

Northwest Regional Office CLEAN WATER PROGRAM

Application Type
Facility Type
Major / Minor

Renewal

Non-Municipal

Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

Application No. PA0265021

APS ID 1067585

Authorization ID 1403439

Applicant Name	Knox Township Clarion County Municipal Authority	Facility Name	_Lucinda STP
Applicant Address	PO Box 3, 27345 Route 66	Facility Address	738 Lawn Drive
	Lucinda, PA 16235-0003	<u>-</u>	Lucinda, PA 16235
Applicant Contact	Timothy Huebert, Authority Chairman (athuebert@gmail.com)	Facility Contact	Timothy Huebert, Authority Chairman (athuebert@gmail.com)
Applicant Phone	(814) 229-0504	Facility Phone	(814) 229-0504
Client ID	334065	Site ID	821413
Ch 94 Load Status	Not Overloaded	Municipality	Knox Township
Connection Status	No Limitations	County	Clarion
Date Application Rece	eived July 12, 2022	EPA Waived?	Yes
Date Application Acce	pted July 19, 2022	If No, Reason	

Summary of Review

Act 14 - Proof of Notification was submitted and received.

A Part II Water Quality Management permit is not required at this time.

The Permittee should be able to meet the limits of this permit, which will protect the uses of the receiving stream.

I. OTHER REQUIREMENTS:

A. Stormwater into sewers

SPECIAL CONDITIONS:

II. Solids Management

- B. Right of way
- C. Solids handling
- D. Effluent Chlorine Optimization and Minimization
- E. Little or No Assimilative Capacity or Dilution

There are no open violations in efacts for Client ID (334065) as of 1/22/2024.

Approve	Deny	Signatures	Date
		Stephen A. McCauley	1/22/2024
^		Stephen A. McCauley, E.I.T. / Environmental Engineering Specialist	1/22/2024
V			Okay to Draft
^		Vacant / Environmental Engineer Manager	JCD 1/24/2024

Discharge, Receiving	Water	s and Water Supply Info	rmation	
Outfall No. 001			Design Flow (MGD)	0.022
Latitude 41° 18	3' 11.57	II .	Longitude	-79º 22' 5.74"
Quad Name			Quad Code	
Wastewater Descrip	tion:	Sewage Effluent		
Receiving Waters		ned Tributary to ep Creek (CWF)	Stream Code	49653
NHD Com ID	10266		Stream Code	3.78
Drainage Area	0.29	9095	Yield (cfs/mi²)	0.07
Q ₇₋₁₀ Flow (cfs)	0.29			calculated
Elevation (ft)	1475		Slope (ft/ft)	0.01933
Watershed No.	17-B		Chapter 93 Class.	CWF
Existing Use	-		Existing Use Qualifier	-
Exceptions to Use	_		Exceptions to Criteria	
Assessment Status		Impaired*		
Cause(s) of Impairm	nent	Metals and pH		
Source(s) of Impairm		Acid Mine Drainage		
TMDL Status	•	-	Name -	
	•			
Background/Ambien	nt Data		Data Source	
pH (SU)				
Temperature (°F)		-	<u> </u>	
Hardness (mg/L)			-	
Other:				
Nearest Downstream	n Public	: Water Supply Intake	Kittanning Suburban Joint Wa	ater Authority
		y River	Flow at Intake (cfs)	987
	5.6	<i>,</i>	Distance from Outfall (mi)	82.0
_		·		

^{*} Per the SOP, the previous monitoring for Aluminum, Iron, and Manganese will be retained since the stream is impaired by Acid Mine Drainage (AMD).

Sludge use and disposal description and location(s): All sludge is hauled to an approved landfill.

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the Pennsylvania Bulletin in accordance with 25 Pa. Code § 92a.82. Upon publication in the Pennsylvania Bulletin, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the Pennsylvania Bulletin at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Narrative: This Fact Sheet details the determination of draft NPDES permit limits for an existing discharge of 0.022 MGD of treated sewage from an existing Publicly Owned Treatment Works (POTW) in Knox Township, Clarion

County.

Treatment permitted under WQM Permit 1618409 consists of the following: Two 22,000 gallon and one 13,000 gallon baffled septic tanks in series, a three chamber recirculation vault, an 11,000 gallon dosing tank, dual 7,470 square foot (83' by 90') open sand filters, tablet chlorine disinfection with a 3,180 gallon contact tank, and tablet dechlorination.

1. Streamflow:

Unnamed Tributary to the Step Creek at Outfall 001:

Drainage Area: <u>0.29</u> sq. mi. (USGS StreamStats)

Yieldrate: <u>0.07</u> cfsm (Default for small streams)

% of stream allocated: 100% Basis: No nearby discharges

 Q_{7-10} : ofs (Calculated)

2. Wasteflow:

Maximum discharge: 0.022 MGD = 0.034 cfs

Runoff flow period: 24 hours Basis: Runoff flow for municipal STPs

The calculated stream flow is less than the proposed discharge flow. In accordance with the SOP, since this was a new discharge, and there is less than 3 parts stream flow (Q7-10) to 1 part effluent (design flow), the treatment requirements in document number 391-2000-014, titled, "Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers", dated April 12, 2008, will be implemented in this NPDES Permit.

Flow will be required to be monitored as authorized under Chapter 92a.61, and as recommended in the SOP.

3. Parameters:

The following parameters were evaluated: pH, Total Suspended Solids, Fecal Coliform, E. Coli, Total Phosphorus, Total Nitrogen, NH₃-N, CBOD₅, Dissolved Oxygen, and Disinfection.

a. <u>pH</u>

Between 6.0 and 9.0 at all times

Basis: Application of Chapter 93.7 technology-based limits.

The measurement frequency was previously set to 1/day as recommended in the SOP, based on Table 6-3 in the "Technical Guidance for the Development and Specification of Effluent Limitations" (362-0400-001), which will be retained.

b. Total Suspended Solids

Limits are 10.0 mg/l as a monthly average and 20.0 as a daily maximum.

Basis: Application of document number 391-2000-014 technology-based limits.

c. Fecal Coliform

05/01 - 09/30: <u>200/100ml</u> (monthly average geometric mean)

1,000/100ml (instantaneous maximum)

10/01 - 04/30: <u>2,000/100ml</u> (monthly average geometric mean)

10,000/100ml (instantaneous maximum)

Basis: Application of Chapter 92a47 technology-based limits

d. E. Coli

Monitoring was added for E. Coli at a frequency of 1/year.

Basis: Application of Chapter 92a.61 as recommended by the SOP for flows greater than 0.002 MGD

and less than 0.05 MGD.

e. Total Phosphorus

The previous limit of 0.5 mg/l monthly average will be retained based on document number 391-2000-014.

f. Total Nitrogen

The previous limit of 5 mg/l as a monthly average will be retained based on document number 391-2000-014.

g. <u>Ammonia-Nitrogen (NH₃-N)</u>

Median discharge pH to be used: 7.6 Standard Units (S.U.)

Basis: <u>eDMR data from previous 12 months</u>

Discharge temperature: <u>25°C</u> (default value used in the absence of data)

Median stream pH to be used: 7.0 Standard Units (S.U.)

Basis: <u>default value used in the absence of data</u>

Stream Temperature: 20°C (default value used for CWF modeling)

Background NH₃-N concentration: 0.0 mg/l

Basis: <u>Default value</u>

Calculated NH₃-N Summer limits: <u>2.5</u> mg/l (monthly average)

<u>5.0</u> mg/l (instantaneous maximum)

Calculated NH₃-N Winter limits: 7.5 mg/l (monthly average)

<u>15.0</u> mg/l (instantaneous maximum)

Result: WQ modeling resulted in the summer NH3-N limits above (see Attachment 1). The winter limits are calculated as three times the summer limits. The calculated limits are more restrictive than in the

previous permit. Based on eDMR data, the more restrictive limits are attainable so they will be set

with this renewal.

h. CBOD₅

Median discharge pH to be used: 7.6 Standard Units (S.U.)

Basis: eDMR data from previous 12 months

Discharge temperature: 25°C (default value used in the absence of data)

Median stream pH to be used: 7.0 Standard Units (S.U.)

Basis: default value used in the absence of data

Stream Temperature: 20°C (default value used for CWF modeling)

Background CBOD₅ concentration: <u>2.0</u> mg/l

Basis: Default value

Calculated CBOD₅ limits: <u>25.0</u> mg/l (monthly average)

50.0 mg/l (instantaneous maximum)

Result: WQ modeling resulted in the above CBOD₅ limits (see Attachment 3). However, the more restrictive

technology-based limit of 10.0 mg/l as a monthly average from document number 391-2000-014 will

be retained with this NPDES Permit.

i. Influent Total Suspended Solids and BOD₅

Monitoring for these two parameters will be retained as recommended in the SOP for POTWs, as authorized under Chapter 92a.61.

j. <u>Dissolved Oxygen (DO)</u>

The technology-based minimum of 5.0 mg/l is recommended by the WQ Model (see Attachment 1) and the SOP based on Chapter 93.7, under the authority of Chapter 92a.61. The previous Dissolved Oxygen minimum of 6.0 mg/l as recommended in document number 391-2000-014 will be retained.

The measurement frequency was previously set to 1/day as recommended in the SOP, based on Table 6-3 in the "Technical Guidance for the Development and Specification of Effluent Limitations" (362-0400-001), which will be retained.

k. Disinfection

☐ Total Residual Chlorine (TRC) limits: 0.09 mg/l (monthly average)

0.31 mg/l (instantaneous maximum)

Basis: The water quality-based TRC limits above were calculated using the Department's TRC Calc

Spreadsheet (see Attachment 2). The limits are the same as the previous NPDES Permit

and will be retained.

Ultraviolet (UV) light monitoring

The measurement frequency was previously set to 1/day as recommended in the SOP, based on Table 6-3 in the "Technical Guidance for the Development and Specification of Effluent Limitations" (362-0400-001), which will be retained.

4. Reasonable Potential Analysis for Receiving Stream:

A Reasonable Potential Analysis was not performed in accordance with State practices for Outfall 001 since no sampling other than sewage-related parameters was performed for this facility with the renewal application.

5. Reasonable Potential for Downstream Public Water Supply (PWS):

The Department's Toxics Management Spreadsheet does not calculate limits for parameters that are based on PWS criteria (TDS, Chloride, Bromide, and Sulfate).

Nearest Downstream potable water supply (PWS): Kittanning Suburban Joint Water Authority

Distance downstream from the point of discharge: 82.0 miles (approximate)

Result: No limits or monitoring are necessary as significant dilution is available.

6. Flow Information:

This facility receives 100% of flow from the Village of Lucinda. All the sewers are separate sewers.

7. Anti-Backsliding:

Since all the permit limits in this renewal are the same or more restrictive than the previous NPDES Permit, anti-backsliding is not applicable.

8. Attachment List:

Attachment 1 - WQ Modeling Printouts

Attachment 2 - TRC_Calc Spreadsheet

(The Attachments above can be found at the end of this document)

Compliance History

DMR Data for Outfall 001 (from December 1, 2022 to November 30, 2023)

Parameter	NOV-23	OCT-23	SEP-23	AUG-23	JUL-23	JUN-23	MAY-23	APR-23	MAR-23	FEB-23	JAN-23	DEC-22
Flow (MGD)												
Average Monthly	0.0067	0.0063	0.0059	0.0059	0.0067	0.0057	0.0067	0.0075	0.0077	0.0069	0.0082	0.0069
Flow (MGD)												
Daily Maximum	0.0134	0.0128	0.0112	0.0137	0.0172	0.012	0.0102	0.018	0.0119	0.012	0.0137	0.0116
pH (S.U.)												
Instantaneous Minimum	7.42	7.46	7.27	7.5	7.3	7.25	7.44	7.4	7.34	7.51	7.55	7.63
pH (S.U.)												
Instantaneous Maximum	7.77	7.82	8.01	7.89	7.86	7.67	7.65	7.68	7.71	7.75	7.80	7.9
DO (mg/L)												
Instantaneous Minimum	6.46	6.09	6.06	6.01	6.0	6.01	6.13	6.15	6.33	6.01	6.24	5.3
TRC (mg/L)												
Average Monthly	0.07	0.07	0.05	0.08	0.06	< 0.031	< 0.03	< 0.04	0.033	0.02	< 0.04	< 0.02
TRC (mg/L)												
Instantaneous Maximum	0.21	0.20	0.10	0.27	0.23	0.07	0.08	0.10	0.22	0.05	0.26	0.06
CBOD5 (lbs/day)												
Average Monthly	0.4	0.7	1.0	1.0	1.6	0.3	0.3	0.7	< 0.4	0.3	0.4	0.4
CBOD5 (mg/L)												
Average Monthly	9.0	15.0	26.0	23.0	18.5	8.0	5.0	10.0	< 7.0	8.0	8.5	7.0
BOD5 (lbs/day)												
Raw Sewage Influent												
Average Monthly	12	14	17	14	14.0	11	9	16	10	8	8	14
BOD5 (mg/L)												
Raw Sewage Influent												
Average Monthly	277	294	355	330	199.0	243	167	230	186	188	177	294
TSS (lbs/day)												
Average Monthly	< 0.2	< 0.1	0.1	0.2	0.6	< 0.2	< 0.2	1.0	0.2	< 0.2	0.1	0.2
TSS (lbs/day)												
Raw Sewage Influent												
Average Monthly	8	7	6	7	5.0	7	8	8	3	4	4	5
TSS (mg/L)												
Average Monthly	< 4.0	< 3.0	3.0	5.0	7.0	< 5.0	< 3.0	15.0	3.0	< 4.0	3.0	5.0
TSS (mg/L)												
Raw Sewage Influent												
Average Monthly	187	143	136	163	70.0	165	154	119	68	89	89	102
Fecal Coliform (No./100 ml)	_					_		_	_	_		_
Geometric Mean	< 1	< 49	< 21	16.0	< 1	8	18	< 4	< 3	< 1	< 1	< 2
Fecal Coliform (No./100 ml)									_	_		
Instantaneous Maximum	< 1	> 2420	461	133	< 1	20	155	20	8	< 1	1	4

NPDES Permit Fact Sheet

NPDES Permit No. PA0265021

Lucinda STP

Total Nitrogen (lbs/day)												
Average Monthly	1.0	2.0	2.0	1.0	2.0	2	2	4	2	2	2	2
Total Nitrogen (mg/L)												
Average Monthly	34.8	38	41.6	33.1	33.3	52.1	36.6	51.7	36.8	39.1	33.4	39.2
Ammonia (lbs/day)												
Average Monthly	0.03	0.03	< 0.03	0.08	0.1	0.05	0.1	0.1	0.08	< 0.08	0.2	0.5
Ammonia (mg/L)												
Average Monthly	0.81	0.64	< 0.66	1.91	1.22	1.33	1.75	1.53	1.44	< 1.82	5.04	10.3
Total Phosphorus (lbs/day)												
Average Monthly	0.2	0.2	0.2	0.2	0.3	0.2	0.2	0.3	0.1	0.1	0.09	0.1
Total Phosphorus (mg/L)												
Average Monthly	4.35	4.65	4.43	4.61	3.68	3.67	3.14	4.36	2.7	2.4	1.95	2.4
Total Aluminum (lbs/day)												
Semi-Annual Average						0.004						0.004
Total Aluminum (mg/L)												
Semi-Annual Average						0.083						0.097
Total Iron (lbs/day)												
Semi-Annual Average						0.005						0.004
Total Iron (mg/L)												
Semi-Annual Average						0.0979						0.096
Total Manganese (lbs/day)												
Semi-Annual Average						0.003						0.003
Total Manganese (mg/L)												
Semi-Annual Average						0.061						0.058

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (386-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

			Effluent L	imitations			Monitoring Re	quirements
Parameter	Mass Units	(lbs/day) (1)		Concentrat	ions (mg/L)		Minimum (2)	Required
Parameter	Average Monthly	Average Weekly	Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report Daily Max	XXX	XXX	XXX	XXX	1/week	Measured
pH (S.U.)	XXX	XXX	6.0 Inst Min	XXX	XXX	9.0	1/day	Grab
DO	XXX	XXX	6.0 Inst Min	XXX	XXX	XXX	1/day	Grab
TRC	XXX	XXX	XXX	0.09	XXX	0.31	1/day	Grab
CBOD5	1.8	XXX	XXX	10.0	XXX	20	2/month	24-Hr Composite
BOD5 Raw Sewage Influent	Report	XXX	XXX	Report	XXX	XXX	2/month	24-Hr Composite
TSS	1.8	XXX	XXX	10.0	XXX	20	2/month	24-Hr Composite
TSS Raw Sewage Influent	Report	XXX	XXX	Report	XXX	XXX	2/month	24-Hr Composite
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2000 Geo Mean	XXX	10000	2/month	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	XXX	XXX	200 Geo Mean	XXX	1000	2/month	Grab
E. Coli (No./100 ml)	XXX	XXX	XXX	XXX	XXX	Report	1/year	Grab
Total Nitrogen	Report	XXX	XXX	Report	XXX	XXX	2/month	24-Hr Composite
Ammonia Nov 1 - Apr 30	1.3	XXX	XXX	7.5	XXX	15	2/month	24-Hr Composite

NPDES Permit Fact Sheet

NPDES Permit No. PA0265021

Lucinda STP

Outfall 001, Continued (from Permit Effective Date through Permit Expiration Date)

			Effluent L	imitations			Monitoring Re	quirements
Parameter	Mass Units	(lbs/day) (1)		Concentrat	ions (mg/L)		Minimum (2)	Required
Farameter	Average Monthly	Average Weekly	Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Ammonia								24-Hr
May 1 - Oct 31	0.4	XXX	XXX	2.5	XXX	5	2/month	Composite
								24-Hr
Total Phosphorus	Report	XXX	XXX	Report	XXX	XXX	2/month	Composite
	Report			Report				24-Hr
Total Aluminum	SEMİ AVG	XXX	XXX	SEMİ AVG	XXX	XXX	1/6 months	Composite
	Report			Report				24-Hr
Total Iron	SEMİ AVG	XXX	XXX	SEMİ AVG	XXX	XXX	1/6 months	Composite
	Report			Report				24-Hr
Total Manganese	SEMİ AVG	XXX	XXX	SEMİ AVG	XXX	XXX	1/6 months	Composite

Compliance Sampling Location: at Outfall 001, after disinfection.

Flow is monitor only based on Chapter 92a.61. The limits for pH are technology-based on Chapter 93.7. The Total Residual Chlorine (TRC) limits are water quality-based on Chapter 92a.48. The limits for CBOD5, Total Suspended Solids, Dissolved Oxygen, Total Nitrogen, and Total Phosphorus are technology-based on document number 391-2000-014. Monitoring for influent BOD5 and influent Total Suspended Solids is based on Chapter 92a.61. The limits for Fecal Coliforms are technology-based on Chapter 92a.47. Monitoring for E. Coli is based on Chapter 92a.61. The limits for Ammonia-Nitrogen are water quality-based on Chapter 93.7. Monitoring for Total Aluminum, Total Iron, and Total Manganese is based on Chapter 92a.61.

Attachment 1

WQM 7.0 Effluent Limits

		<u>m Code</u> 9653		Stream Name STEP CREEK	:		
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
3.780	Lucinda STP	PA0265021	0.022	CBOD5	25		
				NH3-N	2.56	5.12	
				Dissolved Oxygen			5

Page 1 of 1

WQM 7.0 D.O.Simulation

SWP Basin St	ream Code 49653			Stream Name STEP CREEK	
<u>RMI</u>	Total Discharge	Flow (mgd	<u>) Ana</u>	lysis Temperature (°C)	Analysis pH
3.780	0.022	2		23.132	7.275
Reach Width (ft)	Reach De	oth (ft)		Reach WDRatio	Reach Velocity (fps)
2.780	0.324	4		8.593	0.060
Reach CBOD5 (mg/L)	Reach Kc (<u>1/days)</u>	<u>R</u>	each NH3-N (mg/L)	Reach Kn (1/days)
16.41	1.396			1.61	0.891
Reach DO (mg/L)	Reach Kr (Kr Equation	Reach DO Goal (mg/L)
6.212	28.75	2		Owens	6
Reach Travel Time (days)		Subreach	Results		
0.486	TravTime	CBOD5	NH3-N	D.O.	
	(days)	(mg/L)	(mg/L)	(mg/L)	
	0.049	15.17	1.54	6.89	
	0.097	14.03	1.47	7.14	
	0.146	12.97	1.41	7.28	
	0.194	12.00	1.35	7.38	
	0.243	11.09	1.29	7.47	
	0.291	10.26	1.24	7.56	
	0.340	9.49	1.19	7.63	
	0.388	8.77	1.14	7.70	
	0.437	8.11	1.09	7.77	
	0.486	7.50	1.04	7.79	

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	✓
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	✓
D.O. Saturation	90.00%	Use Balanced Technology	✓
D.O. Goal	6		

Tuesday, January 23, 2024 Version 1.1 Page 1 of 1

Input Data WQM 7.0

					р	at Dati	4 0000	11 1 19						
	SWP Basin			Stre	eam Name		RMI	Ele	evation (ft)	Drainage Area (sq mi)	Slope (ft/ft)	Witho	VS drawal gd)	App FC
	17B	496	553 STEP	CREEK			3.7	80	1475.00	0.29	0.000	00	0.00	✓
					St	ream Dat	a							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	n Ten	<u>Tributary</u> np pH	T	<u>Strear</u> emp	<u>n</u> pH	
Cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C	;)	(°C)		
Q7-10 Q1-10 Q30-10	0.070	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000	0.0	0.00	0.0	00 2	0.00 7	.00	0.00	0.00	
					Di	scharge	Data						Ī	
			Name	Per	rmit Numbe	Disc	Permitt Disc Flow (mgd	Dis Flo	sc Res	ctor	sc mp C)	Disc pH		
		Lucin	da STP	PA	0265021	0.022	0.00	00 0.	0000	0.000	25.00	7.60		
					Pa	arameter	Data							
				Paramete	r Name			Trib Conc	Stream Conc	Fate Coef				
				i di dillioto	i italiio	(m	ng/L) (r	mg/L)	(mg/L)	(1/days)				
	-		CBOD5				25.00	2.00	0.00	1.50		_		
			Dissolved	Oxygen			4.00	8.24	0.00	0.00				
			NH3-N				25.00	0.00	0.00	0.70				

Input Data WQM 7.0

						at Dati	4 0000							
	SWP Basin			Stre	eam Name		RMI		evation (ft)	Drainage Area (sq mi)	Slope (ft/ft)	PV Witho (m	Irawal	Appl FC
	17B	496	553 STEP	CREEK			3.3	00	1426.00	0.47	0.0000	0	0.00	✓
					St	ream Dat	a							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Ten	<u>Tributary</u> np pH	Te	<u>Strear</u> mp	<u>n</u> pH	
Cona.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C	;)	(0	PC)		
Q7-10 Q1-10 Q30-10	0.070	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000	0.0	0.00	0.0	00 2	0.00 7	.00	0.00	0.00	
					Di	scharge	Data]	
			Name	Per	rmit Numbe	Disc	Permitt Disc Flow (mgd	Dis Flo	sc Res	Di serve Ter actor	mp	Disc pH		
						0.000	0 0.00	0.0	0000	0.000	25.00	7.00		
					Pa	arameter	Data							
				Paramete	r Name			Trib Conc	Stream Conc	Fate Coef				
	_		12			(m	ng/L) (r	mg/L)	(mg/L)	(1/days)				
	-		CBOD5				25.00	2.00	0.00	1.50		_		
			Dissolved	Oxygen			3.00	8.24	0.00	0.00				
			NH3-N				25.00	0.00	0.00	0.70				

WQM 7.0 Hydrodynamic Outputs

	SWP Basin Stream Code				Stream Name							
		17B	4	9653				STEP C	REEK			
RMI	Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow	1.0	Depth	Width	W/D Ratio	Velocity	Reach Trav Time	Analysis Temp	Analysis pH
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)	
Q7-1	Q7-10 Flow											
3.780	0.02	0.00	0.02	.034	0.01933	.324	2.78	8.59	0.06	0.486	23.13	7.27
Q1-1	Q1-10 Flow											
3.780	0.01	0.00	0.01	.034	0.01933	NA	NA	NA	0.06	0.527	23.62	7.34
Q30-	Q30-10 Flow											
3.780	0.03	0.00	0.03	.034	0.01933	NA	NA	NA	0.06	0.452	22.76	7.23

WQM 7.0 Wasteload Allocations

SWP Basin	Stream Code	Stream Name
17B	49653	STEP CREEK

RMI	Discharge Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
3.78	0 Lucinda STP	8.58	11.85	8.58	11.85	0	0
H3-N (Chronic Allocat Discharge Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
	0 Lucinda STP	1.41	2.56	1.41	2.56	0	0

Attachment 2

TRC EVALUA	ATION									
Input appropriate values in A3:A9 and D3:D9										
0.0203	= Q stream (cfs)	= CV Daily							
0.022	= Q discharg	je (MGD)	0.5	= CV Hourly						
30	= no. sample	8	1	= AFC_Partial Mix Factor						
0.3	= Chlorine D	emand of Stream	1	= CFC_Partial Mix Factor						
0	= Chlorine D	emand of Discharge	15	= AFC_Criteria Compliance Time (min)						
0.5	= BAT/BPJ V	alue	720	= CFC_Criteria Compliance Time (min)						
0	= % Factor o	of Safety (FOS)	0	0 =Decay Coefficient (K)						
Source	Reference	AFC Calculations		Reference	CFC Calculations					
TRC	1.3.2.iii	WLA afc =	0.209	1.3.2.iii	WLA cfc = 0.196					
PENTOXSD TRG	5.1a	LTAMULT afc =	0.373	5.1c	LTAMULT cfc = 0.581					
PENTOXSD TRG	5.1b	LTA_afc=	0.078	5.1d	LTA_cfc = 0.114					
Source		Effluei	nt Limit Calcu	lations						
PENTOXSD TRG	5.1f		AML MULT =	1.231						
PENTOXSD TRG	ENTOXSD TRG 5.1g AVG MON LIMIT (mg/l) = 0.096 AFC									
INST MAX LIMIT (mg/l) = 0.314										
WLA afc	/LA afc (.019/e(-k*AFC_tc)) + [(AFC_Yc*Qs*.019/Qd*e(-k*AFC_tc)) + Xd + (AFC_Yc*Qs*Xs/Qd)]*(1-FOS/100)									
LTAMULT afc										
LTA_afc										
WLA_cfc	NLA_cfc (.011/e(-k*CFC_tc) + [(CFC_Yc*Qs*.011/Qd*e(-k*CFC_tc)) +Xd + (CFC_Yc*Qs*Xs/Qd)]*(1-FOS/100)									
LTAMULT_cfc	TAMULT_cfc EXP((0.5*LN(cvd^2/no_samples+1))-2.326*LN(cvd^2/no_samples+1)^0.5)									
LTA_cfc	annual to the contract of the									
AML MULT	89.0	N((cvd^2/no_samples+1)^0.		l^2/no_samples+	-1))					
AVG MON LIMIT		J,MIN(LTA_afc,LTA_cfc)*AN								
NST MAX LIMIT 1.5*((av_mon_limit/AML_MULT)/LTAMULT_afc)										