

Southwest Regional Office CLEAN WATER PROGRAM

Application Type

Non
Facility Type

Major / Minor

Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

Application No. **PA0285129**APS ID **1090314**

Authorization ID 1443065

Applicant Name	Consol PA Coal Co. LLC	Facility Name	Bailey Mine 6 South 3 Portal	
Applicant Address	275 Technology Drive Suite 101	Facility Address	Sr 3018 (Behm Rd)	
	Canonsburg, PA 15317-9565	<u></u>	New Freeport, PA 15352	
Applicant Contact	Jaculyn Duke	Facility Contact	Matthew Petrovich	
Applicant Phone	724-416-8299	Facility Phone	(724) 146-8329	
Client ID	259457	Site ID	865246	
Ch 94 Load Status		Municipality	Aleppo Township	
Connection Status		County	Greene	
Date Application Rec	eived June 5, 2023	EPA Waived?	Yes	
Date Application Accepted June 12, 2023		If No, Reason		

Summary of Review

The applicant has proposed to construct a 0.015 MGD sewage treatment facility

The proposed treatment process will consist of extended aeration, screening/comminution, equalization, aeration, tertiary filtration, clarification, chlorination/De-chlorination tank, and sludge digestion.

The facility will discharge to South Fork Dunkard Fork through outfall 001. South Fork Dunkard Fork is classified as Trout Stock Fishes (TSF) per Chapter 93 Designated Uses.

Act 537 planning was approved on May 12, 2023.

The applicant has complied with Act 14 Notifications and no comments were received.

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Approve	Deny	Signatures	Date
Х		Jordan Coldsmith / Environmental Engineering Specialist	August 8, 2023
х		Mahbuba lasmin, Ph.D., P.E. / Environmental Engineering Manager	August 29, 2023

scharge, Receiving	y Waters	and Water Supply Inform	nation	
	0' 59.83 w Freep	ort	Design Flow (MGD) Longitude Quad Code	.015 -80° 27' 36.33" 39080G4
Receiving Waters NHD Com ID Drainage Area Q ₇₋₁₀ Flow (cfs) Elevation (ft) Watershed No. Existing Use Exceptions to Use Assessment Status Cause(s) of Impairs	73874 12.0 0.184 992 20-E	Attaining Use(s)	Stream Code RMI Yield (cfs/mi²) Q ₇₋₁₀ Basis Slope (ft/ft) Chapter 93 Class. Existing Use Qualifier Exceptions to Criteria	32536 4.71 0.015 USGS StreamStats TSF
Source(s) of Impair TMDL Status	ment _		Name	
Background/Ambier pH (SU) Temperature (°F) Hardness (mg/L) Other:	nt Data		Data Source	
Nearest Downstrea PWS Waters PWS RMI	m Public	Water Supply Intake	No Downstream PWS in PA Flow at Intake (cfs) Distance from Outfall (mi)	

Changes Since Last Permit Issuance: N/A. New Permit Issuance

Other Comments: none

	Tr	eatment Facility Summa	ry	
Treatment Facility Na	me: Bailey Mine 6 South 3	3 Portal		
WQM Permit No.	Issuance Date			
TBD				
	Degree of			Avg Annual
Waste Type	Treatment	Process Type	Disinfection	Flow (MGD)
Sewage	Tertiary	Extended Aeration	Chlorination	0.015
Hydraulic Capacity	Organic Capacity			Biosolids
(MGD)	(lbs/day)	Load Status	Biosolids Treatment	Use/Disposal
0.015				

Changes Since Last Permit Issuance: N/A. New permit Issuance

Other Comments: None

	Development of Effluent Limitations									
Outfall No.	001		Design Flow (MGD)	.015						
Latitude	39º 51' 0.53'		Longitude)	-80° 27' 36.52"						
Wastewater D	Description:	Sewage Effluent	-							

Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
CBOD₅	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD5	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
pН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform				
(5/1 – 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform				
(5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform				
(10/1 – 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform				
(10/1 – 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)

Water Quality-Based Limitations

The proposed discharge was evaluated using WQM7.0 to determine the CBOD₅, ammonia nitrogen, and dissolved oxygen parameters. The Total Residual Chlorine Spreadsheet was used to determine TRC parameters in the permit.

The following limitations were determined through water quality modeling (output files attached):

Parameter	Limit (mg/l)	SBC	Model
CBOD ₅	25	Average Monthly	WQM7.0
Dissolved Oxygen	4.0	Minimum	WQM7.0
Ammonia Nitrogen (Nov 1	49.5	Average Monthly	
– Apr 30)	99.0	IMAX	WQM7.0
Ammonia Nitrogen (May 1	16.5	Average Monthly	
- Oct 31)	33.1	IMAX	WQM7.0
Total Residual Chlorine	0.5	Average Monthly	
Total Residual Chlorine	1.6	IMAX	TRC Spreadsheet

Additional Considerations

Sewage discharges will include monitoring, at a minimum, for E. Coli, in new and reissued permits, with a monitoring frequency of 1/year for facilities with design flows of 0.002 - 0.05 MGD.

An annual sampling frequency for total phosphorus and total nitrogen will be imposed per 25 PA Code §92a.61.

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (386-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

			Effluent L	imitations			Monitoring Red	quirements
Parameter	Mass Units	(lbs/day) (1)		Concentrat	ions (mg/L)		Minimum (2)	Required
r ai ainetei	Average Monthly	Average Weekly	Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report Daily Max	XXX	XXX	XXX	XXX	1/week	Measured
pH (S.U.)	XXX	XXX	6.0 Inst Min	XXX	XXX	9.0	1/day	Grab
DO	XXX	XXX	4.0 Inst Min	XXX	XXX	XXX	1/day	Grab
TRC	XXX	XXX	XXX	0.5	XXX	1.6	1/day	Grab
CBOD5	XXX	XXX	XXX	25.0	XXX	50.0	2/month	Grab
TSS	XXX	XXX	XXX	30.0	XXX	60.0	2/month	Grab
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2000 Geo Mean	XXX	10000	2/month	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	XXX	XXX	200 Geo Mean	XXX	1000	2/month	Grab
E. Coli (No./100 ml)	XXX	XXX	XXX	XXX	Report	XXX	1/year	Grab
Total Nitrogen	XXX	XXX	XXX	XXX	Report	XXX	1/year	Grab
Ammonia-Nitrogen Nov 1 - Apr 30	XXX	XXX	XXX	25.0	XXX	50.0	2/month	Grab
Ammonia-Nitrogen May 1 - Oct 31	XXX	XXX	XXX	16.5	XXX	33.1	2/month	Grab
Total Phosphorus	XXX	XXX	XXX	XXX	Report	XXX	1/year	Grab

NPDES Permit Fact Sheet Bailey Mine 6 South 3 Portal

NPDES Permit No. PA0285129

Compliance Sampling Location: Outfall 001

Other Comments: None

Attachment 1 USGS Stream Stats

StreamStats Report - PEL - Consol's 6 South 3 Portal STP

Region ID: PA

Workspace ID: PA20221202155511911000

Clicked Point (Latitude, Longitude): 39.85014, -80.46024

Time: 2022-12-02 10:55:32 -0500

Collapse All

> Basin Characteristics

Parameter Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	12	square miles
ELEV	Mean Basin Elevation	1302	feet

> Low-Flow Statistics

Low-Flow Statistics Parameters [Low Flow Region 4]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	12	square miles	2.26	1400
ELEV	Mean Basin Elevation	1302	feet	1050	2580

Low-Flow Statistics Flow Report [Low Flow Region 4]

PII: Prediction Interval-Lower, Plu: Prediction Interval-Upper, ASEp: Average Standard Error of Prediction, SE: Standard Error (other -- see report)

Statistic	Value	Unit	SE	ASEp
7 Day 2 Year Low Flow	0.51	ft^3/s	43	43
30 Day 2 Year Low Flow	0.88	ft^3/s	38	38
7 Day 10 Year Low Flow	0.184	ft^3/s	66	66
30 Day 10 Year Low Flow	0.33	ft^3/s	54	54
90 Day 10 Year Low Flow	0.609	ft^3/s	41	41

Low-Flow Statistics Citations

Stuckey, M.H.,2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006–5130, 84 p. (http://pubs.usgs.gov/sir/2006/5130/)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Application Version: 4.11.1

StreamStats Services Version: 1.2.22

NSS Services Version: 2.2.1

Attachment 2 WQM Summer Results

Input Data WQM 7.0

	SWP Basir			Stre	eam Name		RMI		ration ft)	Drainage Area (sq mi)	Slope (ft/ft)	Witho	VS Irawal gd)	Apply FC
	20E	325	36 SOUT	H FORK	DUNKARD	FORK	4.7	10	992.00	12.0	0.000	00	0.00	~
					St	ream Dat	a							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	Tributary p pl	4 1	Strear emp	m pH	
Cona.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C)		
Q7-10 Q1-10 Q30-10	0.015	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000 0.000 0.000	10.0	0.00	0.00) 25	5.00 7	7.00	0.00	0.00	
					Di	scharge l	Data						1	
			Name	Per	rmit Number	Disc	Permitt Disc Flow (mgd	Disc Flov	Res v Fa	erve Te	isc emp °C)	Disc pH		
		PELs	Consol TF	PE	L	0.000	0.015	50 0.00	000 (0.000	20.00	7.00		
					Pa	arameter	Data							
			F	^o aramete	r Name	С	onc (Conc	Stream Conc (mg/L)	Fate Coef (1/days)				
	-		CBOD5				25.00	2.00	0.00	1.50				
			Dissolved	Oxygen			4.00	8.24	0.00	0.00				
			NH3-N				25.00	0.00	0.00	0.70				

Input Data WQM 7.0

	SWP Basir			Str	eam Name		RMI		vation (ft)	Draina Area (sq m	a	Slope (ft/ft)	PW Withd (mg	rawal	Apply FC
	20E	325	536 SOUT	H FORK	DUNKARD	FORK	4.00	00	980.00	1	3.30 0	0.00000		0.00	~
					St	ream Dat	a								
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Ten	<u>Tributa</u> 1p	pH	Ten	Stream np	n pH	
Cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C	()		
Q7-10 Q1-10 Q30-10	0.015	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000	10.0	0.00	0.0	00 2	5.00	7.00		0.00	0.00	
					Di	scharge	Data]	
			Name	Pe	rmit Number	Disc	Permitte Disc Flow (mgd)	Dis Flo	c Res	serve	Disc Temp (°C)		isc hH		
						0.000	0.000	0.0	0000	0.000	25.0	00	7.00		
					Pa	rameter	Data								
				Paramete	r Name			Trib Conc	Stream Conc	Fate Coe					
				Z Z Z Z Z Z		(m	ng/L) (n	ng/L)	(mg/L)	(1/day	rs)				
			CBOD5				25.00	2.00	0.00	1.	.50				
			Dissolved	Oxygen			3.00	8.24	0.00	0.	.00				
			NH3-N				25.00	0.00	0.00	0.	.70				

WQM 7.0 Hydrodynamic Outputs

	SW	P Basin	Strea	m Code				Stream	Name			
	20E			32536			SOUTH F	ORK DU	JNKARD	FORK		
RMI	Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow	Reach Slope	Depth	Width	W/D Ratio	Velocity	Reach Trav Time	Analysis Temp	Analysis pH
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)	
Q7-1	0 Flow											
4.710	0.18	0.00	0.18	.0232	0.00320	.422	10.13	24.02	0.05	0.894	24.44	7.00
Q1-1	0 Flow											
4.710	0.12	0.00	0.12	.0232	0.00320	NA	NA	NA	0.04	1.109	24.18	7.00
Q30-	10 Flow	,										
4.710	0.25	0.00	0.25	.0232	0.00320	NA	NA	NA	0.06	0.765	24.58	7.00

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	\checkmark
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	~
D.O. Saturation	90.00%	Use Balanced Technology	~
D.O. Goal	6		

WQM 7.0 Wasteload Allocations

	SWP Basin St 20E	32536			<u>ream Name</u> RK DUNKARI	FORK		
NH3-N	Acute Allocation	ons						
RMI	Discharge Nam	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reductio	n
4.71	0 PELs Consol TP	11.86	50	11.86	50	0	0	_
NH3-N RMI	Chronic Alloca	Baseline	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction	
4.71	0 PELs Consol TP	1.4	16.55	1.4	16.55	0	0	_
Dissolve RMI	ed Oxygen Allo Discharge N	9			<u>Dissol</u> ultiple Baselir ng/L) (mg/L		Critical	Percent Reduction
4.7	1 PELs Consol TP		25 25	16.55	16.55 4	4	0	0

WQM 7.0 D.O.Simulation

SWP Basin St 20E	ream Code 32536		SOUTH	Stream Name FORK DUNKARD	FORK
RMI	Total Discharge	Flow (mgd	i) Ana	lysis Temperature	(°C) Analysis pH
4.710	0.01	5		24.440	7.000
Reach Width (ft)	Reach De	pth (ft)		Reach WDRatio	Reach Velocity (fps)
10.125	0.42	2		24.020	0.049
Reach CBOD5 (mg/L)	Reach Kc (1/days)	R	each NH3-N (mg/l	.) Reach Kn (1/days)
4.58	0.62	-		1.85	0.985
Reach DO (mg/L)	Reach Kr (Kr Equation	Reach DO Goal (mg/L)
7.768	15.69	99		Owens	6
Reach Travel Time (days)		Subreach	Results		
0.894	TravTime (days)		NH3-N (mg/L)	D.O. (mg/L)	
	0.089	4.28	1.70	7.61	
	0.179	3.99	1.55	7.61	
	0.268	3.73	1.42	7.61	
	0.358	3.49	1.30	7.61	
	0.447	3.26	1.19	7.61	
	0.536	3.04	1.09	7.61	
	0.626	2.84	1.00	7.61	
	0.715	2.65	0.92	7.61	
	0.805	2.48	0.84	7.61	
	0.894	2.32	0.77	7.61	

WQM 7.0 Effluent Limits

		S		_		
Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)		Effl. Limit Minimum (mg/L)
PELs Consol TP	PEL	0.000	CBOD5	25		
			NH3-N	16.55	33.1	
			Dissolved Oxygen			4
	20E 325	20E 32536 Name Permit Number	20E 32536 Si Name Permit Flow Number (mgd)	20E 32536 SOUTH FORK DUNKA Name Permit Number Plow (mgd) Parameter PELs Consol TP PEL 0.000 CBOD5 NH3-N	20E 32536 SOUTH FORK DUNKARD FORK Name Permit Number Disc Flow (mgd) Parameter Effl. Limit 30-day Ave. (mg/L) PELs Consol TP PEL 0.000 CBOD5 25 NH3-N 16.55	20E 32536 SOUTH FORK DUNKARD FORK Name Permit Number Disc Flow (mgd) Parameter Effl. Limit 30-day Ave. (mg/L) Effl. Limit Maximum (mg/L) PELs Consol TP PEL 0.000 CBOD5 25 NH3-N 16.55 33.1

Attachment 3 WQM Winter Results

Input Data WQM 7.0

	SWP Basir			Stre	eam Name		RMI		vation (ft)	Drainage Area (sq mi)	Slope (ft/ft)	PW Withd (mg	rawal	Apply FC
	20E	325	36 SOUT	H FORK	DUNKARD	FORK	4.7	10	992.00	12.00	0.0000	0	0.00	✓
					St	ream Dat	a							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	Tributary p pH	Te	Strean mp	n pH	
Cona.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C))	(°	C)		
Q7-10 Q1-10 Q30-10	0.031	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000 0.000 0.000	10.0	0.00	0.00	0 (5.00 7.	00	0.00	0.00	
					Di	ischarge l	Data						1	
			Name	Per	rmit Number	Disc	Permitt Disc Flow (mgd	Flor	Res	Dis erve Ter ctor (°C	np	Disc pH		
		PELs	Consol TF	PE	L	0.000	0.01	50 0.00	000	0.000 1	15.00	7.00		
					Pa	arameter l	Data							
			F	oaramete	r Name			Trib S Conc	Stream Conc	Fate Coef				
						(m	ig/L) (i	mg/L)	(mg/L)	(1/days)				
			CBOD5				25.00	2.00	0.00	1.50				
			Dissolved	Oxygen			4.00	12.51	0.00	0.00				
			NH3-N				25.00	0.00	0.00	0.70				

Input Data WQM 7.0

	SWP Basin			Stre	eam Name		RMI		vation (ft)	Drainag Area (sq mi		Slope (ft/ft)	PW Withdr (mg	rawal	Apply FC
	20E	325	36 SOUT	H FORK I	DUNKARD	FORK	4.00	00	980.00	13	3.30 0	.00000		0.00	~
					St	ream Dat	a								
Design	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	Tributar p	<u>Y</u> pH	Tem	Stream p	<u>p</u> H	
Cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C)		
Q7-10 Q1-10 Q30-10	0.031	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000 0.000 0.000	10.0	0.00	0.0	10	5.00	7.00	-	0.00	0.00	
					Di	scharge (Data								
			Name	Per	mit Number	Disc	Permitte Disc Flow (mgd)	Dis Flo	c Res w Fa	erve	Disc Temp (°C)	Di p	sc H		
						0.000	0.000	0.0	000	0.000	25.0	00	7.00		
					Pa	arameter l	Data								
			,	Paramete	r Name			Trib Conc	Stream Conc	Fate Coef					
						(m	g/L) (n	ng/L)	(mg/L)	(1/days	5)				
			CBOD5			:	25.00	2.00	0.00	1.5	50				
			Dissolved	Oxygen			3.00	8.24	0.00	0.0	00				
			NH3-N			:	25.00	0.00	0.00	0.7	70				

20

WQM 7.0 Hydrodynamic Outputs

	SW	P Basin	Strea	m Code				Stream	Name			
		20E	3:	2536			SOUTH F	ORK DI	JNKARD	FORK		
RMI	Stream Flow	PWS With	Net Stream Flow	Analysis Flow		Depth	Width	W/D Ratio	Velocity	Trav Time	Analysis Temp	Analysis pH
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)	
Q7-1	0 Flow											
4.710	0.37	0.00	0.37	.0232	0.00320	.46	12.27	26.66	0.07	0.626	5.59	7.00
Q1-1	0 Flow											
4.710	0.24	0.00	0.24	.0232	0.00320	NA	NA	NA	0.05	0.789	5.90	7.00
Q30-	10 Flow	1										
4.710	0.50	0.00	0.50	.0232	0.00320	NA	NA	NA	0.08	0.532	5.44	7.00

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	~
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	V
D.O. Saturation	90.00%	Use Balanced Technology	V
D.O. Goal	6		

WQM 7.0 Wasteload Allocations

		TT CKITT	.u mas	icioau r	mocano	1113		
	SWP Basin 9	Stream Code		St	ream Name			
	20E	32536		SOUTH FO	RK DUNKARI	FORK		
NH3-N	Acute Allocat	ions						
RMI	Discharge Na	Baseline criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reductio	
4.71	10 PELs Consol T	P 24.1	50	24.1	50	0	0	_
NH3-N RMI	Chronic Alloc Discharge Nan	Baseline	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction	_
4.71	10 PELs Consol T	P 4.36	25	4.36	25	0	0	
Dissolv	ed Oxygen Al		CBOD5	NH3-N	Discol	ved Oxygen		_
RMI	Discharge		ine Multiple	Baseline Mu	ultiple Baselir ng/L) (mg/L	ne Multiple	Critical	Percent Reductio
4.7	71 PELs Consol T	P	25 25	25	25 4	4	0	0

WQM 7.0 D.O.Simulation

SWP Basin	Stream Code			Stream Name		
20E	32536		SOUTH	FORK DUNKA	RD FORK	
RMI	Total Discharge	Flow (mgd	i) Ana	lysis Temperatu	re (°C)	Analysis pH
4.710	0.01	5		5.593		7.000
Reach Width (ft)	Reach De	pth (ft)		Reach WDRat	io	Reach Velocity (fps)
12.267	0.46	0		26.657		0.069
Reach CBOD5 (mg/L)	Reach Ko	(1/days)	F	each NH3-N (m	g/L)	Reach Kn (1/days)
3.36	0.57	-		1.48		0.231
Reach DO (mg/L)	Reach Kr (Kr Equation		Reach DO Goal (mg/L)
12.005	10.83	35		Owens		6
Reach Travel Time (days)	Subreach	Results			
0.626	TravTime	CBOD5	NH3-N	D.O.		
	(days)	(mg/L)	(mg/L)	(mg/L)		
	0.063	3.30	1.46	11.28		
	0.125	3.24	1.44	11.28		
	0.188	3.18	1.42	11.28		
	0.251	3.12	1.40	11.28		
	0.313	3.07	1.38	11.28		
	0.376	3.01	1.36	11.28		
	0.438	2.95	1.34	11.28		
	0.501	2.90	1.32	11.28		
	0.564	2.85	1.30	11.28		
	0.626	2.79	1.28	11.28		

WQM 7.0 Effluent Limits

	SWP Basin Stream Code 20E 32536		Stream Name SOUTH FORK DUNKARD FORK				
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
4.710	PELs Consol TP	PEL	0.000	CBOD5	25		
				NH3-N	25	50	
				Dissolved Oxygen			4

Attachment 4 TRC Spreadsheet Results

Copy of TRC_CALC_PELS_CONSOL

TRC EVALUATION

Source Effluent Limit Calculations												
Source Effluent Limit Calculations PENTOXSD TRG 5.1f AML MULT S.1g AVG MON LIMIT (mg/l) = 1.635	0.184	= Q stream (cfs)		0.5	= CV Daily							
CFC_Partial Mix Factor	0.015	= Q discharge (MGD)		0.5	= CV Hourly							
Chlorine Demand of Discharge	30	= no. samples		1	= AFC_Partial Mix Factor							
Source Reference AFC Calculations Reference CFC Calculations	0.3	= Chlorine Demand of Stream		1	= CFC_Partial Mix Factor							
= % Factor of Safety (FOS)	0	= Chlorine Demand of Discharge		15	= AFC_Criteria Compliance Time (min)							
Source Reference AFC Calculations Reference CFC Calculations	0.5	= BAT/BPJ V	alue	720	= CFC_Criteria Compliance Time (min)							
TRC 1.3.2.iii WLA afc = 2.548 1.3.2.iii WLA cfc = 2.477 PENTOXSD TRG 5.1a LTAMULT afc = 0.373 5.1c LTAMULT cfc = 0.581 PENTOXSD TRG 5.1b LTA_afc= 0.950 5.1d LTA_cfc = 1.440 Source Effluent Limit Calculations PENTOXSD TRG 5.1f AML MULT = 1.231 PENTOXSD TRG 5.1g AVG MON LIMIT (mg/l) = 0.500 BAT/BPJ INST MAX LIMIT (mg/l) = 1.635 WLA afc (.019/e(-k*AFC_tc)) + [(AFC_Yc*Qs*.019/Qd*e(-k*AFC_tc))+ Xd + (AFC_Yc*Qs*Xs/Qd)]*(1-FOS/100) LTAMULT afc EXP((0.5*LN(cvh^2+1))-2.326*LN(cvh^2+1)^0.5) WLA_cfc (.011/e(-k*CFC_tc) + [(CFC_Yc*Qs*.011/Qd*e(-k*CFC_tc))+ Xd + (CFC_Yc*Qs*Xs/Qd)]*(1-FOS/100) LTAMULT_cfc (.011/e(-k*CFC_tc) + [(CFC_Yc*Qs*.011/Qd*e(-k*CFC_tc))+ Xd + (CFC_Yc*Qs*Xs/Qd)]*(1-FOS/100) LTAMULT_cfc WLA_cfc Wla_cfc*LTAMULT_cfc Wla_cfc*LTAM		= % Factor of Safety (FOS)			=Decay Coefficient (K)							
PENTOXSD TRG 5.1a LTAMULT afc = 0.373 5.1c LTAMULT cfc = 0.581 PENTOXSD TRG 5.1b LTA_afc= 0.950 5.1d LTA_cfc = 1.440 Source Effluent Limit Calculations PENTOXSD TRG 5.1f AML MULT = 1.231 PENTOXSD TRG 5.1g AVG MON LIMIT (mg/l) = 0.500 BAT/BPJ INST MAX LIMIT (mg/l) = 1.635 WLA afc (.019/e(-k*AFC_tc)) + [(AFC_Yc*Qs*.019/Qd*e(-k*AFC_tc))+ Xd + (AFC_Yc*Qs*Xs/Qd)]*(1-FOS/100) LTAMULT afc EXP((0.5*LN(cvh^2+1))-2.326*LN(cvh^2+1)^0.5) WLA_cfc (.011/e(-k*CFC_tc) + [(CFC_Yc*Qs*.011/Qd*e(-k*CFC_tc))+ Xd + (CFC_Yc*Qs*Xs/Qd)]*(1-FOS/100) LTAMULT_cfc (.011/e(-k*CFC_tc) + [(CFC_Yc*Qs*.011/Qd*e(-k*CFC_tc))+ Xd + (CFC_Yc*Qs*Xs/Qd)]*(1-FOS/100) LTAMULT_cfc EXP((0.5*LN(cvd^2/no_samples+1))-2.326*LN(cvd^2/no_samples+1)^0.5) Wla_cfc*UTAMULT_cfc Wla_cfc*UTAMULT_cfc AML MULT EXP(2.326*LN((cvd^2/no_samples+1)^0.5)-0.5*LN(cvd^2/no_samples+1)) MIN(BAT_BPJ,MIN(LTA_afc,LTA_cfc)*AML_MULT)	Source	Reference	AFC Calculations		Reference	CFC Calculations						
Source Effluent Limit Calculations	TRC	1.3.2.iii	WLA afc =	2.548	1.3.2.iii	WLA cfc = 2.477						
Source Effluent Limit Calculations	PENTOXSD TRG	5.1a	LTAMULT afc =	0.373	5.1c	LTAMULT cfc = 0.581						
PENTOXSD TRG	PENTOXSD TRG	5.1b	LTA_afc=	0.950	5.1d	LTA_cfc = 1.440						
PENTOXSD TRG												
PENTOXSD TRG 5.1g	Source	Source Effluent Limit Calculations										
INST MAX LIMIT (mg/l) = 1.635 WLA afc	PENTOXSD TRG	5.1f		AML MULT =	1.231							
WLA afc (.019/e(-k*AFC_tc)) + [(AFC_Yc*Qs*.019/Qd*e(-k*AFC_tc))+ Xd + (AFC_Yc*Qs*Xs/Qd)]*(1-FOS/100) LTAMULT afc EXP((0.5*LN(cvh^2+1))-2.326*LN(cvh^2+1)^0.5) LTA_afc wla_afc*LTAMULT_afc WLA_cfc (.011/e(-k*CFC_tc) + [(CFC_Yc*Qs*.011/Qd*e(-k*CFC_tc))+ Xd + (CFC_Yc*Qs*Xs/Qd)]*(1-FOS/100) LTAMULT_cfc EXP((0.5*LN(cvd^2/no_samples+1))-2.326*LN(cvd^2/no_samples+1)^0.5) LTA_cfc WLA_cfc WLA_cfc (.011/e(-k*CFC_tc) + [(CFC_Yc*Qs*.011/Qd*e(-k*CFC_tc))+ Xd + (CFC_Yc*Qs*Xs/Qd)]*(1-FOS/100) LTAMULT_cfc EXP((0.5*LN(cvd^2/no_samples+1)^0.5)-0.5*LN(cvd^2/no_samples+1)^0.5) WLA_cfc WLA_cfc	PENTOXSD TRG	PENTOXSD TRG 5.1g AVG MON LIMIT (mg/l) = 0.500 BAT/BPJ										
+ Xd + (AFC_Yc*Qs*Xs/Qd)]*(1-FOS/100) LTAMULT afc	INST MAX LIMIT (mg/l) = 1.635											
+ Xd + (AFC_Yc*Qs*Xs/Qd)]*(1-FOS/100) LTAMULT afc												
+ Xd + (AFC_Yc*Qs*Xs/Qd)]*(1-FOS/100) LTAMULT afc												
+ Xd + (AFC_Yc*Qs*Xs/Qd)]*(1-FOS/100) LTAMULT afc												
LTAMULT afc	WLA afc			-	AFC_tc))							
\text{LTA_afc} \text{wla_afc*LTAMULT_afc} \text{WLA_cfc} (.011/e(-k*CFC_tc) + [(CFC_Yc*Qs*.011/Qd*e(-k*CFC_tc)) \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\												
WLA_cfc												
+ Xd + (CFC_Yc*Qs*Xs/Qd)]*(1-FOS/100) LTAMULT_cfc EXP((0.5*LN(cvd^2/no_samples+1))-2.326*LN(cvd^2/no_samples+1)^0.5) LTA_cfc wla_cfc*LTAMULT_cfc AML MULT EXP(2.326*LN((cvd^2/no_samples+1)^0.5)-0.5*LN(cvd^2/no_samples+1)) AVG MON LIMIT MIN(BAT_BPJ,MIN(LTA_afc,LTA_cfc)*AML_MULT)	LIA_afc	wia_afc*LTAN	IULI_afc									
+ Xd + (CFC_Yc*Qs*Xs/Qd)]*(1-FOS/100) LTAMULT_cfc EXP((0.5*LN(cvd^2/no_samples+1))-2.326*LN(cvd^2/no_samples+1)^0.5) LTA_cfc wla_cfc*LTAMULT_cfc AML MULT EXP(2.326*LN((cvd^2/no_samples+1)^0.5)-0.5*LN(cvd^2/no_samples+1)) AVG MON LIMIT MIN(BAT_BPJ,MIN(LTA_afc,LTA_cfc)*AML_MULT)	WI A ofo	(011/e/_k*CE	C to) + [(CEC Vo*Oc*	011/Odte/ Lt	CEC toll							
LTAMULT_cfc EXP((0.5°LN(cvd^2/no_samples+1))-2.326°LN(cvd^2/no_samples+1)^0.5) LTA_cfc wla_cfc*LTAMULT_cfc AML MULT EXP(2.326°LN((cvd^2/no_samples+1)^0.5)-0.5°LN(cvd^2/no_samples+1)) AVG MON LIMIT MIN(BAT_BPJ,MIN(LTA_afc,LTA_cfc)*AML_MULT)	TA_GIG											
LTA_cfc wla_cfc*LTAMULT_cfc AML MULT EXP(2.326*LN((cvd^2/no_samples+1)^0.5)-0.5*LN(cvd^2/no_samples+1)) AVG MON LIMIT MIN(BAT_BPJ,MIN(LTA_afc,LTA_cfc)*AML_MULT)												
AML MULT EXP(2.326"LN((cvd^2/no_samples+1)^0.5)-0.5"LN(cvd^2/no_samples+1)) AVG MON LIMIT MIN(BAT_BPJ,MIN(LTA_afc,LTA_cfc)"AML_MULT)												
AVG MON LIMIT MIN(BAT_BPJ,MIN(LTA_afc,LTA_cfc)*AML_MULT)												
AVG MON LIMIT MIN(BAT_BPJ,MIN(LTA_afc,LTA_cfc)*AML_MULT)	AML MULT	AML MULT EXP(2.326"LN((cvd^2/no_samples+1)^0.5)-0.5"LN(cvd^2/no_samples+1))										
	INST MAX LIMIT 1.5*((av_mon_limit/AML_MULT)/LTAMULT_afc)											
	l											