the determination of draft NPDES permit limits for an existing discharge of 0.022 MGD of treated sewage from a municipal STP in Mercer Township, Butler County.

Treatment permitted under WQM Permit 3274405 A-3 consists of the following: Proposed treatment will consist of the following: A septic tank, a dosing tank, a recirculating sand filter, a recirculation tank with pump, tablet chlorine disinfection with a contact tank, and tablet dechlorination with a contact tank.

1. Streamflow:

Slippery Rock Creek at Wurtemburg, PA - USGS gage station 03106500 (1971-2008):

Q₇₋₁₀: <u>47.5</u> cfs (USGS StreamStats)

Drainage Area: 398 sq. mi. (USGS StreamStats)

Yieldrate: <u>0.11</u> cfsm (Calculated)

Unnamed Tributary to the McDonald Run at Outfall 001:

Yieldrate: <u>0.11</u> cfsm (Calculated above)

Drainage Area: <u>0.21</u> sq. mi. (USGS StreamStats)

% of stream allocated: 100% Basis: No nearby discharges

 Q_{7-10} : 0.023 cfs (Calculated)

2. Wasteflow:

Maximum discharge: 0.022 MGD = 0.034 cfs

Runoff flow period: 24 hours Basis: Runoff flow for municipal STPs

There is less than 3 parts stream flow (Q7-10) to 1 part effluent (design flow). In accordance with the SOP, the treatment requirements in document number 391-2000-014, titled, "Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers", dated April 12, 2008, were evaluated for this facility. Based on eDMR data, the treatment requirements are not attainable with the treatment technology in place so the requirements will not be implemented in this NPDES Permit renewal.

Flow will be required to be monitored as authorized under Chapter 92a.61, and as recommended in the SOP.

3. Parameters:

The following parameters were evaluated: pH, Total Suspended Solids, Fecal Coliform, E. Coli, Total Phosphorus, Total Nitrogen, NH₃-N, CBOD₅, Dissolved Oxygen, and Disinfection.

a. <u>pH</u>

Between 6.0 and 9.0 at all times

Basis: Application of Chapter 93.7 technology-based limits.

The measurement frequency was previously set to 1/day as recommended in the SOP, based on Table 6-3 in the "Technical Guidance for the Development and Specification of Effluent Limitations" (362-0400-001), and will be retained.

b. Total Suspended Solids

Limits are 30.0 mg/l as a monthly average and 60.0 as an instantaneous maximum.

Basis: Application of Chapter 92a47 technology-based limits.

c. Fecal Coliform

05/01 - 09/30: <u>200/100ml</u> (monthly average geometric mean)

1,000/100ml (instantaneous maximum)

10/01 - 04/30: 2,000/100ml (monthly average geometric mean)

10,000/100ml (instantaneous maximum)

Basis: Application of Chapter 92a47 technology-based limits

d. E. Coli

Monitoring was added for E. Coli at a frequency of 1/year.

Basis: Application of Chapter 92a.61 as recommended by the SOP for flows greater than 0.002 MGD

and less than 0.05 MGD.

e. Phosphorus

Chapter 96.5 does not apply. Therefore, the previous monitoring for Total Phosphorus will be retained in accordance with the SOP, based on Chapter 92a.61. The monitoring frequency will be reduced from 2/month to 1/guarter since the receiving stream is not impaired for nutrients, per the SOP.

f. Total Nitrogen

The previous monitoring for Total Nitrogen will be retained in accordance with the SOP, based on Chapter 92a.61. The monitoring frequency will be reduced from 2/month to 1/quarter since the receiving stream is not impaired for nutrients, per the SOP.

g. <u>Ammonia-Nitrogen (NH₃-N)</u>

Median discharge pH to be used: 7.2 Standard Units (S.U.)

Basis: <u>eDMR data from previous 12 months</u>

Discharge temperature: <u>25°C</u> (default value used in the absence of data)

Median stream pH to be used: 7.0 Standard Units (S.U.)

Basis: <u>default value used in the absence of data</u>

Stream Temperature: 20°C (default value used for CWF modeling)

Background NH₃-N concentration: <u>0.0</u> mg/l

Basis: <u>Default value</u>

Calculated NH₃-N Summer limits: <u>2.9</u> mg/l (monthly average)

<u>5.8</u> mg/l (instantaneous maximum)

Calculated NH₃-N Winter limits: 8.7 mg/l (monthly average)

17.4 mg/l (instantaneous maximum)

Result: WQ modeling resulted in the summer NH3-N limits above (see Attachment 1). The winter limits are calculated as three times the summer limits. The calculated limits are more restrictive than the

previous permit. Per eDMR data, the more restrictive limits are attainable so they will be added to this renewal without a compliance schedule.

h. CBOD₅

Median discharge pH to be used: 7.2 Standard Units (S.U.)

Basis: <u>eDMR data from previous 12 months</u>

Discharge temperature: 25°C (default value used in the absence of data)

Median stream pH to be used: 7.0 Standard Units (S.U.)

Basis: default value used in the absence of data

Stream Temperature: 20°C (default value used for CWF modeling)

Background CBOD₅ concentration: <u>2.0</u> mg/l

Basis: Default value

Calculated CBOD₅ limits: <u>25.0</u> mg/l (monthly average)

50.0 mg/l (instantaneous maximum)

Result: WQ modeling resulted in the calculated CBOD5 limits above (see Attachment 1). These limits are the

same as the previous permit and will be retained.

i. Influent Total Suspended Solids and BOD₅

Monitoring for these two parameters will be retained as recommended in the SOP for POTWs, as authorized under Chapter 92a.61.

j. <u>Dissolved Oxygen (DO)</u>

The technology-based minimum of 5.0 mg/l is recommended by the WQ Model (see Attachment 1) and the SOP based on Chapter 93.7, under the authority of Chapter 92a.61. This limit is the same as the previous permit and will be retained.

The measurement frequency was previously set to 1/day as recommended in the SOP, based on Table 6-3 in the "Technical Guidance for the Development and Specification of Effluent Limitations" (362-0400-001), and will be retained.

k. Disinfection

Ultraviolet (UV) light monitoring

☐ Total Residual Chlorine (TRC) limits: 0.10 mg/l (monthly average)

<u>0.35</u> mg/l (instantaneous maximum)

Basis: The TRC limits above were calculated using the Department's TRC Calculation

Spreadsheet (see Attachment 2). The limits are less restrictive than the previous permit. Based on eDMR data, the previous, more restrictive limits are attainable, so they will be

retained.

The measurement frequency was previously set to 1/day as recommended in the SOP, based on Table 6-3 in the "Technical Guidance for the Development and Specification of

Effluent Limitations" (362-0400-001), and will be retained.

4. Reasonable Potential Analysis for Receiving Stream:

A Reasonable Potential Analysis was not performed in accordance with State practices for Outfall 001 using the Department's Toxics Management Spreadsheet since no sampling other than sewage-related parameters was performed for this facility with the renewal application.

5. Reasonable Potential for Downstream Public Water Supply (PWS):

The Department's Toxics Management Spreadsheet does not calculate limits for parameters that are based on PWS criteria (TDS, Chloride, Bromide, and Sulfate). Since no relevant sampling was provided, mass-balance calculations were not performed.

Nearest Downstream potable water supply (PWS): Pennsylvania American Water Company - Ellwood City

Distance downstream from the point of discharge: 40.0 miles (approximate)

Result: No limits or monitoring are necessary as significant dilution is available.

6. Flow Information:

The Mercer Township Forestville STP receives 100% of its flow from the Forestville area of Mercer Township.

All the sewers are separate sewers.

7. Anti-Backsliding:

Since all the permit limits in this renewal are the same or more restrictive than the previous NPDES Permit, anti-backsliding is not applicable.

8. Attachment List:

Attachment 1 - WQ Modeling Printouts

Attachment 2 - TRC_Calc Spreadsheet

(The Attachments above can be found at the end of this document)

Compliance History

DMR Data for Outfall 001 (from September 1, 2022 to August 31, 2023)

Parameter	AUG-23	JUL-23	JUN-23	MAY-23	APR-23	MAR-23	FEB-23	JAN-23	DEC-22	NOV-22	OCT-22	SEP-22
Flow (MGD)												
Average Monthly	0.0011	0.00126	0.0016	0.01126	0.01126	0.0099	0.0037	0.0037	0.0038	0.0034	0.0024	0.0024
Flow (MGD)												
Daily Maximum	0.0019	0.00243	0.0052	0.01815	0.01815	0.072	0.0065	0.0132	0.0128	0.0167	0.0056	0.0056
pH (S.U.)												
Minimum	6.43	7.1	6.8	7.1	7.1	7.0	6.8	7.1	6.8	7.0	7.1	6.9
pH (S.U.)												
Maximum	7.77	7.64	7.6	7.9	7.9	8.1	7.3	7.5	7.5	7.6	7.8	7.6
DO (mg/L)												
Minimum	6.02	6.01	5.07	6.58	6.58	6.12	6.02	5.87	6.6	6.59	7.26	6.95
TRC (mg/L)												
Average Monthly	0.06	0.07	0.04	0.06	0.06	0.06	0.04	0.04	0.06	0.06	0.07	0.07
CBOD5 (lbs/day)												
Average Monthly	< 0.01	< 0.02	< 0.03	0.4	0.4	< 0.4	< 0.1	< 0.2	< 0.1	0.05	0.083	0.055
CBOD5 (mg/L)												
Average Monthly	< 2.0	< 2.0	< 2.0	3.5	3.5	< 2.3	< 3.2	< 5.9	< 3.5	2.4	5.24	5.88
BOD5 (lbs/day)												
Influent Average Monthly	2	3	3	57	57	34	4	7	20	4.37	3.83	1.16
BOD5 (mg/L)												
Influent Average Monthly	285	367	240	464	464	214	102.5	187	589	218.5	218.5	120
TSS (lbs/day)												
Average Monthly	< 0.03	< 0.05	< 0.06	< 0.8	< 0.6	< 0.9	< 0.9	< 0.3	< 0.2	0.052	0.05	0.027
TSS (lbs/day)												
Influent Average Monthly	5	3	3	72	72	25	6	8	18	6.57	5.80	2.69
TSS (mg/L)												
Average Monthly	< 5.0	< 5.0	5.0	< 5.0	< 5.0	< 5.0	< 29.5	< 7.5	< 5.3	2.5	2.5	2.5
TSS (mg/L)												
Influent Average Monthly	512	352	241	529	549	178	166	227	595	308	308	292
Fecal Coliform (No./100 ml)												
Geometric Mean	< 1	< 110	< 3	> 1035	> 1035	< 2	< 1	> 8875	< 1	4.1	1	49
Total Nitrogen (lbs/day)	_	_	_	_	_	_				_	_	
Average Monthly	0.2	0.3	0.7	7	7	8	1	2	< 0.4	0.95	0.84	1.76
Total Nitrogen (mg/L)												
Average Monthly	38.8	35	51.5	62.1	62.1	54.9	39.3	53.3	< 10.95	45.98	45.56	43.58
Ammonia (lbs/day)						٠						
Average Monthly	< 0.003	0.004	< 0.01	< 0.05	< 0.05	< 0.1	< 0.03	< 0.06	0.5	0.003	0.001	0.001

NPDES Permit No. PA0264784

NPDES Permit Fact Sheet Mercer Township Forestville STP

Ammonia (mg/L)												
Average Monthly	< 0.4	< 0.4	< 0.8	< 0.4	< 0.4	< 0.8	< 0.8	< 1.7	12.709	0.15	0.1	0.1
Total Phosphorus (lbs/day)												
Average Monthly	0.03	0.04	0.05	0.5	0.5	0.9	0.2	0.1	0.1	0.083	0.067	0.067
Total Phosphorus (mg/L)												
Average Monthly	4.8	4.1	3.7	4.6	4.6	4.7	4.4	3.5	4.29	4.18	5.24	5.28

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (386-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

			Effluent L	imitations			Monitoring Re	quirements
Parameter	Mass Units	(lbs/day) (1)		Concentrat	tions (mg/L)		Minimum ⁽²⁾	Required
Parameter	Average Monthly	Average Weekly	Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report Daily Max	XXX	XXX	XXX	XXX	1/week	Measured
pH (S.U.)	XXX	XXX	6.0 Daily Min	XXX	9.0 Daily Max	XXX	1/day	Grab
DO	XXX	XXX	5.0 Daily Min	XXX	XXX	XXX	1/day	Grab
TRC	XXX	XXX	XXX	0.07	XXX	0.23	1/day	Grab
CBOD5	4.5	XXX	XXX	25.0	XXX	50	2/month	24-Hr Composite
BOD5 Raw Sewage Influent	Report	XXX	XXX	Report	XXX	XXX	2/month	24-Hr Composite
TSS Raw Sewage Influent	Report	XXX	XXX	Report	XXX	XXX	2/month	24-Hr Composite
TSS	5.5	XXX	XXX	30.0	XXX	60	2/month	24-Hr Composite
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2000 Geo Mean	XXX	10000	2/month	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	XXX	XXX	200 Geo Mean	XXX	1000	2/month	Grab
E. Coli (No./100 ml)	XXX	XXX	XXX	XXX	XXX	Report	1/year	Grab
Total Nitrogen	Report Avg Qrtly	Report Daily Max	XXX	Report Avg Qrtly	Report Daily Max	XXX	1/quarter	24-Hr Composite
Ammonia Nov 1 - Apr 30	1.5	XXX	XXX	8.7	XXX	17.4	2/month	24-Hr Composite

Outfall 001, Continued (from Permit Effective Date through Permit Expiration Date)

			Effluent L	imitations			Monitoring Requirements		
Parameter	Mass Units	(lbs/day) ⁽¹⁾		Concentrat	Minimum ⁽²⁾	Required			
	Average Monthly	Average Weekly			Maximum	Instant. Maximum	Measurement Frequency	Sample Type	
Ammonia								24-Hr	
May 1 - Oct 31	0.5	XXX	XXX	2.9	XXX	5.8	2/month	Composite	
	Report	Report		Report	Report			24-Hr	
Total Phosphorus	Avg Qrtly	Daily Max	XXX	Avg Qrtly	Daily Max	XXX	1/quarter	Composite	

Compliance Sampling Location: at Outfall 001, after disinfection.

Flow is monitor only based on Chapter 92a.61. The limits for pH and Dissolved Oxygen are technology-based on Chapter 93.7. The Total Residual Chlorine (TRC) limits are water quality-based on Chapter 93.7. The limits for CBOD₅, Total Suspended Solids, and Fecal Coliforms are technology-based on Chapter 92a.47. Monitoring for influent BOD₅ and influent TSS is based on Chapter 92a.61. Monitoring for E. Coli, Total Nitrogen, and Total Phosphorus is based on Chapter 92a.61. The limits for Ammonia-Nitrogen are water quality-based on Chapter 93.7.

Attachment 1

WQM 7.0 Effluent Limits

	SWP Basin Stream 20C 345		<u>Stream Name</u> McDONALD RUN								
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)				
3.500	Forestville STP	PA0264784	0.022	CBOD5	25						
				NH3-N	2.95	5.9					
				Dissolved Oxygen			5				

WQM 7.0 D.O.Simulation

SWP Basin St	ream Code			Stream Name		
20C	34574		I	McDONALD RUN	ı	
<u>RMI</u> 3.500 Reach Width (ft)	Total Discharge 0.02 Reach De	2) Ana	lysis Temperature 22.978 Reach WDRatio	7.108)s)
2.612 Reach CBOD5 (mg/L) 15.70	0.33 <u>Reach Kc (</u> 1.34	1 1/days)	R	7.888 each NH3-N (mg/l	0.066	
Reach DO (mg/L) 6.311 Reach Travel Time (days)	Reach Kr (29.14	3		Kr Equation Owens	<u>Reach DO Goal (m</u> 6	<u>g/L)</u>
0.814	TravTime (days)	Subreach CBOD5 (mg/L)	NH3-N (mg/L)	D.O. (mg/L)		
	0.081 0.163	13.85 12.22	1.64 1.52	7.21 7.43		
	0.244	10.78	1.42	7.57 7.69		
	0.326 0.407	8.39	1.32 1.23	7.80		
	0.488 0.570	7.40 6.53	1.14 1.07	7.81 7.81		
	0.651 0.733 0.814	5.76 5.08 4.48	0.99 0.92 0.86	7.81 7.81 7.81		

Friday, October 20, 2023 Version 1.1 Page 1 of 1

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	✓
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	✓
D.O. Saturation	90.00%	Use Balanced Technology	✓
D.O. Goal	6		

Friday, October 20, 2023 Version 1.1 Page 1 of 1

Input Data WQM 7.0

					iiib	ut Date	4 00 CC	VI 7 .0						
	SWP Basin			Stre	eam Name		RMI		evation (ft)	Drainage Area (sq mi)	Slope (ft/ft)	Witho	VS drawal gd)	App FC
	20C	345	574 McDO	NALD RU	JN		3.5	00	1314.00	0.21	0.0000	00	0.00	V
9					St	ream Dat	a							
Design	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	ı Ten	<u>Tributary</u> np pH	T	<u>Strear</u> emp	<u>n</u> pH	
Cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C	:)	(°C)		
Q7-10 Q1-10 Q30-10	0.110	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000	0.0	0.00	0.0	00 2	0.00 7	00	0.00	0.00	
					Di	ischarge l	Data						Ī	
			Name	Per	rmit Numbe	Disc	Permitt Disc Flow (mgd	Dis	sc Res	Di serve Te actor	mp	Disc pH		
		Fores	stville STP	PA	0264784	0.0220	0.00	00 0.0	0000	0.000	25.00	7.20		
					Pa	arameter l	Data							
				Paramete	r Name			Trib Conc	Stream Conc	Fate Coef				
				i urumoto	i iiuiiio	(m	ıg/L) (mg/L)	(mg/L)	(1/days)				
	-		CBOD5				25.00	2.00	0.00	1.50				
			Dissolved	Oxygen			4.00	8.24	0.00	0.00				
			NH3-N				25.00	0.00	0.00	0.70				

Input Data WQM 7.0

	SWP Basin			Stre	eam Name		RMI	Е	levation (ft)	Draina Area (sq m	ā	Slope (ft/ft)	PW Withd (m	rawal	Apply FC
	20C	345	574 McDO	NALD RU	JN		2.62	20	1234.00		1.45 0.	.00000		0.00	~
					St	ream Dat	a								
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Dept	h Ter		<u>ry</u> pH	Tem		<u>n</u> pH	
	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C	()		(°C	;)		
ຊ7-10 ຊ1-10 ຊ30-10	0.110	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000	0.0	0.00	0	.00 2	20.00	7.00	Û	0.00	0.00	
		Discharge Data]	
			Name	Per	mit Number	Disc	Permitte Disc Flow (mgd)	D F	isc Res	serve actor	Disc Temp (°C)		sc H		
		i i				0.000	0.000	0 0	.0000	0.000	25.0	00	7.00		
					Pa	arameter l	Data								
			.1	Paramete	r Name	С	onc C	Trib Conc	Stream Conc	Fate Coef	f				
						(m	ng/L) (n	ng/L)	(mg/L)	(1/day	rs)				
			CBOD5				25.00	2.00	0.00) 1.	50				
			Dissolved	Oxygen			3.00	8.24	0.00	0.	00				
			NH3-N				25.00	0.00	0.00	0.	70				

WQM 7.0 Wasteload Allocations

SWP Basin	Stream Code	Stream Name
20C	34574	McDONALD RUN

3.500 Forestville STP 11.09 15.91 11.09 15.91 0	0
H3-N Chronic Allocations	•
Baseline Baseline Multiple Multiple Critical Pe	ercent duction
3.500 Forestville STP 1.54 2.95 1.54 2.95 0	0

		CBOD5		<u>NH3-N</u>		<u>Dissolved Oxygen</u>		Critical	Percent
RMI	Discharge Name	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Reach	Reduction
3.50	Forestville STP	25	25	2.95	2.95	5	5	0	0

WQM 7.0 Hydrodynamic Outputs

	sw	P Basin	Strea	m Code				Stream	<u>Name</u>			
		20C	3	4574			M	cDONAL	D RUN			
RMI	Stream Flow (cfs)	PWS With (cfs)	Net Stream Flow (cfs)	Disc Analysis Flow (cfs)	Reach Slope (ft/ft)	Depth	Width	W/D Ratio	Velocity (fps)	Reach Trav Time (days)	Analysis Temp (°C)	Analysis pH
	(CIS)	(CIS)	(CIS)	(CIS)	(II/II)	(ft)	(ft)		(ips)	(uays)	(-0)	
Q7-1	0 Flow											
3.500	0.02	0.00	0.02	.034	0.01722	.331	2.61	7.89	0.07	0.814	22.98	7.11
Q1-1	0 Flow											
3.500	0.01	0.00	0.01	.034	0.01722	NA	NA	NA	0.06	0.889	23.49	7.13
Q30-	10 Flow	ı										
3.500	0.03	0.00	0.03	.034	0.01722	NA	NA	NA	0.07	0.754	22.60	7.09

Attachment 2

TRC EVALUATION										
Input appropriate values in A3:A9 and D3:D9										
0.023 = Q stream (cfs) 0.5 = CV Daily										
0.022	= Q discharg	e (MGD)	= CV Hourly							
30 = no. samples 1 = AFC_Partial Mix Factor										
0.3 = Chlorine Demand of Stream 1 = CFC_Partial Mix Factor										
0 = Chlorine Demand of Discharge 15 = AFC_Criteria Compliance Time (min)										
0.5 = BAT/BPJ Value 720 = CFC_Criteria Compliance Time (r										
0 = % Factor of Safety (FOS) 0 =Decay Coefficient (K)										
Source	Reference	AFC Calculations		Reference	CFC Calculations					
TRC	1.3.2.iii	WLA afc =		1.3.2.iii	WLA cfc = 0.221					
PENTOXSD TRG	5.1a	LTAMULT afc =	TOTAL STATE OF THE	5.1c	LTAMULT cfc = 0.581					
PENTOXSD TRG	5.1b	LTA_afc=	0.087	5.1d	LTA_cfc = 0.129					
Source Effluent Limit Calculations										
PENTOXSD TRG 5.1f AML MULT = 1.231										
PENTOXSD TRG	PENTOXSD TRG 5.1g AVG MON LIMIT (mg/l) = 0.108 AFC									
INST MAX LIMIT (mg/l) = 0.352										
WLA afc	AND AND STREET OF STREET STREET, ST. AU	FC_tc)) + [(AFC_Yc*Qs*.019		:_tc))						
		C_Yc*Qs*Xs/Qd)]*(1-FOS/10	400							
LTAMULT afc	05/54	(cvh^2+1))-2.326*LN(cvh^2+	1)^0.5)							
LTA_afc	wla_afc*LTA	WOLI_aic								
WLA_cfc	(.011/e(-k*C	FC_tc) + [(CFC_Yc*Qs*.011/	Qd*e(-k*CFC	_tc))						
		C_Yc*Qs*Xs/Qd)]*(1-FOS/10								
LTAMULT_cfc	ACOUNTAGE WAS DELICABLE IN THE	(cvd^2/no_samples+1))-2.32	6*LN(cvd^2/n	o_samples+1)^0	0.5)					
LTA_cfc	wla_cfc*LTA	MULT_cfc								
AML MULT		N((cvd^2/no_samples+1)^0.		^2/no_samples+	-1))					
AVG MON LIMIT		J,MIN(LTA_afc,LTA_cfc)*AN								
INST MAX LIMIT 1.5*((av_mon_limit/AML_MULT)/LTAMULT_afc)										