Advances in Mercury Control Technology

Pennsylvania Mercury Rule Workgroup Meeting

Harrisburg, PA November 18, 2005

Institute of Clean Air Companies

Sorbent Injection Technology for Controlling Mercury Emissions

Selected European Experience With Control of Mercury Emissions

- Commercialized mercury removal technology for the European WtE industry
- Sorbent injection upstream of dedicated HRFF
 - Installed 19 systems during early 1990s
 - ✓ Utilize activated carbon/coke
 - ALL have operated reliably for more than 10 years
 - ALL achieve between 80 -90% mercury removal
 - ALL capture both elemental and oxidized mercury
- Additional experience with sorbent injection upstream of dry FGD systems

Data from US utility pilots validates performance curves from European WtE industry

Retrofit of ACI on an Existing Plant

Greater than 90% reduction in mercury emissions in less than six months!

Response Time for PAC Injection on an ESP

PAC Installations on Various Coal-Burning Power Plants

Full-Scale Tests of Sorbent Injection Completed: 2001-2004

(Site	Coal	Equipment
	1.	Gaston 1 month	Low-S Bit	FF
	2.	Pleasant Prairie	PRB	C-ESP
	3.	Brayton Point	Low-S Bit	C-ESP
	4.	Abbott	High-S Bit	C-ESP/FGD
	5.	Salem Harbor	Low-S SA Bit	C-ESP
	6.	Stanton 10	ND Lignite	SDA/FF
	7.	Laskin	PRB	Wet P Scrbr
	8.	Coal Creek	ND Lignite	C-ESP
	9.	Gaston 1 year	Low-S Bit	FF
	10.	Holcomb	PRB	SDA/FF
	11.	Stanton 10	ND Lignite	SDA/FF
	12.	Yates 1	Low-S Bit	ESP
	13.	Yates 2	Low-S Bit	ESP/FGD
	14.	Leland Olds	ND Lignite	C-ESP
	15.	Meramec	PRB	C-ESP
	16.	Brayton Point	Low-S Bit	C-ESP

Full-Scale Tests of Sorbent Injection Scheduled: 2005-2006

Site	Coal	Equipment
1-6 Commercial Tests	Low-S Bit	ESP
7. Laramie River	PRB	SDA/ESP
8. Conesville	High-S Bit	ESP/FGD
9. DTE Monroe	PRB/Bit	ESP
10. Antelope Valley	ND Lignite	SDA/FF
11. Stanton 1	ND Lignite	C-ESP
12. Council Bluffs 2	PRB	H-ESP
13. Louisa	PRB	H-ESP
14. Independence	PRB	C-ESP
15. Gavin	High-S Bit	C-ESP FGD
16. Presque Isle	PRB	HS-ESP TOXECON

Working with Potential Customers to Demonstrate Hg Control

- Primary funding from DOE National Energy Technology Laboratory (NETL)
- Cofunding provided by:
 - Southern Company
 - AEP
 - TVA
 - FirstEnergy
 - DTE
 - EPRI
 - Ontario Power Generation
 - Kennecott Energy
 - Arch Coal

Extensive Data Collection and Analysis for Each Full-Scale Program

SINGLE SITE FIELD TEST REPORT TABLE OF CONTENTS

INTRODUCTION	1	
EXECUTIVE SUMMARY	2	
DESCRIPTION OF OVERALL PROGRAM	3	
HOLCOMB PROJECT OBJECTIVES AND TECHNICAL APPROACH		
Baseline Mercury Removal with 100% PRB Coal	22	
Coal Blending Tests	23	
Sorbent Screening Tests	25	
Parametric Tests	28	
Long-Term Testing	33	
Characterization of Process Solids and Liquids	41	
Balance-of-Plant Impacts	53	
ECONOMIC ANALYSIS		
CONCLUSIONS	62	
APPENDIX B Coal Reports	88	
APPENDIX D Sample and Data Management Plan	113	
APPENDIX E Baseline Source Test Results	124	
APPENDIX F Parametric Source Test Results	307	
APPENDIX G Long-Term Source Test Results		
APPENDIX H Bag Analysis Report	599	
APPENDIX I Reaction Engineering International Memo	602	

Limited Hg Capture by ACI on Western Coals

Enhancing Mercury Removal for Western Coals

Coal Additives and Brominated AC on a PRB Unit with only an ESP

Long-Term Results; PRB ESP Only Meramec, DARCO Hg-LH

Average Hg Removal Efficiency: 93%

Sorbent Injection Concentration: 3.3 lb/MMacf

Average Hg emissions: 0.44 lb/TBTU

B-PAC Run at DTE St. Clair 85% PRB 15% Bit, ESP Only

Detroit Edison St. Clair Plant - Total Hg Removal Thirty Day Average = 94%

Commercial Suppliers of Enhancements for Western Coals

- Brominated Carbons
 - NORIT
 - Sorbent Technologies
- Coal Additives
 - Alstom Power
 - Babcock and Wilcox
- Western Bituminous Coal
 - Arch Coal

Sorbent Cost Comparison

Year-Long Test of Mercury Removal in a Fabric Filter on Bituminous Coal

- 270 MW firing a variety of lowsulfur, washed eastern bituminous coals
- Particulate Collection:
 - Hot-Side ESP; SCA = 274 ft²/kacfm
 - COHPACTM baghouse
- Wet ash disposal to pond
- Primary funding from DOE/NETL with co-funding provided by:
 - Southern Company
 - PG&E NEG
 - Ontario Power Generation
 - TVA
 - Kennecott Energy
 - We Energies

- EPRI
- First Energy
- Hamon Research Cottrell
- Arch Coal

ACI with a Fabric Filter on Bituminous Coal

Rapid Advances in Sorbent Technology

Tools for Evaluating ACI

Phase I Diagnose Problem and Develop Potential Solutions: 2003

Phase II Sorbent Screening: February 2004

February 2004: Sorbent Screening Tests (100 g Samples)

Ten different sorbent vendors

Nineteen different experimental samples

Phase III Parametric Tests: April 2004

April 2004: Parametric Tests (1000 lbs of Sorbent)

Two different sorbent vendors

Three different experimental samples

Phase IV Long-Term Test: July 2004

July 2004: 30-Day Tests (50,000 lbs of Sorbent)

Phase V Commercial Production: December 2004

Enhancing Sorbent Technology for Bituminous Coals

Phase I Diagnose Problem and Develop Potential Solutions: 2005

Phase II Sorbent Screening: November 2005

Overall: 34 samples, 14 vendors

- Carbon-based
 - 15 samples, 7 vendors
- Non-Carbon
 - 13 samples, 9 vendors
- Mixtures
 - 6 samples , 3 vendors

Phase III, IV, and V: 2006

Multiple full-scale field tests planned for sites burning bituminous coals in 2006

Ash Issues

- The mercury captured by PAC, LOI, and ash appears to be very stable and unlikely to reenter the environment.
- The presence of PAC will most likely prevent the sale of ash for use in concrete
 - This will impact 30% of the units!
- Several developing technologies to address the problem:
 - Separation
 - Combustion
 - Chemical treatment
 - Non-carbon sorbents
 - Configuration solutions such as EPRI TOXECONTM

EPRI TOXECON™ Configuration

First Commercial Hg Control System Presque Isle Power Plant

- \$50 Million
 program funded
 by We Energies
 and DOE
- Units 7 9 (270)
 MW on PRB Coal
- System designed for 90% Hg control

EPRI TOXECON 2TM Configuration

TOXECON II Injection Equipment at Coal Creek and Independence

Advantages of ACI in a Rapidly Changing Regulatory Environment

- ♦ Low Capital Cost (<\$1 Million for 100 to 500 MW plants)
- Operating Costs (sorbent utilization) scales directly with plant size
- Versatile:
 - Can reduce mercury emissions by 10% to >90%
 - Staged emissions reductions can be achieved with no change in hardware
 - Fast implementation: 6 months for design, fabrication, and installation
 - No plant outage required for installation
- Fuel Flexibility: Effective on both bituminous and subbituminous coals
- Improved sorbents result in significant reductions in costs and can be implemented with no change in hardware
- ◆ TOXECON™configurations provide options for maintaining ash sales

Contact Information

- David Foerter Executive Director, Institute of Clean Air Companies (ICAC)
 - 1730 M Street, NW, Suite 206, Washington DC, 20036
 - www.icac.com / (202) 457-0911 / dfoerter@icac.com
- Mike Durham, Ph.D., MBA Chair of the ICAC Mercury Control Division
 - ADA-ES; 8100 SouthPark Way, Unit B, Littleton, CO 80120
 - www.adaes.com / (303) 734-1727 / miked@adaes.com