

Northwest Regional Office CLEAN WATER PROGRAM

Application Type Renewal
Facility Type Industrial
Major / Minor
Minor

NPDES PERMIT FACT SHEET INDIVIDUAL INDUSTRIAL WASTE (IW) AND IW STORMWATER

Application No. PA0272833

APS ID 1006759

Authorization ID 1359896

Applicant Name	Collin	s Pine Company	Facility Name	Kane Hardwood McKean County
Applicant Address	P.O. B	3ox 807	Facility Address	95 Hardwood Drive
	Kane,	PA 16735-0807	_	Kane, PA 16735-3011
Applicant Contact	Contact Howard Hughes		Facility Contact	
Applicant Phone	(503) 826-5250		Facility Phone	
Client ID	28233		Site ID	456806
SIC Code	2421		Municipality	Kane Borough
SIC Description	Sawm	ills and Planing Mills, General	County	McKean
Date Application Rece	eived	November 1, 2019	EPA Waived?	Yes
Date Application Acce	epted	December 3, 2019	If No, Reason	

Summary of Review

This facility is a sawmill which manufactures wood products from trees. Plant operations include debarking, sawing, planing, drying, storing and shipping lumber.

The permittee is proposing to reduce the number of outfalls from ten in the current permit to six (five main outfalls and one internal outfall) by constructing multiple channels with rock filters to convey stormwater to newly constructed sedimentation basins, in order to better treat the stormwater leaving the site. The combined drainage area of the facility will remain the same.

There are currently no open violations listed in EFACTS for this permittee (7/01/2021).

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Approve	Deny	Signatures	Date
X		Adam Pesek Adam J. Pesek, E.I.T. / Environmental Engineering Specialist	July 1, 2021
Х		Justin C. Dickey Justin C. Dickey, P.E. / Environmental Engineer Manager	July 8, 2021

Discharge, Receiving Waters and Water Supply Inform	mation						
Outfall No. 002	Design Flow (MGD)	0					
Latitude 41° 40' 20.72"	Longitude	-78° 49' 19.45"					
Quad Name Kane	Quad Code	0515					
Wastewater Description: Stormwater associated wit	h industrial activities						
Receiving Waters	Stream Code	55350					
NHD Com ID <u>100469017</u>	RMI	0.21					
Drainage Area	Yield (cfs/mi²)	0					
Q ₇₋₁₀ Flow (cfs) 0	Q ₇₋₁₀ Basis	Dry Swale					
Elevation (ft) 1981	Slope (ft/ft)						
Watershed No. 16-F	Chapter 93 Class.	HQ-CWF					
Existing Use	Existing Lice Qualifier						
Exceptions to Use	Exceptions to Criteria						
Assessment Status Attaining Use(s)							
Cause(s) of Impairment							
Source(s) of Impairment							
TMDL Status	Name						
Background/Ambient Data	Data Source						
pH (SU)	8/13/2020 stream sample on \	West Run					
Temperature (°C)	Default (CWF)						
Hardness (mg/L)	8/13/2020 stream sample on \	West Run					
Other:							
Nearest Downstream Public Water Supply Intake	Aqua Pennsylvania, Inc Em	lenton					
PWS Waters Allegheny River	Flow at Intake (cfs)						
PWS RMI 90.0	Distance from Outfall (mi) 115 (approx.)						

Changes Since Last Permit Issuance: RMIs were refined, new ambient stream data found.

Discharge, Receiving Waters and Water Supply Inform	mation						
Outfall No. 006	Design Flow (MGD)	0					
Latitude 41° 40' 24.22"	Longitude	-78° 49' 39.78"					
Quad Name Kane	Quad Code	0515					
Wastewater Description: Stormwater associated with	th industrial activities						
Receiving Waters	Stream Code	55352					
NHD Com ID <u>100469017</u>	RMI	0.9900					
Drainage Area	Yield (cfs/mi²)	0					
Q ₇₋₁₀ Flow (cfs) 0	Q ₇₋₁₀ Basis	Dry Swale					
Elevation (ft) 1982	Slope (ft/ft)						
Watershed No. 16-F	Chapter 93 Class.	HQ-CWF					
Existing Use	Existing Use Qualifier						
Exceptions to Use	Exceptions to Criteria						
Assessment Status Attaining Use(s)							
Cause(s) of Impairment							
Source(s) of Impairment							
TMDL Status	Name						
Background/Ambient Data	Data Source						
pH (SU) 7.47	8/13/2020 stream sample on	West Run					
Temperature (°C)	Default (CWF)						
Hardness (mg/L)	8/13/2020 stream sample on	West Run					
Other:							
Nearest Downstream Public Water Supply Intake	Aqua Pennsylvania, Inc Em	lenton					
PWS Waters Allegheny River	Flow at Intake (cfs)						
PWS RMI 90.0	Distance from Outfall (mi) 115 (approx.)						

Changes Since Last Permit Issuance: Stream codes and RMIs were refined, new ambient stream data found.

Discharge, Receiving Waters and Water Supply Infor	mation						
Outfall No. 007	Design Flow (MGD)	0					
Latitude 41° 40' 21.81"	Longitude	-78° 49' 37.53"					
Quad Name Kane	Quad Code	0515					
Wastewater Description: Stormwater associated wi	th industrial activities						
Receiving Waters	Stream Code	55352					
NHD Com ID 100469017	RMI	0.5800					
Drainage Area	Yield (cfs/mi²)	0					
Q ₇₋₁₀ Flow (cfs) 0	Q ₇₋₁₀ Basis	Dry Swale					
Elevation (ft) 1980	Slope (ft/ft)						
Watershed No. 16-F	Chapter 93 Class.	HQ-CWF					
Existing Use	Existing Use Qualifier						
Exceptions to Use	Exceptions to Criteria						
Assessment Status Attaining Use(s)							
Cause(s) of Impairment							
Source(s) of Impairment							
TMDL Status	Name						
Background/Ambient Data	Data Source						
pH (SU) <u>7.47</u>	8/13/2020 stream sample on \	West Run					
Temperature (°C) 20	Default (CWF)						
Hardness (mg/L)	8/13/2020 stream sample on \	West Run					
Other:							
Nearest Downstream Public Water Supply Intake	Aqua Pennsylvania, Inc Em	lenton					
PWS Waters Allegheny River	Flow at Intake (cfs)						
PWS RMI 90.0	Distance from Outfall (mi) 115 (approx.)						

Changes Since Last Permit Issuance: Stream codes and RMIs were refined, new ambient stream data found.

Discharge, Receiving Waters and Water Supply Inform	mation	
Outfall No. 008	Design Flow (MGD)	0
Latitude 41° 40' 14.94"	Longitude	-78° 49' 38.01"
Quad Name Kane	Quad Code	0515
Wastewater Description: Stormwater associated with	th industrial activities and interna	al outfall 108
Unnamed Tributary to West Run	Otro O - 1 -	55050
Receiving Waters (HQ-CWF)	Stream Code	55352
NHD Com ID <u>100469017</u>	RMI	0.58
Drainage Area	Yield (cfs/mi²)	0
Q ₇₋₁₀ Flow (cfs) 0	Q ₇₋₁₀ Basis	Dry Swale
Elevation (ft) 1977	Slope (ft/ft)	0.0399
Watershed No. <u>16-F</u>	Chapter 93 Class.	HQ-CWF
Existing Use	Existing Use Qualifier	
Exceptions to Use	Exceptions to Criteria	
Assessment Status Attaining Use(s)		
Cause(s) of Impairment		
Source(s) of Impairment		
TMDL Status	Name	
Background/Ambient Data	Data Source	
pH (SU) 7.47	8/13/2020 stream sample on	West Run
Temperature (°C)	Default (CWF)	
Hardness (mg/L)	8/13/2020 stream sample on	West Run
Other:		
Nearest Downstream Public Water Supply Intake	Aqua Pennsylvania, Inc Em	lenton
PWS Waters Allegheny River	_ Flow at Intake (cfs)	1801
PWS RMI 90.0	Distance from Outfall (mi)	115 (approx.)

Changes Since Last Permit Issuance: Stream codes and RMIs were refined, new ambient stream data found.

	Compliance History
Summary of DMRs:	pH has exceeded the maximum limit at Outfall 001 on numerous occasions in the previous permit cycle. Total iron discharge concentrations are rather high in stormwater discharge samples for this type of industrial activity.
Summary of Inspections:	 The most recent site inspection was conducted on 4/07/2021. Recommendations on the inspection report are as follows: PPC plan needs to be updated/expanded to include all elements required in Permit #PA0272833 Part C B. and should be reviewed/updated at least annually. Install a cover over the fueling station and keep spill kits in close proximity to where fuel/oils are handled or stored. I observed in several open roll offs containing scrap metal. Scrap metal should be kept under roof or disposed of properly. Remove pipes /install caps on discharge pipes at Outfall #s 003 and 004. All spills should be cleaned up ASAP and disposed of properly.

Compliance History

DMR Data for Outfall 001 (from April 1, 2020 to March 31, 2021)

Parameter	MAR-21	FEB-21	JAN-21	DEC-20	NOV-20	OCT-20	SEP-20	AUG-20	JUL-20	JUN-20	MAY-20	APR-20
Flow (MGD)	0.00027	0.00043	0.00021	0.00037	0.00072	0.00080	0.00063	0.00070	0.00057			
Average Monthly	0	2	6	8	3	0	0	0	0	375	270	270
pH (S.U.)												
Minimum	8.8	8.3	8.5	8.8	8.4	8.4	7.0	8.4	8.4	7.8	7.6	7.6
pH (S.U.)												
Maximum	9.0	9.0	9.0	9.0	9.0	9.0	9.0	8.8	9.0	8.4	8.8	8.4
Temperature (°F)												
Daily Average	96	86	88	85	89	89	95	95	100	98	99	95
TSS (mg/L)												
Annual Average				9.00								
Oil and Grease (mg/L)												
Daily Average				< 6.85								

DMR Data for Outfall 002 (from April 1, 2020 to March 31, 2021)

Parameter	MAR-21	FEB-21	JAN-21	DEC-20	NOV-20	OCT-20	SEP-20	AUG-20	JUL-20	JUN-20	MAY-20	APR-20
pH (S.U.)												
Daily Maximum				7.6						6.9		
COD (mg/L)												
Daily Maximum				< 15.0						245		
TSS (mg/L)												
Daily Maximum				5.00						200		
Oil and Grease (mg/L)												
Daily Average				< 6.25						< 5.25		
Total Iron (mg/L)												
Daily Maximum				< 0.200						15.6		

DMR Data for Outfall 006 (from April 1, 2020 to March 31, 2021)

Parameter	MAR-21	FEB-21	JAN-21	DEC-20	NOV-20	OCT-20	SEP-20	AUG-20	JUL-20	JUN-20	MAY-20	APR-20
pH (S.U.)												
Daily Maximum										7		
COD (mg/L)												
Daily Maximum										35.4		
TSS (mg/L)												
Daily Maximum										40		
Oil and Grease (mg/L)												
Daily Average										< 5.20		
Total Iron (mg/L)												
Daily Maximum										2.10		

NPDES Permit Fact Sheet Kane Hardwood McKean County

DMR Data for Outfall 008 (from April 1, 2020 to March 31, 2021)

Parameter	MAR-21	FEB-21	JAN-21	DEC-20	NOV-20	OCT-20	SEP-20	AUG-20	JUL-20	JUN-20	MAY-20	APR-20
pH (S.U.)												
Daily Maximum				7.4						6.9		
COD (mg/L)												
Daily Maximum				66.1						82.5		
TSS (mg/L)												
Daily Maximum				100						12.1		
Oil and Grease (mg/L)												
Daily Maximum				< 6.25						< 5.00		
Total Iron (mg/L)												
Daily Maximum				17.4						0.908		

DMR Data for Outfall 009 (from April 1, 2020 to March 31, 2021)

Parameter	MAR-21	FEB-21	JAN-21	DEC-20	NOV-20	OCT-20	SEP-20	AUG-20	JUL-20	JUN-20	MAY-20	APR-20
pH (S.U.)												
Daily Maximum										7.2		
COD (mg/L)												
Daily Maximum										59.1		
TSS (mg/L)												
Daily Maximum										16.0		
Oil and Grease (mg/L)												
Daily Average										< 5.20		
Total Iron (mg/L)												
Daily Maximum										0.769		

DMR Data for Outfall 010 (from April 1, 2020 to March 31, 2021)

Parameter	MAR-21	FEB-21	JAN-21	DEC-20	NOV-20	OCT-20	SEP-20	AUG-20	JUL-20	JUN-20	MAY-20	APR-20
pH (S.U.)												
Daily Maximum										7		
COD (mg/L)												
Daily Maximum										92.3		
TSS (mg/L)												
Daily Maximum										30.0		
Oil and Grease (mg/L)												
Daily Average										< 5.00		
Total Iron (mg/L)												
Daily Maximum										2.12		

Development of Effluent Limitations					
Outfall No.	002	Design Flow (MGD)	0		
Latitude	41° 40' 20.72"	Longitude	-78° 49' 19.45"		
Wastewater Description: Stormwater associated with industrial activities					

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Parameter	Limit (mg/l)	SBC	Federal Regulation	State Regulation
pН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Oil & Grease	15	Semiannual Average		95.2(2)
Oil & Grease	30	IMAX		95.2(2)

Water Quality-Based Limitations

The following limitations were determined through water quality modeling:

Parameter	Limit (mg/l)	SBC	Model
N/A			

Comments: Water quality modeling not conducted for stormwater discharges.

Best Professional Judgment (BPJ) Limitations

Comments: None

Other Considerations

Comments: Monitoring and benchmark values for COD and TSS, derived from Appendix D of the PAG-03 general permit, will be retained in the permit in accordance with the Department's SOP entitled "Establishing Effluent Limitations for Individual Industrial Permits." Monitoring for total iron is being retained in the permit due concern over elevated concentrations being reported on DMRS.

Anti-Degradation Discussion

Anti-degradation requirements were previous waived for this facility because it existed prior to the stream being designated as high quality. Although the drainage area to this outfall is expanding due to the combining of outfalls, the overall drainage area of the facility to permitted stormwater outfalls remains the same. Therefore, the Department is not conducting an anti-degradation evaluation for the resulting increased stormwater flow from this outfall.

Anti-Backsliding

Development of Effluent Limitations					
Outfall No.	006	Design Flow (MGD)	0		
Latitude	41° 40' 24.22"	Longitude	-78° 49' 39.78"		
Wastewater D	Wastewater Description: Stormwater associated with industrial activities				

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Parameter	Limit (mg/l)	SBC	Federal Regulation	State Regulation
pН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Oil & Grease	15	Semiannual Average		95.2(2)
Oil & Grease	30	IMAX		95.2(2)

Water Quality-Based Limitations

The following limitations were determined through water quality modeling:

Parameter	Limit (mg/l)	SBC	Model
N/A			

Comments: Water quality modeling not conducted for stormwater discharges.

Best Professional Judgment (BPJ) Limitations

Comments: None

Other Considerations

Comments: Monitoring and benchmark values for COD and TSS, derived from Appendix D of the PAG-03 general permit, will be retained in the permit in accordance with the Department's SOP entitled "Establishing Effluent Limitations for Individual Industrial Permits." Monitoring for total iron is being retained in the permit due concern over elevated concentrations being reported on DMRS.

Anti-Degradation Discussion

Anti-degradation requirements were previous waived for this facility because it existed prior to the stream being designated as high quality. Although the drainage area to this outfall is expanding due to the combining of outfalls, the overall drainage area of the facility to permitted stormwater outfalls remains the same. Therefore, the Department is not conducting an anti-degradation evaluation for the resulting increased stormwater flow from this outfall.

Anti-Backsliding

Development of Effluent Limitations					
Outfall No.	007	Design Flow (MGD)	0		
Latitude	41° 40' 21.81"	Longitude	-78° 49' 37.53"		
Wastewater Description: Stormwater associated with industrial activities					

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Parameter	Limit (mg/l)	SBC	Federal Regulation	State Regulation
pН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Oil & Grease	15	Semiannual Average		95.2(2)
Oil & Grease	30	IMAX		95.2(2)

Water Quality-Based Limitations

The following limitations were determined through water quality modeling:

Parameter	Limit (mg/l)	SBC	Model
N/A			

Comments: Water quality modeling not conducted for stormwater discharges.

Best Professional Judgment (BPJ) Limitations

Comments: None

Other Considerations

Comments: Monitoring and benchmark values for COD and TSS, derived from Appendix D of the PAG-03 general permit, will be retained in the permit in accordance with the Department's SOP entitled "Establishing Effluent Limitations for Individual Industrial Permits." Monitoring for total iron is being retained in the permit due concern over elevated concentrations being reported on DMRS.

Anti-Degradation Discussion

Anti-degradation requirements were previous waived for this facility because it existed prior to the stream being designated as high quality. Although the drainage area to this outfall is expanding due to the combining of outfalls, the overall drainage area of the facility to permitted stormwater outfalls remains the same. Therefore, the Department is not conducting an anti-degradation evaluation for the resulting increased stormwater flow from this outfall.

Anti-Backsliding

Development of Effluent Limitations					
Outfall No.	008	Design Flow (MGD)	0.00012		
Latitude	41° 40′ 14.94″	Longitude	-78° 49' 38.01"		
Wastewater Description: Stormwater associated with industrial activities and boiler blowdown					

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Parameter	Limit (mg/l)	SBC	Federal Regulation	State Regulation
рH	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Oil & Grease	15	Semiannual Average		95.2(2)
Oil & Grease	30	IMAX		95.2(2)

Water Quality-Based Limitations

The following limitations were determined through water quality modeling:

Parameter	Limit (mg/l)	SBC	Model
N/A			

Comments: Water quality modeling not conducted for stormwater discharges.

Best Professional Judgment (BPJ) Limitations

Comments: None

Other Considerations

Comments: Monitoring and benchmark values for COD and TSS, derived from Appendix D of the PAG-03 general permit, will be retained in the permit in accordance with the Department's SOP entitled "Establishing Effluent Limitations for Individual Industrial Permits." Monitoring for total iron is being retained in the permit due concern over elevated concentrations being reported on DMRS.

Anti-Degradation Discussion

Anti-degradation requirements were previous waived for this facility because it existed prior to the stream being designated as high quality. Although the drainage area to this outfall is expanding due to the combining of outfalls, the overall drainage area of the facility to permitted stormwater outfalls remains the same. Therefore, the Department is not conducting an anti-degradation evaluation for the resulting increased stormwater flow from this outfall.

Anti-Backsliding

	Development of Effluent Limitations										
Outfall No.	108	Design Flow (MGD)	0.00012								
Latitude	41° 40′ 16.27″	Longitude	-78º 49' 29.90"								
Wastewater D	Description: Boiler blowdown										

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Parameter	Limit (mg/l)	SBC	Federal Regulation	State Regulation
рH	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)

Water Quality-Based Limitations

The following limitations were determined through water quality modeling (output files attached):

Parameter	Limit (mg/l)	SBC	Model
None			

Comments: Because this is a thermally evaluated discharge the "Thermal Discharge Analysis Spreadsheet" was used to determine if thermal limits were necessary. The spreadsheet determined that no limits were necessary based on a comparison with actual plant discharge temperatures. Monitoring for temperature will remain in the permit for evaluation purposes because of a planned discharge to a stormwater sedimentation pond and discharging via Outfall 008 during the next permit cycle, where additional thermal loading could occur.

Best Professional Judgment (BPJ) Limitations

Comments: N/A

Anti-Degradation Discussion

Anti-degradation requirements were previous waived for this facility because it existed prior to the stream being designated as high quality. Since this is an existing discharge, no anti-degradation requirements were required to be met as part of this permit renewal.

Anti-Backsliding

Monitoring for TSS was removed from the permit based on a review of eDMR data during the previous permit cycle, which showed the effluent quality was well below levels of concern (100 mg/l).

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 002, Effective Period: Permit Effective Date through Permit Expiration Date.

			Effluent L	imitations			Monitoring Requirements		
Parameter	Mass Units	(lbs/day) (1)		Concentrat	Minimum ⁽²⁾	Required			
Farameter	Average Monthly	Average Weekly	Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Measurement Frequency	Sample Type	
pH (S.U.)	XXX	XXX	6.0	XXX	9.0	XXX	1/6 months	Grab	
COD	XXX	XXX	XXX	XXX	Report	XXX	1/6 months	Grab	
TSS	xxx	XXX	XXX	XXX	Report	XXX	1/6 months	Grab	
Oil and Grease	XXX	XXX	XXX	15.0 SEMI AVG	XXX	30.0	1/6 months	Grab	
Total Iron	XXX	XXX	XXX	XXX	Report	XXX	1/6 months	Grab	

Compliance Sampling Location: Outfall 002 (during a qualifying storm event)

Other Comments: Sampling frequency was set as the same as that found in the PAG-03 General Permit under Appendix D.

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 006, Effective Period: Permit Effective Date through Permit Expiration Date.

			Effluent L	imitations			Monitoring Requirements		
Parameter	Mass Units	(lbs/day) (1)		Concentrat	Minimum ⁽²⁾	Required			
Farameter	Average Monthly	Average Weekly	Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Measurement Frequency	Sample Type	
pH (S.U.)	XXX	XXX	6.0	XXX	9.0	XXX	1/6 months	Grab	
COD	XXX	XXX	XXX	XXX	Report	XXX	1/6 months	Grab	
TSS	xxx	XXX	XXX	XXX	Report	XXX	1/6 months	Grab	
Oil and Grease	XXX	XXX	XXX	15.0 SEMI AVG	XXX	30.0	1/6 months	Grab	
Total Iron	XXX	XXX	XXX	XXX	Report	XXX	1/6 months	Grab	

Compliance Sampling Location: Outfall 006 (during a qualifying storm event)

Other Comments: Sampling frequency was set as the same as that found in the PAG-03 General Permit under Appendix D.

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 007, Effective Period: Permit Effective Date through Permit Expiration Date.

			Effluent L	imitations			Monitoring Requirements		
Parameter	Mass Units	(lbs/day) ⁽¹⁾		Concentrat	Minimum (2)	Required			
Farameter	Average Monthly	Average Weekly	Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Measurement Frequency	Sample Type	
pH (S.U.)	XXX	xxx	6.0	XXX	9.0	XXX	1/6 months	Grab	
COD	XXX	XXX	XXX	XXX	Report	XXX	1/6 months	Grab	
TSS	XXX	XXX	XXX	XXX	Report	XXX	1/6 months	Grab	
Oil and Grease	XXX	xxx	XXX	15.0 SEMI AVG	XXX	30.0	1/6 months	Grab	
Total Iron	XXX	XXX	XXX	XXX	Report	XXX	1/6 months	Grab	

Compliance Sampling Location: Outfall 006 (during a qualifying storm event)

Other Comments: Sampling frequency was set as the same as that found in the PAG-03 General Permit under Appendix D.

Permittee has indicated that Outfall 006 is a representative outfall. Therefore, sampling conducted at Outfall 006 will also be reported for compliance at this outfall.

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 008, Effective Period: Permit Effective Date through Permit Expiration Date.

			Effluent L	imitations			Monitoring Requirements		
Parameter	Mass Units	(lbs/day) (1)		Concentrat	Minimum (2)	Required			
Farameter	Average Monthly	Average Weekly	Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Measurement Frequency	Sample Type	
pH (S.U.)	XXX	XXX	6.0	XXX	9.0	XXX	1/6 months	Grab	
COD	XXX	XXX	XXX	XXX	XXX	XXX	1/6 months	Grab	
TSS	XXX	XXX	XXX	XXX	Report	XXX	1/6 months	Grab	
Oil and Grease	XXX	XXX	XXX	15.0 SEMI AVG	XXX	30.0	1/6 months	Grab	
Total Iron	XXX	XXX	XXX	XXX	Report	XXX	1/6 months	Grab	

Compliance Sampling Location: Outfall 008 (during a qualifying storm event)

Other Comments: Sampling frequency was set as the same as that found in the PAG-03 General Permit under Appendix D.

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 108, Effective Period: Permit Effective Date through Permit Expiration Date.

		Monitoring Red	quirements					
Parameter	Mass Units	(lbs/day) (1)		Concentrat	Minimum ⁽²⁾	Required		
Farameter	Average Monthly	Average Weekly	Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)								
Internal Monitoring Point	Report	XXX	XXX	XXX	XXX	XXX	1/month	Estimate
pH (S.U.)			6.0		9.0			
Internal Monitoring Point	XXX	XXX	Daily Min	XXX	Daily Max	XXX	1/month	Grab
Temperature (°F)				Report				
Internal Monitoring Point	XXX	XXX	XXX	Daily Max	XXX	XXX	1/month	Measured

Compliance Sampling Location: Outfall 008 (during non-wet weather discharge events).

Toxics Management Spreadsheet Version 1.3. March 2021

Discharge Information

Instructions	Discharg	e Stream				
Facility:	Kane Hard	woods McKean	County	NPDES Permit No.:	PA027 2833	Outfall No.: 108
Evaluation T	ype: Ma	ijor Sewage / Ind	dustrial Waste	Wastewater Descrip	tion: Boiler Blowdown	

	Discharge Characteristics											
Design Flow (MGD)*	Hardnage (mg/l)*	pH (SU)*	F	Partial Mix F	Complete Mix Times (min)							
	Hardness (mg/l)		AFC	CFC	THH	CRL	Q ₇₋₁₀	Q _h				
0.00012	3.31	8.8										

						t blank	0.5 if le	0.5 if left blank		0 if left blank			1 if left blank	
	Discharge Pollutant	Units	Ma	x Discharge Conc	Trib Conc	Stream Conc	Daily CV	Hourly CV	Strea m CV	Fate Coeff	FOS		Chem Transl	
	Total Dissolved Solids (PWS)	mg/L		1320		159								
0.1	Chloride (PWS)	mg/L												
Group 1	Bromide	mg/L												
ច	Sulfate (PWS)	mg/L												
1/20	Fluoride (PWS)	mg/L												
	Total Aluminum	μg/L												
	Total Antimony	μg/L												
l	Total Arsenic	μg/L												
	Total Barium	μg/L										i		
	Total Beryllium	μg/L												
	Total Boron	μg/L												
	Total Cadmium	μg/L												
	Total Chromium (III)	μg/L	<	5										
1	Hexavalent Chromium	μg/L	<	5										
	Total Cobalt	μg/L												
	Total Copper	μg/L												
2	Free Cyanide	μg/L												
Group	Total Cyanide	μg/L												
Ö	Dissolved Iron	μg/L												
1000	Total Iron	μg/L		227										
	Total Lead	μg/L		Î										
1	Total Manganese	μg/L												
l	Total Mercury	μg/L												
1	Total Nickel	μg/L												
l	Total Phenols (Phenolics) (PWS)	μg/L												
l	Total Selenium	μg/L		ĵ										
l	Total Silver	μg/L												
1	Total Thallium	μg/L												
l	Total Zinc	μg/L												
	Total Molybdenum	μg/L												
	Acrolein	μg/L	<											
	Acrylamide	μg/L	<											
l	Acrylonitrile	μg/L	<											
	Benzene	μg/L	<											
	Bromoform	μg/L	<											

1	Carbon Tetrachloride	μg/L	<				
1	Chlorobenzene	μg/L	,				
1	Chlorodibromomethane	μg/L	<	 	-		
1	Chloroethane		<		-		
1	2-Chloroethyl Vinyl Ether	μg/L	<	1			
1		μg/L	<				
1	Chloroform	μg/L					
1	Dichlorobromomethane	μg/L	<				
1	1,1-Dichloroethane	μg/L	<				
က	1,2-Dichloroethane	μg/L	<				
Group	1,1-Dichloroethylene	μg/L	<				
1%	1,2-Dichloropropane	μg/L	<				
١	1,3-Dichloropropylene	μg/L	<				
1	1,4-Dioxane	μg/L	<				
1	Ethylbenzene	μg/L	<				
1	Methyl Bromide	μg/L	<				
1	Methyl Chloride	μg/L	<				
1	Methylene Chloride	μg/L	<				
1	1,1,2,2-Tetrachloroethane	μg/L	<				
1	Tetrachloroethylene	μg/L	<				
	Toluene	μg/L	<	1 1			
1	1,2-trans-Dichloroethylene	μg/L	<				
1	1,1,1-Trichloroethane	μg/L	<				
1	1,1,2-Trichloroethane	μg/L μg/L	<				
1	Trichloroethylene	μg/L	<				
_	Vinyl Chloride	μg/L	<				
1	2-Chlorophenol	μg/L	<				
1	2,4-Dichlorophenol	μg/L	<				
1	2,4-Dimethylphenol	μg/L	<				
	4,6-Dinitro-o-Cresol	μg/L	<				
4	2,4-Dinitrophenol	μg/L	<				
Group	2-Nitrophenol	μg/L	<				
ō	4-Nitrophenol	μg/L	<				
	p-Chloro-m-Cresol	μg/L	<				
1	Pentachlorophenol	μg/L	<				
1	Phenol	μg/L	<				
1	2,4,6-Trichlorophenol	μg/L	<				
	Acenaphthene	μg/L	<				
1	Acenaphthylene	μg/L	<				
1	Anthracene	μg/L	<				
1	Benzidine	μg/L	<				
1	Benzo(a) Anthracene	µg/L	<				
1				1			
1	Benzo(a)Pyrene	μg/L	<				
	3,4-Benzofluoranthene	μg/L	- 35%				
1	Benzo(ghi)Perylene	μg/L	<				
1	Benzo(k)Fluoranthene	μg/L	<				
1	Bis(2-Chloroethoxy)Methane	μg/L	<				
	Bis(2-Chloroethyl)Ether	μg/L	<				
	Bis(2-Chloroisopropyl)Ether	μg/L	<				
1	Bis(2-Ethylhexyl)Phthalate	μg/L	<				
1	4-Bromophenyl Phenyl Ether	μg/L	<				
1	Butyl Benzyl Phthalate	μg/L	<				
1	2-Chloronaphthalene	μg/L	<				
1	4-Chlorophenyl Phenyl Ether	μg/L	<				
1	Chrysene	μg/L	<				
1	Dibenzo(a,h)Anthrancene	μg/L	<				
1	1,2-Dichlorobenzene	μg/L	<				
1	1,3-Dichlorobenzene	μg/L	<				
	1,4-Dichlorobenzene	μg/L	<				
p 5	3,3-Dichlorobenzidine	μg/L	<				
l g	BANDAL RECEIPE ENGINEERING ENGINEERING AND ONCORPORTED		<				
Group	Diethyl Phthalate	μg/L	_				
1	Dimethyl Phthalate	μg/L	<				
1	Di-n-Butyl Phthalate	μg/L	<				
1	2,4-Dinitrotoluene	μg/L	<				

- 1	2,6-Dinitrotoluene	μg/L	<							
	Di-n-Octyl Phthalate	μg/L	<				i			
	1,2-Diphenylhydrazine	µg/L	<		1		- 1			
	Fluoranthene	µg/L	<							
	Fluorene	μg/L	<			- 1				
	Hexachlorobenzene	μg/L	<							
	Hexachlorobutadiene		' V		ļ			-		
	Section of the Control of the Contro	μg/L	′ ′		 		-			
	Hexachlorocyclopentadiene	μg/L	< <		ļ ļ.					
	Hexachloroethane	μg/L	. 2		.					
	Indeno(1,2,3-cd)Pyrene	μg/L	<							
	Isophorone	μg/L	٧							
	Naphthalene	μg/L	<							
١	Nitrobenzene	μg/L	٧							
	n-Nitrosodimethylamine	μg/L	٧				ŢĮ			
ſ	n-Nitrosodi-n-Propylamine	μg/L	٧							
	n-Nitrosodiphenylamine	μg/L	٧							
	Phenanthrene	μg/L	<							
- 1	Pyrene	μg/L	<			T I				
	1,2,4-Trichlorobenzene	µg/L	<			31 10			5	
_	Aldrin	µg/L	<	_	<u> </u>					
	alpha-BHC		/ V							
		μg/L	_							
	beta-BHC	μg/L	<		-					
	gamma-BHC	μg/L	<	_						
	delta BHC	μg/L	<							
	Chlordane	μg/L	<							
١	4,4-DDT	μg/L	٧							
	4,4-DDE	μg/L	<							
Ī	4,4-DDD	μg/L	<						j	
١	Dieldrin	μg/L	<				i			
ı	alpha-Endosulfan	μg/L	<							
	beta-Endosulfan	µg/L	<							
	Endosulfan Sulfate	µg/L	<							
	Endrin	µg/L	<							
<u> </u>	Endrin Aldehyde	μg/L	' V		ļ			-		
	Heptachlor		/ /		 	-				
	-	μg/L					-			
	Heptachlor Epoxide	μg/L	<							
	PCB-1016	μg/L	<							
	PCB-1221	μg/L	<							
	PCB-1232	μg/L	<							
١	PCB-1242	μg/L	<							
١	PCB-1248	μg/L	٧							
	PCB-1254	μg/L	٧							
ſ	PCB-1260	μg/L	٧							
-	PCBs, Total	μg/L	<							
	Toxaphene	μg/L	<							
	2,3,7,8-TCDD	ng/L	<							
	Gross Alpha	pCi/L								
ı	Total Beta	pCi/L	<							
2	Radium 226/228	pCi/L	\ \							
•	Total Strontium		<			-				
از		μg/L	<							
ı,	Total Uranium	μg/L	<							
4	Osmotic Pressure	mOs/kg								
	l .									
ſ										
				#1000000000						
						Ť				
						5 6				
										9

Toxics Management Spreadsheet Version 1.3, March 2021

Stream / Surface Water Information

Kane Hardwoods McKean County, NPDES Permit No. PA027 2833, Outfall 108

Toxics Management Spreadsheet Version 1.3, March 2021

Model Results

Kane Hardwoods McKean County, NPDES Permit No. PA027 2833, Outfall 108

Instruction	s Results		RETUR	N TO INPU	TS	SAVE AS	PDF	PRI	NT	● All) Inputs	O Results	O Limits	
☑ Hydrod	dynamics													
Q 7-10														
RMI	Stream Flow (cfs)	PWS With (cfs)		Net Stream Flow (cfs)		arge Analy low (cfs)	sis Slope (f	ft/ft) Dep	th (ft)	Width (ft)	W/D Ratio	Velocity (fps)	Time (days)	Complete Mix Time (min)
115	1,920			1,920		0.00019	0.04	2.	939	19.628	6.678	33.278	0.211	0.525
0.01	1,801	1.547	7	1799.453										
Q _h														
RMI	Stream Flow (cfs)	PWS With (cfs)		Net Stream		arge Analy low (cfs)	/sis Slope (f	ft/ft) Dep	th (ft)	Width (ft)	W/D Ratio	Velocity (fps)	Time (days)	Complete Mix Time (min)
115	5502.93			5502.93		0.00019	0.04	4.	372	19.628	4.202	60.012	0.117	0.262
0.01	5203.647	1.547	7	5202.10										
Wastel ✓ AF	load Allocatio		Γ (min): 0	0.525	PMF:	1	Ana	llysis Harc	ness (r	mg/l): 7	77	Analysis pH:	7.47	
	Pollutants		Conc	Stream CV	Trib Cond (µg/L)	Fate Coef	WQC (µg/L)	WQ Ob (µg/L)	VVL	A (µg/L)		C	omments	
30 CALTERON DE COS	ssolved Solid		159000	0		0	N/A	N/A		N/A				
	tal Chromium		0	0		0	459.971	1,456		########	Chem Translator of 0.316 applied Chem Translator of 0.982 applied			
нех	avalent Chror Total Iron	nium	0	0		0	16 N/A	16.3 N/A		######################################		Chem Transi	ator of 0.982	арріїец
☑ CF	20 97 1886 20 180 180 180	CC		0.525	PMF:	1		llysis Hard			77	Analysis pH:	7.47	
	Pollutants		Conc	Stream CV	Trib Cond (µg/L)	Coef	WQC (µg/L)	WQ Ob (µg/L)	VVL	A (µg/L)		Co	omments	
	issolved Solid		159000	0		0	N/A	N/A		N/A				
	tal Chromium	. /	0	0		0	59.833	69.6		<i></i>		Chem Transl		31.31.
Hex	avalent Chror	nium	0	0		0	10	10.4		######################################		Chem Transla		

Model Results 6/29/2021 Page 5

NPDES Permit Fact Sheet Kane Hardwood McKean County

✓ THH CC	T (min): 0.	525 T	HH PMF:	1] A	nalysis Har	lness (mg/l): N/A	Ana	alysis pH:	N/A PWS PMF: 1	
Pollutants	Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ OI (µg/L)	WLA (µ	ıg/L)		Co	omments	
Total Dissolved Solids (PWS)	159000	0		0	500,000	500,00) #######	#### WQC	applied at R	MI 0.01 wi	th a design stream flow of 1801 cfs	
Total Chromium (III)	0	0		0	N/A	N/A	N/A	\				
Hexavalent Chromium	0	0		0	N/A	N/A	N/A	1				
Total Iron	0	0		0	N/A	N/A	N/A	1				
☑ CRL CC	T (min): 0.:	262	PMF:	1		nalysis Har	lness (mg/l): N/A	Ana	alysis pH:	N/A	
Pollutants	Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ OI (µg/L)	WLA (µ	ıg/L)	Comments			
Total Dissolved Solids (PWS)	159000	0		0	N/A	N/A	N/A	1				
Total Chromium (III)	0	0		0	N/A	N/A	N/A	\				
Hexavalent Chromium	0	0		0	N/A	N/A	N/A	1				
Total Iron	0	0		0	N/A	N/A	N/A	1				
Recommended WQBELs & Monitoring Requirements No. Samples/Month: 4												
	10000000	Limits		C	oncentratio	on Limits						
Pollutants	AML (lbs/day)	MDL (lbs/da			MDL	IMAX	Units	Governing WQBEL	WQBEL Basis		Comments	

Other Pollutants without Limits or Monitoring

The following pollutants do not require effluent limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharge concentration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QL).

Pollutants	Governing WQBEL	Units	Comments
Total Dissolved Solids (PWS)	##########	mg/L	Discharge Conc ≤ 10% WQBEL
Total Chromium (III)	##########	μg/L	Discharge Conc ≤ 10% WQBEL
Hexavalent Chromium	###########	μg/L	Discharge Conc ≤ 10% WQBEL
Total Iron	############	μg/L	Discharge Conc ≤ 10% WQBEL

Model Results 6/29/2021 Page 6

Flow Data for Thermal Discharge Analysis

Facility: Kane Hardwood McKean County

Permit Number: PA0272833
Stream Name: UNT to West Run

Analyst/Engineer: A. Pesek Stream Q7-10 (cfs): 0.0201

7 <u>2</u> 0	··· s		Faci	lity Flows			Stream Flows							
		Intake	Intake	Consumptiv	e Discharge		Upstream	Adjusted	Downstream					
		(Stream	n) (External)	Loss	Flow	PMF	Stream Flow	Stream Flow	Stream Flow					
		(MGD	(MGD)	(MGD)	(MGD)		(cfs)	(cfs)	. (cfs)					
Jan 1-31		0	0.00012	0	0.00012	1.00	0.06	0.06	0.06					
Feb 1-29		0	0.00012	0	0.00012	1.00	0.07	0.07	0.07					
Mar 1-31		0	0.00012	0	0.00012	1.00	0.13	0.13	0.13					
Apr 1-15		0	0.00012	0	0.00012	1.00	0.18	0.18	0.18					
Apr 16-30		0	0.00012	0	0.00012	1.00	0.18	0.18	0.18					
May 1-15		0	0.00012	0	0.00012	1.00	0.10	0.10	0.10					
May 16-31		0	0.00012	0	0.00012	1.00	0.10	0.10	0.10					
Jun 1-15		0	0.00012	0	0.00012	1.00	0.06	0.06	0.06					
Jun 16-30		· 0	0.00012	0	0.00012	1,00	0.06	0.06	0.06					
Jul 1-31	*	0	0.00012	0	0.00012	1.00	0.03	0.03	0.03					
Aug 1-15	9	0	0.00012	0	0.00012	1.00	0.03	0.03	0.03					
Aug 16-31	×	0	0.00012	0	0.00012	1.00	0.03	0.03	0.03					
Sep 1-15		0	0.00012	0	0.00012	1.00	0.02	0.02	0.02					
Sep 16-30		0	0.00012	0	0.00012	1.00	0.02	0.02	0.02					
Oct 1-15		0	0.00012	0	0.00012	1.00	0.03	0.03	0.03					
Oct 16-31		. 0	0.00012	0	0.00012	1.00	0.03	0.03	0.03					
Nov 1-15		0	0.00012	0	0.00012	1.00	0.04	0.04	0.04					
Nov 16-30		0 -	0.00012	0	0.00012	1.00	0.04	0.04	0.04					
Dec 1-31	ī	0	0.00012	0	0.00012	1.00	0.06	0.06	0.06					

Please forward all comments to Tom Starosta at 717-787-4317, tstarosta@state.pa.us.

Version 2.0 - 07/01/2005

Reference: Implementation Guidance for Temperature Criteria, DEP-ID: 391-2000-017

NOTE: The user can only edit fields that are blue.

NOTE: MGD x 1.547 = cfs.

Thermal Discharge Recommended Permit Limits

Cold Water Fishes (CWF) Stream

Facility: Kane Hardwood McKean County

Permit Number: PA0272833

Stream: UNT to West Run

	CWF			CWF	CWF		PMF
	Ambient Stream	Ambient Stream	Target Maximum	Daily	Daily		
	Temperature (°F)	Temperature (°F)	Stream Temp.1	WLA ²	WLA ³	at Discharge	
No. 200	(Default)	(Site-specific data)	(°F)	(Million BTUs/day)	(°F)	Flow (MGD)	
Jan 1-31	34 .	0	38	N/A Case 2	110.0	0.00012	1.00
Feb 1-29	35	0	38	N/A Case 2	110.0	0.00012	1.00
Mar 1-31	. 39	0	42	N/A Case 2	110.0	0.00012	1.00
Apr 1-15	46	0	48	N/A Case 2	110.0	0.00012	1.00
Apr 16-30	52	0	53	N/A Case 2	110.0	0.00012	1.00
May 1-15	55	0	56	N/A Case 2	110.0	0.00012	1.00
May 16-31	59	0	60	N/A Case 2	110.0	0.00012	1.00
Jun 1-15	63	0	64	N/A Case 2	110.0	0.00012	1.00
Jun 16-30	67	0	68	N/A - Case 2	110.0	0.00012	1.00
Jul 1-31	71	0	72	N/A Case 2	110.0	0.00012	1.00
Aug 1-15	70	0	71	N/A Case 2	110.0	0.00012	1.00
Aug 16-31	70	0	71	N/A Case 2	110.0	0.00012	1.00
Sep 1-15	66	0	67	N/A Case 2	110.0	0.00012	1.00
Sep 16-30	60	0	61 :	N/A Case 2	110.0	0.00012	1.00
Oct 1-15	55	0	56	N/A Case 2	110.0	0.00012	1.00
Oct 16-31	51	Ō	52	N/A Case 2	110.0	0.00012	1.00
Nov 1-15	46	0	47	N/A Case 2	110.0	0.00012	1.00
Nov 16-30 .	40	0	42	N/A Case 2	110.0	0.00012	1.00
Dec 1-31	35	0	40	N/A Case 2	110.0	0.00012	1.00

¹ This is the maximum of the CWF WQ criterion or the ambient temperature. The ambient temperature may be either the design (median) temperature for CWF, or the ambient stream temperature based on site-specific data entered by the user. A minimum of 1°F above ambient stream temperature is allocated.

² The WLA expressed in Million BTUs/day is valid for Case 1 scenarios, and disabled for Case 2 scenarios.

³ The WLA expressed in °F is valid only if the limit is tied to a daily discharge flow limit (may be used for Case 1 or Case 2). WLAs greater than 110°F are displayed as 110°F.