

Northwest Regional Office CLEAN WATER PROGRAM

Application Type

Facility Type

Major / Minor

Minor

NPDES PERMIT FACT SHEET INDIVIDUAL INDUSTRIAL WASTE (IW) AND IW STORMWATER

Application No. PA0265781

APS ID 1089450

Authorization ID 1441476

Applicant Name	Slipp	ery Rock Municipal Authority	Facility Name	Slippery Rock Borough WTP		
Applicant Address	116 C	Crestview Drive	Facility Address	Hines Road		
	Slippe	ery Rock, PA 16057-0157		Slippery Rock, PA 16057		
Josh Miller, Lab Supervisor/Operations Applicant Contact Manager (jmiller.srma@zoominternet.net)		Facility Contact	Josh Miller, Lab Supervisor/Operations Manager (jmiller.srma@zoominternet.net)			
Applicant Phone	(724)	794-8303	Facility Phone	(724) 794-8303		
Client ID	65258	3	Site ID	445263		
SIC Code	4941		Municipality	Slippery Rock Township		
SIC Description	Trans	. & Utilities - Water Supply	County	Butler		
Date Application Rece	eived	May 16, 2023	EPA Waived?	No		
Date Application Acce	epted	May 25, 2023	If No, Reason	DEP Discretion		

Summary of Review

Act 14 - Proof of Notification was submitted and received.

This facility is not subject to any ELGs.

A Water Quality Management (WQM) Permit is not required at this time.

The applicant should be able to meet the limits of this permit, which will protect the uses of the receiving stream.

- I. OTHER REQUIREMENTS:
 - A. Right of way
 - B. Solids handling
 - C. NPDES Permit Supersedes WQM Permits
 - D. Modification or Revocation for changes to BAT or BCT
 - E. Effluent Chlorine Optimization and Minimization
 - F. Annual Average Definition

There are no open violations in efacts associated with the subject Client ID (65258) as of 3/14/2024

Approve	Deny	Signatures	Date
V		Stephen A. McCauley	2/4 4/2024
X		Stephen A. McCauley, E.I.T. / Environmental Engineering Specialist	3/14/2024
			Okay to Draft
X		(Vacant) / Environmental Engineer Manager	JCD 3/18/2024

Discharge, Receiving Waters and Water Supply Inf	formation	
Outfall No. 001	Design Flow (MGD)	0.01
Latitude 41° 1' 46.40"	Longitude	-80° 4' 1.30"
Quad Name	Quad Code	<u>-</u>
Wastewater Description: IW Process Effluent wit	thout ELG (Wastewater from PWS I	Backwash)
Receiving Waters Slippery Rock Creek (CWF)	Stream Code	34032
NHD Com ID 126222171	RMI	24.5
Drainage Area150.2	Yield (cfs/mi²)	0.13
Q ₇₋₁₀ Flow (cfs) 19.5	Q ₇₋₁₀ Basis	calculated
Elevation (ft) 1139	Slope (ft/ft)	0.00079
Watershed No. 20-C	Chapter 93 Class.	CWF
Existing Use	Existing Use Qualifier	
Exceptions to Use	Exceptions to Criteria	-
Accomment Status Attaining Lloc(s)		
Course (a) of loop airce and		
Source(s) of Impairment -		
TMDL Status -	Name	
Background/Ambient Data	Data Source	
pH (SU)	<u>-</u>	
Temperature (°F)	-	
Hardness (mg/L)	-	
Other:		
Nearest Downstream Public Water Supply Intake	Pennsylvania American Water	Company - Ellwood City
PWS Waters Slippery Rock Creek	Flow at Intake (cfs)	53.1
PWS RMI 0.1	Distance from Outfall (mi)	25.0

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Narrative:

This Fact Sheet details the determination of draft NPDES permit limits for an existing discharge of 0.01 MGD of media filter backwash wastewater from the Slippery Rock Hines Road Water Treatment Plant in Slippery Rock Township, Butler County.

Treatment at the Hines Road WTP consists of:

Two trains each consisting of spray aeration followed by chlorination, detention followed by potassium permangante for dechlorination, and media filtration (the backwash from the media filters discharges to Outfall 001). The two treatment trains combine in an equalization tank where the flow is then pumped into two high pressure membrane filtration units in parallel (the reject water from these filters flows to Outfall 002). The flow is then chlorinated before going to a chlorine contact tank/clear well for pumping into the potable water system.

1. Streamflow:

Slippery Rock Creek at Wurtemburg, PA - USGS Gage no. 03106500:

 Q_{7-10} : 30.4 cfs (from StreamStats)

Drainage Area: 398 sq. mi. (from StreamStats)

Yieldrate: 0.076 cfsm (calculated)

Slippery Rock Creek at Outfall 001:

Yieldrate: <u>0.076</u> cfsm (calculated above)

Drainage Area: <u>150.2</u> sq. mi. (from StreamStats)

% of stream allocated: <u>100%</u> Basis: <u>no nearby discharges</u>

 Q_{7-10} : 11.4 cfs (calculated)

2. Wasteflow: Outfall 001:

Maximum discharge: 0.01 MGD = 0.015 cfs

Runoff flow period: 24 hours Basis: Flow for a Municipal WTP

Flow will be required to be monitored as recommended by the NPDES Permit Writers' Manual (document number 362-0400-001) for Water Treatment Plant Wastes.

3. Parameters:

The limits for pH, Total Residual Chlorine, Total Suspended Solids, Total Aluminum, Total Iron, Total Manganese, and Total Hardness are technology-based on the Department's document entitled, "NPDES Permit Writers' Manual" (document number 362-0400-001) under Chapter 14.5.4 - Methods Employed to Treat and Dispose of Water Treatment Plant Wastes.

a. Total Suspended Solids

Technology-based limits are 30.0 mg/l as a monthly average and 60.0 mg/l as a daily maximum, with a calculated instantaneous maximum of 75.0 mg/l.

b. Total Iron

Technology-based limits are 2.0 mg/l as a monthly average and 4.0 mg/l as a daily maximum, with a calculated instantaneous maximum of 5.0 mg/l.

c. Total Aluminum

Technology-based limits are 4.0 mg/l as a monthly average and 8.0 mg/l as a daily maximum, with a calculated instantaneous maximum of 10.0 mg/l.

d. Total Manganese

Technology-based limits are 1.0 mg/l as a monthly average and 2.0 mg/l as a daily maximum, with a calculated instantaneous maximum of 2.5 mg/l.

e. <u>pH</u>

Between 6.0 and 9.0 at all times.

f. Total Residual Chlorine (TRC)

TRC limits were calculated using the Department's TRC Calculation Spreadsheet (see Attachment 1). The calculated limits are slightly less restrictive than the limits in the previous NPDES Permit, which were technology-based limits of 0.5 mg/l as a monthly average and 1.0 mg/l as a daily maximum, with a calculated instantaneous maximum of 1.25 mg/l.

The measurement frequency was previously set to 1/day as recommended in the SOP, based on Table 6-3 in the "Technical Guidance for the Development and Specification of Effluent Limitations" (362-0400-001), which will be retained.

g. Reasonable Potential for Downstream Public Water Supply (PWS):

Nearest Downstream potable water supply (PWS): Pennsylvania American Water Company - Ellwood City

Distance downstream from the point of discharge: <u>25.0</u> miles (approximate)

Parameter	PWS Criteria (mg/l)	Discharge Maximum (mg/l)
TDS	500	5,710
Chloride	250	149
Bromide	1.0	1.15
Sulfate	250	18.4

Result:

Since some of the parameters are discharged at a concentration greater than the criteria at the PWS, mass-balance calculations were performed below to ensure that no limits or monitoring are necessary.

PWS Evaluation:

Stream flow (sf) at the PWS intake = 53.1 cfs

Waste flow (wf) from the WTP = 0.01 MGD = 0.015 cfs

Total flow = 53.115 cfs

Background Concentrations: Default of 150 mg/l for TDS, all others assumed zero

Mass balance for TDS at the PWS intake:

(sf @ PWS)(bkrd. conc.) + (wf)(x) = (tot. flow)(criteria)

(53.1 cfs)(150 mg/l) + (0.015 cfs)(x) = (53.115 cfs)(500 mg/l)

x = 1,239,500 mg/l (renewal application maximum was 5,710 mg/l - ok)

Mass balance for Chlorides at the PWS intake:

(sf @ PWS)(bkrd. conc.) + (wf)(x) = (tot. flow)(criteria)

(53.1 cfs)(0 mg/l) + (0.015 cfs)(x) = (53.115 cfs)(250 mg/l)

x = 885,250 mg/l (renewal application maximum was 149 mg/l - ok)

Mass balance for Bromide at the PWS intake:

```
(sf @ PWS)(bkrd. conc.) + (wf)(x) = (tot. flow)(criteria)
(53.1 cfs)(0 mg/l) + (0.015 cfs)(x) = (53.115 cfs)(1 mg/l)
x = 3,541 mg/l (renewal application maximum was 1.15 mg/l - ok)
```

Mass balance for Sulfates at the PWS intake:

```
(sf @ PWS)(bkrd. conc.) + (wf)(x) = (tot. flow)(criteria)

(53.1 cfs)(0 mg/l) + (0.015 cfs)(x) = (53.115 cfs)(250 mg/l)

x = 885,250 mg/l (renewal application maximum was 18.4 mg/l - ok)
```

Result: No limits or monitoring are necessary as significant dilution is available.

h. <u>Total Dissolved Solids (TDS)</u>

Outfall 001 had a maximum TDS discharge of 5,710 mg/l. Based on the design flow of 0.01 MGD and the maximum concentration of 5,710 mg/l, the maximum mass loading discharged from this outfall was 476.2 lbs/day.

The wastestream is exempt from Chapter 95.10 since under Section (a)(7), it is has "discharge loadings of TDS equal to or less than 5,000 lbs/day, measured as the annual average daily load" (maximum - 476.2 lbs/day). Based on the eDMR data and the type of wastewater, the previous monitoring requirement for TDS will be retained.

TDS were evaluated to protect the water quality standards at the nearest downstream PWS intake.

To calculate the TDS capacity for the Slippery Rock Creek at the Pennsylvania American Water Company - Ellwood City PWS intake, the Q_{7-10} low flow for the PWS is needed. From previous work, the Q_{7-10} low flow for the Slippery Rock Creek at the PWS was calculated as 53.1 cfs. Since no background TDS data is readily available, an assumed value of 150 mg/l will be used for this evaluation. Subtracting the 150 mg/l from the allowable 500 mg/l yields a remaining assimilative capacity of 350 mg/l. Multiplying the 350 mg/l by the Q_{7-10} low flow rate of 53.1 cfs and then by 5.4 for conversions yields a total assimilative capacity of 100,359 lbs/day of TDS at the Pennsylvania American Water Company - Ellwood City PWS intake.

Based on the maximum discharge of 476.2 lbs/day, there is no reasonable potential that the TDS from this discharge will impact the nearest downstream public water supply.

4. Reasonable Potential Analysis:

A Reasonable Potential Analysis was performed in accordance with State practices for Outfall 001 using the Department's Toxics Management Spreadsheet (see Attachment 2).

Result: None of the discharge concentrations for the parameters sampled were found to be greater than 10% of the calculated WQBELs. No monitoring or limits are required as a result of the Reasonable Potential Analysis.

5. Attachment List:

Attachment 1 - TRC Calc Spreadsheet - Outfall 001

Attachment 2 - Toxics Management Spreadsheet - Outfall 001

Attachment 3 - TRC_Calc Spreadsheet - Outfall 002

Attachment 4 - Toxics Management Spreadsheet - Outfall 002

Attachment 5 - Outfall Layout Diagram

(The Attachments above can be found at the end of this document)

Compliance History

DMR Data for Outfall 001 (from February 1, 2023 to January 31, 2024)

Parameter	JAN-24	DEC-23	NOV-23	OCT-23	SEP-23	AUG-23	JUL-23	JUN-23	MAY-23	APR-23	MAR-23	FEB-23
Flow (MGD)												
Average Monthly	0.008	0.006	0.007	0.00020	0.004	0.004	0.005	0.005	0.004	0.005	0.003	0.004
pH (S.U.)												
Instantaneous Minimum	7.67	7.68	7.61	7.72	7.77	7.70	7.78	7.79	7.75	7.77	7.76	7.62
pH (S.U.)												
Instantaneous Maximum	7.75	7.77	7.77	7.79	7.83	7.81	7.83	7.98	7.87	7.90	7.89	7.82
TRC (mg/L)												
Average Monthly	0.1	0.4	0.1	0.2	0.13	0.12	0.12	0.2	0.06	0.35	0.21	0.12
TRC (mg/L)												
Daily Maximum	0.17	0.85	0.21	0.22	0.32	0.21	0.12	0.31	0.06	0.74	0.29	0.19
TSS (mg/L)	_	_	_		_	_	_	_	_	_	_	_
Average Monthly	< 3	< 3	< 3	< 3.0	< 3	< 3	< 3	< 3	< 3	< 3	< 3	< 3
TSS (mg/L)	_	_	_		_	_	_	_	_	_	_	_
Daily Maximum	< 3	< 3	< 3	< 3.0	< 3	< 3	< 3	< 3	< 3	< 3	< 3	< 3
Total Dissolved Solids (mg/L)												
Average Monthly	382	386	414	405	404	378	375	396	404	394	405	435
Total Dissolved Solids (mg/L)	000	000	400	400	400	000	000	400	444	400	40.4	444
Daily Maximum	382	396	430	428	406	380	396	406	414	400	424	444
Total Aluminum (mg/L)	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4
Average Monthly	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Total Aluminum (mg/L)	.0.4	. 0.4	.04	.04	.0.4	.04	.0.4	.0.4	.04	.0.4	.0.4	.0.4
Daily Maximum	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Total Iron (mg/L)	0.04	0.1	0.05	< 0.02	0.03	< 0.05	0.05	< 0.03	0.03	0.12	0.05	0.06
Average Monthly	0.04	0.1	0.05	< 0.02	0.03	< 0.05	0.05	< 0.03	0.03	0.12	0.05	0.06
Total Iron (mg/L) Daily Maximum	0.04	0.09	0.07	0.02	0.03	0.07	0.05	0.03	0.04	0.14	0.06	0.07
Total Manganese (mg/L)	0.04	0.09	0.07	0.02	0.03	0.07	0.05	0.03	0.04	0.14	0.00	0.07
Average Monthly	0.6	0.3	0.6	0.1	0.11	0.13	0.14	0.08	0.09	0.21	0.13	0.15
Total Manganese (mg/L)	0.0	0.5	0.0	0.1	0.11	0.13	0.14	0.00	0.09	0.21	0.13	0.13
Daily Maximum	0.72	0.36	0.86	0.08	0.11	0.14	0.15	0.08	0.11	0.29	0.15	0.16

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (386-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

		Effluent Limitations						
Parameter	Mass Units (lbs/day) (1)			Concentrat	Minimum ⁽²⁾	Required		
raiametei	Average Monthly	Average Weekly	Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	XXX	XXX	XXX	XXX	XXX	1/day	Measured
pH (S.U.)	XXX	XXX	6.0 Inst Min	XXX	XXX	9.0	1/day	Grab
TRC	XXX	XXX	XXX	0.5	1.0	1.25	1/day	Grab
TSS	XXX	XXX	XXX	30.0	60.0	75	2/month	Grab
Total Dissolved Solids	XXX	XXX	XXX	Report	Report	XXX	2/month	Grab
Total Aluminum	XXX	XXX	XXX	4.0	8.0	10	2/month	Grab
Total Iron	XXX	XXX	XXX	2.0	4.0	5	2/month	Grab
Total Manganese	xxx	XXX	XXX	1.0	2.0	2.5	2/month	Grab

Compliance Sampling Location: Outfall 001.

The limits for pH, Total Residual Chlorine (TRC), Total Suspended Solids (TSS), Aluminum, Iron, and Manganese are technology-based on the NPDES Permit Writers' Manual for potable water treatment backwash wastewater. Flow and Total Dissolved Solids are monitor only based on Chapter 92a.61.

Discharge, Receiving Waters and Water Supply Information							
Outfall No. 002	Design Flow (MGD)	0.19					
Latitude 41º 1' 51.77"	Longitude	-80° 3' 48.77"					
Quad Name	Quad Code	<u>, </u>					
Wastewater Description: IW Process Effluent without (Reject Wastewater from F	ut ELG Reverse Osmosis Units - Not be	ing used)					
Receiving Waters Slippery Rock Creek (CWF)	Stream Code	34032					
NHD Com ID 126222171	 RMI	24.5					
Drainage Area 150.2	Viold (cfc/mi²)	0.13					
Q ₇₋₁₀ Flow (cfs) 19.5	Q ₇₋₁₀ Basis	calculated					
Elevation (ft) 1139	Slope (ft/ft)	0.00079					
Watershed No. 20-C	Chapter 93 Class.	CWF					
Existing Use -	Eviation Has Ovalities	-					
Exceptions to Use -	Evacations to Critoria	-					
Assessment Status Attaining Use(s)		_					
Cause(s) of Impairment -							
Source(s) of Impairment							
TMDL Status -	Name -						
Background/Ambient Data	Data Source						
pH (SU)	·-						
Temperature (°F)	-						
Hardness (mg/L)	·-						
Other: -							
Nearest Downstream Public Water Supply Intake	Pennsylvania American Wate	r Company - Ellwood City					
PWS Waters Slippery Rock Creek	Flow at Intake (cfs) 53.1						
PWS RMI 0.1	_ Distance from Outfall (mi)	25.0					

<u>Narrative</u>

This Fact Sheet details the determination of draft NPDES permit limits for an existing discharge of 0.19 MGD (currently not discharging) of Reverse Osmosis reject wastewater from the Slippery Rock Hines Road Water Treatment Plant in Slippery Rock Township, Butler County. Since Outfall 002 is not currently discharging, sampling was not performed with this renewal. Since there is no current sampling data, the previous sampling data for Outfall 002 was used with this renewal.

Treatment at the Hines Road WTP consists of:

Two trains each consisting of spray aeration followed by chlorination, detention followed by potassium permangante for dechlorination, and media filtration (the backwash from the media filters discharges to Outfall 001). The two treatment trains combine in an equalization tank where the flow is then pumped into two high pressure membrane filtration units in parallel (the reject water from these filters flows to Outfall 002). The flow is then chlorinated before going to a chlorine contact tank/clear well for pumping into the potable water system.

1. Streamflow:

Slippery Rock Creek at Wurtemburg, PA - USGS Gage no. 03106500:

 $\begin{array}{ccc} Q_{7\text{-}10}\text{:} & \underline{30.4} & \text{cfs} & \text{(from StreamStats)} \\ \text{Drainage Area:} & \underline{398} & \text{sq. mi.} & \text{(from StreamStats)} \end{array}$

Yieldrate: <u>0.076</u> cfsm (calculated)

Slippery Rock Creek at Outfall 002:

Yieldrate: <u>0.076</u> cfsm (calculated above)
Drainage Area: <u>150.2</u> sq. mi. (from StreamStats)

% of stream allocated: 100% Basis: no nearby discharges

 Q_{7-10} : 11.4 cfs (calculated)

2. Wasteflow: Outfall 002:

Maximum discharge: 0.19 MGD = 0.29 cfs

Runoff flow period: 24 hours Basis: Flow for a Municipal WTP

Flow will be required to be monitored as recommended by the NPDES Permit Writers' Manual (document number 362-0400-001) for Water Treatment Plant Wastes.

3. Parameters:

The limits for pH, Total Residual Chlorine, Total Suspended Solids, Total Aluminum, Total Iron, Total Manganese, and Total Hardness are technology-based on the Department's document entitled, "NPDES Permit Writers' Manual" (document number 362-0400-001) under Chapter 14.5.4 - Methods Employed to Treat and Dispose of Water Treatment Plant Wastes.

a. Total Suspended Solids

Technology-based limits are 30.0 mg/l as a monthly average and 60.0 mg/l as a daily maximum, with a calculated instantaneous maximum of 75.0 mg/l.

b. Total Iron

Technology-based limits are 2.0 mg/l as a monthly average and 4.0 mg/l as a daily maximum, with a calculated instantaneous maximum of 5.0 mg/l.

c. <u>Total Aluminum</u>

Technology-based limits are 4.0 mg/l as a monthly average and 8.0 mg/l as a daily maximum, with a calculated instantaneous maximum of 10.0 mg/l.

Total Manganese

Technology-based limits are 1.0 mg/l as a monthly average and 2.0 mg/l as a daily maximum, with a calculated instantaneous maximum of 2.5 mg/l.

e. pH

Between 6.0 and 9.0 at all times.

f. Total Residual Chlorine (TRC)

TRC limits were calculated using the Department's TRC Calculation Spreadsheet (see Attachment 3). The calculated limits are slightly less restrictive than the limits in the previous NPDES Permit, which were technology-based limits of 0.5 mg/l as a monthly average and 1.0 mg/l as a daily maximum, with a calculated instantaneous maximum of 1.25 mg/l.

The measurement frequency was previously set to 1/day as recommended in the SOP, based on Table 6-3 in the "Technical Guidance for the Development and Specification of Effluent Limitations" (362-0400-001), which will be retained.

Reasonable Potential for Downstream Public Water Supply (PWS): g.

Nearest Downstream potable water supply (PWS): Pennsylvania American Water Company - Ellwood City

Distance downstream from the point of discharge: 25.0 miles (approximate)

Parameter	PWS Criteria (mg/l)	Discharge Maximum (mg/l)
TDS	500	1,950

Result: Only TDS was sampled with the last permit application. Since TDS was discharged at a concentration greater than the criteria at the PWS, a mass-balance calculation was performed below to ensure that no limits or monitoring are necessary. Mass-balance calculations were performed below for Chlorides, Bromide, and Sulfates to compare with the Outfall 001 maximums since sampling data is not available.

PWS Evaluation:

Stream flow (sf) at the PWS intake = 53.1 cfs

Waste flow (wf) from the WTP = 0.19 MGD = 0.29 cfs

Total flow = 53.39 cfs

Background Concentrations: Default of 150 mg/l for TDS, all others assumed zero

Mass balance for TDS at the PWS intake:

```
(sf @ PWS)(bkrd. conc.) + (wf)(x) = (tot. flow)(criteria)
(53.1 \text{ cfs})(150 \text{ mg/l}) + (0.29 \text{ cfs})(x) = (53.39 \text{ cfs})(500 \text{ mg/l})
         x = 64,586 \text{ mg/l} (Previous maximum was 1,950 mg/l - ok)
```

Mass balance for Chlorides at the PWS intake:

```
(sf @ PWS)(bkrd. conc.) + (wf)(x) = (tot. flow)(criteria)
(53.1 \text{ cfs})(0 \text{ mg/l}) + (0.29 \text{ cfs})(x) = (53.39 \text{ cfs})(250 \text{ mg/l})
         x = 46,025 \text{ mg/l} (Outfall 001 maximum was 149 mg/l - ok)
```

Mass balance for Bromide at the PWS intake:

```
(sf @ PWS)(bkrd. conc.) + (wf)(x) = (tot. flow)(criteria)
(53.1 \text{ cfs})(0 \text{ mg/l}) + (0.29 \text{ cfs})(x) = (53.39 \text{ cfs})(1 \text{ mg/l})
         x = 184 \text{ mg/l} (Outfall 001 maximum was 1.15 mg/l - ok)
```

Mass balance for Sulfates at the PWS intake:

```
(sf @ PWS)(bkrd. conc.) + (wf)(x) = (tot. flow)(criteria)
(53.1 \text{ cfs})(0 \text{ mg/l}) + (0.29 \text{ cfs})(x) = (53.39 \text{ cfs})(250 \text{ mg/l})
          x = 46,025 \text{ mg/l} (Outfall 001 \text{ maximum was } 18.4 \text{ mg/l} - \text{ok})
```

Result: No limits or monitoring are necessary as significant dilution is available.

h. <u>Total Dissolved Solids (TDS)</u>

Outfall 002 had a maximum TDS discharge of 1,950 mg/l. Based on the design flow of 0.19 MGD and the maximum concentration of 1,950 mg/l, the maximum mass loading discharged from this outfall was 3,089 lbs/day.

The wastestream is exempt from Chapter 95.10 since under Section (a)(7), it is has "discharge loadings of TDS equal to or less than 5,000 lbs/day, measured as the annual average daily load" (maximum - 3,089 lbs/day). Based on the eDMR data and the type of wastewater, the previous monitoring requirement for TDS will be retained.

TDS were evaluated to protect the water quality standards at the nearest downstream PWS intake.

To calculate the TDS capacity for the Slippery Rock Creek at the Pennsylvania American Water Company - Ellwood City PWS intake, the Q_{7-10} low flow for the PWS is needed. From previous work, the Q_{7-10} low flow for the Slippery Rock Creek at the PWS was calculated as 53.1 cfs. Since no background TDS data is readily available, an assumed value of 150 mg/l will be used for this evaluation. Subtracting the 150 mg/l from the allowable 500 mg/l yields a remaining assimilative capacity of 350 mg/l. Multiplying the 350 mg/l by the Q_{7-10} low flow rate of 53.1 cfs and then by 5.4 for conversions yields a total assimilative capacity of 100,359 lbs/day of TDS at the Pennsylvania American Water Company - Ellwood City PWS intake.

Based on the maximum discharge of 3,089 lbs/day, there is no reasonable potential that the TDS from this discharge will impact the nearest downstream public water supply.

4. Reasonable Potential Analysis:

A Reasonable Potential Analysis was performed in accordance with State practices for Outfall 001 using the Department's Toxics Management Spreadsheet (see Attachment 4).

Result: The discharge concentrations for the following parameters were found to be greater than 10% of the calculated WQBELs:

Parameter	Discharge Conc. (mg/l)	WQBEL (mg/l)	%WQBEL
Total Manganese	25.5	39.8	>50%

Per the SOP, since the maximum discharge concentration for Total Manganese was greater than 50% of the calculated WQBEL, a new limit would be added. However, since there is already a more stringent technology-based limit of 1.0 mg/l set, no further action is necessary.

5. Attachment List:

Attachment 1 - TRC_Calc Spreadsheet - Outfall 001

Attachment 2 - Toxics Management Spreadsheet - Outfall 001

Attachment 3 - TRC_Calc Spreadsheet - Outfall 002

Attachment 4 - Toxics Management Spreadsheet - Outfall 002

(The Attachments above can be found at the end of this document)

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (386-0400-001), SOPs and/or BPJ.

Outfall 002, Effective Period: Permit Effective Date through Permit Expiration Date.

		Effluent Limitations						
Parameter	Mass Units	(lbs/day) (1)		Concentrat	Minimum (2)	Required		
raiametei	Average Monthly	Average Weekly	Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Measurement Frequency	Sample Type
El (140E)	5 .	Report	V0.07	VOV	2007	V0/0/	0 "	
Flow (MGD)	Report	Daily Max	XXX	XXX	XXX	XXX	Continuous	Measured
pH (S.U.)	XXX	XXX	6.0 Inst Min	XXX	XXX	9.0	1/day	Grab
TRC	xxx	xxx	xxx	0.5	1.0	1.25	1/day	Grab
								8-Hr
TSS	XXX	XXX	XXX	30.0	60.0	75	2/month	Composite
	5000							8-Hr
Total Dissolved Solids	Annl Avg	XXX	XXX	XXX	XXX	XXX	1/year	Composite
								8-Hr
Total Dissolved Solids	Report	XXX	XXX	Report	Report	XXX	2/month	Composite
								8-Hr
Total Aluminum	XXX	XXX	XXX	4.0	8.0	10	2/month	Composite
								8-Hr
Total Iron	XXX	XXX	XXX	2.0	4.0	5	2/month	Composite
								8-Hr
Total Manganese	XXX	XXX	XXX	1.0	2.0	2.5	2/month	Composite

Compliance Sampling Location: Outfall 002.

The limits for pH, Total Residual Chlorine (TRC), Total Suspended Solids (TSS), Aluminum, Iron, and Manganese are technology-based on the NPDES Permit Writers' Manual for potable water treatment backwash wastewater. Flow and Total Dissolved Solids are monitor only based on Chapter 92a.61. The annual average mass loading limit for Total Dissolved Solids is technology-based on Chapter 95.10.

Discharge, Receiving Waters and Water Supply Information							
IMP No. 003		Design Flow (MGD)	0.00				
Latitude 41° 01	1' 45.60"	Longitude	-80° 03' 55.10"				
Quad Name		Quad Code	-				
Wastewater Descrip	otion: Stormwater (No Exposure)						
	Unnamed Tributary to the						
Receiving Waters	Slippery Rock Creek	Stream Code	N/A				
NHD Com ID	126222171	DMI	N/A				
Drainage Area	-		-				
Q ₇₋₁₀ Flow (cfs)	-	O Posis	-				
Elevation (ft)	-	Olara - (#/#)	-				
Watershed No.	-	Chapter 02 Class	CWF				
Existing Use	-	Evicting Lies Ouglifier	-				
	-	Exceptions to Criteria	-				
Assessment Status	Attaining Use(s)						
Cause(s) of Impairm	·						
Source(s) of Impairn							
TMDL Status	-	Name -					
Background/Ambien	nt Data	Data Source					
pH (SU)	<u>-</u>	-					
Temperature (°F)	<u>-</u>	-					
Hardness (mg/L)	<u>-</u>	-					
Other:	<u>-</u>	-					
Nearest Downstrear	m Public Water Supply Intake	Pennsylvania American Water	Company - Ellwood City				
PWS Waters S	Slippery Rock Creek	Flow at Intake (cfs) 53.1					
PWS RMI 0	.1	Distance from Outfall (mi) _25.0					

This stormwater outfall received a No Exposure Certification during the previous NPDES Permit. That certification will be continued with this renewal.

Attachment 1

TRC EVALUATION							
Input appropria	te values in <i>i</i>	A3:A9 and D3:D9					
11.4	= Q stream (cfs)	0.5	= CV Daily			
0.01	= Q discharg	je (MGD)	0.5	= CV Hourly			
30	= no. sample	8	1	= AFC_Partial I	Mix Factor		
0.3	= Chlorine D	emand of Stream	1	= CFC_Partial I	Mix Factor		
0	= Chlorine D	emand of Discharge	15	= AFC_Criteria	Compliance Time (min)		
0.5	= BAT/BPJ V	alue	720	= CFC_Criteria	Compliance Time (min)		
0	= % Factor of	of Safety (FOS)	0	=Decay Coeffic	cient (K)		
Source	Reference	AFC Calculations		Reference	CFC Calculations		
TRC	1.3.2.iii	WLA afc =	235.093	1.3.2.iii	WLA cfc = 229.190		
PENTOXSD TRG	5.1a	LTAMULT afc =	0.373	5.1c	LTAMULT cfc = 0.581		
PENTOXSD TRG	5.1b	LTA_afc=	87.601	5.1d	LTA_cfc = 133.240		
Source		Efflue	nt Limit Calcu	lations			
PENTOXSD TRG	5.1f		AML MULT =	1.231			
PENTOXSD TRG	5.1g	AVG MON	LIMIT (mg/l) =	0.500	BAT/BPJ		
		INST MAX	LIMIT (mg/l) =	1.635			
			10 H (1+450				
WLA afc	SECTION OF SECTION SEC	FC_tc)) + [(AFC_Yc*Qs*.019	RESERVED OF SERVED SERVED SERVED SERVED	;_tc))			
LTAMULT afc		C_Yc*Qs*Xs/Qd)]*(1-FOS/10 (cvh^2+1))-2.326*LN(cvh^2-	35				
LTA woll alc	wla afc*LTA	5	-1) 0.3)				
LIA_aic	WIA_AIC LIA	WOLI_aic					
WLA_cfc	(.011/e(-k*C	FC_tc) + [(CFC_Yc*Qs*.011/	Qd*e(-k*CFC	_tc))			
	+ Xd + (CF	C_Yc*Qs*Xs/Qd)]*(1-FOS/10	0)				
LTAMULT_cfc	EXP((0.5*LN(cvd^2/no_samples+1))-2.326*LN(cvd^2/no_samples+1)^0.5)						
LTA_cfc	wla_cfc*LTA	MULT_cfc					
AML MULT	EXP(2.326*L	N((cvd^2/no_samples+1)^0.	5)-0.5*LN(cvc	l^2/no_samples+	-1))		
AVG MON LIMIT	MIN(BAT_BP	J,MIN(LTA_afc,LTA_cfc)*AN	IL_MULT)				
INST MAX LIMIT	1.5*((av_mo	n_limit/AML_MULT)/LTAMUL	.T_afc)				

Attachment 2

Toxics Management Spreadsheet Version 1.4, May 2023

Discharge Information

Instructions	Discharge	Stream				
Facility: S	lippery Rocl	k Borough W	ГР	NPDES Permit No.:	PA0265781	Outfall No.: 001
Evaluation Typ	pe: <mark>Major</mark>	Sewage / Inc	lustrial Waste	Wastewater Descript	ion: PWS Backwash	

			Discharge	Characteris	tics			
Design Flow	Hardness (mg/l)*	pH (SU)*	F	Partial Mix Fa	actors (PMF:	s)	Complete Mix	x Times (min)
(MGD)*	Hardness (mg/l)*	рп (50)	AFC	CFC	THH	CRL	Q ₇₋₁₀	Q _h
0.01	137	8.06						

					0 if let	t blank	0.5 if le	eft blank	C	if left blan	k	1 if left	t blank
	Discharge Pollutant	Units	Ма	x Discharge Conc	Trib Conc	Stream Conc	Daily CV	Hourly CV	Strea m CV	Fate Coeff	FOS	Criteri a Mod	
	Total Dissolved Solids (PWS)	mg/L		5710									
12	Chloride (PWS)	mg/L		149									
1 8	Bromide	mg/L		1.15									
Group	Sulfate (PWS)	mg/L		18.4									
4000	Fluoride (PWS)	mg/L		0.27									
	Total Aluminum	μg/L		0.015									
	Total Antimony	μg/L	<	2									
	Total Arsenic	μg/L	<	2									
	Total Barium	μg/L		697									
	Total Beryllium	μg/L	٧	1									
	Total Boron	μg/L		120									
	Total Cadmium	μg/L	<	0.2									
	Total Chromium (III)	μg/L	٧	2									
	Hexavalent Chromium	μg/L	٧	1									
	Total Cobalt	μg/L	٧	1									
	Total Copper	μg/L		4									
2	Free Cyanide	μg/L											
Group	Total Cyanide	μg/L		10									
้อั	Dissolved Iron	μg/L	٧	20									
	Total Iron	μg/L		210									
	Total Lead	μg/L	٧	1									
	Total Manganese	μg/L		3750									
	Total Mercury	μg/L		0.1									
	Total Nickel	μg/L	٧	2									
	Total Phenols (Phenolics) (PWS)	μg/L		5									
	Total Selenium	μg/L	٧	5									
	Total Silver	μg/L	٧	0.4									
	Total Thallium	μg/L	٧	2									
	Total Zinc	μg/L		22.6									
	Total Molybdenum	μg/L	<	2									
	Acrolein	μg/L	٧										
	Acrylamide	μg/L	<										
	Acrylonitrile	μg/L	<										
	Benzene	μg/L	<										
	Bromoform	μg/L	<										

Carbon Tetrachloride	
Chlorodibromomethane	
Chloroethane	
2-Chloroethyl Vinyl Ether	
Chloroform	
Dichlorobromomethane	
1,1-Dichloroethane	
1,2-Dichloroethane μg/L <	
1,1-Dichloroethylene	
1,3-Dichloropropylene μg/L < 1,4-Dioxane μg/L < Ethylbenzene μg/L < Methyl Bromide μg/L < Methyl Chloride μg/L < Methylene μg/L < Methyl	
1,3-Dichloropropylene μg/L < 1,4-Dioxane μg/L < Ethylbenzene μg/L < Methyl Bromide μg/L < Methyl Chloride μg/L < Methylene μg/L < Methyl	
1,3-Dichloropropylene μg/L < 1,4-Dioxane μg/L < Ethylbenzene μg/L < Methyl Bromide μg/L < Methyl Chloride μg/L < Methylene μg/L < Methyl	
Ethylbenzene µg/L <	
Methyl Bromide μg/L Methyl Chloride μg/L Methylene Chloride μg/L 1,1,2,2-Tetrachloroethane μg/L Tetrachloroethylene μg/L Toluene μg/L 1,2-trans-Dichloroethylene μg/L 1,1,1-Trichloroethane μg/L 1,1,2-Trichloroethane μg/L Trichloroethylene μg/L	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
Methylene Chloride µg/L 1,1,2,2-Tetrachloroethane µg/L Tetrachloroethylene µg/L Toluene µg/L 1,2-trans-Dichloroethylene µg/L 1,1,1-Trichloroethane µg/L 1,1,2-Trichloroethane µg/L Trichloroethylene µg/L	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
Toluene μg/L 1,2-trans-Dichloroethylene μg/L 1,1,1-Trichloroethane μg/L 1,1,2-Trichloroethane μg/L Trichloroethylene μg/L	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
1,1,2-Trichloroethane	
Trichloroethylene µg/L <	
Vinyl Chloride ug/L <	
19	
2-Chlorophenol µg/L <	
2,4-Dichlorophenol µg/L <	
2,4-Dimethylphenol µg/L <	
4,6-Dinitro-o-Cresol µg/L <	
2-Nitrophenol µg/L < 4-Nitrophenol µg/L <	
p-Chloro-m-Cresol µg/L <	
Pentachlorophenol µg/L <	
Phenol µg/L <	
2,4,6-Trichlorophenol µg/L <	
Acenaphthene µg/L <	
Acenaphthylene µg/L <	
Anthracene µg/L <	
Benzidine µg/L <	
Benzo(a) Anthracene µg/L <	
Benzo(a)Pyrene µg/L <	
3,4-Benzofluoranthene µg/L <	
Benzo(ghi)Perylene µg/L <	
Benzo(k)Fluoranthene µg/L <	
Bis(2-Chloroethoxy) Methane	
Bis(2-Chloroethyl)Ether µg/L <	
Bis(2-Chloroisopropyl)Ether µg/L <	
Bis(2-Ethylhexyl)Phthalate	
4-Bromophenyl Phenyl Ether µg/L <	
Butyl Benzyl Phthalate µg/L <	
4-Chlorophenyl Phenyl Ether µg/L <	
Chrysene µg/L <	
Dibenzo(a,h)Anthrancene μg/L <	
1,2-Dichlorobenzene µg/L <	
1,3-Dichlorobenzene µg/L <	
μg/L <	
3,3-Dichlorobenzidine μg/L <	
3,3-Dichlorobenzidine	
Dimethyl Phthalate µg/L <	
Di-n-Butyl Phthalate µg/L <	
2,4-Dinitrotoluene µg/L <	

	2,6-Dinitrotoluene	μg/L	<						
	Di-n-Octyl Phthalate	μg/L	<						
	1,2-Diphenylhydrazine	µg/L	<						
	Fluoranthene	µg/L	<						
	Fluorene	μg/L	<						
	Hexachlorobenzene	μg/L	<						
	Hexachlorobutadiene		<						
	ANNAMARIA CHIANGI STONO ESCANO CON ANCINE DIDICTO	μg/L	<						
	Hexachlorocyclopentadiene	μg/L			-				
	Hexachloroethane	μg/L	<						
	Indeno(1,2,3-cd)Pyrene	μg/L	<						
	Isophorone	μg/L	<						
	Naphthalene	μg/L	<						
	Nitrobenzene	μg/L	<						
	n-Nitrosodimethylamine	μg/L	<						
	n-Nitrosodi-n-Propylamine	μg/L	<						
	n-Nitrosodiphenylamine	μg/L	<						
	Phenanthrene	µg/L	<						
	Pyrene	μg/L	<						
	1,2,4-Trichlorobenzene	μg/L	<						
_	CONTROL PROCESSOR		_						
	Aldrin	μg/L	<						
	alpha-BHC	μg/L	<						
	beta-BHC	μg/L	<						
	gamma-BHC	μg/L	<						
	delta BHC	μg/L	<						
	Chlordane	μg/L	<						
	4,4-DDT	μg/L	<						
	4,4-DDE	μg/L	<						
	4,4-DDD	µg/L	<						
	Dieldrin	µg/L	<						
	alpha-Endosulfan	µg/L	<						
			<		-				
٥	beta-Endosulfan	μg/L	-						
<u>d</u>	Endosulfan Sulfate	μg/L	<						
~	Endrin	μg/L	<						
	Endrin Aldehyde	μg/L	<						
	Heptachlor	μg/L	<						
	Heptachlor Epoxide	μg/L	<						
	PCB-1016	μg/L	<						
	PCB-1221	μg/L	<						
	PCB-1232	μg/L	<						
	PCB-1242	μg/L	<						
	PCB-1248	μg/L	<			The state of the s			
	PCB-1254	µg/L	<						
	PCB-1260	μg/L	<						
					-				
	PCBs, Total	μg/L	<						
	Toxaphene	μg/L	<						
	2,3,7,8-TCDD	ng/L	<						
	Gross Alpha	pCi/L							
,	Total Beta	pCi/L	<						
Group	Radium 226/228	pCi/L	<						
2	Total Strontium	μg/L	<						
פ	Total Uranium	μg/L	<						
	Osmotic Pressure	mOs/kg							

Toxics Management Spreadsheet Version 1.4, May 2023

Stream / Surface Water Information

Slippery Rock Borough WTP, NPDES Permit No. PA0265781, Outfall 001

Total Cobalt

Toxics Management Spreadsheet Version 1.4, May 2023

Model Results

Slippery Rock Borough WTP, NPDES Permit No. PA0265781, Outfall 001

nstruction	Results		RETUR	RN TO INPU	TS (SAVE AS	PDF	PRI	NT	● All	○ Inputs	O Results	O Limits	
☑ Hydrod	dynamics													
7-10														
RMI	Stream Flow (cfs)	PWS With (cfs)		Net Stream		arge Analy low (cfs)	Slope (t/ft) Dep	th (ft)	Width (ft)	W/D Ratio	Velocity (fps)	Time	Complete Mix Time (min)
24.5	11.42			11.42		0.015	0.000	8.0	331	58.707	70.68	0.234	1.173	220.083
20	20.01	20		20.0108										
h														
RMI	Stream Flow (cfs)	PWS With (cfs)	731-733-037-03	Net Stream		arge Analy low (cfs)	sis Slope (t/ft) Dep	th (ft)	Width (ft)	W/D Ratio	Velocity (fps)	Time (days)	Complete Mix Time (min)
24.5	62.41			62.41		0.015	0.000	8 1.7	753	58.707	33.489	0.607	0.453	71.937
20	101.928	ie .		101.93										
☑ AF	load Allocatio		T (min):		PMF:	0.261	(00000000	lysis Hard		ng/I): 10	0.19	Analysis pH:	7.00	
	Pollutants		Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	VVL	4 (µg/L)		С	omments	
	issolved Solid		0	0		0	N/A	N/A		N/A				
	Chloride (PWS		0	0		0	N/A	N/A		N/A				
	Sulfate (PWS		0	0		0	N/A	N/A	_	N/A				
	Fluoride (PWS Total Aluminur		0	0		0	N/A 750	N/A 750		N/A 5,230				
	Total Antimon		0	0		0	1,100	1,100		3,004				
	Total Arsenic		0	0		0	340	340		5,838		Chem Tran	slator of 1 a	onlied
	Total Barium		0	0		0	21,000	21,000		66,435		Sherii ridi		
	Total Boron		0	0		0	8,100	8,100		68,482				
-	Total Cadmiur	n	0	0		0	2.017	2.14		414		Chem Transl	ator of 0.944	applied
To	tal Chromium	(III)	0	0		0	570.655	1,806	34	19,688		Chem Transl	ator of 0.316	applied
Hex	avalent Chror		0	0		0	16	16.3		,155		Chem Transl	ator of 0.982	applied
	Total Cabalt		0	0		0	06	05.0	1 1	2 206	•	•		

Model Results 3/13/2024 Page 5

Total Copper	0	0	0	13.463	14.0	2,716	Chem Translator of 0.96 applied
Dissolved Iron	0	0	0	N/A	N/A	N/A	
Total Iron	0	0	0	N/A	N/A	N/A	
Total Lead	0	0	0	64.716	81.8	15,848	Chem Translator of 0.791 applied
Total Manganese	0	0	0	N/A	N/A	N/A	
Total Mercury	0	0	0	1.400	1.65	319	Chem Translator of 0.85 applied
Total Nickel	0	0	0	468.993	470	90,998	Chem Translator of 0.998 applied
Total Phenols (Phenolics) (PWS)	0	0	0	N/A	N/A	N/A	
Total Selenium	0	0	0	N/A	N/A	N/A	Chem Translator of 0.922 applied
Total Silver	0	0	0	3.227	3.8	735	Chem Translator of 0.85 applied
Total Thallium	0	0	0	65	65.0	12,587	
Total Zinc	0	0	0	117.370	120	23,239	Chem Translator of 0.978 applied

☑ CFC C	CT (min): ##	**********	PMF:	1	Ana	alysis Hardne	ess (mg/l):	100.05 Analysis pH: 7.00
Pollutants	Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Fluoride (PWS)	0	0		0	N/A	N/A	N/A	
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Antimony	0	0		0	220	220	162,556	
Total Arsenic	0	0		0	150	150	110,834	Chem Translator of 1 applied
Total Barium	0	0		0	4,100	4,100	3,029,460	
Total Boron	0	0		0	1,600	1,600	1,182,228	
Total Cadmium	0	0		0	0.246	0.27	200	Chem Translator of 0.909 applied
Total Chromium (III)	0	0		0	74.145	86.2	63,704	Chem Translator of 0.86 applied
Hexavalent Chromium	0	0		0	10	10.4	7,681	Chem Translator of 0.962 applied
Total Cobalt	0	0		0	19	19.0	14,039	
Total Copper	0	0		0	8.960	9.33	6,896	Chem Translator of 0.96 applied
Dissolved Iron	0	0		0	N/A	N/A	N/A	
Total Iron	0	0		0	1,500	1,500	1,108,339	WQC = 30 day average; PMF = 1
Total Lead	0	0		0	2.518	3.18	2,352	Chem Translator of 0.791 applied
Total Manganese	0	0		0	N/A	N/A	N/A	
Total Mercury	0	0		0	0.770	0.91	669	Chem Translator of 0.85 applied
Total Nickel	0	0		0	52.029	52.2	38,559	Chem Translator of 0.997 applied
Total Phenols (Phenolics) (PWS)	0	0		0	N/A	N/A	N/A	
Total Selenium	0	0		0	4.600	4.99	3,686	Chem Translator of 0.922 applied
Total Silver	0	0		0	N/A	N/A	N/A	Chem Translator of 1 applied
Total Thallium	0	0		0	13	13.0	9,606	
Total Zinc	0	0		0	118.189	120	88,569	Chem Translator of 0.986 applied
☑ <i>THH</i> C	CT (min): ##	********	PMF:	1	Ana	alysis Hardne	ess (mg/l):	N/A Analysis pH: N/A
Pollutante	Conc	Stream	Trib Conc	Fate	WQC	WQ Obj	MALA (HOLL)	Comments

i ondiante	(ug/L)	CV	(µg/L)	Coef	(µg/L)	(µg/L)	AALU (hAir)	Comments
Total Dissolved Solids (PWS)	0	0		0	500,000	500,000	N/A	
Chloride (PWS)	0	0		0	250,000	250,000	N/A	
Sulfate (PWS)	0	0		0	250,000	250,000	N/A	
Fluoride (PWS)	0	0		0	2,000	2,000	N/A	
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Antimony	0	0		0	5.6	5.6	4,138	
Total Arsenic	0	0		0	10	10.0	7,389	
Total Barium	0	0		0	2,400	2,400	1,773,342	
Total Boron	0	0		0	3,100	3,100	2,290,567	
Total Cadmium	0	0		0	N/A	N/A	N/A	
Total Chromium (III)	0	0		0	N/A	N/A	N/A	
Hexavalent Chromium	0	0		0	N/A	N/A	N/A	
Total Cobalt	0	0		0	N/A	N/A	N/A	
Total Copper	0	0		0	N/A	N/A	N/A	
Dissolved Iron	0	0		0	300	300	221,668	
Total Iron	0	0		0	N/A	N/A	N/A	
Total Lead	0	0		0	N/A	N/A	N/A	
Total Manganese	0	0		0	1,000	1,000	738,893	
Total Mercury	0	0		0	0.050	0.05	36.9	
Total Nickel	0	0		0	610	610	450,725	
Total Phenols (Phenolics) (PWS)	0	0		0	5	5.0	N/A	
Total Selenium	0	0		0	N/A	N/A	N/A	
Total Silver	0	0		0	N/A	N/A	N/A	
Total Thallium	0	0		0	0.24	0.24	177	
Total Zinc	0	0		0	N/A	N/A	N/A	

☑ CRL	CCT (min): 71	.937	PMF:	1	Ana	alysis Hardne	ess (mg/l):	N/A Analysis pH: N/A
Pollutants	Conc (ug/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Fluoride (PWS)	0	0		0	N/A	N/A	N/A	
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Antimony	0	0		0	N/A	N/A	N/A	
Total Arsenic	0	0		0	N/A	N/A	N/A	
Total Barium	0	0		0	N/A	N/A	N/A	
Total Boron	0	0		0	N/A	N/A	N/A	
Total Cadmium	0	0		0	N/A	N/A	N/A	
Total Chromium (III)	0	0		0	N/A	N/A	N/A	
Hexavalent Chromium	0	0		0	N/A	N/A	N/A	
Total Cobalt	0	0		0	N/A	N/A	N/A	
Total Copper	0	0		0	N/A	N/A	N/A	

NPDES Permit Fact Sheet Slippery Rock Borough WTP

Dissolved Iron	0	0	0	N/A	N/A	N/A	
Total Iron	0	0	0	N/A	N/A	N/A	
Total Lead	0	0	0	N/A	N/A	N/A	
Total Manganese	0	0	0	N/A	N/A	N/A	
Total Mercury	0	0	0	N/A	N/A	N/A	
Total Nickel	0	0	0	N/A	N/A	N/A	
Total Phenols (Phenolics) (PWS)	0	0	0	N/A	N/A	N/A	
Total Selenium	0	0	0	N/A	N/A	N/A	
Total Silver	0	0	0	N/A	N/A	N/A	
Total Thallium	0	0	0	N/A	N/A	N/A	
Total Zinc	0	0	0	N/A	N/A	N/A	

☑ Recommended WQBELs & Monitoring Requirements

No. Samples/Month:

2000

	Mass	Limits	Concentration Limits						
Pollutants	AML (lbs/day)	MDL (lbs/day)	AML	MDL	IMAX	Units	Governing WQBEL	WQBEL Basis	Comments

Other Pollutants without Limits or Monitoring

The following pollutants do not require effluent limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharge concentration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QL).

Pollutants	Governing WQBEL	Units	Comments
Total Dissolved Solids (PWS)	N/A	N/A	PWS Not Applicable
Chloride (PWS)	N/A	N/A	PWS Not Applicable
Bromide	N/A	N/A	No WQS
Sulfate (PWS)	N/A	N/A	PWS Not Applicable
Fluoride (PWS)	N/A	N/A	PWS Not Applicable
Total Aluminum	93,086	μg/L	Discharge Conc ≤ 10% WQBEL
Total Antimony	N/A	N/A	Discharge Conc < TQL
Total Arsenic	N/A	N/A	Discharge Conc < TQL
Total Barium	1,773,342	μg/L	Discharge Conc ≤ 10% WQBEL
Total Beryllium	N/A	N/A	No WQS
Total Boron	1,005,334	μg/L	Discharge Conc ≤ 10% WQBEL
Total Cadmium	200	µg/L	Discharge Conc < TQL
Total Chromium (III)	63,704	μg/L	Discharge Conc < TQL
Hexavalent Chromium	2,022	μg/L	Discharge Conc < TQL
Total Cobalt	11,791	μg/L	Discharge Conc < TQL
Total Copper	1,741	μg/L	Discharge Conc ≤ 10% WQBEL
Total Cyanide	N/A	N/A	No WQS

NPDES Permit Fact Sheet Slippery Rock Borough WTP

Dissolved Iron	221,668	μg/L	Discharge Conc < TQL
Total Iron	1,108,339	μg/L	Discharge Conc ≤ 10% WQBEL
Total Lead	2,352	μg/L	Discharge Conc < TQL
Total Manganese	738,893	µg/L	Discharge Conc ≤ 10% WQBEL
Total Mercury	36.9	μg/L	Discharge Conc ≤ 10% WQBEL
Total Nickel	38,559	µg/L	Discharge Conc < TQL
Total Phenols (Phenolics) (PWS)		µg/L	PWS Not Applicable
Total Selenium	3,686	μg/L	Discharge Conc < TQL
Total Silver	471	μg/L	Discharge Conc < TQL
Total Thallium	177	µg/L	Discharge Conc < TQL
Total Zinc	14,895	μg/L	Discharge Conc ≤ 10% WQBEL
Total Molybdenum	N/A	N/A	No WQS

Attachment 3

TRC EVALUA	ATION									
Input appropria	te values in <i>i</i>	A3:A9 and D3:D9								
11.4	= Q stream (cfs)	0.5	= CV Daily						
0.19	= Q discharg	e (MGD)	0.5	= CV Hourly						
30	= no. sample	8	1	= AFC_Partial Mix Factor						
0.3	= Chlorine D	emand of Stream	1	= CFC_Partial f	Mix Factor					
0	= Chlorine D	emand of Discharge	15	= AFC_Criteria	Compliance Time (min)					
	= BAT/BPJ V		720	= CFC_Criteria	Compliance Time (min)					
0	= % Factor o	of Safety (FOS)	0	=Decay Coeffic	eient (K)					
Source	Reference	AFC Calculations		Reference	CFC Calculations					
TRC	1.3.2.iii	WLA afc =		1.3.2.iii	WLA cfc = 12.073					
PENTOXSD TRG	5.1a	LTAMULT afc =	TOTAL STATE OF THE	5.1c	LTAMULT cfc = 0.581					
PENTOXSD TRG	5.1b	LTA_afc=	4.617	5.1d	LTA_cfc = 7.019					
Source		Effluer	nt Limit Calcu	lations						
PENTOXSD TRG	5.1f		AML MULT =	1.231						
PENTOXSD TRG	5.1g		_I M IT (mg/l) =		BAT/BPJ					
		INST MAX I	_IMIT (mg/l) =	1.635						
WLA afc	STREET, STATESTICS STREET, SELECTION	FC_tc)) + [(AFC_Yc*Qs*.019 C Yc*Qs*Xs/Qd)]*(1-FOS/10		:_tc))						
LTAMULT afc	CONTRACTOR OF THE STATE OF	(cvh^2+1))-2.326*LN(cvh^2+	400							
LTA_afc	wla_afc*LTA	L								
WLA_cfc		FC_tc) + [(CFC_Yc*Qs*.011/ C_Yc*Qs*Xs/Qd)]*(1-FOS/10	10.00	_tc))						
LTAMULT_cfc	EXP((0.5*LN)	(cvd^2/no_samples+1))-2.32	6*LN(cvd^2/n	o_samples+1)^(0.5)					
LTA_cfc	wla_cfc*LTA	MULT_cfc								
AML MULT	2.28	N((cvd^2/no_samples+1)^0.		^2/no_samples+	- 1))					
AVG MON LIMIT		J,MIN(LTA_afc,LTA_cfc)*AN	•							
INST MAX LIMIT	1.5*((av_moi	n_limit/AML_MULT)/LTAMUL	.T_afc)							

Attachment 4

Toxics Management Spreadsheet Version 1.4, May 2023

Discharge Information

Instructions	Discharg	e Stream				
Facility:	Slippery R	ock Borough W1	P	NPDES Permit No.: P	PA0265781	Outfall No.: 002
Evaluation T	ype: Ma	<mark>jor Sewage / Ind</mark>	ustrial Waste	Wastewater Description	on: Reverse Osmosis	s Reject Wastewater

			Discharge	Characteris	tics			
Design Flow	Hardness (ms/l)*	pH (SU)*	F	Partial Mix F	s)	Complete Mix Times (min)		
(MGD)*	(MGD)* Hardness (mg/l)*		AFC	CFC	THH	CRL	Q ₇₋₁₀	Q _h
0.19	580	7.7						

					0 if lef	t blank	0.5 if le	eft blank	O	if left blan	k	1 if left	t blank
	Discharge Pollutant	Units	Ма	x Discharge Conc	Trib Conc	Stream Conc	Daily CV	Hourly CV	Strea m CV	Fate Coeff	FOS	Criteri a Mod	Chem Transl
	Total Dissolved Solids (PWS)	mg/L		1950									
7	Chloride (PWS)	mg/L											
Group 1	Bromide	mg/L											
5	Sulfate (PWS)	mg/L											
4505	Fluoride (PWS)	mg/L											
	Total Aluminum	μg/L		145									
	Total Antimony	μg/L	<										
	Total Arsenic	μg/L	<										
	Total Barium	μg/L											
	Total Beryllium	μg/L	<										
	Total Boron	μg/L											
	Total Cadmium	μg/L	<										
	Total Chromium (III)	μg/L	٧										
	Hexavalent Chromium	μg/L	<										
	Total Cobalt	μg/L	<										
	Total Copper	μg/L											
2	Free Cyanide	μg/L											
Group	Total Cyanide	μg/L											
5	Dissolved Iron	μg/L	٧										
-81	Total Iron	μg/L		1000									
	Total Lead	μg/L	<										
	Total Manganese	μg/L		25500									
	Total Mercury	μg/L											
	Total Nickel	μg/L	<										
	Total Phenols (Phenolics) (PWS)	μg/L											
	Total Selenium	μg/L	<										
	Total Silver	μg/L	<										
	Total Thallium	μg/L	<										
	Total Zinc	μg/L											
	Total Molybdenum	μg/L	<										
	Acrolein	μg/L	<										
	Acrylamide	μg/L	<										
	Acrylonitrile	μg/L	<										
	Benzene	μg/L	<										
	Bromoform	μg/L	<										

1	Carbon Tetrachloride	μg/L	<				
	Chlorobenzene	μg/L	_				
	Chlorodibromomethane	μg/L	<				
	Chloroethane		<				
	2-Chloroethyl Vinyl Ether	μg/L	<				
		μg/L	<				
	Chloroform	μg/L		<u> </u>			
	Dichlorobromomethane	μg/L	<				
	1,1-Dichloroethane	μg/L	<				
m	1,2-Dichloroethane	μg/L	<				
Group	1,1-Dichloroethylene	μg/L	<				
1%	1,2-Dichloropropane	μg/L	<				
١٥	1,3-Dichloropropylene	μg/L	<				
	1,4-Dioxane	μg/L	<				
	Ethylbenzene	μg/L	<				
	Methyl Bromide	μg/L	<				
	Methyl Chloride	μg/L	<				
	Methylene Chloride	μg/L	<				
	1,1,2,2-Tetrachloroethane	μg/L	<				
	Tetrachloroethylene	μg/L	<				
	Toluene	μg/L	<				
	1,2-trans-Dichloroethylene	μg/L	<	1			
	•		<				
	1,1,1-Trichloroethane	μg/L					
1	1,1,2-Trichloroethane	μg/L	<				
	Trichloroethylene	μg/L	<				
\vdash	Vinyl Chloride	μg/L	<				
	2-Chlorophenol	μg/L	<				
	2,4-Dichlorophenol	μg/L	<				
	2,4-Dimethylphenol	μg/L	<				
	4,6-Dinitro-o-Cresol	μg/L	<				
4	2,4-Dinitrophenol	μg/L	<				
Group	2-Nitrophenol	μg/L	<				
ij	4-Nitrophenol	μg/L	<				
-	p-Chloro-m-Cresol	μg/L	<				
	Pentachlorophenol	μg/L	<				
	Phenol	μg/L	<				
	2,4,6-Trichlorophenol	μg/L	<				
\vdash	Acenaphthene	μg/L	<				
	Acenaphthylene	μg/L	<				
	Anthracene		<	1 1			
		μg/L		1			
	Benzidine	μg/L	<	1			
	Benzo(a) Anthracene	μg/L	<				
	Benzo(a)Pyrene	μg/L	<				
	3,4-Benzofluoranthene	μg/L	<				
1	Benzo(ghi)Perylene	μg/L	<				
1	Benzo(k)Fluoranthene	μg/L	<				
1	Bis(2-Chloroethoxy)Methane	μg/L	<				
1	Bis(2-Chloroethyl)Ether	μg/L	<				
1	Bis(2-Chloroisopropyl)Ether	μg/L	<				
1	Bis(2-Ethylhexyl)Phthalate	μg/L	<				
1	4-Bromophenyl Phenyl Ether	μg/L	<				
1	Butyl Benzyl Phthalate	μg/L	<				
1	2-Chloronaphthalene	μg/L	<				
1	4-Chlorophenyl Phenyl Ether	μg/L	<				
1	Chrysene	µg/L	<				
1	Dibenzo(a,h) Anthrancene	μg/L	<				
1	1,2-Dichlorobenzene	μg/L	<				
1			<				
	1,3-Dichlorobenzene	μg/L					
5	1,4-Dichlorobenzene	μg/L	<				
ΙŽ	3,3-Dichlorobenzidine	μg/L	<				
Group	Diethyl Phthalate	μg/L	<				
١	Dimethyl Phthalate	μg/L	<				
1	Di-n-Butyl Phthalate	μg/L	<				
	2,4-Dinitrotoluene	μg/L	<				

	0.0 District		١.					
	2,6-Dinitrotoluene	μg/L	<					
	Di-n-Octyl Phthalate	μg/L	<					
	1,2-Diphenylhydrazine	μg/L	-					
	Fluoranthene	μg/L	<					
	Fluorene	μg/L	<					
	Hexachlorobenzene	μg/L	<					
	Hexachlorobutadiene	μg/L	<					
	Hexachlorocyclopentadiene	μg/L	<					
	Hexachloroethane	μg/L	<					
	Indeno(1,2,3-cd)Pyrene	μg/L	<					
	Isophorone	μg/L	<					
	Naphthalene	μg/L	<					
	Nitrobenzene	μg/L	<					
	n-Nitrosodimethylamine	μg/L	<					
	n-Nitrosodi-n-Propylamine	μg/L	<					
	n-Nitrosodiphenylamine	μg/L	<					
	Phenanthrene	μg/L	<					
	Pyrene	μg/L	٧					
	1,2,4-Trichlorobenzene	μg/L	<					
	Aldrin	μg/L	<					
	alpha-BHC	μg/L	<					
	beta-BHC	μg/L	<					
	gamma-BHC	μg/L	<					
	delta BHC	μg/L	<					
	Chlordane	μg/L	<					
	4,4-DDT	μg/L	<					
	4,4-DDE	µg/L	<					
	4,4-DDD	µg/L	<					
	Dieldrin	μg/L	<					
	alpha-Endosulfan	μg/L	<					
	beta-Endosulfan	μg/L	<					
0	Endosulfan Sulfate	µg/L	<					
2	Endrin	μg/L	<					
2	Endrin Aldehyde	µg/L	<					
	Heptachlor	µg/L	<					
	<u>'</u>		<		4			
	Heptachlor Epoxide PCB-1016	μg/L	<					
	PCB-1016 PCB-1221	μg/L	<					
		μg/L						
	PCB-1232	μg/L	<					
	PCB-1242	μg/L	<					
	PCB-1248	μg/L	<			-		
	PCB-1254	μg/L	<					
	PCB-1260	μg/L	<					
	PCBs, Total	μg/L	<					
	Toxaphene	μg/L	<					
	2,3,7,8-TCDD	ng/L	<					
	Gross Alpha	pCi/L						
	Total Beta	pCi/L	<					
dnois	Radium 226/228	pCi/L	<					
2	Total Strontium	μg/L	<					
,	Total Uranium	μg/L	<					
	Osmotic Pressure	mOs/kg						
- 1								

Toxics Management Spreadsheet Version 1.4, May 2023

Stream / Surface Water Information

Slippery Rock Borough WTP, NPDES Permit No. PA0265781, Outfall 002

Toxics Management Spreadsheet Version 1.4, May 2023

Model Results

Slippery Rock Borough WTP, NPDES Permit No. PA0265781, Outfall 002

WIOGE	ricsun																	
Instruction	s Results		RETU	RN TO INPU	тѕ	s	AVE AS PDI	F) [PRINT) (All) Inputs	○ Results	O Limits				
	lynamics																	
Q ₇₋₁₀ RMI	Stream Flow (cfs)	PWS With		Net Stream			ge Analysis w (cfs)	Slope (ft/ft)	Depth (f	t) Wi	dth (ft)	W/D Ratio	Velocity (fps)	Time	Complete Mix Time (min)			
24.5 20	11.42	(5,5)	,	11.42			.294	0.0008	0.832	5	9.199	71.113	0.238	(days) 1.157	212.553			
Q _h	NET 17												<u> </u>					
RMI	Stream Flow (cfs)	PWS With (cfs)		Net Stream			ge Analysis w (cfs)	Slope (ft/ft)	Depth (f	t) Wi	dth (ft)	W/D Ratio	Velocity (fps)	Time	Complete Mix Time (min)			
24.5 20	62.41 101.928			62.41 101.93	1	0.294		0.0008	1.742	5	9.199	33.986	0.608	0.452	73.197			
☑ Wastel	oad Allocati		T (min): [15	PM	F: [0.266	Analysi	s Hardness	s (mg/l)	14	2.41	Analysis pH:	7.03				
	Pollutants		Conc	Stream CV	Trib C (µg/		Coef ((µg/L)	(Pg/L)	VLA (μ	g/L)		C	omments				
20.00	ssolved Solid Fotal Aluminu		0	0			0	N/A 750	N/A 750	N/A 8,488	3							
Т	Total Iron otal Mangane	ese	0	0				N/A N/A	N/A N/A	N/A N/A								
			1															

Model Results

Page 6

								-
				ĵ				
))))				
☑ CFC CC	T (min): ##		PMF:	1		alysis Hardne		112.05 Analysis pH: 7.01
Pollutants	Conc	Stream CV	(µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Iron	0	0		0	1,500	1,500	59,755	WQC = 30 day average; PMF = 1
Total Manganese	0	0		0	N/A	N/A	N/A	
☑ <i>THH</i> CC	T (min): ##		PMF:	1		I alysis Hardne		N/A Analysis pH: N/A
Pollutants	Conc	Stream	Trib Conc	Fate	WQC	WQ Obj	IVVI V (HOVE)	Commente

3/13/2024

i Oliutarita	(ug/L)	CV	(µg/L)	Coef	(µg/L)	(µg/L)	TATE (HALL)	Continents
Total Dissolved Solids (PWS)	0	0		0	500,000	500,000	N/A	
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Iron	0	0		0	N/A	N/A	N/A	
Total Manganese	0	0		0	1,000	1,000	39,836	
	1							
		 						
	1							
	1							
	1							
	1	1						
	1	_						
	1							
				1				
☑ CRL CC	CT (min): 73	.197	PMF:	1	Ana	alysis Hardne	ess (mg/l):	N/A Analysis pH: N/A
	Stream	Stream	Trib Conc	Fate	WQC	WQ Obj		
Pollutants	Conc	CV	(µg/L)	Coef	(µg/L)	(µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	(ua/L)	0	(P9/L)	0	N/A	N/A	N/A	
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Iron	0	0		0	N/A	N/A	N/A	
Total Manganese	0	0		0	N/A	N/A	N/A	
Total Manganese	0	0		U	IVA	IN/A	IVA	
		_						
	-							
	1							
	1							

☑ Recommended WQBELs & Monitoring Requirements

No. Samples/Month:

4	
	_

	Mass	Limits	Concentration Limits						
Pollutants	AML (lbs/day)	MDL (lbs/day)	AML	MDL	IMAX	Units	Governing WQBEL	WQBEL Basis	Comments
Total Manganese	63.1	98.5	39,836	62,151	99,591	μg/L	39,836	THH	Discharge Conc ≥ 50% WQBEL (RP)

Other Pollutants without Limits or Monitoring

The following pollutants do not require effluent limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharge concentration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QL).

Pollutants	Governing WQBEL	Units	Comments		
Total Dissolved Solids (PWS)	N/A	N/A	PWS Not Applicable		
Total Aluminum	5,440	µg/L	Discharge Conc ≤ 10% WQBEL		
Total Iron	59,755	μg/L	Discharge Conc ≤ 10% WQBEL		